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ABSTRACT

Diffusion models represent a powerful class of generative models known for their
solid theoretical foundations and remarkable performance across diverse tasks and
domains. While diffusion models have been extensively utilized for generating en-
tire graphs or small-scale graphs, no diffusion-based approaches have been devel-
oped to synthesize graph structures within an existing graph, including synthetic
nodes and their associated edges. In this study, we introduce the Robust Graph
Diffusion Model (RGDM), designed to generate labeled synthetic graph struc-
tures consisting of nodes and edges that integrate seamlessly into a given graph.
The RGDM consists of a Robust Graph Autoencoder (RGAE) and a Latent Dif-
fusion Model (LDM). Leveraging an edge selection mechanism and an innova-
tive low-rank regularization on the latent feature, the RGDM produces clean and
high-quality synthetic graph structures, even when trained on graphs subject to
adversarial attacks. Comprehensive experimental evaluations reveal that Graph
Neural Networks (GNNs) trained on the augmented graph, which is formed by
merging the original attacked graph with the synthetic graph structures, exhibit
significantly improved robustness against various graph adversarial attacks in the
context of semi-supervised node classification. The code of the RGDM is avail-
able at https://anonymous.4open.science/r/RGDM.

1 INTRODUCTION

Diffusion models have achieved state-of-the-art performance in image generation (Ho et al., 2020;
Gao et al., 2023a; Rombach et al., 2022; Baranchuk et al., 2022), and latent diffusion models (Rom-
bach et al., 2022; Ho & Salimans, 2022) further extend this framework by incorporating conditioning
signals into the denoising process to improve contextual fidelity. Motivated by these advances, re-
cent studies (Trabucco et al., 2024; Azizi et al., 2023) propose using the synthetic data generated by
diffusion models to augment the training set of deep neural networks. Some works (Niu et al., 2020;
Song et al., 2021; Haefeli et al., 2022; Vignac et al., 2023; Limnios et al., 2023) also extend diffusion
models to the graph-structured data, while they primarily focus on graph-level augmentation. Most
existing node-level graph augmentation methods focus on increasing the number of labeled nodes by
simple augmentation methods such as node-level mix-up (Han et al., 2022; Wang et al., 2021; Verma
et al., 2021; Zhao et al., 2024; Jeong et al., 2024; Lu et al., 2024) and generating synthetic labeled
nodes and edges by Generative Adversarial Networks (GANs) for imbalanced graph data (Jia et al.,
2023a; Wu et al., 2023; Wang et al., 2018; Liang et al., 2020; Yang et al., 2019). We note that the
node-level graph augmentation method, DoG (Wang et al., 2025), is not designed for robust graph
learning. Although widely used in augmenting graph data, the computer vision literature (Dhariwal
& Nichol, 2021) has demonstrated that GANs often exhibit instability during training and that the
distribution of synthetic data generated by GANs poorly matches the distribution of real data.

As a result, the challenge of generating synthetic graph structures (SGS) within a given graph, which
are the synthetic nodes and their corresponding edges, in a robust manner to enhance node classi-
fication under attacks, remains underexplored. In this work, we tackle the problem of node-level
graph generation and propose the Robust Graph Diffusion Model (RGDM), designed to synthesize
high-quality graph structures within a single graph, even under adversarial attacks. These synthetic
structures include both synthetic nodes and edges connecting them within the same graph, form-
ing an augmented graph as illustrated in Figure 1. Robust GNNs will be trained on the augmented
graph, and superior performance on the augmented graph is expected due to the enlarged set of
labeled nodes in the augmented graph. Generating high-quality SGS in adversarial scenarios for
improved performance is challenging, important, and unaddressed in the robust graph learning lit-
erature. To address this challenge, RGDM integrates a Robust Graph Autoencoder (RGAE) with
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a Latent Diffusion Model (LDM). The RGAE incorporates an edge selection mechanism and a
low-rank regularization on the latent features to counteract adversarial perturbations in the attacked
graph. The low-rank regularization is motivated by the Low Frequency Property (LFP) (Rahaman
et al., 2019; Arora et al., 2019; Cao et al., 2021; Choraria et al., 2022; Wang et al., 2024; 2025),
which indicates that the low-rank part of the latent features covers the dominant information in the
ground truth label while learning only a small portion of the adversarial noise, as illustrated in Fig-
ure 4 in Section F.1. The low-rank regularization is further justified by our novel theoretical result in
Theorem 3.1, which shows that the low-rank feature ensures a smaller kernel complexity (KC) and
thus contributes to a smaller generalization bound for transductive node classification.

Real Edge
Synthetic Edge

Augmented Graph

Real Node
Synthetic Node
Real Node (Neighbors)

Figure 1: Illustration of the
2-hop neighborhood of a real
node and a synthetic node in
the augmented graph. Fig-
ure 5 in Section F.9 illustrates
the t-SNE visualization of the
augmented graph.

Figure 1 illustrates the 2-hop neighborhood of a real node and a syn-
thetic node that have similar node features, evidenced by the t-SNE
visualization in Figure 5 in Section F.9 of the appendix. The fidelity
of the SGS generated by the RGDM is proved in Table 8 and Table 9
in Section F.3 of the appendix, where the synthetic nodes and edges
in the SGS generated by the RGDM exhibit similar Frechet Node
Distance (FND) score and Frechet Edge Distance (FED) scores as
the nodes and edges in the original clean graph. The FND score
and the FED score, defined in Section F.3 of the appendix, mea-
sure the quality of the synthetic nodes and edges compared to the
real nodes and edges in the original clean graph, with lower FND
and FED scores indicating better quality. As shown in Table 8 and
Table 9, the SGS generated by RGDM exhibits significantly lower
FND and FED scores compared to the SGS generated by the base-
line diffusion model DDPM (Ho et al., 2020) and various GAN-
based SGS generation methods (Qu et al., 2021; Gao et al., 2023b;
Zhao et al., 2021a), demonstrating the advantages of the RGDM in
generating faithful synthetic graph structures. We remark that since
the synthetic graph structures generated by the RGDM are faithful
and similar to nodes and edges in the original clean graph, incorporating the synthetic graph struc-
tures into the original attacked graph dilutes the adversarial noises in it. For example, the RGDM
generates 785 synthetic edges for the Citeseer dataset under the Metattack (Zügner & Günnemann,
2019) with a perturbation rate of 25%. After incorporating the faithful synthetic graph structures
generated by the RGDM into the original attacked graph, the perturbation rate is reduced to roughly
20.6% in the augmented graph. The dilution of the adversarial noise provides an explanation of how
the RGDM significantly improves the robustness of Graph Neural Networks (GNNs) trained on the
augmented graph, as shown in Section 4.2.

Difference from Existing Diffusion-based Purification Methods. Recent works have explored
applying diffusion models for data purification (He et al., 2025; Luo et al., 2025; Zhao et al., 2025;
Xie et al., 2025; Chen et al., 2023), including graph purification (He et al., 2025; Luo et al., 2025;
Zhao et al., 2025). However, the existing diffusion-based purification methods can not synthesize
low-noise and faithful SGS. This is because the current diffusion-based graph purification meth-
ods (He et al., 2025; Luo et al., 2025; Zhao et al., 2025) are only for graph-level purification, and
they are trained on the attacked graphs and the corresponding clean graphs to learn the denoising
process. Because there are no clean graph data corresponding to the SGS, all the current graph-
level, diffusion-based graph purification methods, such as (He et al., 2025; Luo et al., 2025), cannot
be trained to purify the augmented graphs, where the augmented graph includes the original at-
tacked graph and the SGS. Furthermore, although one can generate synthetic nodes/edges by vanilla
diffusion-based methods, these generated SGS inevitably suffer from noise since the training data,
that is, the original attacked graphs, contains adversarial noise. In contrast, our proposed RGDM
does not need clean graphs in its training and inference process.

Contributions. The contributions of this paper are presented as follows.

First, we introduce a novel Robust Graph Diffusion Model (RGDM), the first node-level graph dif-
fusion model designed to synthesize labeled graph structures for robust graph learning. Decoding
a node’s neighbors over the entire graph incurs quadratic complexity, as each node may connect to
any other node. To address this issue, our RGDM also introduces a novel Sparse Hierarchical Edge
Decoder (SHED), which reconstructs the edges connected to a node in an efficient sparse and hierar-
chical manner. Training GNNs on the augmented graph that integrates the synthetic graph structures
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into the original graph leads to substantial improvements in semi-supervised node classification un-
der graph adversarial attacks. As evidenced in Section F.3 and Section F.10 of the appendix, RGDM
generates more faithful SGS than existing graph augmentation methods, and the GNNs trained on
SGS demonstrate stronger robustness against adversarial attacks.

Second, benefiting from the new low-rank regularization on the latent feature in the RGAE, RGDM
generates high-quality synthetic graph structures that closely resemble the original clean graph, even
when trained on graphs compromised by adversarial attacks. Table 8 and Table 9 in the appendix
evidence the quality of the synthetic graph structures, as measured by the FND and FED scores
defined in Section F.3 of the appendix. The low-rank regularization in the RGAE is empirically
inspired by LFP and theoretically inspired by our novel theoretical result in Theorem 3.1, which
demonstrates that a low-rank feature leads to reduced kernel complexity (KC), thereby contributing
to a tighter generalization bound for transductive node classification. The augmented graph, formed
by integrating the synthetic graph structures into the attacked graph, effectively reduces the impact
of adversarial noise compared to the original attacked graph. Consequently, GNNs trained on this
augmented graph exhibit enhanced robustness. As shown in Section 4.2, existing robust GNNs,
such as Pro-GNN (Jin et al., 2020) and SG-GSR (In et al., 2024), trained on the augmented graph
by RGDM achieve state-of-the-art performance under various types of graph adversarial attacks.

2 RELATED WORKS

Data Augmentation for Graph Learning. To improve the performance of GNNs, node-level graph
data augmentation methods have been studied to modify the structure (Gasteiger et al., 2019; Zhao
et al., 2021b; Rong et al., 2020; Feng et al., 2022; Lai et al., 2024), features (You et al., 2020; Kong
et al., 2022; Azad & Fang, 2024), or node labels (You et al., 2020; Kong et al., 2022; Azad & Fang,
2024). Studies have demonstrated that increasing the number of labeled nodes based on Mix-up
strategies (Han et al., 2022; Wang et al., 2021; Verma et al., 2021; Zhao et al., 2024; Jeong et al.,
2024; Lu et al., 2024) can greatly enhance the performance of the GNNs. Recent works address
node and edge imbalance by generating synthetic nodes and edges (Qu et al., 2021; Zhao et al.,
2021a; Hsu et al., 2024; Gao et al., 2023b; Hsu et al., 2023), but predominantly rely on Generative
Adversarial Networks (GANs). However, the computer vision literature (Dhariwal & Nichol, 2021)
has demonstrated that GANs often exhibit instability during training and that the distribution of
synthetic data generated by GANs poorly matches the distribution of real data. Although diffusion
models have demonstrated superior capability in generating faithful graph data, all existing graph
diffusion models (Song et al., 2021; Niu et al., 2020; Haefeli et al., 2022; Vignac et al., 2023;
Limnios et al., 2023) are designed for graph-level generation and lack the capability to generate
synthetic nodes along with their associated edges within an existing graph. In contrast, our work
aims to simultaneously generate faithful synthetic nodes and their associated edges within a given
graph using the diffusion model.

Graph Adversarial Attacks and Defense. Despite the success of GNNs in graph-structured
tasks (Kipf & Welling, 2017; Zhang & Chen, 2018), recent studies reveal their vulnerability to ad-
versarial attacks (Dai et al., 2022). Depending on the attack objective, threat models are categorized
as: targeted attacks (Zügner et al., 2018), which mislead predictions on specific nodes, and untar-
geted attacks (Zügner & Günnemann, 2019; Sun et al., 2020), which reduce overall model accuracy.
To defend against these threats, robust learning strategies are grouped into three categories: adver-
sarial training, graph processing, and model robustification. Adversarial training (Li et al., 2022a;
Feng et al., 2019) augments training data with crafted adversarial samples. Graph processing (Wu
et al., 2019; Entezari et al., 2020; Jin et al., 2020; Lei et al., 2022) seeks to denoise perturbed graphs.
Model robustification (Xie et al., 2023; Rusch et al., 2022; Song et al., 2022; Zhao et al., 2023; Jia
et al., 2023b; Liu et al., 2024; Abbahaddou et al., 2024; In et al., 2024) enhances model resilience.

3 METHODS

3.1 PRELIMINARIES OF THE ATTRIBUTED GRAPH

An attributed graph consisting of N nodes is represented by G = (V,X,A), where V =
{v1, v2, . . . , vN} and E ⊆ V ×V denote the nodes and edges respectively. X ∈ RN×D are the node
attributes. Xi ∈ RD, the i-th row of X, denotes the attributes of the i-th node. A ∈ {0, 1}N×N is
the adjacency matrix of the graph G. Ã = A+ I is the adjacency matrix of a graph with self-loops
added. D̃ denotes the diagonal degree matrix of Ã. We use N (i) = {j | Ãi,j = 1} to denote the set
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of the indexes of nodes connected to the node vi. Z ∈ RN×D′
are the latent features of all the nodes

in the graph, where D′ is the latent dimension. Let VL and VU denote the set of labeled nodes and
unlabeled test nodes, respectively, and |VL| = m, |VU | = u. Let YL = {yi|vi ∈ VL, yi ∈ [C]} de-
note the labels of nodes in VL, where C is the number of classes. Let Y = [y1;y2; . . .yN ] ∈ RN×C

be the ground truth label matrix of all the nodes in G, where yi is the one-hot label vector of node
vi. Let u ∈ RN be a vector, we use [u]A to denote a vector formed by elements of u with indices
in A for A ⊆ [N ]. If u is a matrix, then [u]A denotes a submatrix formed by rows of u with row
indices in A. ∥·∥F denotes the Frobenius norm of a matrix, and ∥·∥p denotes the p-norm of a vector.

3.2 ROBUST GRAPH AUTOENCODER (RGAE)

In this section, we propose the Robust Graph Autoencoder (RGAE) capable of encoding node at-
tributes and associated edges into continuous latent features and decoding these features to recon-
struct the node attributes and edges in the graph. Beyond reconstruction, the RGAE is designed to
be robust to adversarial perturbations in the node attributes and the edges in the graph, enhancing
the resilience against potential graph adversarial attacks.
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Figure 2: Figure (a) illustrates the synthetic node generation process in Robust Graph Diffusion
Model. Figure (b) illustrates the structure of the Sparse Hierarchical Edge Decoder (SHED).

Robust Graph Encoder with Edge Selection. We generate latent features by combining embed-
dings of each node’s attributes Xi and those of its neighbors Xj | j ∈ N (i). To incorporate edge
information, we add positional embeddings to each neighbor’s features as X

′

j = Xj + pos(j) for
j ∈ N (i), which are then aggregated using GAT layers (Veličković et al., 2018). GAT compute
attention weights B ∈ RN×N as Bij = softmax

(
Aijσ

(
X

′

iQ∥X′

jQ
)
V
)

, where ∥ denotes concate-

nation, σ is the sigmoid function, Q ∈ RD×M , and V ∈ R2M×1 are learnable weights.

However, if the graph is adversarially attacked, the graph may contain edges that propagate harmful
information and distort the node representations. To address such challenge, inspired by graph
sparsification for robustness (Jin et al., 2020; Zheng et al., 2020), we propose an edge selection
method to purify the edges in the graph during the training of the RGAE. A binary decision mask
S ∈ {0, 1}N×N retains only faithful edges. To enable gradient-based optimization, we relax S into a
continuous approximation Ŝ ∈ (0, 1)N×N using the binary Gumbel-Softmax (Verelst & Tuytelaars,
2020; Bengio et al., 2013), where Ŝij = σ

(
θij
τ

)
, where θ ∈ RN×N and τ is the temperature. θij is

obtained by applying a linear layer to X
′

i∥X
′

j . The GAT output with edge selection is computed as

Z
′

i = ReLU
(∑

j∈N (i) SijBijX
′

iW
)

, where W is the learnable transformation matrix. We stack

two GAT layers to obtain Z
′

i, capturing neighborhood and edge information of node vi. The final
latent feature for node vi is Zi = Z

′

i∥f(Xi), where f(·) is a multilayer perception (MLP).

Sparse Hierarchical Edge Decoder (SHED). Decoding edges from latent features can be compu-
tationally intensive, as each node may connect to any other node. To mitigate this, we propose a
Sparse Hierarchical Edge Decoder (SHED), which decodes each latent feature into an inter-cluster
and an intra-cluster neighbor map, as illustrated in Figure 2 (b). The SHED begins by partitioning
the nodes into K balanced clusters using balanced K-means clustering (Malinen & Fränti, 2014)
based on node attributes. Each cluster has a maximum capacity of M = ⌈N

K ⌉. Within each cluster,
nodes are indexed by their original graph order. For a node vi, SHED first reconstructs an inter-

4
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cluster neighbor map C ∈ {0, 1}N×K , where Cik = 1 if vi is connected to at least one node
in cluster k. It then reconstructs the intra-cluster neighbor map as a tensor M ∈ {0, 1}N×K×M ,
where Mikm = 1 indicates that vi is connected to the m-th node in cluster k. The SHED begins
by computing the inter-cluster neighbor assignment Ĉi for each node vi using a single-layer MLP.
The active cluster indices, C(i) = {k ∈ [K] | Cik = 1}, are extracted and passed through a class-
conditional embedding module g(·), which consists of a text encoder followed by a MLP, inspired
by the classifier-free guidance technique (Ho & Salimans, 2022). This produces a set of embeddings
Z(i) = {g(k) ∈ RD′ | k ∈ C(i)}. Each embedding g(k) is then concatenated with the latent
representation Zi from the alternate branch, and the result is processed by a decoding MLP, g′(·),
to estimate the intra-cluster neighbor relation as M̂ik = g′(Zi∥g(k)). Compared to the Bi-Level
Neighborhood Decoder (BLND) in DoG (Wang et al., 2025), the reconstructed neighbor map M̂ is
sparse for robust graph learning, which is enforced by the training of the RGAE detailed later.

Optimization of the RGAE. RGAE incorporates an edge selection mechanism in the encoder that
gradually removes the adversarial edges. By learning an edge selection mask S, the adjacency
matrix of the graph is purified as A ◦ S. By integrating the edge selection mechanism with SHED,
we decompose S into two edge selection masks, Sinter ∈ {0, 1}N×K and Sintra ∈ {0, 1}N×K×M ,
for edge selection on the inter-cluster neighbor map C and intra-cluster neighbor map M. At the
end of each epoch, Sinter and Sintra are computed from S. In particular, [Sinter]ik = 1 if and only if
there is a node vj from the cluster k, such that Sij = 1. [Sintra]ikm = 1 if and only if Sij = 1, where
vj is the m-th node in the cluster k.

In addition, we propose to mitigate the negative effects of the adversarial noise by the learned feature
kernel to be low-rank. The kernel gram matrix K of the latent representations Z ∈ RN×D′

is
calculated by K = Z⊤Z ∈ RN×N , where D′ is the dimension of the latent representation. Let{
λ̂i

}n

i=1
with λ̂1 ≥ λ̂2 . . . ≥ λ̂min{N,d} ≥ λ̂min{N,d}+1 = . . . ,= 0 be the eigenvalues of K. In

order to encourage the features Z or the gram matrix K = Z⊤Z to be low-rank, we explicitly add
the truncated nuclear norm (TNN), which is ∥K∥r0 :=

∑N
r=r0+1 λ̂i, to the training loss the RGAE.

The starting rank r0 < min(N,D′) is the rank of the kernel gram matrix of the features we aim to
obtain with the encoder of the RGAE, that is, if ∥K∥r0 = 0, then rank(K) = r0. Therefore, the
overall loss function of the RGAE is

L(t)
RGAE(S

(t−1)
intra ,S

(t−1)
inter ) = L(t)

C + τSL(t)
S + τT∥K∥r0 , (1)

L(t)
C =

∥∥∥X− X̂
∥∥∥2

2︸ ︷︷ ︸
Node Reconstruction

+

(∥∥∥C− Ĉ
∥∥∥2

2
+

∥∥∥M− M̂
∥∥∥2

2

)
︸ ︷︷ ︸

Hierarchical Edge Reconstruction

,L(t)
S =

∥∥∥C ◦ S(t−1)
inter − Ĉ

∥∥∥2

2
+

∥∥∥M ◦ S(t−1)
intra − M̂

∥∥∥
1
.

Here ◦ denotes the Hadamard product. L(t)
RGAE is the overall training loss of the RGAE at the t-

th epoch, t ∈ [ttrain] is the current epoch number and ttrain is the total number of training epochs.
We initialize S

(0)
intra = C and S

(t−1)
inter = M before the first epoch of the training. τS and τT are the

scale factors for the sparsification loss and the TNN. L(t)
C and L(t)

S are the consistency loss and the
sparsification loss at the t-th epoch. The starting rank r0 is selected by cross-validation as described
in Section 4.1. The training of RGDM is described in Algorithm 1 in Section C of the appendix.

The node reconstruction loss and the hierarchical edge reconstruction loss ensure consistency be-
tween the reconstructed features and adjacency matrix and their inputs. The sparsification loss is
motivated by prior work on graph structure learning for robust GNNs (Jin et al., 2020; Zheng et al.,
2020), which aims to purify noisy or perturbed graph structures. he term

∥∥∥M ◦ S(t−1)
intra − M̂

∥∥∥
1

in

L(t)
S ensures the sparsity of M̂. Although the BLND in DoG (Wang et al., 2025) also performs edge

reconstruction in a two-level manner, it is trained to precisely recover all edges connected to each
node in the given graph, including those corrupted by adversarial attacks. In contrast, our SHED
reconstructs a sparse and robust graph structure by selectively preserving the clean edges, moti-
vated by prior studies showing that graph sparsification enhances the robustness of GNNs against
adversarial attacks by removing noisy connections (Jin et al., 2020; Lei et al., 2022; Zheng et al.,
2020; Chowdhury et al., 2024). Moreover, existing studies on adversarial defense reveal that per-
turbations typically reside in high-rank residual components, whereas clean signals lie in low-rank

5
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subspaces (Awasthi et al., 2020; 2021). Projecting representations onto low-rank subspaces (Awasthi
et al., 2020; 2021; Xu et al., 2024) or enforcing low-rank weight matrices (Savostianova et al., 2023)
has been proven to be effective for enhancing robustness. However, research in graph adversarial
defense has focused predominantly on reducing the rank of the adjacency matrix (Wu et al., 2022;
Entezari et al., 2020; Deng et al., 2022; Zhou et al., 2025; Zhang et al., 2025). In contrast, our
proposed low-rank regularization enforces the latent representation to be low-rank with a principled
theoretical guarantee in Theorem 3.1.

Motivation of Low-Rank Regularization. We study how the information of the ground-truth
class label and the adversarial noise are distributed on different eigenvectors of the feature gram
matrix K = Z⊤Z by performing eigen-projection, where Z is the latent feature learned on the
graph with the adversarial noise. We first compute the eigenvectors U of the feature gram ma-
trix K. Let U(1:r) ∈ RN×r be the top r-eigenvectors of K and U(r) be the r-th eigenvec-
tor of K. Then, the eigen-projection value of the ground-truth label Y on U(r) is computed by

pr = 1
C

∑C
c=1

∥∥∥U(r)⊤Y(c)
∥∥∥2
2
/
∥∥Y(c)

∥∥2
2

for r ∈ [N ], where Y(c) is the c-th column of Y. We

let p = [p1, . . . , pN ] ∈ RN . The eigen-projection pr reflects the amount of the signal projected
onto the r-th eigenvector of K, and the signal concentration ratio of a rank r reflects the proportion
of signal projected onto the top r eigenvectors of K. The signal concentration ratio for rank r is
computed by ∥p(1 : r)∥1, where p(1 : r) contains the first r elements of p. It is observed from the
red curves in the left of Figure 3 and Figure 4 in Section F.1 of the appendix that the projection of
the ground truth labels mostly concentrates on the top eigenvectors of K, known as the Low Fre-
quency Property (LFP) widely studied in deep learning (Rahaman et al., 2019; Arora et al., 2019;
Cao et al., 2021; Choraria et al., 2022; Wang et al., 2024; 2025). On the other hand, we study how the
information of the adversarial noise is distributed on the eigenvectors of the feature gram matrix K.

Ground Truth Label

Adversarial Noise

Ground Truth Label

Adversarial Noise

Figure 3: Eigen-projection (left) and concentration ra-
tio (right) of the ground truth label and the adversarial
noise on Pubmed. The study is performed for Metat-
tack with a perturbation ratio of 25%. By the rank
r = r0 = 0.2min {N,D′}, the signal concentration
ratio of the ground truth label is 0.784. Results on Cora
and Citeseer are illustrated in Figure 4 in Section F.1.

Let Z(clean) be the latent features obtained
on the clean input graph without adver-
sarial noise, then ∆Z = Z − Z(clean)

is the adversarial noise in the feature
due to the attacks. The low-rank part
of Z characterized by its top-r eigenvec-
tors is Z(low-rank) = U(1:r)U(1:r)⊤Z =
U(1:r)U(1:r)⊤(Z(clean) + ∆Z). Then
U(1:r)U(1:r)⊤Z(clean) is the low-rank part
of the clean latent feature Z(clean), and
U(1:r)U(1:r)⊤∆Z is the adversarial noise
induced by the adversarial attack in
Z(low-rank). We compute eigen-projection
value of the adversarial noise by p

(∆Z)
r =∥∥∥U(r)⊤∆Z

∥∥∥
F
/∥∆Z∥F for r ∈ [N ], which reflects the amount of the adversarial noise projected onto

the r-th eigenvector of K. We compute the noise concentration ratio for rank r by
∥∥p(∆Z)(1 : r)

∥∥
1
,

where p(∆Z)(1 : r) contains the first r elements of p(∆Z). The noise concentration ratio of a rank r
reflects the proportion of adversarial noise projected onto the top r eigenvectors of K.

It is observed in Figure 3 and Figure 4 that the eigen-projection of the adversarial noise is relatively
uniform over all the eigenvectors. This observation motivates low-rank feature learning on Z, be-
cause the low-rank part of the feature matrix Z covers the dominant information of the ground truth
label Y while learning only a small portion of the adversarial noise. We remark that the low-rank
regularization term ∥K∥r0 in (1) is also theoretically motivated by the upper bound for the test loss
in the transductive learning setting, presented as (2) in Theorem 3.1. A smaller ∥K∥r0 is obtained by
optimizing the training loss in Equation (1), which ensures a smaller kernel complexity (KC) defined
in Theorem 3.1, contributing to a smaller generalization bound for transductive node classification.

Theoretical Justification for the Low-Rank Regularization. To justify the benefits of applying
the low-rank regularization on the latent representations learned by the encoder of the RGAE, we
introduce a simple yet standard linear transductive node classification algorithm using the low-rank
node representations Z ∈ RN×d produced by the encoder of the RGAE. We present the generaliza-
tion bound for the test loss for our low-rank transductive algorithm with the presence of adversarial

6



324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377

Under review as a conference paper at ICLR 2026

noise. Although the latent representations produced by the RGAE encoder are not directly used
for downstream node classification, their improved generalization under adversarial perturbations
suggests that they capture semantically meaningful and class-discriminative graph structures. Such
properties are particularly beneficial for class-conditional generation, where the fidelity of the gen-
erated samples depends on the quality and coherence of the latent space.

Define F(W, t) := ZW(t) as the output of the classifier after the t-th iteration of gradient descent on
the training loss L(W) = 1

|VL|
∑

vi∈VL
KL (yi, [softmax (ZW)]i) for t ≥ 1. We have Theorem 3.1,

on the Mean Squared Error (MSE) loss of the unlabeled test nodes VU measured by the gap between
[F(W, t)]U and [Y]U when using the low-rank feature Z with r0 ∈ [N ], which is the generalization
error bound for the linear transductive classifier using F(W) = ZW to predict the labels of the
unlabeled nodes. Following existing works such as (Kothapalli et al., 2023), we employ the MSE
loss to provide the generalization error of the GNN-based node classifier. It is remarked that the
MSE loss is necessary for the generalization analysis of transductive learning using transductive
local Rademacher complexity (Tolstikhin et al., 2014; Yang, 2025). Detailed explanation about
Theorem 3.1 is deferred to Section B of the appendix.
Theorem 3.1. Let m ≥ cN for a constant c ∈ (0, 1), and r0 ∈ [N ]. Assume that a set L with
|L| = m is sampled uniformly without replacement from [N ], and the remaining nodes VU = V\VL

are the test nodes. Then for every x > 0, with probability at least 1−exp(−x), after the t-th iteration
of gradient descent on the training loss L(W) for all t ≥ 1, we have

Utest(t) :=
1

u
∥[F(W, t)−Y]U∥

2
F ≤ 2c0L(K,Y, t)

m
+ c0KC(K) +

c0x

u
, (2)

where c0 is a positive number depending on U,
{
λ̂i

}r0

i=1
, and τ0 with τ20 = maxi∈[N ] Kii.

L(K,Y, t) :=

∥∥∥∥(Im − η [K]L,L

)t
[Y]L

∥∥∥∥2
F
, KC is the kernel complexity of the kernel gram ma-

trix K = ZZ⊤ defined by KC(K) = minr0∈[N ] r0
(
1
u + 1

m

)
+
√
∥K∥r0

(
1√
u
+ 1√

m

)
.

3.3 CONDITIONAL GENERATION OF SYNTHETIC GRAPH STRUCTURES IN LATENT SPACE

To generate synthetic graph structures, consisting of the synthetic nodes and their edges connecting
to the original graph, we train a latent diffusion model (LDM) (Rombach et al., 2022) with Classifier-
Free Guidance (CFG) (Ho & Salimans, 2022). The trained LDM generates latent features for the
synthetic structures, which are then decoded into node features and associated edges. Let VL ⊆ V
denote the set of the labeled nodes in the original graph G, and Vsyn denotes the set of the generated
synthetic nodes by the RGDM. Let the node attributes of Vsyn generated by the RGDM be Xsyn. Let
C be the number of classes, and N0 be the number of synthetic nodes for each class. N ′ = CN0 =

|Vsyn| is the number of the synthetic nodes. Let Ysyn = {ŷi}N
′

i=1 denote the set of the labels of the

synthetic nodes. Let Ẑ =
{
Ẑi

}N ′

i=1
denote the latent features of the synthetic graph structures.

Let Asyn ∈ RN ′×N denote the edges of the synthetic nodes generated by our RGDM. Then the
augmented synthetic graph structures are (Vsyn,Xsyn,Asyn). The adjacency matrix of the augmented
graph is Aaug = [A Asyn;Asyn A] ∈ R(N+N ′)×(N+N ′), and the node features of the augmented
graph is Xaug = [X;Xsyn] ∈ R(N+N ′)×D. The augmented graph, which is the combination of the
original graph G and the synthetic graph structures, is then denoted by Gaug = (V∪Vsyn,Xaug,Aaug).
The set of labeled nodes in Gaug is VL ∪ Vsyn and their labels are YL ∪ Ysyn.

3.4 TRAINING GNNS ON THE AUGMENTED GRAPH

After obtaining the augmented graph Gaug, we then train either the vanilla GCN (Kipf & Welling,
2017) or the robust GNNs, Pro-GNN (Jin et al., 2020) and SG-GSR (In et al., 2024), on Gaug.
Results in Section 4.2 evidence that the GNNs trained on the augmented graph exhibit much better
performance and robustness for the semi-supervised node classification task than the models trained
on the original attacked graphs perturbed by graph adversarial attacks, including Metattack (Zügner
& Günnemann, 2019), Nettack (Zügner et al., 2018), and Topology Attack (Xu et al., 2019).

Complexity Analysis. We perform a detailed complexity analysis of the RGDM in Section D of the
appendix, demonstrating the improved efficiency of the proposed SHED.
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4 EXPERIMENTS

We evaluate the performance of the RGDM for augmenting the robustness of the GNNs in the semi-
supervised node classification task. Section 4.1 presents the experimental settings for the training of
the RGAE and the LDM in the RGDM. Section 4.2 presents the experiment results for node classifi-
cation under adversarial attacks. In Section 4.3, we conduct an ablation study on the node robustness
loss and the edge robustness loss. Additional experiment results are deferred to Section F of the ap-
pendix. In Section F.1, we perform the eigen-projection analysis on more datasets. In Section F.2,
we compare the performance of RGDM with additional baseline methods. In Section F.3, we pro-
pose Frechet Node Distance (FND) and Frechet Edge Distance (FED) to evaluate the quality of the
synthetic nodes and edges generated by the RGDM. In Section F.4, we present the training time
and the synthetic data generation time of the RGDM. In Section F.5, we present the details of the
cross-validation process for selecting the number of synthetic nodes. In Section F.6, we perform ex-
periments for adversarial defense on large-scale graph datasets, Reddit (Hamilton et al., 2017) and
ogbn-arxiv (Hu et al., 2020). In Section F.7, we perform the sensitivity analysis on the hyperparame-
ters. In Section F.8, we perform experiments on heterophilic graph datasets, Chameleon (Pei et al.,
2020) and Actor (Tang et al., 2009). The t-SNE visualization of both the real and synthetic node
features within the augmented graph is illustrated in Section F.9, We compare RGDM with exist-
ing graph augmentation methods based on mix-up and GAN-based SGS generation in Section F.10.
The statistical significance analysis of the results in Section 4.2 is performed in Section F.11. In
Section F.12, we study the effectiveness of RGDM for purifying adversarially perturbed graphs. In
Section F.13, we compare RGDM with diffusion-based graph purification methods. An ablation
study on the number of synthetic nodes is conducted in Section F.14. In Section F.15, we compare
RGDM with the vanilla DDPM. In Section F.16, we evaluate RGDM under different label ratios. In
Section F.17, we compare RGDM with an ablation model that replaces the SHED with the Bi-Level
Neighborhood Decoder (BLND) used in DoG (Wang et al., 2025) as the edge decoder.

4.1 EXPERIMENTAL SETTINGS

We perform the experimental evaluation on four public graph benchmarks, which are Cora, Citeseer,
Pubmed (Sen et al., 2008), and Polblogs (Adamic & Glance, 2005). Details on the statistics of the
datasets are deferred to Table 4 in Section E.1 of the appendix. We present the training settings of the
RGAE and LDM in RGDM in Section E.2 of the appendix. The number of the synthetic nodes added
is selected by cross-validation as described in Section F.5 of the appendix. The starting rank r0 for
each dataset under each attack setting in our experiments is selected by performing cross-validation
as detailed in Section E.4 of the appendix.

Table 1: Node classification performance (Accuracy±Std) under the non-targeted poisoning attack
(Metattack) (Zügner & Günnemann, 2019). The best result is highlighted in bold, and the second-
best result is underlined. The improvements of the RGDM over the corresponding baselines are
attached in parentheses. These conventions are followed by all the tables in this paper. The compar-
ison with more baseline methods is deferred to Table 5 in Section F.2 of the appendix.

Dataset Ptb Rate (%) GCN GCORNs HANG STABLE Pro-GNN SG-GSR RGDM (GCN) RGDM (Pro-GNN) RGDM (SG-GSR)

Cora
0 83.5±0.4 82.5±0.4 80.0±0.3 84.7±0.5 82.9±0.2 85.5±2.3 85.2±0.4 (↑ 1.7) 84.2±0.5 (↑ 1.3) 85.9±2.1 (↑ 0.3)

15 65.1±0.7 72.5±1.2 72.8±0.9 74.4±0.9 76.4±1.2 78.5±2.6 69.3±0.3 (↑ 4.2) 78.2±1.1 (↑ 1.8) 80.0±2.1 (↑ 1.4)
25 47.5±1.9 69.4±2.9 68.7±1.8 69.6±0.6 69.7±1.6 77.8±2.3 61.4±0.7 (↑ 1.8) 72.3±1.5 (↑ 2.5) 79.1±1.6 (↑ 1.3)

Citeseer
0 71.9±0.5 72.6±0.4 73.2±0.3 74.8±0.5 73.2±0.6 75.8±2.4 73.6±0.8 (↑ 1.7) 74.4±0.8 (↑ 1.1) 76.6±1.4 (↑ 0.7)

15 64.5±1.1 65.4±2.0 70.8±0.8 67.5±0.4 72.0±1.1 73.1±1.4 68.7±0.3 (↑ 4.2) 73.6±0.3 (↑ 1.6) 76.0±1.1 (↑ 2.8)
25 56.9±2.0 65.2±2.2 66.4±2.5 65.6±1.9 68.9±2.7 72.7±2.4 62.8±0.6 (↑ 5.9) 70.2±0.6 (↑ 1.2) 75.3±2.0 (↑ 2.5)

Polblogs
0 95.6±0.3 95.3±0.8 94.7±1.0 95.5±0.2 93.2±0.6 95.9±1.8 96.1±0.1 (↑ 0.4) 95.7±2.2 (↑ 2.5) 96.1±2.5 (↑ 0.1)

15 64.9±1.9 82.0±1.4 71.6±1.3 87.8±0.3 86.0±2.2 90.0±2.6 69.8±0.3 (↑ 4.8) 88.0±1.0 (↑ 1.9) 91.1±2.9 (↑ 1.1)
25 49.2±1.3 66.5±2.7 65.8±2.3 80.0±1.9 63.1±2.4 87.8±2.1 56.4±0.5 (↑ 7.2) 66.9±1.3 (↑ 3.7) 88.8±2.8 (↑ 1.0)

Pubmed
0 87.1±0.0 86.4±0.7 85.0±0.2 87.7±0.0 87.3±0.1 87.7±2.7 88.1±0.1 (↑ 0.9) 88.4±0.2 (↑ 1.0) 90.3±1.5 (↑ 2.5)

15 78.6±0.1 76.8±1.8 85.0±0.2 87.3±0.1 87.2±0.0 87.3±2.4 84.9±0.2 (↑ 6.3) 88.0±0.2 (↑ 0.8) 88.7±2.7 (↑ 1.3)
25 75.5±0.1 70.7±2.8 85.0±0.1 86.0±0.1 86.7±0.1 87.2±2.4 81.5±0.1 (↑ 6.0) 87.5±0.1 (↑ 0.8) 88.6±2.3 (↑ 1.4)

Table 2: Node classification performance under targeted attack (Nettack) (Zügner et al., 2018). The
comparison with more baseline methods is deferred to Table 6 in Section F.2 of the appendix.

Dataset Budget GCN GCORNs HANG STABLE Pro-GNN SG-GSR RGDM (GCN) RGDM (Pro-GNN) RGDM (SG-GSR)

Cora
0 81.4±1.0 82.6±0.4 80.7±1.2 85.3 ± 1.8 84.7±0.5 85.5± 2.7 83.4±1.0 (↑ 2.0) 86.0±1.1 (↑ 1.2) 86.0 ±1.3 (↑ 0.5)
3 67.9±1.7 73.1±0.7 73.1±2.8 73.8 ± 2.8 72.4±0.5 74.9± 1.2 70.4±1.1 (↑ 2.5) 74.3±1.3 (↑ 1.9) 76.4 ±1.5 (↑ 1.5)
5 55.5±1.6 66.8±1.0 68.8±2.5 68.4 ± 1.6 66.8±0.7 68.0± 2.5 59.4±1.2 (↑ 3.9) 69.8±2.0 (↑ 2.9) 69.8 ±1.8 (↑ 1.8)

Citeseer
0 81.0±1.3 81.9±1.1 81.0±1.1 82.4 ± 1.8 82.1±0.8 82.8± 1.2 82.8±1.1 (↑ 1.8) 83.0±2.0 (↑ 0.9) 83.7 ±1.3 (↑ 0.8)
3 63.9±2.6 78.1±2.0 77.1±2.4 80.9 ± 1.5 79.6±1.9 81.7± 1.2 68.5±1.1 (↑ 4.5) 80.8±2.9 (↑ 1.1) 83.6 ±2.8 (↑ 1.9)
5 47.6±5.1 71.6±2.7 73.4±2.4 72.5 ± 1.5 71.2±2.9 73.8± 2.0 55.7±2.0 (↑ 8.0) 74.6±6.2 (↑ 3.3) 75.6 ±2.4 (↑ 1.8)

Polblogs
0 97.0±0.2 97.5±0.2 97.4±0.5 98.0 ± 2.4 97.1±0.1 97.5± 2.3 97.6±0.1 (↑ 0.6) 97.8±0.3 (↑ 0.6) 98.5 ±0.2 (↑ 0.9)
3 95.4±0.1 95.6±1.0 96.6±0.1 96.8 ± 1.4 96.9±0.1 95.4± 1.9 96.9±0.2 (↑ 1.5) 97.2±0.5 (↑ 0.2) 96.4 ±0.1 (↑ 1.0)
5 93.0±0.4 93.4±0.8 95.9±0.3 96.2 ± 2.8 96.1±0.2 96.8± 2.4 94.9±0.4 (↑ 1.9) 96.8±1.4 (↑ 0.7) 97.7 ±0.2 (↑ 0.9)

Pubmed
0 88.1±1.3 84.5±1.3 85.3±1.2 90.4 ± 2.5 88.4±1.2 91.0± 1.1 89.2±1.3 (↑ 1.0) 89.5±1.1 (↑ 1.1) 92.5 ±1.7 (↑ 1.5)
3 81.2±2.6 82.2±1.4 84.0±2.1 85.6 ± 2.1 84.3±2.1 86.4± 2.2 83.3±1.6 (↑ 2.1) 85.7±1.3 (↑ 1.4) 89.0 ±1.0 (↑ 2.6)
5 68.3±5.1 72.2±1.1 70.5±2.3 73.9 ± 1.8 72.1±2.3 73.5± 1.4 71.4±1.3 (↑ 3.1) 76.2±2.0 (↑ 4.0) 75.7 ±1.3 (↑ 2.1)
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4.2 EXPERIMENTAL RESULTS

We conduct experiments on semi-supervised node classification under the Metattack (Zügner &
Günnemann, 2019), the Nettack (Zügner et al., 2018), and the Topology Attack (Xu et al., 2019).
The compared methods are detailed in Section E.6 of the appendix. We apply the RGDM on vanilla
GCN (Kipf & Welling, 2017) and state-of-the-art robust GNNs, which are Pro-GNN (Jin et al., 2020)
and SG-GSR (In et al., 2024). The results for Metattack under the perturbation rates of 15% and 25%
are shown in Table 1. Additional results with perturbation rates from 5% to 25% with a step of 5% for
the Metattack are deferred to Table 5 in Section F.2 of the appendix. The results for Nettack (Zügner
et al., 2018) under attack budgets of 3 and 5 are shown in Table 2. Detailed results for Nettack,
with attack budgets varying from 1 to 5 in increments of 1, are deferred to Table 6 in Section F.2
of the appendix. In addition, the results for defending against Topology Attack are deferred to
Table 7 in Section F.2 of the appendix. We repeat each experiment 10 times with different seeds
for network initialization and report the mean and standard deviation of test accuracy. It is observed
from the results that the RGDM models achieve state-of-the-art performance on semi-supervised
node classification against adversarial attacks. Benefiting from the edge selection mechanism in
RGAE, the RGDM usually improves the performance of the state-of-the-art method by a larger
margin under more severe attacks. For example, the RGDM (Pro-GNN) outperforms Pro-GNN by
4.1% on Pubmed under Nettack with the largest attack budget of 5.

4.3 ABLATION STUDIES

To validate the effectiveness of the sparsification loss and the low-rank regularization term in Equa-
tion (1), we conduct an ablation study on Cora, Citeseer, Polblogs, and Pubmed under the Metattack
with the perturbation rate of 25%. We evaluate two variants of the RGDM based on the GCN, which
are the RGDM without the sparsification loss and the RGDM without the low-rank regularization.
We also compare RGDM with existing low-rank adversarial defense methods, (Savostianova et al.,
2023; Wu et al., 2022; Entezari et al., 2020; Deng et al., 2022; Zhou et al., 2025; Zhang et al., 2025),
with details provided in Section E.5 of the appendix. As shown in Table 3, RGDM outperforms
both low-rank baselines across all datasets. Either removing the sparsification loss or the low-rank
regularization leads to performance drops, highlighting their effectiveness in enhancing robustness.

Table 3: Ablation study on the sparsification loss and the low-rank regularization term.
Method Cora Citeseer Polblogs Pubmed
RGDM (GCN) w/o Sparsification Loss (L(t)

S ) 56.72 58.97 53.24 77.92
RGDM (GCN) w/o Low-Rank Regularization (∥K∥r0 ) 60.04 60.38 54.85 80.85
RGDM (GCN, Low-Rank Weight Matrix (Savostianova et al., 2023)) 59.88 61.12 55.17 80.16
RGDM (GCN, Low-Rank Adjacency Matrix (Entezari et al., 2020)) 61.01 60.25 55.03 80.02
RGDM (GCN) 61.42 62.84 56.47 81.52

Additional ablation studies are deferred to Section F of the appendix. In Section F.12, we show that
RGDM can be adapted to purify the original attacked graph without SGS, and combining the purified
original graph with the generated SGS further improves performance. We apply RGDM without
purification of the original attacked graph for better efficiency in our experiments. In Section F.13,
we compare RGDM with diffusion-based graph purification methods and the results demonstrate
that RGDM significantly outperforms existing diffusion-based graph purification methods (He et al.,
2025; Luo et al., 2025). In Section F.14, we conduct an ablation study on the number of synthetic
nodes. In Section F.15, we compare RGDM to a baseline where the synthetic nodes are generated
by DDPM (Ho et al., 2020), showing that synthetic nodes generated by DDPM, which suffer from
noise, even hurt the performance of the base model. In Section F.16, we evaluate RGDM under
different label ratios and show that it achieves consistent improvements.

5 CONCLUSIONS

We present the Robust Graph Diffusion Model (RGDM), marking the first robust graph diffusion
model designed to generate synthetic graph structures, which are the synthetic nodes and synthetic
edges connecting to them in the graph, for the node classification task. In addition, the RGDM
significantly mitigates the negative effects of graph adversarial attacks and generates faithful syn-
thetic graph structures, benefiting from the edge selection mechanism and the low-rank latent feature
learning in the RGAE. The experiment results show that incorporating the synthetic graph structures
into the original attacked graph for the training of GNNs significantly improves the classification ac-
curacy for the semi-supervised node classification under various types of graph adversarial attacks.
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Daniel Zügner and Stephan Günnemann. Adversarial attacks on graph neural networks via meta
learning. In International Conference on Learning Representations (ICLR), 2019.
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A THEORETICAL RESULTS

We present the proof of Theorem 3.1 in this section.

Proof of Theorem 3.1. It can be verified that at the t-th iteration of gradient descent for t ≥ 1, we
have

W(t) = W(t−1) − η [Z]
⊤
L

[
ZW(t−1) −Y

]
L
. (3)

It follows by (3) that

[Z]L W(t) = [Z]L W(t−1) − ηKL,L

[
ZW(t−1) −Y

]
L
, (4)

where KL,L := [Z]L [Z]
⊤
L ∈ Rm×m. With F(W, t) = ZW(t), it follows by (4) that

[F(W, t)−Y]L =
(
Im − η [K]L,L

)
[F(W, t− 1)−Y]L .

It follows from the above equality and the recursion that

[F(W, t)−Y]L = −
(
Im − η [K]L,L

)t
[Y]L . (5)

We apply (Yang, 2025, Corollary 3.7) to obtain the following bound for the test loss
1
u∥[F(W, t)−Y]U∥

2
F:

1

u
∥[F(W, t)−Y]U∥

2
F ≤ c0

m
∥[F(W, t)−Y]L∥

2
F + c0 min

0≤Q≤n
r(u,m,Q) +

c0x

u
, (6)
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with

r(u,m,Q) := Q

(
1

u
+

1

m

)
+


√√√√√ N∑

q=Q+1

λ̂q

u
+

√√√√√ N∑
q=Q+1

λ̂q

m

 ,

where c0 is a positive constant depending on U,
{
λ̂i

}r

i=1
, and τ0 with τ20 = maxi∈[N ] Kii.

It follows from (5) and (6) that for every r0 ∈ [N ], we have

1

u
∥[F(W, t)−Y]U∥

2
F

≤ c0
m

∥∥∥∥(Im − η [K]L,L

)t
[Y]L

∥∥∥∥2
F
+ c0r0

(
1

u
+

1

m

)
+ c0


√√√√√ N∑

q=r0+1
λ̂q

u
+

√√√√√ N∑
q=r0+1

λ̂q

m

+
c0x

u

1⃝
≤ 2c0

m

∥∥∥∥(Im − η [K]L,L

)t
[Y]L

∥∥∥∥2
F
+ c0r0

(
1

u
+

1

m

)
+ c0

√
∥K∥r0

(√
1

u
+

√
1

m

)
+

c0x

u
,

(7)

where 1⃝ follows from the Cauchy-Schwarz inequality, (5), and
∑N

q=r0+1 λ̂q = ∥K∥r0 . (2) then
follows directly from (7).

B FURTHER EXPLANATION OF THEOREM 3.1

This theorem is proved in Section A of the appendix. It is noted that Utest(t) is the test loss of the
unlabeled nodes measured by the distance between the classifier output F(W, t) and Y. There are
two terms on the upper bound for the test loss in (2), L(K,Y, t) and KC(K), which are explained
as follows. L(K,Y, t) corresponds to the training loss of the node classifier with the ground-truth
label. KC(K) is the kernel complexity (KC), which measures the complexity of the kernel gram
matrix from the node representation Z generated by our encoder of the RGAE. We remark that the
TNN ∥K∥r0 appears on the RHS of the upper bound (2), theoretically justifying why we learn the
low-rank features K of the RGAE by adding the TNN ∥K∥r0 to the loss of our RGAE. Moreover,
when the low frequency property holds, L(K,Y, t) would be very small with enough iteration
number t. K = Z⊤Z is approximately a low-rank matrix of rank r0 since Z is approximately a
rank-r0 matrix with its TNN optimized through the optimization of the encoder of the RGAE. A
smaller ∥K∥r0 is obtained by optimizing the training loss in Equation (1), which in turn ensures
a smaller kernel complexity (KC) defined in Theorem 3.1, contributing to a smaller generalization
bound for transductive node classification.

C ALGORITHM FOR TRAINING THE RGDM AND GENERATING THE
AUGMENTED GRAPH

We present the training algorithm of the RGDM in Algorithm 1, which comprises two steps. The
first step, which is from Line 1 to Line 6 in Algorithm 1, describes the training of the RGAE. The
second step, which is from Line 7 to Line 13, describes the training of the LDM. At the t-th epoch
in the training of the RGAE, we use the edge selection mask at the previous epoch, M(t−1), when
updating the parameters ω of the RGAE. We update ω, including the parameters for predicting the
edge selection mask, by performing one step of gradient descent on L(t)(M(t−1)). After updating
the parameters of RGAE in the t-th epoch, we compute M(t), which is used in the next epoch. We
initialize M(0) = A for the training in the first epoch. Algorithm 2 describes the generation process
for the augmented graph Gaug.
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Algorithm 1 Training RGDM (Training the GAE and the LDM)
Input: The input attribute matrix X, the adjacency matrix A, the training epochs of the autoencoder tAE, the

labels YL of the labeled nodes VL, and the training epochs of the LDM tLDM
Output: The parameters of the RGAE ω and the parameters of the LDM θ
1: Compute the inter-cluster neighbor map C and the intra-cluster neighbor map M

2: Initialize the edge selection mask S
(0)
inter = C and S

(0)
intra = M

3: Initialize the parameter ω of the RGAE
4: for t← 1 to tAE do
5: Update ω by ω ← ω − η∇ωL(t)

RGAE(S
(t−1)
intra ,S

(t−1)
inter ) with L(t)

RGAE(S
(t−1)
intra ,S

(t−1)
inter ) from Eq.(1)

6: Compute the edge selection mask S
(t)
intra and S

(t)
inter

7: end for
8: Initialize the parameter θ of the LDM.
9: Map the node features X and the adjacency matrix A to the latent space using the encoder ge of the RGAE

as H = ge(X,A).
10: for t← 1 to tLDM do
11: Sample a Gaussian noise ε ∼ N (0, I)
12: Get latent feature of VL as HL = {Hi|vi ∈ VL}
13: Update θ by θ ← θ − η∇θ∥εθ(HL, YL)− ε∥22
14: end for
15: return The parameters of the RGAE ω and the parameters of the LDM θ

Algorithm 2 Generation of the Augmented Graph Gaug

Input: The input attribute matrix X, the adjacency matrix A, the training epochs of the GNN tGNN, the number
of added nodes M , and the labels of the synthetic data {ŷi}N

′
i=1

Output: The augmented graph Gaug = (V ∪ Vsyn,Xaug,Aaug).
1: for i← 1 to M do
2: Sample a Gaussian noise ε ∼ N (0, I)
3: Set the class label of the i-th synthetic node to ŷi
4: Generate Ĥi from ε with the LDM for class ŷi
5: end for
6: Decode Ĥ = {Ĥi}N

′
i=1 to Xsyn and Asyn with the decoder of the RGAE as Xsyn,Asyn = gd(Ĥ)

7: Get Aaug = [A Asyn;Asyn A] and Xaug = [X;Xsyn]
8: return Gaug = (V ∪ Vsyn,Xaug,Aaug)
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D DETAILED COMPLEXITY ANALYSIS

In our work, we propose a RGAE with an edge selection mechanism incorporated in the GAT layers
for aggregating neighborhood information. In this section, we analyze the inference time complex-
ity and the parameter size of the RGAE with the edge selection mechanism. For comparison, we
also analyze the inference time complexity and the parameter size of the GAE that adopts regu-
lar GAT layers for aggregating neighborhood information. For ease of comparison, we denote the
number of the parameters and the inference cost of all the layers except the GAT layers with the
edge selection as SMLP and CMLP respectively. Let E denote the number of the number of edges in
the graph. Let L denote the number of GAT layers. The inference time complexity of our RGAE is
O(LDME+ME+CMLP), where O(LDME) is the computation cost of the GAT layers. O(ME)
is the additional complexity for computing the decision masks on all the edges. In comparison, the
inference time complexity of the GAE with regular GAT layers is O(DLME + CMLP). In our ex-
periments, D = 512 and L = 2. Therefore, the inference time complexity of the RGAE, that is
O(1025ME + CMLP), is comparable to the inference time complexity of GAE that adopts regular
GAT layers whose inference time complexity is O(1024ME + CMLP).

In addition, the parameter size of the RGAE is L(DM +2M)+2M +SMLP, where L(DM +2M)
is the number of parameters in the GAT layers and 2M is the number of parameters of the linear
layer for generating the decision mask. In comparison, the parameter size of the GAE with regular
GAT layers is L(DM + 2M) + SMLP. Since D = 512 and L = 2, the number of parameters of
the RGAE, that is 1030M +SMLP, is also comparable to the number of parameters in the GAE with
regular GAT layers, whose parameters size is 1028M + SMLP.

To thoroughly study the complexity of the RGAE, we also analyze its training time complexity. Let
ttrain be the number of training epochs. The training time complexity of the RGAE is O((DLME+
ME + CMLP)Nttrain + N2ttrain), where O((DLME + ME + CMLP)Nttrain) is the cost for the
forward propagation and O(N2ttrain) is the cost for computing the loss function.

Complexity Analysis of SHED. We propose SHED to reconstruct the edges connected to a node
in the graph. To show its efficiency, we analyze the inference time complexity and the parameter
size of the GAE with SHED. For comparison, we also analyze the inference time complexity and the
parameter size of GAE, where SHED is replaced by a regular edge decoder that directly reconstructs
the adjacency matrix A. For ease of comparison, we denote the number of parameters and inference
cost of all the MLP and GAT layers except SHED as SMLP and CMLP, respectively. For a node vi
in the graph, let di =

∑K
k=1 Ĉik be the number of clusters predicted to be connected to vi. Let

D′ be the dimension of the input feature for SHED. The inference time complexity of GAE with
SHED is O(KD′ + diD

′M + CMLP), where O(KD′) is the additional complexity for computing
the inter-cluster neighbor map and encoding the cluster indices. O(diD

′M) is the computation
cost for computing the intra-cluster neighbor map. In contrast, the inference time complexity of
GAE with a regular edge decoder is O(D′KM + CMLP). We note that di is upper bounded by the
degree of the node vi. In most graph datasets, the average degree of nodes is usually very small.
For instance, on Pubmed, where the average node degree is 2.25, we have di ≤ 2.25. As a result,
D′(K + diM) ≪ D′KM . For example, setting K = 100 and M = 198 on Pubmed, we find that
the inference time complexity of GAE with SHED is O(545.5D′ + CMLP), which is much more
efficient than the regular edge decoder whose inference time complexity is O(19800D′+CMLP). In
general, the inference time complexity of GAE with SHED is much lower than that of GAE with a
regular edge decoder.

In addition, the parameter size of GAE with SHED is D′2 +D′K +D′M +SMLP, where D′2 is the
number of parameters in the layer for encoding cluster indices. D′K is the number of parameters
in the layer for predicting the inter-cluster neighbor map. D′M is the number of parameters in
the layer for reconstructing the intra-cluster neighbor map. In contrast, the parameter size of GAE
with a regular edge decoder is D′KM + SMLP. Because K + M ≪ KM , the parameter size of
GAE with SHED is much smaller than that of GAE with a regular edge decoder. For example,
KM = N = 19717 on Pubmed with M = 198 and K = 100.
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E ADDITIONAL EXPERIMENTAL SETTINGS

E.1 DATASETS

Following previous works on adversarial attacks and defense of GNNs (Jin et al., 2020; Zügner &
Günnemann, 2019; Entezari et al., 2020), we evaluate the RGDM on four public benchmark datasets
for node classification, including three citation graphs, which are Cora, Citeseer, and Pubmed, and
one blog graph, that is, Polblogs. Following previous works on graph adversarial attacks, we eval-
uate our method and baselines on the largest connected component (LCC) of the graphs. We show
the statistics of the datasets in Table 4.

Table 4: Statistics of Cora, Citeseer, Polblogs, and Pubmed.

Datasets # Node # Edge Classes Features

Cora 2,485 5,069 7 1,433
Citeseer 2,110 3,668 6 3,703
Polblogs 1,222 16,714 2 1,222
Pubmed 19,717 44,338 3 500

ogbn-arxiv 169,343 1,166,243 40 128
Reddit 232,965 11,606,919 41 602

E.2 TRAINING SETTINGS

The training of the RGAE is divided into two phases. In the first phase, we pre-train the RGAE by
only optimizing the consistency loss L(t)

C in Equation (1) for 2000 epochs. In the second phase, we
optimize L(t) for another 1000 epochs. We use the Adam optimizer with a learning rate of 0.001 for
the training. The weight decay is set to 1 × 10−5. We train the LDM in the RGDM after finishing
the training of the RGAE. We use the Adam optimizer with a learning rate of 0.0002 to train the
LDM for 3000 epochs.

E.3 ATTACK SETTINGS

Non-targeted Adversarial Attacks (Metattack) (Zügner & Günnemann, 2019). We first eval-
uate the robustness of our method against the non-targeted adversarial attack method Metattack.
Metattack treats the graph as a hyperparameter to optimize and uses the meta-gradients to solve the
bi-level optimization problem, which minimizes the node classification accuracy. We follow the
implementation in (Zügner & Günnemann, 2019). As Metattack has several variants, we follow
(Jin et al., 2020) and adopt the most destructive attack version, Meta-Self, on Cora, Citeseer, and
Polblogs datasets. On Pubmed, we adopt the approximate version of Meta-Self, A-Meta-Self, fol-
lowing the settings in (Jin et al., 2020). We measure the strength of the attack by the perturbation
rate, which is the ratio of perturbed edges among all the edges in the graph. We evaluate the RGDM
and all the baselines with the perturbation rates ranging from 0 to 25% with a step of 5%.

Targeted Adversarial Attack (Nettack) (Zügner et al., 2018). We adopt Nettack as the targeted
attack method in evaluating the robustness of our method. Nettack manipulates the edges and node
features to degrade the classification accuracy on the target nodes while minimizing the change in
the graph’s degree distribution and the feature co-occurrences. We use the default attack settings
in the original implementation in (Zügner et al., 2018). The nodes in the test set whose degree is
larger than 10 are set as the target nodes. The number of perturbations made on every targeted node
is defined as the attack budget. Following (Jin et al., 2020), we evaluate the RGDM and all the
baselines with attack budgets ranging from 1 to 5 with a step size of 1. Following the settings in (Jin
et al., 2020), we only sample 10% of the target nodes for the evaluation on the Nettack.

Gradient-based Attack Method (Topology Attack) (Xu et al., 2019). We evaluate the robustness
of the RGDM against a gradient-based attack method named Topology Attack (Xu et al., 2019).
The topology Attack proposes a projected gradient descent (PGD) adversarial attack method that
perturbs the edges in a graph to degrade the overall node classification accuracy on the perturbed
graph. We adopt the same settings in (Xu et al., 2019) to attack the graphs in our experiments.
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Similar to the settings for Metattack, we measure the strength of the attack by the perturbation rate,
which is the ratio of the perturbed edges among all the edges in the graph. We evaluate the RGDM
and all the baselines with perturbation rates ranging from 0 to 25% with a step of 5%.

E.4 TUNING THE STARING RANK r0 BY CROSS-VALIDATION

We tune the rank r0 for the TNN, ∥K∥r0 , in Equation (1) by standard cross-validation on each
dataset. Let r0 = ⌈γmin {N, d}⌉ where γ is the rank ratio. We select the values of γ by performing
5-fold cross-validation on 20% of the training data in each dataset. The value of γ is selected from
{0.1, 0.2, 0.3, 0.4, 0.5, 0.6, 0.7, 0.8, 0.9}.

E.5 DETAILS ON LEARNING THE LOW-RANK WEIGHT MATRIX AND LOW-RANK
ADJACENCY MATRIX

To evaluate the robustness of the proposed low-rank regularization in RGDM, we construct two
ablation baselines by incorporating existing low-rank learning techniques into the RGAE. Next,
we detail the implementation of each ablation model. Following the setting in (Savostianova et al.,
2023), we regularize the weight matrices of the encoder in the RGAE to approximate orthonormality
by adding a penalty term to the training loss of robust RAE, that is Lorth =

∑
l

∥∥W⊤
l Wl − I

∥∥2
F

,
where Wl denotes the weight matrix of the l-th layer and I is the identity matrix. This regularization
encourages each weight matrix to be close to orthonormal, promoting low effective rank and spectral
concentration. The strength of this regularization is controlled by the scale factor for Lorth, which is
tuned via cross-validation following the setting in (Savostianova et al., 2023). For the ablation model
that learns the low-rank adjacency matrix, we replace the original attacked adjacency matrix A with
its low-rank approximation. Following (Entezari et al., 2020), we compute the top-rA eigenvectors
UrA of the symmetrically normalized adjacency matrix Ã = D−1/2AD−1/2, and reconstruct the
low-rank adjacency matrix as ALR = D1/2UrAΛrAU

⊤
rAD

1/2, where ΛrA is the diagonal matrix
containing the top-rA eigenvalues. The rank rA is selected via cross-validation following (Entezari
et al., 2020). For all datasets, we select rA from the same candidate sets as described in Section E.4.

E.6 COMPARED METHODS

In our empirical evaluation, we comprehensively benchmark the proposed RGDM against various
GNNs, including models that exemplify advances in expressive power, structural modeling, and
resilience to adversarial or noisy perturbations. The standard GNN baselines include Graph Con-
volutional Networks (GCN) (Kipf & Welling, 2017), Graph Attention Networks (GAT) (Veličković
et al., 2018), and Relational GCNs (RGCN) (Zhu et al., 2019), which serve as foundational ar-
chitectures widely adopted for semi-supervised node classification. Additionally, we incorporate
GCN-SVD (Entezari et al., 2020), which leverages truncated singular value decomposition to mit-
igate the impact of noisy graph spectra. To rigorously assess the robustness of RGDM under ad-
versarial settings, we further compare it with the state-of-the-art robust GNNs explicitly designed
to enhance stability and generalization in the presence of graph corruption. These include Graph-
Bel (Song et al., 2022), which integrates belief propagation with GNNs for noise-tolerant infer-
ence; UAG (Feng et al., 2021), which unifies adversarial training with graph structure learning;
GCORNs (Abbahaddou et al., 2024), a framework that co-regularizes neighborhood consistency and
robustness objectives; GADC (Liu et al., 2024), which employs adaptive denoising through graph
diffusion mechanisms; and HANG (Zhao et al., 2023), a hierarchical adversarial defense method.
We also include Pro-GNN (Jin et al., 2020), which jointly optimizes graph structure and model
parameters via low-rank and sparsity constraints, and STABLE (Li et al., 2022b), which stabilizes
message passing through spectral smoothing.
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F ADDITIONAL EXPERIMENTAL RESULTS

F.1 EIGEN-PROJECTION AND CONCENTRATION RATIO OF THE GROUND TRUTH LABEL AND
THE ADVERSARIAL NOISE

The eigen-projection and the concentration ratio of the ground truth label and the adversarial noise
Cora, Citeseer, and Pubmed are illustrated in Figure 4.

(a) Cora (b) Citeseer

Eigen Projection of the 

Ground Truth Label

Eigen Projection of the 

Adversarial Noise

Concentration Ratio of 

the Ground Truth Label

Concentration Ratio of 

the Adversarial Noise

(c) Pubmed

Figure 4: Eigen-projection (first row) and concentration ratio (second row) of the ground truth label
and the adversarial noise on Cora, Citeseer, and Pubmed. The study in this figure is performed for
Metattack with a perturbation ratio of 25%. By the rank r = r0 = 0.2min {N,D′}, the signal
concentration ratio of the ground truth label for Cora, Citeseer, and Pubmed are 0.844, 0.809, and
0.784 respectively.

F.2 DETAILED SEMI-SUPERVISED NODE CLASSIFICATION RESULTS

The detailed experiment results for the RGDM under the Metattack, Nettack, and Topology Attack
are shown in Table 5, Table 6 and Table 7.

Table 5: Node classification performance (Accuracy±Std) under the non-targeted poisoning attack
(Metattack) (Zügner & Günnemann, 2019). The improvements of the RGDM over the correspond-
ing baselines are attached in parentheses after the results of the RGDM.

Dataset Ptb Rate (%) GCN GAT RGCN GCN-SVD GraphBel UAG GCORNs GADC HANG Pro-GNN RGDM (GCN) RGDM (HANG) RGDM (Pro-GNN)

Cora

0 83.50±0.44 83.97±0.65 83.09±0.44 80.63±0.45 83.42±0.52 82.05±0.51 82.56±0.48 83.22±0.61 80.07±0.32 82.98±0.23 85.23±0.44 (↑ 1.73) 82.31±0.51 (↑ 2.24) 84.29±0.52 (↑ 1.31)
5 76.55±0.79 80.44±0.74 77.42±0.39 78.39±0.54 82.78±0.39 79.13±0.59 75.91±1.88 75.68±1.10 78.12±0.72 82.27±0.45 80.19±0.39 (↑ 3.64) 81.04±0.59 (↑ 2.92) 83.19±0.39 (↑ 0.92)

10 70.39±1.28 75.61±0.59 72.22±0.38 71.47±0.83 77.91±0.86 75.16±0.76 74.63±2.02 73.70±1.17 75.96±0.62 79.03±0.59 76.73±0.38 (↑ 6.34) 78.03±0.76 (↑ 2.07) 81.16±0.86 (↑ 2.13)
15 65.10±0.71 69.78±1.28 66.82±0.39 66.69±1.18 76.01±1.12 71.03±0.64 72.57±1.24 71.39±1.22 72.89±0.96 76.40±1.27 69.37±0.39 (↑ 4.27) 76.39±0.64 (↑ 3.50) 78.29±1.12 (↑ 1.89)
20 59.56±2.72 59.94±0.92 59.27±0.37 58.94±1.13 68.78±5.84 65.71±0.89 71.94±1.51 71.20±1.49 70.36±1.09 73.32±1.56 65.97±0.37 (↑ 6.41) 73.25±0.89 (↑ 2.89) 74.85±1.84 (↑ 1.53)
25 47.53±1.91 54.78±0.74 50.51±0.78 52.06±1.19 56.54±2.58 60.82±1.08 69.48±2.94 68.29±1.36 68.72±1.87 69.72±1.69 61.42±0.78 (↑ 1.89) 70.44±1.08 (↑ 1.72) 72.31±1.58 (↑ 2.59)

Citeseer

0 71.96±0.55 73.26±0.83 71.20±0.83 70.65±0.32 72.26±0.83 72.10±0.63 72.63±0.40 73.05±0.30 73.26±0.38 73.28±0.69 73.66±0.83 (↑ 1.70) 74.21±0.63 (↑ 0.95) 74.47±0.83 (↑ 1.19)
5 70.88±0.62 72.89±0.83 70.50±0.43 68.84±0.72 71.31±0.43 70.51±0.97 68.18±1.68 68.67±0.89 73.09±0.34 72.93±0.57 73.14±0.43 (↑ 2.26) 74.04±0.97 (↑ 0.95) 74.29±0.43 (↑ 1.36)

10 67.55±0.89 70.63±0.48 67.71±0.30 68.87±0.62 71.63±0.30 69.54±0.56 66.24±1.52 68.66±1.48 72.43±0.52 72.51±0.75 71.35±0.30 (↑ 3.80) 73.85±0.56 (↑ 1.42) 74.03±0.30 (↑ 1.52)
15 64.52±1.11 69.02±1.09 65.69±0.37 63.26±0.96 69.82±0.37 65.95±0.94 65.48±2.03 68.29±1.88 70.82±0.87 72.03±1.11 68.72±0.37 (↑ 4.20) 73.21±0.94 (↑ 2.39) 73.65±0.37 (↑ 1.62)
20 62.03±2.49 61.04±1.52 62.49±1.22 58.55±1.09 64.22±1.22 59.30±1.40 65.55±1.55 67.87±2.57 66.19±2.38 70.02±2.28 66.17±1.22 (↑ 4.14) 69.57±1.40 (↑ 3.38) 71.87±1.22 (↑ 1.85)
25 56.94±2.09 61.85±1.12 55.35±0.66 57.18±1.87 66.23±0.66 59.89±1.47 65.23±2.26 64.82±2.31 66.40±2.57 68.95±2.78 62.84±0.66 (↑ 5.90) 69.05±1.47 (↑ 2.65) 70.24±0.66 (↑ 1.29)

Polblogs

0 95.69±0.38 95.35±0.20 95.22±0.14 95.31±0.18 85.13±2.22 90.13±2.22 95.31±0.88 95.54±0.17 94.77±1.07 93.20±0.64 96.13±0.14 (↑ 0.44) 94.95±2.22 (↑ 0.18) 95.70±2.22 (↑ 2.50)
5 73.07±0.80 83.69±1.45 74.34±0.19 89.09±0.22 51.84±2.38 84.84±2.38 89.32±0.33 90.52±0.27 80.19±2.52 93.29±0.18 78.57±0.19 (↑ 5.50) 88.25±2.38 (↑ 8.06) 94.33±1.38 (↑ 1.04)

10 70.72±1.13 76.32±0.85 71.04±0.34 81.24±0.49 56.54±2.30 75.54±2.30 87.34±1.77 86.30±1.45 74.92±2.32 89.42±1.09 74.33±0.34 (↑ 3.61) 80.47±2.30 (↑ 5.55) 91.35±1.30 (↑ 1.93)
15 64.96±1.91 68.80±1.14 67.28±0.38 68.10±2.73 53.41±2.08 66.41±2.08 82.07±1.41 83.45±1.75 71.65±1.34 86.04±2.21 69.85±0.38 (↑ 4.89) 78.49±2.08 (↑ 6.84) 88.01±1.08 (↑ 1.97)
20 51.27±1.23 51.50±1.63 59.89±0.34 57.33±2.15 52.18±0.54 58.18±0.54 69.92±1.26 72.84±1.24 66.27±2.39 79.56±5.68 59.38±0.34 (↑ 8.11) 72.51±0.54 (↑ 6.24) 81.34±0.54 (↑ 1.78)
25 49.23±1.36 51.19±1.49 56.02±0.56 48.66±9.93 51.39±1.36 55.39±1.36 66.59±2.74 65.52±1.93 65.80±2.33 63.18±2.40 56.47±0.56 (↑ 7.24) 70.79±1.36 (↑ 4.99) 66.92±1.36 (↑ 3.74)

Pubmed

0 87.19±0.09 83.73±0.40 86.16±0.18 83.44±0.21 84.02±0.26 87.06±0.06 86.42±0.71 87.26±0.25 85.08±0.20 87.33±0.18 88.10±0.18 (↑ 0.91) 87.15±0.11 (↑ 2.07) 88.41±0.26 (↑ 1.08)
5 83.09±0.13 78.00±0.44 81.08±0.20 83.41±0.15 83.91±0.26 86.39±0.06 82.96±0.89 81.64±0.64 85.08±0.18 87.25±0.09 86.99±0.20 (↑ 3.90) 87.02±0.11 (↑ 1.94) 88.26±0.26 (↑ 1.01)

10 81.21±0.09 74.93±0.38 77.51±0.27 83.27±0.21 84.62±0.26 85.70±0.07 80.76±1.65 80.43±1.64 85.17±0.23 87.25±0.09 85.83±0.27 (↑ 4.62) 87.13±0.14 (↑ 1.96) 88.15±0.26 (↑ 0.90)
15 78.66±0.12 71.13±0.51 73.91±0.25 83.10±0.18 84.83±0.20 84.76±0.08 76.82±1.83 75.72±1.24 85.00±0.22 87.20±0.09 84.97±0.25 (↑ 6.31) 86.75±0.13 (↑ 1.75) 88.09±0.20 (↑ 0.89)
20 77.35±0.19 68.21±0.96 71.18±0.31 83.01±0.22 84.89±0.45 83.88±0.05 71.28±1.52 72.80±1.89 85.20±0.19 87.15±0.15 82.45±0.31 (↑ 5.10) 86.13±0.11 (↑ 0.93) 88.00±0.45 (↑ 0.85)
25 75.50±0.17 65.41±0.77 67.95±0.15 82.72±0.18 85.07±0.15 83.66±0.06 70.75±2.86 71.60±2.50 85.06±0.17 86.76±0.19 81.52±0.15 (↑ 6.02) 86.26±0.12 (↑ 1.20) 87.58±0.15 (↑ 0.82)

F.3 QUALITY EVALUATION OF THE AUGMENTED GRAPH

This paper introduces a novel graph diffusion model named RGDM, which synthesizes the graph
structures. The synthetic graph structures generated by the RGDM are subsequently combined with
the original attacked graph to form an augmented graph. By incorporating an edge selection mecha-
nism in the RGDM, we aim to improve the robustness of the GNNs trained on the augmented graphs
against the graph adversarial attacks. In Section 4.2, we have shown that both the vanilla GCN and
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Table 6: Node classification performance (Accuracy±Std) under targeted attack (Nettack) (Zügner
et al., 2018). The improvements of RGDM over the corresponding baselines are attached in paren-
theses after the results of the RGDM.

Dataset Attack Budget GCN GAT RGCN GCN-SVD GraphBel UAG GCORNs GADC HANG Pro-GNN RGDM (GCN) RGDM (HANG) RGDM (Pro-GNN)

Cora

0 81.43±1.04 82.14±1.13 81.34±1.55 81.10±1.34 71.55±2.01 82.34±1.08 82.61±0.41 81.36±1.83 80.75±1.27 84.78±0.59 83.43±1.08 (↑ 2.00) 82.10±1.34 (↑ 1.35) 86.00±1.13 (↑ 1.22)
1 75.06±1.02 76.04±2.08 76.75±1.71 77.23±1.82 63.73±2.25 81.75±1.16 81.05±1.14 80.05±1.53 76.99±2.16 83.85±0.51 78.41±1.16 (↑ 3.35) 80.39±1.82 (↑ 3.40) 84.79±2.08 (↑ 0.94)
2 70.60±1.10 70.24±1.43 70.96±1.14 72.53±1.60 62.41±2.94 77.96±1.84 78.47±1.32 75.90±2.29 76.51±2.60 78.65±0.66 73.79±1.84 (↑ 3.19) 79.14±1.60 (↑ 2.63) 80.02±1.43 (↑ 1.37)
3 67.95±1.72 65.54±1.34 66.51±1.60 66.75±1.54 61.20±2.08 72.51±1.14 73.17±0.74 71.94±1.45 73.13±2.85 72.40±0.53 70.46±1.14 (↑ 2.51) 76.31±1.54 (↑ 3.18) 74.31±1.34 (↑ 1.91)
4 61.57±1.47 61.69±0.90 59.28±2.68 60.72±1.63 56.51±2.72 70.28±2.52 71.26±0.62 70.93±2.19 72.53±2.14 70.12±0.66 64.37±2.52 (↑ 2.80) 75.12±1.63 (↑ 2.59) 72.79±0.90 (↑ 2.67)
5 55.54±1.66 58.31±2.03 55.30±1.66 57.71±1.82 51.93±2.77 66.30±1.21 66.89±1.08 64.49±2.42 68.80±2.55 66.89±0.73 59.44±1.21 (↑ 3.90) 69.81±1.82 (↑ 1.01) 69.81±2.03 (↑ 2.92)

Citeseer

0 81.02±1.35 82.26±2.04 80.25±1.12 81.08±1.34 76.55±2.23 81.25±1.12 81.94±1.17 80.63±1.04 81.09±1.12 82.12±0.81 82.87±1.12 (↑ 1.85) 82.84±1.34 (↑ 1.75) 83.05±2.04 (↑ 0.93)
1 78.41±1.62 81.27±1.38 78.25±0.73 80.16±2.04 68.89±2.67 80.25±0.73 80.79±0.89 79.02±2.84 79.05±1.38 81.75±0.79 80.39±0.73 (↑ 1.98) 81.40±2.04 (↑ 2.35) 82.47±1.38 (↑ 0.72)
2 74.92±2.54 77.43±2.89 75.40±2.04 79.84±0.73 67.62±2.11 79.40±2.04 79.65±2.84 78.22±1.29 77.94±2.29 81.27±0.95 77.15±2.04 (↑ 2.23) 80.11±0.73 (↑ 2.17) 82.30±2.89 (↑ 1.03)
3 63.97±2.69 60.85±2.99 60.31±1.19 77.14±2.86 60.63±2.87 78.31±1.19 78.10±2.06 78.11±1.39 77.14±2.48 79.68±1.98 68.53±1.19 (↑ 4.56) 78.95±2.86 (↑ 1.81) 80.85±2.99 (↑ 1.17)
4 55.40±2.60 61.59±2.64 55.49±1.75 69.52±2.31 53.17±6.48 77.49±1.75 77.75±1.66 77.49±1.54 78.41±1.62 77.78±2.84 59.57±1.75 (↑ 4.17) 78.99±1.31 (↑ 0.58) 79.11±2.64 (↑ 1.33)
5 47.62±5.17 55.56±6.28 47.44±2.01 69.21±2.48 48.73±2.60 71.44±2.01 71.66±2.79 70.54±1.57 73.49±2.48 71.27±2.99 55.71±2.01 (↑ 8.09) 75.92±2.48 (↑ 2.43) 74.60±6.28 (↑ 3.33)

Polblogs

0 97.03±0.24 97.25±0.32 97.04±0.11 97.50±0.22 71.35±2.01 97.11±0.11 97.52±0.26 97.38±0.34 97.41±0.50 97.12±0.15 97.69±0.11 (↑ 0.66) 97.65±0.22 (↑ 0.24) 97.80±0.32 (↑ 0.68)
1 96.83±0.17 97.22±0.25 97.00±0.07 97.56±0.20 68.17±2.25 96.00±0.07 97.61±0.59 97.18±0.35 97.37±0.37 96.83±0.06 97.67±0.07 (↑ 0.84) 97.63±0.20 (↑ 0.26) 97.69±0.25 (↑ 0.86)
2 95.61±0.20 96.11±0.65 95.87±0.23 97.12±0.09 65.48±2.85 97.02±0.23 96.08±0.45 95.37±0.59 96.89±0.16 97.17±0.12 97.10±0.23 (↑ 1.49) 97.24±0.09 (↑ 0.35) 97.58±0.65 (↑ 0.41)
3 95.41±0.18 95.81±0.56 95.59±0.27 96.61±0.14 62.59±1.99 96.59±0.27 95.65±1.01 95.47±0.13 96.65±0.15 96.93±0.12 96.99±0.27 (↑ 1.58) 97.01±0.14 (↑ 0.36) 97.22±0.56 (↑ 0.29)
4 94.24±0.24 94.80±0.66 94.37±0.26 96.17±0.19 58.68±0.40 96.07±0.26 94.44±0.53 94.97±0.61 96.26±0.53 96.89±0.16 95.44±0.26 (↑ 1.20) 97.03±0.19 (↑ 0.77) 97.12±0.66 (↑ 0.23)
5 93.00±0.48 93.28±1.43 93.20±0.43 95.13±0.25 59.02±2.19 95.60±0.43 93.42±0.85 93.27±0.46 95.91±0.33 96.13±0.25 94.90±0.43 (↑ 1.90) 96.70±0.25 (↑ 0.79) 96.88±1.43 (↑ 0.75)

Pubmed

0 88.13±1.35 87.03±1.13 84.87±1.35 87.27±1.74 85.47±1.45 87.31±1.35 84.56±1.39 85.49±1.16 85.35±1.20 88.46±1.20 89.21±1.35 (↑ 1.09) 87.28±1.74 (↑ 1.93) 89.58±1.13 (↑ 1.12)
1 87.04±1.62 84.95±2.08 83.75±1.71 84.15±2.25 84.34±2.33 86.57±1.71 83.88±1.94 84.58±1.28 84.42±2.01 87.58±2.01 88.03±1.71 (↑ 0.99) 86.88±2.25 (↑ 2.46) 88.80±2.08 (↑ 1.22)
2 84.12±2.54 83.90±1.43 84.21±1.14 83.90±2.94 84.27±2.25 85.21±1.14 84.40±1.73 84.17±1.53 84.38±2.05 85.87±2.05 85.33±1.14 (↑ 2.21) 86.35±1.94 (↑ 1.97) 87.14±1.43 (↑ 1.27)
3 81.25±2.69 81.27±1.34 82.48±1.60 81.22±2.08 84.11±2.67 83.88±1.60 82.26±1.49 84.35±1.33 84.01±2.12 84.35±2.12 83.37±1.60 (↑ 2.12) 85.21±1.08 (↑ 1.20) 85.79±1.34 (↑ 1.44)
4 76.35±2.60 78.54±0.90 80.02±2.68 77.02±2.72 79.03±2.22 80.00±2.32 81.06±2.72 78.01±2.20 79.73±2.31 80.04±2.31 78.45±2.32 (↑ 2.10) 81.65±2.23 (↑ 1.92) 81.95±0.90 (↑ 1.91)
5 68.32±5.17 74.25±2.03 73.14±2.66 71.84±2.77 70.11±2.36 72.20±1.39 72.28±1.13 71.26±1.61 70.59±2.31 72.18±2.31 71.42±1.39 (↑ 3.10) 74.43±1.34 (↑ 3.84) 76.27±2.03 (↑ 4.09)

Table 7: Node classification performance (Accuracy±Std) under Topology Attack (Xu et al., 2019).
The improvements of the RGDM over the corresponding baselines are attached in parentheses after
the results of the RGDM.

Dataset Ptb Rate (%) GCN GAT RGCN GCN-SVD GraphBel UAG GCORNs GADC HANG Pro-GNN RGDM(GCN) RGDM(HANG) RGDM(Pro-GNN)

Cora

0 83.50±0.44 83.97±0.65 83.09±0.44 80.63±0.45 83.42±0.52 82.05±0.51 82.63±0.47 83.21±0.72 80.07±0.32 82.98±0.23 85.23±0.44 (↑ 1.73) 82.31±0.51 (↑ 2.24) 84.29±0.52 (↑ 1.31)
5 75.50±0.44 76.97±0.65 75.04±1.32 75.82±1.24 77.01±1.33 76.22±1.24 75.96±1.81 76.83±1.25 76.99±1.52 77.63±1.85 77.92±2.08 (↑ 2.42) 79.39±1.33 (↑ 2.40) 81.10±1.16 (↑ 3.47)

10 72.02±1.32 74.10±1.84 73.05±1.25 74.00±1.76 74.00±1.57 76.00±1.76 74.67±2.03 75.90±1.84 76.99±1.52 77.63±1.85 74.22±1.43 (↑ 2.20) 79.44±1.57 (↑ 2.45) 80.36±1.84 (↑ 2.73)
15 69.42±1.71 70.55±2.69 71.61±1.34 72.90±1.46 72.79±1.26 74.90±1.33 72.58±1.27 74.34±1.52 75.63±1.59 75.40±1.32 72.42±1.34 (↑ 3.00) 76.92±1.26 (↑ 1.29) 76.57±1.14 (↑ 1.17)
20 67.61±1.02 68.84±2.33 67.87±2.22 70.00±1.83 70.55±2.17 71.85±2.22 71.99±1.54 72.06±1.80 72.15±1.27 71.32±1.79 71.61±0.90 (↑ 4.00) 74.35±2.17 (↑ 2.20) 74.44±2.52 (↑ 3.12)
25 64.81±1.14 65.51±2.45 66.02±2.39 67.89±2.21 66.32±2.07 68.03±2.39 69.47±2.98 68.92±2.27 69.10±1.33 68.72±1.50 69.53±2.03 (↑ 4.72) 71.67±2.07 (↑ 2.57) 72.07±1.21 (↑ 3.35)

Citeseer

0 71.96±0.55 73.26±0.83 71.20±0.83 70.65±0.32 72.26±0.83 72.10±0.63 72.71±0.53 72.54±0.21 73.26±0.38 73.28±0.69 73.66±0.83 (↑ 1.70) 74.21±0.63 (↑ 0.95) 74.47±0.83 (↑ 1.19)
5 67.96±0.59 68.15±0.89 68.20±0.83 68.65±1.32 69.76±1.48 71.32±0.83 68.16±1.68 69.57±1.38 69.36±2.20 71.24±1.13 69.76±1.38 (↑ 1.80) 72.10±1.48 (↑ 2.74) 72.77±0.73 (↑ 1.53)

10 64.10±1.34 66.67±1.35 65.92±1.86 66.57±1.35 66.59±1.98 67.86±1.86 66.26±1.54 68.06±1.46 67.52±2.20 68.19±1.13 67.30±2.89 (↑ 3.20) 68.53±1.98 (↑ 1.01) 69.32±2.04 (↑ 1.13)
15 61.12±1.37 63.62±1.47 64.64±1.72 65.88±1.16 65.37±1.34 66.43±1.72 65.49±2.08 66.99±1.25 66.89±2.03 66.95±1.85 65.29±2.99 (↑ 4.17) 68.25±1.34 (↑ 1.36) 68.89±1.19 (↑ 1.94)
20 60.26±1.44 61.85±1.35 62.93±2.01 64.66±1.35 63.99±1.44 64.00±2.01 65.58±1.55 65.35±1.44 66.37±2.04 65.89±2.25 63.55±2.64 (↑ 3.29) 68.17±1.44 (↑ 1.80) 68.44±1.75 (↑ 2.55)
25 59.02±1.39 59.10±2.24 60.87±2.37 63.22±2.24 63.01±2.26 62.85±2.37 64.28±2.23 64.25±2.23 65.11±2.79 64.93±1.70 63.02±6.28 (↑ 4.00) 65.24±2.26 (↑ 0.13) 66.59±2.01 (↑ 1.66)

Polblogs

0 95.69±0.38 95.35±0.20 95.22±0.14 95.31±0.18 85.13±2.22 90.13±2.22 95.36±0.82 95.13±0.85 94.77±1.07 93.20±0.64 96.13±0.14 (↑ 0.44) 94.95±2.22 (↑ 0.18) 95.70±2.22 (↑ 2.50)
5 87.69±0.38 88.35±0.20 89.22±0.14 90.15±0.18 85.01±2.22 90.31±0.14 89.35±0.32 90.05±0.20 90.31±1.31 90.85±1.39 89.72±0.25 (↑ 2.03) 92.27±2.22 (↑ 1.96) 92.36±0.07 (↑ 1.51)

10 84.64±1.69 85.88±1.40 85.85±1.91 86.02±1.33 84.56±1.66 87.00±1.91 87.33±1.74 86.68±1.36 86.71±1.27 87.09±1.41 87.71±0.65 (↑ 3.07) 88.75±1.66 (↑ 2.04) 89.33±0.23 (↑ 2.24)
15 71.55±1.70 72.01±0.20 72.10±1.80 78.18±1.89 79.89±1.75 81.95±1.80 82.04±1.47 82.12±1.99 82.26±1.55 83.31±1.87 76.58±0.56 (↑ 5.03) 84.11±1.75 (↑ 1.85) 84.27±0.27 (↑ 0.96)
20 65.00±1.03 67.12±1.21 67.32±1.15 69.35±1.32 71.25±1.82 71.51±1.15 69.98±1.22 69.42±1.39 72.59±2.12 72.45±1.69 69.44±0.66 (↑ 4.44) 73.26±1.82 (↑ 0.67) 73.81±0.26 (↑ 1.36)
25 64.02±2.35 64.16±2.13 66.10±2.11 67.20±1.44 68.39±2.01 69.02±2.11 66.55±2.79 68.22±1.47 70.80±2.33 69.37±2.01 67.92±1.43 (↑ 3.90) 71.92±2.01 (↑ 1.12) 72.21±0.43 (↑ 2.84)

Pubmed

0 87.19±0.09 83.73±0.40 86.16±0.18 83.44±0.21 84.02±0.26 87.06±0.06 86.43±0.72 86.74±0.15 85.08±0.20 87.33±0.18 88.10±0.18 (↑ 0.91) 87.15±0.11 (↑ 2.07) 88.41±0.26 (↑ 1.08)
5 79.19±0.09 80.73±0.40 80.16±0.18 81.44±0.21 80.02±0.26 82.44±0.18 82.96±0.86 82.42±0.21 82.17±2.02 83.13±1.67 81.32±2.08 (↑ 2.13) 83.15±0.26 (↑ 0.98) 84.33±1.71 (↑ 1.20)

10 75.42±1.40 76.85±1.59 77.93±1.40 80.25±1.34 78.40±1.70 80.45±1.40 80.74±1.66 80.81±1.30 80.59±1.84 81.26±1.59 78.22±1.43 (↑ 2.80) 82.10±1.70 (↑ 1.51) 82.74±1.14 (↑ 1.48)
15 71.96±1.55 72.34±1.55 75.75±1.60 75.21±1.22 73.97±1.76 76.89±1.60 76.87±1.82 76.90±1.25 77.31±1.35 77.09±2.32 75.47±1.34 (↑ 3.51) 78.49±1.76 (↑ 1.18) 78.88±1.60 (↑ 1.79)
20 68.46±0.65 68.99±1.72 70.03±1.49 72.03±1.52 71.32±2.60 71.62±1.49 71.28±1.58 73.02±1.52 73.20±2.75 72.85±2.14 73.91±0.90 (↑ 5.45) 74.81±2.60 (↑ 1.61) 74.90±2.32 (↑ 2.05)
25 69.01±2.03 68.16±1.01 69.02±2.18 71.02±2.32 70.01±2.51 70.86±2.18 70.76±2.85 72.85±2.31 72.69±2.12 71.66±2.67 72.43±2.03 (↑ 3.42) 73.96±2.51 (↑ 1.27) 74.24±1.39 (↑ 2.58)

the robust GNNs trained on the augmented graph achieve significantly better performance for semi-
supervised node classification under graph adversarial attacks. In this section, we directly evaluate
the data quality of the synthetic graph structures generated by the RGDM. In the visual domain,
the Frechet Inception Distance (FID) is a widely used metric to evaluate the quality of the synthetic
images generated by the generative models (Brock et al., 2019; Ho et al., 2020). The FID score
measures the similarity between the distribution of the generated images and the distribution of the
real images. To compute the FID score, the pre-trained Inception v3 (Szegedy et al., 2016) is used to
extract the features from both the real images and the generated images, which are then modeled as
the multivariate Gaussian distributions. The FID score is then calculated using the Frechet Distance
(FD) (Brock et al., 2019) between the two multivariate Gaussian distributions modeling the real and
the generated images (Dowson & Landau, 1982). A lower FID score indicates that the generated
images are more similar to the real images, suggesting better quality.

Quality Evaluation of the Synthetic Nodes. Although the Inception model cannot be applied to
the graph data, we can replace the Inception model in the computation of the FID score with the
pre-trained GCN (Kipf & Welling, 2017) for extracting node features to adapt the metric to evaluate
the quality of synthetic nodes generated by the RGDM. To this end, we define the Frechet Node
Distance (FND), which is the FD between the multivariate Gaussians modeling the node features
extracted by pre-trained GCN. We randomly split the nodes in the original clean graph into two
partitions of equal size, which are the base partition and the test partition. To mitigate the influence
of the randomness, we compute the FND scores with 10 different random splits and report the mean
and the standard deviation of the FND scores across different runs. The FND computed between the
nodes in the test partition and the base partition of the original clean graph establishes the baseline of
the expected FND score for high-quality nodes. By computing the FND score between the features
of nodes in the synthetic graph structures generated by the RGDM and the features of nodes in
the base partition of the original clean graph, we evaluate the quality of the synthetic nodes in the
synthetic graph structures. For simplicity, we refer to the FND score for the synthetic nodes as the

23



1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295

Under review as a conference paper at ICLR 2026

FND between their features and the features of the nodes in the base partition of the original clean
graph.

To show the effectiveness of the robustness loss in the training of the RGAE for the RGDM, we also
compute the FND for the nodes in the synthetic graph structures generated by the RGDM without
the node robustness loss and the edge robustness loss. To demonstrate the advantages of the RGDM
over the vanilla diffusion model, the DDPM (Ho et al., 2020), we train a baseline DDPM model on
the input node attributes of the original attacked graph and synthesize the same number of synthetic
nodes as the RGDM. The synthetic edges are then generated by connecting each synthetic node to its
K-nearest neighbors in the original attacked graph using the K-nearest neighbors (KNN) algorithm
with K = ⌈dave⌉, where dave is the average degree of the original clean graph. The synthetic graph
structures, including the synthetic nodes and edges generated by the baseline DDPM model, are
combined with the original attacked graph to form the augmented graph. Next, we compute the
FND score for the nodes in the synthetic graph structures generated by the baseline DDPM model.
In addition, we compute FND for nodes generated by the three baseline node augmentation methods,
which are the iGraphMix (Jeong et al., 2024), ImGAGN (Qu et al., 2021), Graphsmote (Zhao et al.,
2021a), and SNS (Gao et al., 2023b). We also calculate the FND score for nodes in the original
attacked graph. We use the same GCN (Kipf & Welling, 2017) pre-trained on the original clean
graph to extract the node features for computing the FND score. The ablation study is performed on
the original attacked graph perturbed by the Metattack with a perturbation rate of 25%.

Table 8: Frechet Node Distance (FND) to the nodes in the base partition of the original clean graph.
The mean and standard deviation of the FND scores computed with 10 different random splits of
the base partition and the test partition in the original clean graph are reported. The evaluation is
performed for Metattack with a perturbation rate of 25%. The FND score for the original clean
graph is computed between the nodes in the test partition and the nodes in the base partition of the
original clean graph.

Data Cora Citeseer Polblogs Pubmed

Original Attacked Graph 12.10±0.45 7.53±0.22 8.26±0.37 6.11±0.38
iGraphMix (Jeong et al., 2024) 13.44±0.33 9.02±0.42 10.75±0.44 7.65±0.38
ImGAGN (Qu et al., 2021) 13.10±0.38 7.96±0.42 9.86±0.43 6.95±0.27
Graphsmote (Zhao et al., 2021a) 13.52±0.42 8.95±0.22 10.60±0.27 7.45±0.51
SNS (Gao et al., 2023b) 13.35±0.42 7.88±0.27 9.30±0.85 6.74±0.41
Baseline DDPM 13.28±0.40 8.82±0.26 10.25±0.39 7.25±0.41
RGDM (w/o Robustness Loss) 11.17±0.46 6.15±0.31 8.06±0.44 5.89±0.35
RGDM (w/o Node Robustness Loss) 10.02±0.38 5.89±0.28 6.95±0.35 5.01±0.36
RGDM (w/o Edge Robustness Loss) 9.67±0.27 5.18±0.49 6.65±0.25 5.11±0.38
RGDM 8.16±0.29 4.44±0.32 4.35±0.18 3.95±0.43
Original Clean Graph 7.90±0.31 4.28±0.25 4.16±0.27 3.79±0.35

The evaluation results are shown in Table 8, where the lower FND scores indicate the node features
are more similar to the features of nodes in the base partition of the original clean graph. The FND
score of the nodes in the synthetic graph structures generated by the RGDM is closest to the FND
score of the original clean graph, which demonstrates that the RGDM generates faithful synthetic
nodes. For example, the FND score for the RGDM on Pubmed is 3.95, which is only 4.0% higher
than 3.79, which is the FND score of the original clean graph. In addition, we have several key ob-
servations from Table 8. First, the synthetic nodes generated by the baseline DDPM are even worse
than the original attacked graph. This is because the DDPM is trained on the original attacked graph
without any robustness adaptations, and the noises in the original attacked graph are propagated to
the synthetic nodes in the augmented graph. Second, the robustness loss is critical in generating
clean augmented graphs. Without either the node robustness loss or the edge robustness loss, the
synthetic nodes generated by the ablation models are worse than the synthetic nodes generated by
the RGDM. This observation proves that both the node robustness loss and the edge robustness loss
are beneficial for improving the quality of the synthetic nodes in the synthetic graph structures gen-
erated by the RGDM, as mentioned in Section 3.2. Third, the synthetic nodes generated by RGDM
are significantly more faithful than those generated by the baseline node-level graph augmentation
methods.

Quality Evaluation of the Synthetic Edges. Similar to the design of the FND score for evaluating
the quality of synthetic nodes, we replace the Inception model in the computation of FID with the
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pre-trained GNN (Zhu et al., 2021) for edge feature extraction to adapt the metric to evaluate the
quality of the synthetic edges generated by the RGDM. To this end, we define Frechet Edge Distance
(FED), which is the FD between the multivariate Gaussians modeling the edge features extracted by
pre-trained GNN. Similar to the evaluation of the FND, we randomly split the edges in the original
clean graph into two partitions of equal size, which are the base partition and the test partition. To
mitigate the influence of the randomness, we compute the FED scores with 10 different random splits
and report the mean and the standard deviation of the FED across different runs. The FED computed
between the edges in the test partition and the edges in the base partition of the original clean graph
establishes the baseline of the expected FED score for the high-quality edges. By computing the
FED between the features of edges in the synthetic graph structures generated by the RGDM and
the features of edges in the base partition of the original clean graph, we evaluate the quality of the
edges in the synthetic graph structures. For simplicity, we refer to the FED score for the synthetic
edges as the FED between their features and the features of edges in the base partition of the original
clean graph. Similar to the evaluation of the synthetic nodes, we also compute the FED score for
the edges in the synthetic graph structures generated by the RGDM without the node robustness
loss or the edge robustness loss. We compute the FED score for the edges in the synthetic graph
structures generated by the baseline DDPM model. Since the edges in the synthetic graph structures
are generated by the KNN algorithm, we evaluate the baseline DDPM models using different values
of K from {⌈dave/4⌉, ⌈dave/2⌉, ⌈dave⌉, 2× ⌈dave⌉, 4× ⌈dave/4⌉}. In addition, we compute FED for
edges generated by the three baseline node augmentation methods, which are the iGraphMix (Jeong
et al., 2024), ImGAGN (Qu et al., 2021), Graphsmote (Zhao et al., 2021a), and SNS (Gao et al.,
2023b). We also calculate the FED score for nodes in the original attacked graph. The FED score
for edges in the original attacked graph is also computed. We use the same NBFNet (Zhu et al.,
2021) pre-trained on the original clean graph to extract the edge features for computing the FED
score. The ablation study is performed on the original attacked graph perturbed by the Metattack
with a perturbation rate of 25%.

Table 9: Frechet Edge Distance (FED) to the nodes in the base partition of the original clean graph.
The mean and standard deviation of the FED scores computed with 10 different random splits of
the base partition and the test partition in the original clean graph are reported. The evaluation is
performed for Metattack with a perturbation rate of 25%. The FED score for the original clean graph
is computed between the nodes in the test partition and the nodes in the base partition of the original
clean graph.

Data Cora Citeseer Polblogs Pubmed

Original Attacked Graph 10.32±0.42 7.83±0.28 8.92±0.39 6.53±0.37
iGraphMix (Jeong et al., 2024) 11.25±0.28 8.42±0.43 9.63±0.44 7.11±0.27
ImGAGN (Qu et al., 2021) 11.05±0.38 8.04±0.26 8.21±0.51 7.16±0.79
Graphsmote (Zhao et al., 2021a) 11.13±0.29 8.16±0.51 9.32±0.41 7.18±0.44
SNS (Gao et al., 2023b) 11.05±0.38 8.04±0.26 8.21±0.51 7.16±0.79
Baseline DDPM (K = ⌈dave/4⌉) 12.03±0.45 8.72±0.31 10.77±0.40 7.93±0.42
Baseline DDPM (K = ⌈dave/2⌉) 11.27±0.38 8.49±0.27 9.32±0.35 7.28±0.34
Baseline DDPM (K = ⌈dave⌉) 10.39±0.40 7.96±0.30 8.97±0.37 6.83±0.33
Baseline DDPM (K = ⌈2× dave⌉) 10.47±0.36 7.93±0.29 9.21±0.36 6.91±0.35
Baseline DDPM (K = ⌈4× dave⌉) 10.88±0.41 8.01±0.32 9.38±0.38 7.08±0.38
RGDM (w/o Robustness Loss) 10.07±0.39 7.64±0.26 8.74±0.33 6.27±0.31
RGDM (w/o Node Robustness Loss) 8.87±0.35 6.73±0.25 7.93±0.31 5.78±0.32
RGDM (w/o Edge Robustness Loss) 8.98±0.34 6.82±0.27 7.72±0.29 5.91±0.30
RGDM 8.34±0.29 5.28±0.22 6.61±0.25 5.34±0.28
Original Clean Graph 8.03±0.28 5.10±0.23 6.31±0.24 5.15±0.25

The evaluation results are shown in Table 9, where the lower FED scores indicate the edge features
are more similar to the features of edges in the base partition of the original clean graph. The
FED score of the edges in the synthetic graph structures generated by the RGDM is closest to
the FED score of the original clean graph, which demonstrates that the RGDM generates faithful
synthetic edges. For example, the FED score for the RGDM on Pubmed is 5.34, which is only 3.5%
higher than 5.15, which is the FED score of the original clean graph. In addition, we have similar
observations from Table 9 as those from Table 8. First, the synthetic edges generated by the baseline
DDPM are even worse than the original attacked graph. This is because the DDPM is trained
on the original attacked graph without any robustness adaptations, and the simple edge generation
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method using the KNN on top of the synthetic nodes generated by the DDPM is vulnerable to
noises in the original attacked graph. Edges generation with smaller K in the KNN algorithm is
more vulnerable to the noises in the original attacked graph. Although increasing the value of K
improves the quality of the synthetic edges, the edges generated by the KNN on top of the nodes
generated by the baseline DDPM are still worse than the original attacked graphs. Second, the
robustness loss is critical in generating clean augmented graphs. Without either the node robustness
loss or the edge robustness loss, the synthetic edges generated by the ablation models are worse than
the synthetic edges generated by the RGDM. This observation proves that both the node robustness
loss and the edge robustness loss are beneficial for improving the quality of synthetic edges in the
synthetic graph structures generated by the RGDM, as mentioned in Section 3.2.

As shown in Table 8 and Table 9, the synthetic nodes and edges in the synthetic graph structures
generated by the RGDM have similar FND and FED as the nodes and edges in the original clean
graph, which demonstrate that the synthetic graph structures generated by the RGDM are faithful.
Therefore, incorporating the synthetic graph structures into the original attacked graph dilutes the
adversarial noises. For example, the RGDM generates 912 synthetic edges for Cora under Metattack
with a perturbation rate of 25%. After incorporating the synthetic graph structures generated by the
RGDM into the original attacked graph, the perturbation rate decreases to 21.1%. In addition, the
RGDM generates 785 synthetic edges for Citeseer under Metattack with a perturbation rate of 25%.
After incorporating the faithful synthetic graph structures generated by the RGDM into the original
attacked graph, the perturbation rate decreases to 20.6%. The dilution of the adversarial noises in
these examples provides an explanation of how the RGDM improves the robustness of GNNs trained
on the augmented graph. Moreover, the synthetic edges generated by RGDM are significantly more
faithful than those generated by the baseline node-level graph augmentation methods.

F.4 EVALUATION ON TRAINING TIME AND SYNTHETIC DATA GENERATION TIME

In this section, we detail the training and synthetic data generation times for the Robust Graph
Diffusion Model (RGDM) across various datasets in Table 10. The training time for the RGAE and
the LDM in the RGDM using a single NVIDIA A100 GPU is measured in minutes. In addition,
we present the time for generating synthetic graph structures by the RGDM in seconds per synthetic
node generated in Table 10 as well.

Table 10: Time for the training of the RGDM and data generation with the RGDM on different
datasets.

Datasets RGDM Training Time (minutes) Generation Time (s/sample)
RGAE LDM

Cora 20 39 0.066
Citeseer 23 41 0.067
Polblogs 65 31 0.069
Pubmed 153 154 0.073

F.5 CROSS-VALIDATION ON THE NUMBER OF SYNTHETIC NODES

In our experiments, we generate 10 × |VL| synthetic nodes, where VL is the training set of the
original graph. Then, we search for the optimal size of synthetic nodes N ′ added in the augmented
graph from 1× |VL| to 10× |VL| with a step size of |VL|. In the cross-validation, we train different
GNN classifiers with different numbers of synthetic data and set N ′ to the one that achieves the
best validation accuracy by the end of 40% of their total epoch number. To study the effectiveness
of the cross-validation process for selecting the optimal number of synthetic nodes, we calculate
the complete cross-validation time of different models on different datasets. All the experiments
are performed on one Nvidia A100 GPU. It is observed from the results in Table 11 that the cross-
validation process does not largely increase the computation overhead. The numbers of synthetic
nodes added to the augmented graphs for all the experiments are shown in Table 12, Table 13, and
Table 14.
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Table 11: Time for selecting optimal number synthetic nodes N ′ with cross-validation.

Datasets Cross-validation Time (minutes)

RGDM (GCN) RGDM (SG-GSR) RGDM (Pro-GNN)

Cora 1.1 3.5 43.3
Citeseer 1.0 3.4 38.5
Polblogs 1.6 3.9 26.9
Pubmed 9.4 20.5 176.5

Table 12: The number of synthetic nodes N ′ (×|VL|) selected for Metattack, where VL is the labeled
nodes of the original graph.

Dataset Ptb Rate (%) RGDM (GCN) RGDM (SG-GSR) RGDM (Pro-GNN)

Cora

0 2× |VL| 1× |VL| 2× |VL|
5 2× |VL| 1× |VL| 2× |VL|

10 2× |VL| 1× |VL| 2× |VL|
15 3× |VL| 1× |VL| 3× |VL|
20 3× |VL| 2× |VL| 3× |VL|
25 5× |VL| 5× |VL| 5× |VL|

Citeseer

0 1× |VL| 1× |VL| 1× |VL|
5 2× |VL| 2× |VL| 2× |VL|

10 1× |VL| 1× |VL| 2× |VL|
15 3× |VL| 2× |VL| 3× |VL|
20 3× |VL| 3× |VL| 3× |VL|
25 4× |VL| 5× |VL| 4× |VL|

Polblogs

0 1× |VL| 1× |VL| 1× |VL|
5 1× |VL| 1× |VL| 1× |VL|

10 1× |VL| 2× |VL| 1× |VL|
15 2× |VL| 1× |VL| 2× |VL|
20 2× |VL| 1× |VL| 2× |VL|
25 2× |VL| 2× |VL| 3× |VL|

Pubmed

0 2× |VL| 1× |VL| 2× |VL|
5 2× |VL| 1× |VL| 2× |VL|

10 3× |VL| 1× |VL| 2× |VL|
15 3× |VL| 1× |VL| 2× |VL|
20 3× |VL| 1× |VL| 3× |VL|
25 2× |VL| 1× |VL| 3× |VL|
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Table 13: The number of synthetic nodes N ′ (×|VL|) for Nettack, where VL is the labeled nodes of
the original graph.

Dataset Attack Budget RGDM (GCN) RGDM (SG-GSR) RGDM (Pro-GNN)

Cora

0 2× |VL| 1× |VL| 2× |VL|
1 3× |VL| 2× |VL| 2× |VL|
2 3× |VL| 2× |VL| 2× |VL|
3 3× |VL| 2× |VL| 3× |VL|
4 3× |VL| 3× |VL| 3× |VL|
5 4× |VL| 3× |VL| 3× |VL|

Citeseer

0 2× |VL| 1× |VL| 1× |VL|
1 2× |VL| 2× |VL| 2× |VL|
2 1× |VL| 2× |VL| 2× |VL|
3 3× |VL| 3× |VL| 3× |VL|
4 3× |VL| 2× |VL| 3× |VL|
5 3× |VL| 3× |VL| 3× |VL|

Polblogs

0 1× |VL| 1× |VL| 1× |VL|
1 1× |VL| 1× |VL| 1× |VL|
2 1× |VL| 2× |VL| 1× |VL|
3 1× |VL| 2× |VL| 2× |VL|
4 2× |VL| 2× |VL| 2× |VL|
5 2× |VL| 3× |VL| 3× |VL|

Pubmed

0 1× |VL| 1× |VL| 2× |VL|
1 1× |VL| 1× |VL| 2× |VL|
2 2× |VL| 2× |VL| 2× |VL|
3 2× |VL| 2× |VL| 2× |VL|
4 2× |VL| 3× |VL| 3× |VL|
5 2× |VL| 3× |VL| 3× |VL|

Table 14: The number of synthetic nodes N ′ (×|VL|) for Topology Attack, where VL is the labeled
nodes of the original graph.

Dataset Ptb Rate (%) RGDM (GCN) RGDM (SG-GSR) RGDM (Pro-GNN)

Cora

0 1× |VL| 1× |VL| 1× |VL|
5 1× |VL| 1× |VL| 1× |VL|

10 2× |VL| 2× |VL| 2× |VL|
15 2× |VL| 1× |VL| 2× |VL|
20 2× |VL| 2× |VL| 3× |VL|
25 2× |VL| 2× |VL| 2× |VL|

Citeseer

0 1× |VL| 1× |VL| 1× |VL|
5 2× |VL| 1× |VL| 1× |VL|

10 1× |VL| 2× |VL| 2× |VL|
15 2× |VL| 2× |VL| 3× |VL|
20 2× |VL| 2× |VL| 2× |VL|
25 3× |VL| 2× |VL| 2× |VL|

Polblogs

0 1× |VL| 1× |VL| 1× |VL|
5 1× |VL| 1× |VL| 1× |VL|

10 1× |VL| 2× |VL| 2× |VL|
15 2× |VL| 2× |VL| 3× |VL|
20 2× |VL| 3× |VL| 1× |VL|
25 2× |VL| 2× |VL| 2× |VL|

Pubmed

0 1× |VL| 1× |VL| 2× |VL|
5 2× |VL| 2× |VL| 3× |VL|

10 2× |VL| 2× |VL| 2× |VL|
15 3× |VL| 1× |VL| 2× |VL|
20 2× |VL| 3× |VL| 4× |VL|
25 1× |VL| 2× |VL| 2× |VL|

F.6 ADVERSARIAL DEFENSE ON LARGE SCALE GRAPHS

To evaluate the scalability of the proposed method, we conduct additional experiments on graph
adversarial defense for large-scale graph datasets, which are the large-scale social network, Red-
dit (Hamilton et al., 2017), and the large-scale knowledge graph, ogbn-arxiv (Hu et al., 2020). The
statistics of the Reddit and ogbn-arxiv datasets are detailed in Table 4. Since the Metattack (Zügner
& Günnemann, 2019), the Nettack (Zügner et al., 2018), and the Topology Attack (Xu et al., 2019)
adopted in Section 4.2 do not scale to large graphs at the size of Reddit and ogbn-arxiv, we use
a scalable graph adversarial attack method, the improved DICE (Li et al., 2022c), in our experi-
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ments on Reddit and ogbn-arxiv. The experiments are performed for perturbation rates of 0%, 10%,
and 20% following the settings in (Li et al., 2022c) with GCN as the baseline model. The results
are shown in Table 15. It is observed that RGDM consistently improves the performance of the
GCN baseline across all perturbation levels on both datasets. For example, RGDM achieves an im-
provement of 2.25% on ogbn-arxiv at the perturbation rate of 10%, indicating its effectiveness in
defending against adversarial perturbations even on large and complex knowledge graphs.

Table 15: Node classification performance (Accuracy±Std) under the adversarial attack by the im-
proved DICE (Li et al., 2022c). The improvements of the RGDM over the baseline are attached in
parentheses.

Dataset Ptb Rate (%) GCN RGDM (GCN)

ogbn-arxiv
0 72.82±1.32 74.48 ±1.15 (↑ 1.66)
10 62.25±1.23 64.50 ±1.35 (↑ 2.25)
20 54.95±1.44 56.17 ±1.66 (↑ 1.22)

Reddit
0 93.52±1.17 95.44 ±1.42 (↑ 1.92)
10 82.62±1.32 84.73 ±1.12 (↑ 2.11)
20 74.53±1.57 75.99 ±1.22 (↑ 1.46)

F.7 SENSITIVITY ANALYSIS ON THE HYPER-PARAMETERS

In this section, we conduct a sensitivity analysis on the temperature parameter τ for edge selection.
The study is carried out using RGDM (Pro-GNN) on the Cora dataset under a 25% Metattack setting.
As shown in Table 16, although the highest accuracy is achieved at τ = 0.5, the performance remains
stable across different values of τ . In particular, even the lowest performing setting, τ = 0.1, results
in only a marginal 0.19% decrease in accuracy compared to the best result.

Table 16: Sensitivity analysis on the temperature for edge selection τ . The study is performed by
using RGDM (Pro-GNN) on Cora with 25% of Metattack.

τ 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9
Accuracy 72.12 72.16 72.30 72.29 72.31 72.28 72.24 72.22 72.25

F.8 ADVERSARIAL DEFENSE ON HETEROPHILIC GRAPH

In this section, we study the effectiveness of RGDM for adversarial defense on heterophilic graphs.
Following (Qiu et al., 2024), we perform the study on Chameleon (Pei et al., 2020) and Actor (Tang
et al., 2009) for the defense against the Metattack (Zügner & Günnemann, 2019). The adversarial ro-
bust GNN, LHS (Qiu et al., 2024), which is specifically designed for heterophilic graphs, is adopted
as the baseline model. The results are shown in Table 17. It is observed that RGDM significantly
improves the performance of LHS. For example, RGDM achieves an improvement of 2.38% over
the baseline model on Chameleon under a perturbation rate of 25%.

Table 17: Node classification performance (Accuracy±Std) under the non-targeted poisoning attack
(Metattack) (Zügner & Günnemann, 2019). The improvements of the RGDM over the baseline are
attached in parentheses.

Dataset Ptb Rate (%) LHS RGDM (LHS)

Chameleon
0 72.31±1.32 74.02 ±2.13 (↑ 1.71)

15 71.87±1.61 72.98 ±2.11 (↑ 1.11)
25 70.03±1.85 72.41 ±1.66 (↑ 2.38)

Actor
0 38.87±1.43 41.80 ±1.42 (↑ 2.93)

15 36.79±1.11 39.01 ±1.12 (↑ 2.22)
25 35.37±2.12 37.90 ±2.01 (↑ 2.53)
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F.9 T-SNE VISUALIZATION OF THE AUGMENTED GRAPH

Figure 5 illustrates the t-SNE visualization of both the real and synthetic node features within the
augmented graph, revealing that the synthetic nodes closely mimic the real nodes.

Real Edge
Synthetic Edge

Augmented Graph

Real Node
Synthetic Node
Real Node (Neighbors)

Figure 5: Illustration of the augmented graph after adding the synthetic graph structures into the
original graph on Cora. The RGDM is trained on Cora under Mettack with a perturbation rate of
25%. The figure on the right illustrates the t-SNE visualization of the node features for both the real
nodes in the original clean graph and the synthetic nodes. The figure on the left illustrates the 2-hop
neighborhood of a real node and a synthetic node that have similar node features, evidenced by the
t-SNE visualization in the augmented graph. It is observed that the synthetic node shares the same
neighbors as the real node.

F.10 COMPARISON WITH EXISTING NODE-LEVEL GRAPH AUGMENTATION METHODS

To demonstrate the superiority of RGDM over existing graph augmentation methods, we com-
pare RGDM with mix-up based conventional graph augmentation method, iGraphMix (Jeong et al.,
2024), and GAN-based SGS generation methods, ImGAGN (Qu et al., 2021), Graphsmote (Zhao
et al., 2021a), and SNS (Gao et al., 2023b). The comparison is performed on Cora, Citeseer, Pol-
blogs, and Pubmed under the Metattack with the perturbation rate of 25%. For a fair comparison,
we compare the performance of the GCN augmented by the competing node-level graph augmen-
tation methods, iGraphMix, ImGAGN, Graphsmote, and SNS, with RGDM (GCN). The number of
synthetic nodes added by each of the baseline methods is also selected by cross-validation following
the settings in Section F.5 It is observed in Table 18 that RGDM (GCN) significantly outperforms
the GCNs augmented by all the competing baseline methods. For instance, RGDM (GCN) outper-
forms SNS (GCN) by 3.24% on the PubMed dataset, demonstrating the advantages of the proposed
RGDM in improving the robustness of the GNNs trained on the augmented graph generated by it.

Table 18: Node classification accuracy (%) comparisons between RGDM and existing node-level
graph augmentation methods. The study is performed for Metattack with a perturbation rate of 25%.

Method Cora Citeseer Polblogs Pubmed

GCN 47.53 56.94 49.23 75.50
iGraphMix (GCN) (Jeong et al., 2024) 53.25 57.11 51.65 76.10
ImGAGN (GCN) (Qu et al., 2021) 53.58 56.89 50.95 75.32
Graphsmote (GCN) (Zhao et al., 2021a) 55.10 58.06 52.44 76.25
SNS (GCN) (Gao et al., 2023b) 58.35 59.17 54.03 78.28
RGDM (GCN) 61.42 62.84 56.47 81.52

F.11 STATISTICAL SIGNIFICANCE ANALYSIS

In this section, we calculate the p-values of the t-tests for RGDM (GCN), RGDM (Pro-GNN), and
RGDM (SG-GSR) against their corresponding methods GCN, Pro-GNN, and SG-GSR to evaluate
the statistical significance of the improvements by RGDM. It is observed in Table 19 that the p-
values for both GCL-LR and GCL-LRA against the best baseline methods across all datasets and
noise settings are consistently smaller than 0.05, indicating statistically significant improvements
over the top baseline methods.
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Table 19: P-values of the t-tests for RGDM (GCN), RGDM (Pro-GNN), and RGDM (SG-GSR)
against their corresponding methods GCN, Pro-GNN, and SG-GSR.

Dataset Metattack Netattack Topology Attack
Ptb Rate (%) RGDM (GCN) RGDM (Pro-GNN) RGDM (SG-GSR) Attack Budget RGDM (GCN) RGDM (Pro-GNN) RGDM (SG-GSR) Ptb Rate (%) RGDM (GCN) RGDM (Pro-GNN) RGDM (SG-GSR)

Cora

0 0.042 0.027 0.016 0 0.041 0.025 0.015 0 0.043 0.029 0.017
5 0.038 0.024 0.013 1 0.036 0.023 0.011 5 0.039 0.025 0.012

10 0.033 0.021 0.012 2 0.032 0.019 0.010 10 0.035 0.020 0.011
15 0.029 0.017 0.010 3 0.027 0.016 0.008 15 0.030 0.018 0.009
20 0.025 0.015 0.009 4 0.022 0.013 0.007 20 0.026 0.014 0.008
25 0.021 0.012 0.008 5 0.019 0.011 0.006 25 0.022 0.012 0.007

Citeseer

0 0.039 0.022 0.018 0 0.037 0.021 0.016 0 0.038 0.023 0.017
5 0.035 0.020 0.015 1 0.033 0.019 0.013 5 0.034 0.020 0.014

10 0.030 0.017 0.013 2 0.028 0.016 0.011 10 0.029 0.017 0.012
15 0.027 0.014 0.011 3 0.024 0.013 0.009 15 0.026 0.014 0.010
20 0.023 0.012 0.009 4 0.021 0.011 0.007 20 0.022 0.012 0.008
25 0.019 0.010 0.007 5 0.018 0.009 0.006 25 0.020 0.010 0.007

Polblogs

0 0.041 0.023 0.019 0 0.040 0.021 0.017 0 0.042 0.022 0.018
5 0.036 0.020 0.015 1 0.034 0.018 0.013 5 0.035 0.019 0.014

10 0.031 0.017 0.013 2 0.029 0.016 0.011 10 0.030 0.017 0.012
15 0.027 0.014 0.011 3 0.025 0.013 0.009 15 0.026 0.015 0.010
20 0.024 0.011 0.009 4 0.022 0.010 0.007 20 0.023 0.011 0.008
25 0.020 0.009 0.006 5 0.019 0.008 0.005 25 0.021 0.009 0.006

Pubmed

0 0.038 0.021 0.017 0 0.037 0.020 0.015 0 0.039 0.022 0.016
5 0.034 0.018 0.014 1 0.033 0.017 0.012 5 0.034 0.018 0.013

10 0.030 0.015 0.012 2 0.029 0.014 0.010 10 0.030 0.015 0.011
15 0.027 0.013 0.010 3 0.026 0.012 0.008 15 0.027 0.013 0.009
20 0.023 0.010 0.008 4 0.021 0.009 0.006 20 0.022 0.010 0.007
25 0.019 0.008 0.006 5 0.018 0.007 0.005 25 0.019 0.008 0.006

F.12 STUDY ON RGDM FOR GRAPH PURIFICATION

The RGDM proposed in Section 3 has demonstrated superior performance for generative data aug-
mentation (GDA), which involves generating faithful synthetic graph structures and integrating them
into the original attacked graph to obtain an augmented graph. In this section, we study the effective-
ness of applying RGDM to purify the attacked graph. The graph purification by RGDM, referred
to as RGDM (Purification), is achieved by reconstructing each node and its corresponding edges
through the LDM, where Gaussian noise derived from the original node and its edges is progres-
sively denoised by the LDM and subsequently decoded by the GAE to produce clean node features
and edges. The RGDM (Purification) variant only purifies the original graph, aiming to explore
whether RGDM can be adapted to directly denoise/remove the adversarial perturbations in the orig-
inal attacked graph. Moreover, the RGDM (Purification) can be combined with RGDM for GDA,
denoted as RGDM (GDA) here, leading to a variant that performs both GDA and graph purification,
denoted as RGDM (GDA + Purification). The study is performed on Cora under Metattack with a
25% attack rate. Table 20 shows that applying RGDM for purification enhances the performance
of Pro-GNN, while GDA with RGDM achieves better performance. Moreover, it is observed that
combining GDA and graph purification by RGDM further improves the performance.

Table 20: Study on the effectiveness of graph purification and GDA by RGDM. The evaluation is
conducted on Cora under Metattack with 25% perturbation rate.

Method Accuracy (%)

Pro-GNN 69.7
RGDM (Purification) 71.0
RGDM (GDA) 72.3
RGDM (GDA + Purification) 72.9

F.13 COMPARISON WITH DIFFUSION-BASED GRAPH PURIFICATION METHODS

To demonstrate the superiority of RGDM over existing diffusion-based graph purification meth-
ods (He et al., 2025; Luo et al., 2025), we have performed experiments comparing RGDM with
GDDM (He et al., 2025) and DiffSP (Luo et al., 2025) on Cora, Citeseer, Polblogs, and Pubmed
under Metattack with a perturbation rate of 25%. We run each experiment 10 times with different
random seeds and report the mean and the standard deviation of the node classification accuracy. We
use SG-GSR (In et al., 2024), which is the state-of-the-art robust GNN model, as the baseline model
for RGDM following the settings in Section 4.2 of the main paper. The GDDM and DiffSP are used
to purify the input graph to SG-GSR, and our proposed RGDM is used to augment the input graph
to SG-GSR with synthetic graph structures. It is observed in Table 21 that RGDM (SG-GSR) out-
performs DiffSP and GDDM on all the datasets. To validate the significance of the improvements,
we calculate the p-values of the t-tests between RGDM (SG-GSR) and the best-performing baseline
method on each of the datasets. As observed in the table below, the p-values for RGDM (SG-GSR)
against the best baseline methods across all datasets are consistently smaller than 0.05, indicating
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statistically significant improvements of RGDM (SG-GSR) over the top baseline methods among
DiffSP and GDDM.

Table 21: Comparison of classification accuracy (±Std) and p-values across different datasets be-
tween RGDM and diffusion-based graph purification methods.

Datasets GDDM (He et al., 2025) DiffSP (Luo et al., 2025) RGDM (SG-GSR) p-value

Cora 77.2± 0.3 76.8± 0.5 79.1± 0.4 0.0022
Citeseer 71.6± 0.5 71.8± 0.2 75.3± 0.7 0.0012
Polblogs 84.8± 0.8 85.6± 0.5 88.8± 0.6 0.0004
Pubmed 85.9± 0.6 86.8± 0.4 88.6± 0.5 0.0017

F.14 ABLATION ON THE NUMBER OF SYNTHETIC NODES

To assess the effect of the number of synthetic nodes on robustness, we conduct an ablation study
by varying the number of synthetic nodes from 0 to 10 × |VL|. We evaluate the performance of
RGDM with Pro-GNN as the base GNN for node classification under Metattack with a perturbation
rate of 25%. As shown in Table 22, increasing the number of synthetic nodes initially improves
performance, with the best result achieved at 5 × |VL|. However, further increasing the number of
synthetic nodes leads to slightly degraded performance.

Table 22: Performance of RGDM (Pro-GNN) under Metattack with varying numbers of synthetic
nodes. The perturbation rate is 25%.

# Synthetic Nodes (×|VL|) 1 2 3 4 5 6 7 8 9 10

Accuracy (%) 70.5 71.0 71.9 72.2 72.3 72.1 72.0 71.7 71.4 71.2

F.15 PERFORMANCE COMPARISON WITH VANILLA DDPM-AUGMENTED GRAPHS

To demonstrate the superiority of the synthetic graph structures generated by RGDM, we compare
RGDM (Pro-GNN) with two baselines, which are Pro-GNN trained on the original attacked graph
and Pro-GNN trained on a graph augmented with synthetic nodes generated by a vanilla DDPM. The
vanilla DDPM baseline synthesizes labeled synthetic nodes via conditional DDPM and connects
them using k-nearest neighbors (KNN), as detailed in Section F.3. The study is performed on Cora
under Metattack with a perturbation rate of 25%. As shown in Table 23, the vanilla DDPM even
degrades performance, confirming that RGDM’s gains stem from the generated faithful synthetic
graph structures, rather than simply increasing the number of training nodes/edges.

Table 23: Performance comparison of Pro-GNN on augmented graph with synthetic graph structures
generated by DDPM and RGDM. The study is performed on Cora under Metattack with a perturba-
tion rate of 25%.

Method Accuracy (%)

Pro-GNN 69.7
DDPM (Pro-GNN) 68.2
RGDM (Pro-GNN) 72.3

F.16 STUDY ON THE IMPACT OF LABEL RATIO

To assess the robustness of RGDM (Pro-GNN) under varying levels of supervision, we evaluate
performance on the Cora dataset under a 25% Metattack perturbation rate while varying the labeled
training ratio. In this study, we consider both sparse label regimes (2.5% to 10%) and denser settings
(20% to 60%), with 10% of nodes fixed for validation and the remainder used for testing. As
shown in Table 24, RGDM consistently outperforms the Pro-GNN baseline across all label ratios.
Under extremely limited supervision (2.5%–10%), RGDM maintains strong performance, indicating
its utility as a data augmentation strategy in low-resource scenarios. As the label ratio increases,
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RGDM continues to achieve better performance, demonstrating its robustness and effectiveness even
with more abundant training data. These results confirm that the improvements of RGDM are not
confined to a specific supervision regime and generalize well across both low- and high-label density
settings.

Table 24: Performance comparison of Pro-GNN and RGDM (Pro-GNN) under different label ratios
on Cora under 25% Metattack.

Label Ratio 2.5% 5% 7.5% 10% 20% 40% 60%

Pro-GNN 62.5 65.6 67.5 69.7 73.8 75.2 76.6
RGDM (Pro-GNN) 64.8 68.0 69.3 72.3 75.9 77.6 78.4

F.17 ABLATION STUDY ON THE SPARSE HIERARCHICAL EDGE DECODER

To further validate the effectiveness of the proposed Sparse Hierarchical Edge Decoder (SHED) in
generating robust synthetic edges, we conduct an ablation study comparing SHED against the Bi-
Level Neighborhood Decoder (BLND) used in DoG (Wang et al., 2025). In particular, we replace
SHED in RGDM with the BLND module and denote the resulting model as RGDM (BLND). Both
models are evaluated under the Metattack (Zügner & Günnemann, 2019) with a perturbation rate
of 25%, using SG-GSR (In et al., 2024) as the backbone GNN. The experiments are conducted
on Cora, Citeseer, Polblogs, and Pubmed. As shown in Table 25, RGDM equipped with SHED
consistently outperforms RGDM (BLND) across all benchmarks. For instance, RGDM achieves an
improvement of 2.0% over RGDM (BLND) on the Pubmed dataset, demonstrating the superiority
of SHED to reconstruct clean edge structures in the presence of adversarial noise in the given graph.

Table 25: Performance comparison between the proposed Sparse Hierarchical Edge Decoder
(SHED) and the Bi-Level Neighborhood Decoder (BLND) from DoG (Wang et al., 2025). SG-
GSR is used as the base GNN under Metattack with 25% perturbation.

Dataset Cora Citeseer Polblogs Pubmed
RGDM (BLND) 77.4 73.1 87.2 86.6
RGDM 79.1 75.3 88.8 88.6
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