
CORM: Coarse-to-fine-grained Offloading for SMoE LLM Inference on
Consumer-grade GPU

Anonymous ACL submission

Abstract001

Large language models (LLMs) with sparse002
mixture-of-experts (SMoE) have shown empiri-003
cal success in various tasks. The sparse routing004
strategy of SMoE increases the model capacity005
without proportionally increasing the compu-006
tation cost by activating only a subset of the007
parameters (i.e., the experts). Unfortunately,008
compared to previous LLMs without SMoE,009
the capacity benefit of SMoE LLMs also brings010
additional substantial memory resources. Thus,011
deploying SMoE LLM in resource-limited sce-012
narios is a challenging issue. Previous ap-013
proaches involved offloading the expert weights014
of MoE models to the CPU, which signifi-015
cantly increased inference latency due to the016
need to copy expert weights between the CPU017
and GPU. To address this issue, we propose018
CORM, a Coarse-to-fine-grained Offloading019
framework foR SMoE large language model020
inference. This framework leverages the spar-021
sity present in both the expert and neuron lev-022
els of large models, offloading both levels ac-023
cordingly. We have designed an efficient and024
memory-saving coarse-to-fine-grained sparsity025
prediction mechanism that allows inference and026
weight prefetching to occur in parallel. We also027
implement a coarse-to-fine-grained caching028
strategy which minimizes the need for repeated029
weight loading. Our method has been proven030
through experiments to significantly accelerate031
SMoE LLMs inference, reducing latency by032
up to 2.14× while the model’s accuracy only033
decreases by 1%. These features enable our034
coarse-to-fine grained offloading framework to035
efficiently deploy large-scale SMoE LLMs on036
a consumer-grade GPU.037

1 Introduction038

The adoption of Sparse Mixture-of-Experts039

(SMoE) large language models (LLMs) in the AI040

field is becoming increasingly widespread, such as041

in chatbots and code generation (Reid et al., 2024;042

OpenAI, 2022; xAI, 2024). The core idea of SMoE043

is to activate parameters (i.e., the experts) condi- 044

tional on given inputs (Jacobs et al., 1991; Shazeer 045

et al., 2017). Therefore, LLMs with SMoE can ex- 046

pand their model parameter scale with little or a mi- 047

nor increase in computation cost. The SMoE LLM 048

has demonstrated superior performance compared 049

to dense LLMs with equivalent computational de- 050

mands, such as Mixtral (Jiang et al., 2024), Switch- 051

Transformer (Fedus et al., 2022), and DeepSeek- 052

MoE (Dai et al., 2024). 053

Deploying LLMs on consumer-grade GPUs has 054

become a popular trend (Sheng et al., 2023; Song 055

et al., 2023; Zhao et al., 2024) because it has the fol- 056

lowing advantages: safeguarding data privacy (Yan 057

et al., 2024), reducing energy consumption (Xu 058

et al., 2023), easier model customization (Lyu et al., 059

2023), etc. However, deploying SMoE LLMs on 060

consumer-grade GPUs presents a significant chal- 061

lenge compared to dense LLMs, because SMoE 062

LLMs are typically equipped with more model 063

parameters than their dense counterparts, far ex- 064

ceeding the memory capacity of consumer-grade 065

devices (Yi et al., 2023). For instance, Mixtral 066

8×7B (Jiang et al., 2024), a cutting-edge SMoE 067

LLM, features each MoE layer with 8 experts and 068

demands 94GB of memory in half-precision rep- 069

resentation. At the same time, an NVIDIA RTX 070

3090Ti GPU has only 24GB of memory. 071

There are approaches (Yi et al., 2023; Eliseev 072

and Mazur, 2023; Kong et al., 2023) aimed at en- 073

abling SMoE LLMs inference on devices with lim- 074

ited resources. However, these approaches either 075

result in reduced accuracy or unacceptable infer- 076

ence latency. Again, we take Mixtral 8×7B as an 077

example: the offloading technique offloads experts 078

to CPU DRAM and loads them as needed. While 079

this makes inference feasible with 24GB of GPU 080

memory, it results in an inference latency of 3.9 081

seconds per word, significantly slower than the 082

human reading speed of 0.2 to 0.3 seconds per 083

word (Jin et al., 2023). Meanwhile, quantization 084

1

(a) Quantization (b) Offloading (c) CORM(Ours)

Figure 1: Illustration of CORM vs. existing methods. (a) Quantization uses low precision to represent model
weights and stores them in GPU memory, avoiding weight loading but potentially causing accuracy degradation.
(b) Offloading stores MoE layer weights in CPU DRAM and loads them into GPU memory on-demand during
inference. This approach does not affect accuracy but introduces unacceptable loading latency. (c) Our CORM
stores MoE layer weights in CPU DRAM and, during inference, loads the active neurons of experts into GPU
memory. This maintains model accuracy while increasing throughput.

Latency (s/token) Accuracy (%)

Quantization 0.4 65.6
Offloading 3.9 71.2
CORM 1.28 70.3

Table 1: Comparison of Mixtral 8×7B inference latency
and accuracy on MMLU dataset between CORM and
existing methods. CORM achieves efficient inference
while maintaining model accuracy.

can reduce the model’s accuracy to unacceptable085

levels. For instance, applying INT2 quantization086

to MoE layers and INT4 quantization to Attention087

layers of Mixtral 8×7B allows it to fit into a GPU088

with 24GB of memory. However, this results in an089

average accuracy drop of 5% (Eliseev and Mazur,090

2023). To summarize, deploying SMoE LLMs in091

consumer-grade devices makes it hard to strike bal-092

ance between inference latency and accuracy. Thus,093

the challenge lies in achieving efficient inference094

while maintaining model accuracy.095

To address this challenge, we propose CORM,096

an efficient framework for SMoE LLM infer-097

ence with a coarse-to-fine-grained offloading, en-098

abling SMoE LLMs deployment on consumer-099

grade GPUs, where coarse grain refers to expert100

level and fine grain refers to neuron level. The101

core idea of CORM is to leverage dual-levels of102

sparsity inherited from SMoE LLMs to accelerate103

inference: the sparse routing policy of SMoE and104

the neuron sparsity nature of LLMs.105

The key components of CORM involve coarse-106

to-fine-grained loading. By utilizing the neuron107

sparsity of LLMs, we only load active neurons from108

the selected experts to GPU, minimizing weight109

loading. Additionally, although training SMoE110

models tends to balance expert usage, actual in-111

ference often shows imbalanced expert usage (Du112

et al., 2024). For example, (Li et al., 2023b) shows113

the most popular expert receives 4.02× and 5.56×114

tokens of the least popular ones in 4-expert and 115

16-expert inference tasks of Transformer-XL (Dai 116

et al., 2019). Based on this observation, we employ 117

mixed quantization for experts in SMoE LLMs, us- 118

ing lower precision for less frequently used experts. 119

This reduces memory usage and weight loading 120

latency without affecting model accuracy. 121

Moreover, we design a coarse-to-fine-grained 122

prediction and prefetching mechanism to improve 123

parallelism. Exploiting the high similarity of activa- 124

tions between adjacent layers in LLMs, we utilize 125

the hidden state of current layer along with the 126

weights of next layer to predict the selected experts 127

and active neurons in the subsequent layer. This 128

achieves accurate predictions without additional 129

memory requirements. We effectively hide compu- 130

tation latency by overlapping weight loading and 131

computation through prediction and prefetching. 132

To efficiently utilize GPU memory and reduce 133

expert and neuron loading, CORM further includes 134

coarse-to-fine-grained caching, maintaining caches 135

for both expert and neuron levels. We maintain an 136

expert cache for each MoE layer, with an internal 137

neuron cache for each expert in the cache, updating 138

the neuron cache upon expert cache hits. 139

Experimental results demonstrate the effective- 140

ness of our approach when deployed on a single 141

NVIDIA RTX 3090Ti GPU. As shown in Table 1, 142

CORM takes both inference efficiency and accu- 143

racy into account. Applying CORM to state-of-the- 144

art SMoE LLMs achieved up to 2.14× inference 145

speedup compared to the state-of-the-art library 146

FasterTransformer (NVIDIA, 2019) from NVIDIA. 147

Accuracy degradation is 1% compared to the orig- 148

inal SMoE LLMs across a wide range of natural 149

language processing tasks including commonsense 150

reasoning and multitasking from various branches 151

of knowledge. Furthermore, we show several abla- 152

tions on different components of CORM and their 153

2

contributions to end-to-end inference speedup.154

Our contributions are summarized as follows:155

• We propose CORM, a dual-level offloading156

method efficiently deploys SMoE LLMs on157

consumer-grade GPUs. CORM utilizes two158

levels of sparsity from expert and neuron lev-159

els to optimize weight loading process.160

• We design a coarse-to-fine-grained prediction161

and prefetching mechanism that allows for162

accurate predictions of the required weights163

without additional memory requirements, en-164

abling the overlap of weight loading and com-165

putation to hide computation latency.166

• We design a coarse-to-fine-grained caching167

strategy. This dual-level caching minimizes168

the need for repeated weight loading.169

• We demonstrate the effectiveness of CORM170

through extensive experiments on state-of-the-171

art SMoE LLMs. Our results show up to 2.14×172

inference speedup with 1% accuracy degrada-173

tion across a wide range of natural language174

processing tasks.175

2 Related work176

Recent years numerous LLMs have been pro-177

posed (Zhang et al., 2022; Touvron et al., 2023a,b;178

Almazrouei et al., 2023; Chowdhery et al., 2023),179

shows outstanding performance in natural language180

processing tasks. As a variant of LLMs, SMoE181

LLMs have become increasingly popular due to182

their superior performance compared to common183

LLMs under the same computational budget. Re-184

cently, many MoE LLMs have been introduced,185

such as GLaM (Du et al., 2022), Switch Trans-186

former (Fedus et al., 2022), Mixtral (Jiang et al.,187

2024), DeepSeekMoE (Dai et al., 2024).188

The latest advancements in LLMs and SMoE189

LLMs have highlighted the importance of their190

inference workloads, prompting various efforts191

to accelerate inference. These include quantiza-192

tion (Frantar et al., 2022; Xiao et al., 2023; Frantar193

and Alistarh, 2024), operator fusion (Dao et al.,194

2022; Dao, 2023; Hong et al., 2023; Li et al.,195

2023a), activation sparsity (Liu et al., 2023; Song196

et al., 2023), and sparsification (Alizadeh et al.,197

2023). Additionally, some works employ offload-198

ing methods to deploy models on edge devices199

and accelerate inference (Sheng et al., 2023; Song200

et al., 2023). Specifically for SMoE LLMs, several201

 = 0.250

(a) Mixtral 8x7B (b) DeepSeekMoE 16B

 = 0.225 = 0.200 = 0.175

Figure 2: Percentage of active neurons by layer on vary-
ing thresholds θ. We can ignore about 35% of neurons
at θ of 0.175 and 55% at θ of 0.25. This observation
demonstrates that neuron sparsity exists not only in
dense LLMs but also in SMoE LLMs.

studies have analyzed expert usage characteristics 202

during inference to enhance acceleration (Du et al., 203

2024; Jiang et al., 2024; Kamahori et al., 2024; Xue 204

et al., 2024; Shen et al., 2022). 205

3 Observation 206

The feed-forward network (FFN) layer of an LLM 207

contains three fully connected layers: W1, W2, W3 208

and an activation function (Touvron et al., 2023b). 209

The computation process proceeds as follows: first, 210

the input vector is supplied to W1 and W3. The 211

output vector from W1 is then passed through the 212

activation function. This activated result is mul- 213

tiplied element-wise with the output vector from 214

W3, and the product is subsequently supplied to 215

W2. We obtain the output vector of W2 as the final 216

output of the FFN layer. 217

During inference, the activation function maps 218

some of the activated values to a very small 219

range (Agarap, 2018). When these small values 220

are involved in further computations, the neurons 221

of W2 that interact with them become negligible 222

because their impact on the final result is mini- 223

mal. Here, a neuron refers to a row or column of 224

weights in a fully connected layer. Moreover, we 225

can infer that the corresponding neurons in W1 and 226

W3, which relate to values ultimately mapped to a 227

small range by the activation function, are also in- 228

significant. These insignificant neurons are termed 229

inactive neurons, while those affecting the result 230

are called active neurons. Previous studies (Liu 231

et al., 2023; Song et al., 2023) have referred to this 232

phenomenon as neuron sparsity, which is highly 233

dynamic and dependent on the input data. 234

Existing research has primarily focused on neu- 235

ron sparsity in dense LLMs. However, in SMoE 236

LLMs, each expert constitutes an FFN layer, and 237

3

we have observed similar characteristics in SMoE238

LLMs. In our approach, a neuron is considered ac-239

tive if the absolute value of its activation exceeds a240

threshold, denoted as θ. Conversely, if the absolute241

activation value is below this threshold, the neuron242

is considered inactive. Our experiments on Mix-243

tral 8×7B and DeepSeekMoE 16B revealed neuron244

sparsity, as shown in Figure 2. Neuron sparsity is245

approximately 35% at θ of 0.175 and 55% at θ of246

0.25. Lower layers exhibit higher sparsity, which247

gradually decreases in deeper layers. This finding248

indicates leveraging neuron sparsity to accelerate249

the inference of SMoE LLMs is feasible.250

4 Coarse-to-fine-grained Offloading for251

SMoE LLM Inference252

In this paper, we introduce CORM, an efficient253

SMoE LLM offloading inference framework de-254

ployed on consumer-grade GPUs. CORM focus255

on sparsity at both coarse-grained and fine-grained256

levels: coarse-grained at the expert level and fine-257

grained at the neuron level. The core idea of258

CORM is to leverage two inherent sparsity con-259

ditions from SMoE LLMs to accelerate inference:260

the sparse routing policy of SMoE and the neu-261

ron sparsity nature of LLMs. Figure 3 presents an262

overview of our design. During inference, CORM263

only loads necessary neurons within the experts,264

reducing the weight loading volume and improv-265

ing throughput. Additionally, CORM predict the266

required experts and neurons and use prefetching267

to improve parallelism. By utilizing the model’s268

own features and weights for prediction, we effec-269

tively control memory overhead while maintain-270

ing model accuracy stability. Furthermore, CORM271

implement a cache strategy that transitions from272

coarse-grained to fine-grained levels, minimizing273

redundant weight loading and further enhancing274

inference efficiency.275

4.1 Coarse-to-fine-grained Offloading and276

Expert Granularity Mixed Quantization277

Based on the observations, we discovered that neu-278

ron sparsity is also present in SMoE LLMs. In279

CORM, we only need to use active neurons during280

inference, allowing us to implement “sparse neu-281

ron loading" — only loading active neurons. The282

process of sparse neuron loading is as follows: first,283

the active neurons are compressed into a matrix284

on CPU, then load the compressed matrix to GPU,285

and finally, decompressed on GPU. This process286

significantly decreases loading latency. 287

We further reduce the weight loading through ex- 288

pert granularity mixed quantization. Although each 289

expert is selected with equal frequency during train- 290

ing, expert load imbalance still occurs in practical 291

inference (Zhou et al., 2022; Fedus et al., 2022). 292

In our inference framework, experts are quantized 293

with different precisions; less frequently used ex- 294

perts are quantized at lower precision to accelerate 295

inference with minimal impact on accuracy. To de- 296

termine which experts should be quantized at lower 297

precision, we conduct offline statistics by testing 298

on general datasets like C4 (Raffel et al., 2020) and 299

Wikipedia (Foundation, 2023). 300

4.2 Coarse-to-fine-grained Predicting and 301

Prefetching 302

In LLM inference, prefetching means moving the 303

needed weights to GPU in advance, in parallel with 304

the computation processes on GPU (Hwang et al., 305

2023; Liu et al., 2023). This method hides part of 306

the computation latency, thus reducing inference 307

latency. However, in SMoE LLMs, both expert se- 308

lection and neuron sparsity are dynamic. We only 309

know the exact expert selection and active neurons 310

upon reaching the respective MoE layer. This se- 311

quential execution prevents us from prefetching 312

weights. Previous work added and trained a pre- 313

dictor for each FFN layer to predict the sparsity of 314

the neurons ahead of time (Liu et al., 2023). How- 315

ever, implementing this approach in SMoE LLMs 316

would incur unacceptable additional memory over- 317

head in memory-constrained edge GPU scenarios, 318

or would lead to unacceptable prediction accuracy. 319

Specifically, small predictors achieve only 50-60% 320

prediction accuracy, while larger predictors require 321

an additional 50-100 MB of memory per expert 322

per layer for state-of-the-art SMoE LLMs. For in- 323

stance, the Mixtral 8×7B model, which employs 324

eight experts per layer, would require an additional 325

7-14 GB of memory to achieve satisfactory predic- 326

tion accuracy. This additional memory requirement 327

is unacceptable for the NVIDIA RTX 3090Ti GPU, 328

which has only 24 GB of memory. 329

To save memory, our framework utilizes the 330

model’s own weights to predict expert selection 331

and neuron sparsity, representing a training-free 332

approach that requires no additional memory. As 333

shown in Figure 4, we add a predictor after the ith 334

Attention layer to predict the (i+ 1)th MoE layer. 335

In the ith predictor, the input is calculated with 336

the gate function of the (i + 1)th layer to predict 337

4

Figure 3: Overview of CORM. The core of CORM is loading the active neurons of experts to reduce weight loading
during SMoE LLM inference. We add a predictor before each MoE layer. The predictor predicts the selected experts
and active neurons of next MoE layer. After completing predictions, we perform prefetching and forward inference
in parallel to mask computational latency. During weight loading, we maintain caches for expert and neuron levels.

Figure 4: Structure of expert selection and neuron spar-
sity predictor. Given the input to MoE layer at Layer i,
we utilize the gate function of MoE layer at Layer i+ 1
to predict the expert selection for Layer i + 1. Then
calculating input with predicted expert’s W1 layer, and
pass the result through an activation function. Using
the output from activation function, we predict neuron
sparsity by filtering out relatively inactive neurons.

expert selection for the (i + 1)th layer. Next, we338

prefetch the predicted expert’s W1 layer to GPU,339

calculate input with W1 layer, and then pass the340

result through an activation function. Based on ob-341

tained activation values, we employ a filter function342

to generate predictions for neuron sparsity. The fil-343

ter selects neurons whose absolute activation values344

exceed a threshold θ to predict active neurons.345

Our method for predicting expert selection and346

neuron sparsity achieves satisfactory accuracy. We347

tested Mixtral 8×7B and DeepSeekMoE 16B, with348

expert prediction accuracy shown in Figure 5(a).349

The accuracy of lower layers is around 75%, and350

up to 90% for middle and upper layers. Neuron351

prediction accuracy, shown in Figure 5(b), is 80%352

to 90% in most layers. This result demonstrates353

the feasibility of using the model’s own weights for354

prediction. The similarity between adjacent layers’355

activations in LLMs, due to the residual network356

structure, is approximately 0.99 (Liu et al., 2023),357

making prediction accuracy satisfactory.358

If the predictor misses, the model proceeds with359

the incorrect prediction rather than reloading the360

correct weights. This decision is based on a trade-361

(a) Expert Prediction Accuracy (b) Neuron Prediction Accuracy

Figure 5: CORM’s prediction accuracy by layer. (a)
illustrates Expert selection prediction accuracy, (b) il-
lustrates neuron sparsity prediction accuracy. CORM
shows expert selection prediction accuracy of around
85% and neuron sparsity prediction accuracy of around
80% on state-of-the-art SMoE LLMs.

off between accuracy and inference speed; reload- 362

ing the correct weights in response to a miss would 363

significantly increase latency. Our high accuracy 364

rate ensuring that predictor misses have minimal 365

impact on overall model accuracy. 366

By predicting sparsity in advance, we can 367

prefetch the needed weights, hiding part of the 368

computation latency and reducing inference latency. 369

Throughout the prefetching process, model infer- 370

ence continues as normal, using CUDA streams to 371

parallelize weight loading and computation. 372

4.3 Coarse-to-fine-grained Caching 373

After determining the experts and neurons required 374

for inference, efficiently utilizing GPU memory to 375

reduce expert and neuron loading needs further con- 376

sideration. Expert caching can effectively reduce 377

the latency caused by offloading in SMoE LLM in- 378

ference (Eliseev and Mazur, 2023; Xue et al., 2024). 379

Frequently reused experts in SMoE LLMs can be 380

cached in GPU HBM, avoiding costly retrievals 381

from CPU DRAM. Previous work showed satisfac- 382

tory hit rates using a simple LRU strategy (Eliseev 383

5

Figure 6: An illustrative example shows how CORM
maintains coarse-to-fine-grained cache. We maintain a
neuron cache in GPU memory for each cached expert.
For cached experts, we only load active neurons that are
not in the cache.

and Mazur, 2023). In CORM, we allocate a fixed384

storage space in GPU memory before inference to385

cache a fixed number of experts. During inference,386

the LRU strategy maintains the cached experts.387

However, since we introduce “sparse neuron388

loading”, this doesn’t guarantee correct inference389

even if the expert is cached, because different ac-390

tivation inputs lead to different neuron sparsity.391

Therefore, we design a neuron cache mechanism.392

As shown in Figure 6, we maintain a neuron cache393

on GPU for each cached expert. For cached ex-394

perts, we only load active neurons that aren’t in the395

neuron cache, updating the neuron cache with the396

union of cached and currently active neurons. For397

the experts that have just been cached, we set the398

expert’s neuron cache to currently loaded neurons.399

5 Evaluation400

Implementation. CORM is implemented using401

NVIDIA’s FasterTransformer (NVIDIA, 2019). We402

use HQQ (Badri and Shaji, 2023) data-free quanti-403

zation algorithm to quantize SMoE LLMs. In addi-404

tion to implementing the coarse-to-fine grained pre-405

dicting, prefetching, and caching, we also adjusted406

quantization algorithm to suit neuron operations.407

For LLMs, one bit usually stores more than a value408

in quantized weights. We modified compression di-409

mensions of quantization algorithm to ensure each410

neuron is compressed into the same bit, maintain-411

ing independence of each neuron’s storage to avoid412

additional overhead when extracting neurons.413

Hardware. We test most of the experiments on a414

server with 64 Intel(R) Xeon(R) Gold 6226R CPUs415

@ 2.90GHz and 8 NVIDIA RTX 3090Ti GPU with416

24GB of HBM. The CPU and GPU communicate417

over a PCIe (gen4) channel with 32 GB/sec of data418

transfer bandwidth. In all our experiments, testing419

was conducted using only one GPU.420

Baseline Mixtral-Offload

(a) DeepSeekMoE 16B, Input Length=64

(c) Mixtral 8×7B, Input Length=64

(b) DeepSeekMoE 16B, Input Length=128

(d) Mixtral 8×7B, Input Length=128

CORM

Figure 7: End-to-end speedup of Mixtral 8×7B and
DeepSeekMoE 16B. The X axis indicates the output
length. The Y axis represents the speedup. (a,c) is
configured with an input length of around 64, (b,d) is
configured with an input length of around 128.

Model and datasets. We use Mixtral 8×7B 421

model (Jiang et al., 2024) and DeepSeekMoE 422

16B (Dai et al., 2024) model. Mixtral 8×7B 423

represent the current state of the art among 424

open-access SMoE LLMs. We select three 425

datasets from Winogrande (Sakaguchi et al., 2021), 426

MMLU (Hendrycks et al., 2021) and PIQA (Bisk 427

et al., 2020). Winogrande and PIQA test common- 428

sense reasoning. MMLU is a massive multitask 429

from various branches of knowledge. 430

5.1 End-to-End Result 431

Our end-to-end experiment focuses on edge device 432

inference scenarios, where the batch size is set to 433

1. In our experiments, the input lengths are 64 and 434

128, while the number of output tokens varies from 435

8 to 512. We conducted prompt sampling on the 436

C4 (Raffel et al., 2020) and Wikipedia (Foundation, 437

2023) datasets, which are high-quality text datasets 438

covering a wide range of domains. Our baseline im- 439

plementation uses expert offloading. Specifically, 440

we quantize the model weights to INT4 and store 441

intermediate activations in FP16. We store the non- 442

MoE weights and activations of the SMoE LLM on 443

the GPU, while the MoE layer weights are stored 444

in CPU DRAM. The expert weights are loaded to 445

GPU on-demand during inference. This is a com- 446

mon SMoE LLM offloading strategy used in pre- 447

vious work. Mixtral-Offload (Eliseev and Mazur, 448

2023) is a state-of-the-art method for accelerating 449

SMoE LLM inference on edge devices, utilizing 450

6

PIQA Winogrande MMLU
Mixtral 8×7B 82.9% 77.2% 71.2%
Mixtral 8×7B-CORM 82.7% 76.7% 70.3%
Difference -0.2% -0.5% -0.9%
DeepSeekMoE 16B 80.2% 70.2% 45.0%
DeepSeekMoE 16B-CORM 79.3% 70.4% 43.7%
Difference -0.9% +0.2% -1.3%

Table 2: Comparison of SMoE LLM accuracy between
CORM optimized models and their original counter-
parts. Due to the potential to select incorrect experts
and overlook actually active neurons, our approach
inevitably introduces some degree of compromise to
model accuracy. Experimental results demonstrate the
extent of accuracy decline is within acceptable bounds.

speculative expert loading and expert caching.451

Figure 7 shows the comparison of end-to-end452

generation speedup of CORM under different input453

and output lengths. For Mixtral 8×7B, the aver-454

age speedups are 1.92× and 1.99× compared to455

the baseline, and 1.23× and 1.24× compared to456

Mixtral-Offload for input lengths of 64 and 128,457

respectively. For DeepSeekMoE 16B, the aver-458

age speedups are 2.04× and 2.09× compared to the459

baseline, and 1.26× and 1.27× compared to Mixtral-460

Offload for the same input lengths. As the gener-461

ation length increases, the speedup of CORM im-462

proves. This enhancement occurs because a greater463

number of generated tokens reduces the weight464

loading latency through increased cache hits from465

coarse-to-fine-grained cache system.466

5.2 Model Accuracy467

Given that our method predicts the usage of experts468

and the sparsity of neurons, and some neurons are469

ignored during inference, it is crucial to explore470

the impact of our method on the accuracy of MoE471

LLMs. Table 2 compares the accuracy with and472

without the use of CORM. Experiments demon-473

strate that CORM maintains competitive accuracy474

across different models and various downstream475

tasks. The accuracy of MoE LLMs may fluctuate476

due to possible misselections of experts and the477

omission of some actually active neurons. How-478

ever, sometimes this even enhance accuracy.479

5.3 Ablation Studies480

Speedup breakdown. In this section, we examine481

the contribution of each module of our method to482

overall acceleration. We incrementally tested the483

throughput of four schemes. Our baseline imple-484

mentation mirrors that of the end-to-end speedup485

experiment. Next, we implemented and tested486

coarse-to-fine-grained offloading by sparse neuron487

(a) Mixtral 8x7B (b) DeepSeekMoE 16B

B+SB B+S+P B+S+P+C

Figure 8: Speedup breakdown for each module of
CORM. “B” denotes baseline implementation. “S” de-
notes coarse-to-fine-grained offloading and expert gran-
ularity mixed quantization module. “P” denotes coarse-
to-fine-grained predicting and prefetching module. “C”
denotes coarse-to-fine-grained caching module.

loading and expert granularity mixed quantization. 488

Then, we add coarse-to-fine-grained predicting and 489

prefetching module. Finally, we add the coarse-to- 490

fine-grained caching module as our full algorithm. 491

Figure 8 illustrates the generation speedup break- 492

down for each module of CORM. Adding the 493

coarse-to-fine-grained offloading and expert granu- 494

larity mixed quantization module results in speedup 495

of 1.25× for Mixtral 8×7B and 1.4× for DeepSeek- 496

MoE 16B, primarily by reducing weight loading 497

through sparse neuron loading. Incorporating the 498

coarse-to-fine-grained predicting and prefetching 499

module achieves speedup of 1.59× and 1.84× by 500

avoiding the serialized execution of computation 501

and weight loading. Finally, adding coarse-to-fine- 502

grained caching module results in speedup of 2.07× 503

and 2.14×, minimizes the need for repeated weight 504

loading by efficiently utilizing GPU memory. 505

Latency breakdown and predictor overhead. 506

Weight loading time constitutes a significant por- 507

tion of inference latency in offloading methods, 508

making it an essential focus for optimization. To 509

demonstrate the impact of CORM’s optimizations, 510

we measured and compared the weight loading 511

costs and computation costs to the time between 512

tokens (TBT). The latency breakdown results are 513

shown in table 3. Weight loading times are in- 514

deed substantial relative to computation times, and 515

CORM’s optimizations help mitigate this bottle- 516

neck by implementing coarse-to-fine-grained con- 517

trol over weight loading process. We also present 518

overlap latency in table 3, which can account for 519

over 80% of the computation latency, highlight- 520

ing effectiveness of our prediction and prefetching 521

operations in masking computation latency. 522

The overhead introduced by our dual-level pre- 523

dictor is a critical factor to measure. Since the 524

7

TBT Weight Loading Computation Overlap
Mixtral 8×7B 2450ms 2100ms 350ms N/A
Mixtral 8×7B-CORM 1280ms 1210ms 398ms 328ms
DeepSeekMoE 16B 836ms 706ms 130ms N/A
DeepSeekMoE 16B-CORM 404ms 370ms 144ms 110ms

Table 3: Latency breakdown of the CORM optimized
models and their original counterparts for generating
one token with a prompt length of 128. “TBT” denotes
the time between tokens, “Overlap” represents the over-
lapping time between weight loading and computation.

TBT Predictor Predictor Latency Ratio
Mixtral 8×7B 1280ms 48ms 3.75%
DeepSeekMoE 16B 405ms 14ms 3.46%

Table 4: Predictor overhead of CORM for generating
one token with a prompt length of 128. “TBT” repre-
sents time between tokens.

predictor requires no additional memory, we mea-525

sured the latency overhead it introduces. In table 4,526

we provide a breakdown of the predictor latency527

compared to the time between tokens(TBT). As528

shown, the predictor latency represents a relatively529

small portion of the total time per token, ensuring530

minimal impact on overall inference performance.531

Effect of neuron sparsity on throughput and ac-532

curacy. In our method, the sparse neuron loading533

module significantly reduces weight loading. We534

determine whether a neuron is active by compar-535

ing its absolute value of the activation value with536

a threshold θ, thus deciding whether it needs to be537

loaded. Therefore, the threshold is a critical factor538

affecting accuracy. We test impact of threshold539

settings on accuracy and throughput below.540

Figure 9 shows the relationship between the la-541

tency of sparse neuron loading and the percentage542

of active neurons for an expert of Mixtral 8×7B.543

Sparse neuron loading consists of three parts: com-544

pressing active neurons, loading, and decompress-545

ing. In our experiments, the decompression op-546

eration takes an average of 0.1ms, accounting for547

about 1% of the total latency. Therefore we omitted548

this part from the figure. It can be observed that the549

latency of neuron compression, weight loading and550

the total latency are approximately proportional551

to the percentage of active neurons. If too many552

neurons are active, the latency of sparse neuron553

loading will exceed that of directly copying the full554

expert (as shown by the red dashed line in Figure 9).555

Therefore, we set an upper limit on the percentage556

of active neurons, beyond which the full expert is557

loaded. For Mixtral 8×7B, this upper limit is 75%.558

As fewer active neurons result in lower inference559

Loading full expert Entire process
Loading neuron Compressing neuron

Figure 9: Sparse neuron loading latency breakdown
of Mixtral 8×7B at varying number of active neurons.
The red dashed line denote the latency of loading a full
expert. It’s more efficient to load the full expert weight
if the sparse neuron loading latency exceeds the loading
latency of the full expert weight.

0.15 0.175 0.2 0.225 0.25 0.275
θ

0.650
0.675
0.700
0.725
0.750
0.775
0.800
0.825

Th
ro

ug
hp

ut
 (t

ok
en

/s
)

86
88
90
92
94
96
98
100

A
cc

ur
ac

y
(%

)

Figure 10: Effect of threshold θ setting on throughput
and accuracy of Mixtral 8×7B. A larger value of θ leads
to higher throughput but lower accuracy. We must select
θ judiciously to achieve an optimal balance between
throughput and accuracy. For Mixtral 8×7B, the optimal
value of θ is 0.25.

latency, we control the number of active neurons 560

by discarding neurons whose activation function 561

outputs do not exceed the threshold. However, dis- 562

carding too many neurons can lead to a decrease in 563

model accuracy. Figure 10 illustrates the relation- 564

ship between the threshold θ and both the through- 565

put and accuracy of Mixtral 8×7B. As θ increases, 566

the throughput gradually iecreases.The model’s ac- 567

curacy remains above 99% when θ is below 0.25. 568

However, at θ of 0.275, we observe a sudden drop 569

in accuracy. Therefore, we select θ of 0.25 as a 570

balance between accuracy and throughput. 571

6 Conclusion 572

This paper introduces CORM, an efficiently SMoE 573

LLM inference framework on consumer-grade 574

GPUs. By leveraging dual-levels of sparsity inher- 575

ited from SMoE LLMs, it achieves efficient weight 576

loading and cache management. CORM achieves 577

up to 2.14× inference speedup while maintaining 578

comparable model accuracy across various natural 579

language processing tasks. 580

8

7 Ethical Statements581

We used publicly available or synthetic datasets582

for our experiments to avoid any potential harm to583

individuals or groups. The data used in this study584

were carefully selected and processed to ensure585

privacy and confidentiality. No personally iden-586

tifiable information was used, and all data were587

anonymized prior to analysis. All artifacts used in588

this study were consistent with their intended use.589

The artifact we created is designed to accelerate590

the inference process of SMoE LLMs on consumer-591

grade GPUs, and it is compatible with the original592

access conditions.593

In considering the application of our research594

findings, we acknowledge the potential risks related595

to data privacy. In the event of vulnerabilities in596

LLMs deployed on edge devices, attackers could597

exploit these vulnerabilities to steal data or gain598

control of the devices.599

For preprocessing, we employed the600

HQQ (Badri and Shaji, 2023) data-free quanti-601

zation algorithm to quantize SMoE LLMs. We602

quantized the models to 4-bit with a group size of603

64, scale group size 256, and 2-bit with a group604

size of 16, scale group size 128.605

The models and datasets used in this study606

are open-source. These models include Mix-607

tral 8×7B (Jiang et al., 2024) and deepseekMoE-608

16B (Dai et al., 2024), with licenses under Apache-609

2.0 and MIT, respectively. We tested the mod-610

els on all problems in the model test datasets,611

which include Winogrande (Sakaguchi et al., 2021),612

PIQA (Bisk et al., 2020), and MMLU (Hendrycks613

et al., 2021). Winogrande and PIQA test common-614

sense reasoning, while MMLU is a large-scale mul-615

titask dataset encompassing various branches of616

knowledge. Winogrande contains a new collec-617

tion of 44,000 problems, PIQA has 16,000 training618

examples, 2,000 for development, and 3,000 for619

testing. MMLU consists of 57 tasks with 23,000620

problems. The usage license for Winogrande is CC-621

BY, and the usage license for MMLU is MIT. The622

usage license for PIQA was not explicitly found,623

but it has been widely used in numerous studies as a624

test dataset. The prompt datasets include C4 (Raffel625

et al., 2020) and Wikipedia (Foundation, 2023). C4626

is a colossal, cleaned version of Common Crawl’s627

web corpus based on the Common Crawl dataset,628

while the Wikipedia dataset contains cleaned arti-629

cles in all languages, built from Wikipedia dumps.630

We randomly selected 5,000 prompts each from631

C4 and Wikipedia to profile the models, and se- 632

lected 1,000 prompts each to test the inference 633

speed and perform ablation experiments. The usage 634

license for C4 is ODC-BY, and the usage license 635

for Wikipedia is CC-BY-SA-3.0. 636

We did not use human annotators or research 637

involving human subjects, nor did we employ AI 638

assistants in our research, coding, or writing. 639

8 Limitations 640

The proposed approach in this work has several 641

limitations: 642

• Our method applies offline mixed-precision 643

quantization to the experts based on prior 644

knowledge. Developing a mechanism for dy- 645

namic mixed-precision quantization during 646

inference, tailored to the usage characteris- 647

tics of the experts, could further minimize the 648

performance impact on SMoE LLMs. 649

• In this study, the computational tasks of 650

the SMoE LLM are executed exclusively on 651

GPUs, without leveraging CPU resources. By 652

employing efficient planning and scheduling, 653

it may be possible to accelerate inference 654

through parallel computation using both CPU 655

and GPU resources. 656

• Our caching mechanism pre-allocates mem- 657

ory on GPUs at the expert granularity. A more 658

efficient approach would be to dynamically 659

maintain a cache at the neuron granularity 660

based on the number of active neurons dur- 661

ing inference, thereby reducing memory con- 662

sumption. 663

References 664

Abien Fred Agarap. 2018. Deep learning using rectified 665
linear units (relu). arXiv preprint arXiv:1803.08375. 666

Keivan Alizadeh, Iman Mirzadeh, Dmitry Belenko, 667
Karen Khatamifard, Minsik Cho, Carlo C Del Mundo, 668
Mohammad Rastegari, and Mehrdad Farajtabar. 2023. 669
Llm in a flash: Efficient large language model 670
inference with limited memory. arXiv preprint 671
arXiv:2312.11514. 672

Ebtesam Almazrouei, Hamza Alobeidli, Abdulaziz Al- 673
shamsi, Alessandro Cappelli, Ruxandra Cojocaru, 674
Mérouane Debbah, Étienne Goffinet, Daniel Hess- 675
low, Julien Launay, Quentin Malartic, et al. 2023. 676
The falcon series of open language models. arXiv 677
preprint arXiv:2311.16867. 678

9

Hicham Badri and Appu Shaji. 2023. Half-quadratic679
quantization of large machine learning models.680

Yonatan Bisk, Rowan Zellers, Jianfeng Gao, Yejin Choi,681
et al. 2020. Piqa: Reasoning about physical com-682
monsense in natural language. In Proceedings of the683
AAAI conference on artificial intelligence, volume 34,684
pages 7432–7439.685

Aakanksha Chowdhery, Sharan Narang, Jacob Devlin,686
Maarten Bosma, Gaurav Mishra, Adam Roberts, Paul687
Barham, Hyung Won Chung, Charles Sutton, Sebas-688
tian Gehrmann, et al. 2023. Palm: Scaling language689
modeling with pathways. Journal of Machine Learn-690
ing Research, 24(240):1–113.691

Damai Dai, Chengqi Deng, Chenggang Zhao, RX Xu,692
Huazuo Gao, Deli Chen, Jiashi Li, Wangding693
Zeng, Xingkai Yu, Y Wu, et al. 2024. Deepseek-694
moe: Towards ultimate expert specialization in695
mixture-of-experts language models. arXiv preprint696
arXiv:2401.06066.697

Zihang Dai, Zhilin Yang, Yiming Yang, Jaime Car-698
bonell, Quoc V Le, and Ruslan Salakhutdinov.699
2019. Transformer-xl: Attentive language mod-700
els beyond a fixed-length context. arXiv preprint701
arXiv:1901.02860.702

Tri Dao. 2023. Flashattention-2: Faster attention with703
better parallelism and work partitioning. arXiv704
preprint arXiv:2307.08691.705

Tri Dao, Dan Fu, Stefano Ermon, Atri Rudra, and706
Christopher Ré. 2022. Flashattention: Fast and707
memory-efficient exact attention with io-awareness.708
Advances in Neural Information Processing Systems,709
35:16344–16359.710

Nan Du, Yanping Huang, Andrew M Dai, Simon Tong,711
Dmitry Lepikhin, Yuanzhong Xu, Maxim Krikun,712
Yanqi Zhou, Adams Wei Yu, Orhan Firat, et al. 2022.713
Glam: Efficient scaling of language models with714
mixture-of-experts. In International Conference on715
Machine Learning, pages 5547–5569. PMLR.716

Zhixu Du, Shiyu Li, Yuhao Wu, Xiangyu Jiang, Jing-717
wei Sun, Qilin Zheng, Yongkai Wu, Ang Li, Hai718
Li, and Yiran Chen. 2024. Sida: Sparsity-inspired719
data-aware serving for efficient and scalable large720
mixture-of-experts models. Proceedings of Machine721
Learning and Systems, 6:224–238.722

Artyom Eliseev and Denis Mazur. 2023. Fast inference723
of mixture-of-experts language models with offload-724
ing. arXiv preprint arXiv:2312.17238.725

William Fedus, Barret Zoph, and Noam Shazeer. 2022.726
Switch transformers: Scaling to trillion parameter727
models with simple and efficient sparsity. Journal of728
Machine Learning Research, 23(120):1–39.729

Wikimedia Foundation. 2023. Wikimedia downloads.730

Elias Frantar and Dan Alistarh. 2024. Qmoe: Sub-1-bit731
compression of trillion parameter models. Proceed-732
ings of Machine Learning and Systems, 6:439–451.733

Elias Frantar, Saleh Ashkboos, Torsten Hoefler, and 734
Dan Alistarh. 2022. Gptq: Accurate post-training 735
quantization for generative pre-trained transformers. 736
arXiv preprint arXiv:2210.17323. 737

Dan Hendrycks, Collin Burns, Steven Basart, Andy 738
Zou, Mantas Mazeika, Dawn Song, and Jacob Stein- 739
hardt. 2021. Measuring massive multitask language 740
understanding. Proceedings of the International Con- 741
ference on Learning Representations (ICLR). 742

Ke Hong, Guohao Dai, Jiaming Xu, Qiuli Mao, Xi- 743
uhong Li, Jun Liu, Kangdi Chen, Hanyu Dong, and 744
Yu Wang. 2023. Flashdecoding++: Faster large 745
language model inference on gpus. arXiv preprint 746
arXiv:2311.01282. 747

Ranggi Hwang, Jianyu Wei, Shijie Cao, Changho 748
Hwang, Xiaohu Tang, Ting Cao, Mao Yang, and Min- 749
soo Rhu. 2023. Pre-gated moe: An algorithm-system 750
co-design for fast and scalable mixture-of-expert in- 751
ference. arXiv preprint arXiv:2308.12066. 752

Robert A Jacobs, Michael I Jordan, Steven J Nowlan, 753
and Geoffrey E Hinton. 1991. Adaptive mixtures of 754
local experts. Neural computation, 3(1):79–87. 755

Albert Q Jiang, Alexandre Sablayrolles, Antoine 756
Roux, Arthur Mensch, Blanche Savary, Chris Bam- 757
ford, Devendra Singh Chaplot, Diego de las Casas, 758
Emma Bou Hanna, Florian Bressand, et al. 2024. 759
Mixtral of experts. arXiv preprint arXiv:2401.04088. 760

Yunho Jin, Chun-Feng Wu, David Brooks, and Gu-Yeon 761
Wei. 2023. s3: Increasing gpu utilization during 762
generative inference for higher throughput. Advances 763
in Neural Information Processing Systems, 36:18015– 764
18027. 765

Keisuke Kamahori, Yile Gu, Kan Zhu, and Baris 766
Kasikci. 2024. Fiddler: Cpu-gpu orchestration for 767
fast inference of mixture-of-experts models. arXiv 768
preprint arXiv:2402.07033. 769

Rui Kong, Yuanchun Li, Qingtian Feng, Weijun Wang, 770
Linghe Kong, and Yunxin Liu. 2023. Serving 771
moe models on resource-constrained edge devices 772
via dynamic expert swapping. arXiv preprint 773
arXiv:2308.15030. 774

Dacheng Li, Rulin Shao, Anze Xie, Eric P Xing, 775
Joseph E Gonzalez, Ion Stoica, Xuezhe Ma, and Hao 776
Zhang. 2023a. Lightseq: Sequence level parallelism 777
for distributed training of long context transformers. 778
arXiv preprint arXiv:2310.03294. 779

Jiamin Li, Yimin Jiang, Yibo Zhu, Cong Wang, and 780
Hong Xu. 2023b. Accelerating distributed {MoE} 781
training and inference with lina. In 2023 USENIX An- 782
nual Technical Conference (USENIX ATC 23), pages 783
945–959. 784

Zichang Liu, Jue Wang, Tri Dao, Tianyi Zhou, Binhang 785
Yuan, Zhao Song, Anshumali Shrivastava, Ce Zhang, 786
Yuandong Tian, Christopher Re, et al. 2023. Deja 787

10

https://mobiusml.github.io/hqq_blog/
https://mobiusml.github.io/hqq_blog/
https://mobiusml.github.io/hqq_blog/
https://dumps.wikimedia.org

vu: Contextual sparsity for efficient llms at infer-788
ence time. In International Conference on Machine789
Learning, pages 22137–22176. PMLR.790

Hanjia Lyu, Song Jiang, Hanqing Zeng, Yinglong Xia,791
and Jiebo Luo. 2023. Llm-rec: Personalized rec-792
ommendation via prompting large language models.793
arXiv preprint arXiv:2307.15780.794

NVIDIA. 2019. Fastertransformer.795

OpenAI. 2022. Introducing chatgpt.796

Colin Raffel, Noam Shazeer, Adam Roberts, Katherine797
Lee, Sharan Narang, Michael Matena, Yanqi Zhou,798
Wei Li, and Peter J Liu. 2020. Exploring the lim-799
its of transfer learning with a unified text-to-text800
transformer. Journal of machine learning research,801
21(140):1–67.802

Machel Reid, Nikolay Savinov, Denis Teplyashin,803
Dmitry Lepikhin, Timothy Lillicrap, Jean-baptiste804
Alayrac, Radu Soricut, Angeliki Lazaridou, Orhan Fi-805
rat, Julian Schrittwieser, et al. 2024. Gemini 1.5: Un-806
locking multimodal understanding across millions of807
tokens of context. arXiv preprint arXiv:2403.05530.808

Keisuke Sakaguchi, Ronan Le Bras, Chandra Bhagavat-809
ula, and Yejin Choi. 2021. Winogrande: An adver-810
sarial winograd schema challenge at scale. Commu-811
nications of the ACM, 64(9):99–106.812

Noam Shazeer, Azalia Mirhoseini, Krzysztof Maziarz,813
Andy Davis, Quoc Le, Geoffrey Hinton, and Jeff814
Dean. 2017. Outrageously large neural networks:815
The sparsely-gated mixture-of-experts layer. arXiv816
preprint arXiv:1701.06538.817

Liang Shen, Zhihua Wu, WeiBao Gong, Hongxiang818
Hao, Yangfan Bai, HuaChao Wu, Xinxuan Wu, Jiang819
Bian, Haoyi Xiong, Dianhai Yu, et al. 2022. Se-820
moe: A scalable and efficient mixture-of-experts dis-821
tributed training and inference system. arXiv preprint822
arXiv:2205.10034.823

Ying Sheng, Lianmin Zheng, Binhang Yuan, Zhuo-824
han Li, Max Ryabinin, Beidi Chen, Percy Liang,825
Christopher Ré, Ion Stoica, and Ce Zhang. 2023.826
Flexgen: High-throughput generative inference of827
large language models with a single gpu. In Inter-828
national Conference on Machine Learning, pages829
31094–31116. PMLR.830

Yixin Song, Zeyu Mi, Haotong Xie, and Haibo Chen.831
2023. Powerinfer: Fast large language model serv-832
ing with a consumer-grade gpu. arXiv preprint833
arXiv:2312.12456.834

Hugo Touvron, Thibaut Lavril, Gautier Izacard, Xavier835
Martinet, Marie-Anne Lachaux, Timothée Lacroix,836
Baptiste Rozière, Naman Goyal, Eric Hambro, Faisal837
Azhar, et al. 2023a. Llama: Open and effi-838
cient foundation language models. arXiv preprint839
arXiv:2302.13971.840

Hugo Touvron, Louis Martin, Kevin Stone, Peter Al- 841
bert, Amjad Almahairi, Yasmine Babaei, Nikolay 842
Bashlykov, Soumya Batra, Prajjwal Bhargava, Shruti 843
Bhosale, et al. 2023b. Llama 2: Open founda- 844
tion and fine-tuned chat models. arXiv preprint 845
arXiv:2307.09288. 846

xAI. 2024. Open release of grok-1. 847

Guangxuan Xiao, Ji Lin, Mickael Seznec, Hao Wu, 848
Julien Demouth, and Song Han. 2023. Smoothquant: 849
Accurate and efficient post-training quantization for 850
large language models. In International Conference 851
on Machine Learning, pages 38087–38099. PMLR. 852

Daliang Xu, Wangsong Yin, Xin Jin, Ying Zhang, 853
Shiyun Wei, Mengwei Xu, and Xuanzhe Liu. 2023. 854
Llmcad: Fast and scalable on-device large language 855
model inference. arXiv preprint arXiv:2309.04255. 856

Leyang Xue, Yao Fu, Zhan Lu, Luo Mai, and Mahesh 857
Marina. 2024. Moe-infinity: Activation-aware expert 858
offloading for efficient moe serving. arXiv preprint 859
arXiv:2401.14361. 860

Biwei Yan, Kun Li, Minghui Xu, Yueyan Dong, 861
Yue Zhang, Zhaochun Ren, and Xiuzheng Cheng. 862
2024. On protecting the data privacy of large lan- 863
guage models (llms): A survey. arXiv preprint 864
arXiv:2403.05156. 865

Rongjie Yi, Liwei Guo, Shiyun Wei, Ao Zhou, Shang- 866
guang Wang, and Mengwei Xu. 2023. Edgemoe: 867
Fast on-device inference of moe-based large language 868
models. arXiv preprint arXiv:2308.14352. 869

Susan Zhang, Stephen Roller, Naman Goyal, Mikel 870
Artetxe, Moya Chen, Shuohui Chen, Christopher De- 871
wan, Mona Diab, Xian Li, Xi Victoria Lin, et al. 2022. 872
Opt: Open pre-trained transformer language models. 873
arXiv preprint arXiv:2205.01068. 874

Jiawei Zhao, Zhenyu Zhang, Beidi Chen, Zhangyang 875
Wang, Anima Anandkumar, and Yuandong Tian. 876
2024. Galore: Memory-efficient llm training 877
by gradient low-rank projection. arXiv preprint 878
arXiv:2403.03507. 879

Yanqi Zhou, Tao Lei, Hanxiao Liu, Nan Du, Yanping 880
Huang, Vincent Zhao, Andrew M Dai, Quoc V Le, 881
James Laudon, et al. 2022. Mixture-of-experts with 882
expert choice routing. Advances in Neural Informa- 883
tion Processing Systems, 35:7103–7114. 884

11

https://github.com/NVIDIA/FasterTransformer
https://openai.com/index/chatgpt/
https://x.ai/blog/grok-os

	Introduction
	Related work
	Observation
	Coarse-to-fine-grained Offloading for SMoE LLM Inference
	Coarse-to-fine-grained Offloading and Expert Granularity Mixed Quantization
	Coarse-to-fine-grained Predicting and Prefetching
	Coarse-to-fine-grained Caching

	Evaluation
	End-to-End Result
	Model Accuracy
	Ablation Studies

	Conclusion
	Ethical Statements
	Limitations

