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Abstract

Large language models (LLMs) with sparse
mixture-of-experts (SMoE) have shown empiri-
cal success in various tasks. The sparse routing
strategy of SMoE increases the model capacity
without proportionally increasing the compu-
tation cost by activating only a subset of the
parameters (i.e., the experts). Unfortunately,
compared to previous LLMs without SMoE,
the capacity benefit of SMoE LLMs also brings
additional substantial memory resources. Thus,
deploying SMoE LLM in resource-limited sce-
narios is a challenging issue. Previous ap-
proaches involved offloading the expert weights
of MoE models to the CPU, which signifi-
cantly increased inference latency due to the
need to copy expert weights between the CPU
and GPU. To address this issue, we propose
CORM, a Coarse-to-fine-grained Offloading
framework foR SMoE large language model
inference. This framework leverages the spar-
sity present in both the expert and neuron lev-
els of large models, offloading both levels ac-
cordingly. We have designed an efficient and
memory-saving coarse-to-fine-grained sparsity
prediction mechanism that allows inference and
weight prefetching to occur in parallel. We also
implement a coarse-to-fine-grained caching
strategy which minimizes the need for repeated
weight loading. Our method has been proven
through experiments to significantly accelerate
SMoE LLMs inference, reducing latency by
up to 2.14x while the model’s accuracy only
decreases by 1%. These features enable our
coarse-to-fine grained offloading framework to
efficiently deploy large-scale SMoE LLMs on
a consumer-grade GPU.

1 Introduction

The adoption of Sparse Mixture-of-Experts
(SMoE) large language models (LLMs) in the Al
field is becoming increasingly widespread, such as
in chatbots and code generation (Reid et al., 2024;
OpenAl, 2022; xAl, 2024). The core idea of SMoE

is to activate parameters (¢.e., the experts) condi-
tional on given inputs (Jacobs et al., 1991; Shazeer
et al., 2017). Therefore, LLMs with SMoE can ex-
pand their model parameter scale with little or a mi-
nor increase in computation cost. The SMoE LLM
has demonstrated superior performance compared
to dense LLMs with equivalent computational de-
mands, such as Mixtral (Jiang et al., 2024), Switch-
Transformer (Fedus et al., 2022), and DeepSeek-
MoE (Dai et al., 2024).

Deploying LLMs on consumer-grade GPUs has
become a popular trend (Sheng et al., 2023; Song
etal., 2023; Zhao et al., 2024) because it has the fol-
lowing advantages: safeguarding data privacy (Yan
et al., 2024), reducing energy consumption (Xu
et al., 2023), easier model customization (Lyu et al.,
2023), etc. However, deploying SMoE LLMs on
consumer-grade GPUs presents a significant chal-
lenge compared to dense LLMs, because SMoE
LLMs are typically equipped with more model
parameters than their dense counterparts, far ex-
ceeding the memory capacity of consumer-grade
devices (Yi et al., 2023). For instance, Mixtral
8x7B (Jiang et al., 2024), a cutting-edge SMoE
LLM, features each MoE layer with 8 experts and
demands 94GB of memory in half-precision rep-
resentation. At the same time, an NVIDIA RTX
3090Ti GPU has only 24GB of memory.

There are approaches (Yi et al., 2023; Eliseev
and Mazur, 2023; Kong et al., 2023) aimed at en-
abling SMoE LLMs inference on devices with lim-
ited resources. However, these approaches either
result in reduced accuracy or unacceptable infer-
ence latency. Again, we take Mixtral 8x7B as an
example: the offloading technique offloads experts
to CPU DRAM and loads them as needed. While
this makes inference feasible with 24GB of GPU
memory, it results in an inference latency of 3.9
seconds per word, significantly slower than the
human reading speed of 0.2 to 0.3 seconds per
word (Jin et al., 2023). Meanwhile, quantization
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Figure 1: Illustration of CORM vs. existing methods. (a) Quantization uses low precision to represent model
weights and stores them in GPU memory, avoiding weight loading but potentially causing accuracy degradation.
(b) Offloading stores MoE layer weights in CPU DRAM and loads them into GPU memory on-demand during
inference. This approach does not affect accuracy but introduces unacceptable loading latency. (¢) Our CORM
stores MoE layer weights in CPU DRAM and, during inference, loads the active neurons of experts into GPU
memory. This maintains model accuracy while increasing throughput.

| Latency (s/token) | Accuracy (%)

Quantization 0.4 65.6
Offloading 39 71.2
CORM 1.28 70.3

Table 1: Comparison of Mixtral 8x7B inference latency
and accuracy on MMLU dataset between CORM and
existing methods. CORM achieves efficient inference
while maintaining model accuracy.

can reduce the model’s accuracy to unacceptable
levels. For instance, applying INT2 quantization
to MoE layers and INT4 quantization to Attention
layers of Mixtral 8x7B allows it to fit into a GPU
with 24GB of memory. However, this results in an
average accuracy drop of 5% (Eliseev and Mazur,
2023). To summarize, deploying SMoE LLMs in
consumer-grade devices makes it hard to strike bal-
ance between inference latency and accuracy. Thus,
the challenge lies in achieving efficient inference
while maintaining model accuracy.

To address this challenge, we propose CORM,
an efficient framework for SMoE LLM infer-
ence with a coarse-to-fine-grained offloading, en-
abling SMoE LLMs deployment on consumer-
grade GPUs, where coarse grain refers to expert
level and fine grain refers to neuron level. The
core idea of CORM is to leverage dual-levels of
sparsity inherited from SMoE LLMs to accelerate
inference: the sparse routing policy of SMoE and
the neuron sparsity nature of LLMs.

The key components of CORM involve coarse-
to-fine-grained loading. By utilizing the neuron
sparsity of LLMs, we only load active neurons from
the selected experts to GPU, minimizing weight
loading. Additionally, although training SMoE
models tends to balance expert usage, actual in-
ference often shows imbalanced expert usage (Du
et al., 2024). For example, (Li et al., 2023b) shows
the most popular expert receives 4.02x and 5.56x

tokens of the least popular ones in 4-expert and
16-expert inference tasks of Transformer-XL (Dai
et al., 2019). Based on this observation, we employ
mixed quantization for experts in SMoE LLMs, us-
ing lower precision for less frequently used experts.
This reduces memory usage and weight loading
latency without affecting model accuracy.

Moreover, we design a coarse-to-fine-grained
prediction and prefetching mechanism to improve
parallelism. Exploiting the high similarity of activa-
tions between adjacent layers in LLMs, we utilize
the hidden state of current layer along with the
weights of next layer to predict the selected experts
and active neurons in the subsequent layer. This
achieves accurate predictions without additional
memory requirements. We effectively hide compu-
tation latency by overlapping weight loading and
computation through prediction and prefetching.

To efficiently utilize GPU memory and reduce
expert and neuron loading, CORM further includes
coarse-to-fine-grained caching, maintaining caches
for both expert and neuron levels. We maintain an
expert cache for each MoE layer, with an internal
neuron cache for each expert in the cache, updating
the neuron cache upon expert cache hits.

Experimental results demonstrate the effective-
ness of our approach when deployed on a single
NVIDIA RTX 3090Ti GPU. As shown in Table 1,
CORM takes both inference efficiency and accu-
racy into account. Applying CORM to state-of-the-
art SMoE LLMs achieved up to 2.14x inference
speedup compared to the state-of-the-art library
FasterTransformer (NVIDIA, 2019) from NVIDIA.
Accuracy degradation is 1% compared to the orig-
inal SMoE LLMs across a wide range of natural
language processing tasks including commonsense
reasoning and multitasking from various branches
of knowledge. Furthermore, we show several abla-
tions on different components of CORM and their



contributions to end-to-end inference speedup.
Our contributions are summarized as follows:

* We propose CORM, a dual-level offloading
method efficiently deploys SMoE LLMs on
consumer-grade GPUs. CORM utilizes two
levels of sparsity from expert and neuron lev-
els to optimize weight loading process.

* We design a coarse-to-fine-grained prediction
and prefetching mechanism that allows for
accurate predictions of the required weights
without additional memory requirements, en-
abling the overlap of weight loading and com-
putation to hide computation latency.

* We design a coarse-to-fine-grained caching
strategy. This dual-level caching minimizes
the need for repeated weight loading.

* We demonstrate the effectiveness of CORM
through extensive experiments on state-of-the-
art SMoE LLMs. Our results show up to 2.14x
inference speedup with 1% accuracy degrada-
tion across a wide range of natural language
processing tasks.

2 Related work

Recent years numerous LLMs have been pro-
posed (Zhang et al., 2022; Touvron et al., 2023a,b;
Almazrouei et al., 2023; Chowdhery et al., 2023),
shows outstanding performance in natural language
processing tasks. As a variant of LLMs, SMoE
LLMs have become increasingly popular due to
their superior performance compared to common
LLMs under the same computational budget. Re-
cently, many MoE LLMs have been introduced,
such as GLaM (Du et al., 2022), Switch Trans-
former (Fedus et al., 2022), Mixtral (Jiang et al.,
2024), DeepSeekMoE (Dai et al., 2024).

The latest advancements in LLMs and SMoE
LLMs have highlighted the importance of their
inference workloads, prompting various efforts
to accelerate inference. These include quantiza-
tion (Frantar et al., 2022; Xiao et al., 2023; Frantar
and Alistarh, 2024), operator fusion (Dao et al.,
2022; Dao, 2023; Hong et al., 2023; Li et al.,
2023a), activation sparsity (Liu et al., 2023; Song
et al., 2023), and sparsification (Alizadeh et al.,
2023). Additionally, some works employ offload-
ing methods to deploy models on edge devices
and accelerate inference (Sheng et al., 2023; Song
et al., 2023). Specifically for SMoE LLMs, several
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Figure 2: Percentage of active neurons by layer on vary-
ing thresholds #. We can ignore about 35% of neurons
at 0 of 0.175 and 55% at 0 of 0.25. This observation
demonstrates that neuron sparsity exists not only in
dense LL.Ms but also in SMoE LLMs.

studies have analyzed expert usage characteristics
during inference to enhance acceleration (Du et al.,
2024; Jiang et al., 2024; Kamabhori et al., 2024; Xue
et al., 2024; Shen et al., 2022).

3 Observation

The feed-forward network (FFN) layer of an LLM
contains three fully connected layers: W1, W2, W3
and an activation function (Touvron et al., 2023b).
The computation process proceeds as follows: first,
the input vector is supplied to W1 and W3. The
output vector from W1 is then passed through the
activation function. This activated result is mul-
tiplied element-wise with the output vector from
W3, and the product is subsequently supplied to
W2. We obtain the output vector of W2 as the final
output of the FFN layer.

During inference, the activation function maps
some of the activated values to a very small
range (Agarap, 2018). When these small values
are involved in further computations, the neurons
of W2 that interact with them become negligible
because their impact on the final result is mini-
mal. Here, a neuron refers to a row or column of
weights in a fully connected layer. Moreover, we
can infer that the corresponding neurons in W1 and
W3, which relate to values ultimately mapped to a
small range by the activation function, are also in-
significant. These insignificant neurons are termed
inactive neurons, while those affecting the result
are called active neurons. Previous studies (Liu
et al., 2023; Song et al., 2023) have referred to this
phenomenon as neuron sparsity, which is highly
dynamic and dependent on the input data.

Existing research has primarily focused on neu-
ron sparsity in dense LL.Ms. However, in SMoE
LLMs, each expert constitutes an FFN layer, and



we have observed similar characteristics in SMoE
LLMs. In our approach, a neuron is considered ac-
tive if the absolute value of its activation exceeds a
threshold, denoted as 6. Conversely, if the absolute
activation value is below this threshold, the neuron
is considered inactive. Our experiments on Mix-
tral 8x7B and DeepSeekMoE 16B revealed neuron
sparsity, as shown in Figure 2. Neuron sparsity is
approximately 35% at 6 of 0.175 and 55% at 0 of
0.25. Lower layers exhibit higher sparsity, which
gradually decreases in deeper layers. This finding
indicates leveraging neuron sparsity to accelerate
the inference of SMoE LLMs is feasible.

4 Coarse-to-fine-grained Offloading for
SMoE LLM Inference

In this paper, we introduce CORM, an efficient
SMoE LLM offloading inference framework de-
ployed on consumer-grade GPUs. CORM focus
on sparsity at both coarse-grained and fine-grained
levels: coarse-grained at the expert level and fine-
grained at the neuron level. The core idea of
CORM is to leverage two inherent sparsity con-
ditions from SMoE LLMs to accelerate inference:
the sparse routing policy of SMoE and the neu-
ron sparsity nature of LLMs. Figure 3 presents an
overview of our design. During inference, CORM
only loads necessary neurons within the experts,
reducing the weight loading volume and improv-
ing throughput. Additionally, CORM predict the
required experts and neurons and use prefetching
to improve parallelism. By utilizing the model’s
own features and weights for prediction, we effec-
tively control memory overhead while maintain-
ing model accuracy stability. Furthermore, CORM
implement a cache strategy that transitions from
coarse-grained to fine-grained levels, minimizing
redundant weight loading and further enhancing
inference efficiency.

4.1 Coarse-to-fine-grained Offloading and
Expert Granularity Mixed Quantization

Based on the observations, we discovered that neu-
ron sparsity is also present in SMoE LLMs. In
CORM, we only need to use active neurons during
inference, allowing us to implement “sparse neu-
ron loading" — only loading active neurons. The
process of sparse neuron loading is as follows: first,
the active neurons are compressed into a matrix
on CPU, then load the compressed matrix to GPU,
and finally, decompressed on GPU. This process

significantly decreases loading latency.

We further reduce the weight loading through ex-
pert granularity mixed quantization. Although each
expert is selected with equal frequency during train-
ing, expert load imbalance still occurs in practical
inference (Zhou et al., 2022; Fedus et al., 2022).
In our inference framework, experts are quantized
with different precisions; less frequently used ex-
perts are quantized at lower precision to accelerate
inference with minimal impact on accuracy. To de-
termine which experts should be quantized at lower
precision, we conduct offline statistics by testing
on general datasets like C4 (Raffel et al., 2020) and
Wikipedia (Foundation, 2023).

4.2 Coarse-to-fine-grained Predicting and
Prefetching

In LLM inference, prefetching means moving the
needed weights to GPU in advance, in parallel with
the computation processes on GPU (Hwang et al.,
2023; Liu et al., 2023). This method hides part of
the computation latency, thus reducing inference
latency. However, in SMoE LLMs, both expert se-
lection and neuron sparsity are dynamic. We only
know the exact expert selection and active neurons
upon reaching the respective MoE layer. This se-
quential execution prevents us from prefetching
weights. Previous work added and trained a pre-
dictor for each FEN layer to predict the sparsity of
the neurons ahead of time (Liu et al., 2023). How-
ever, implementing this approach in SMoE LLMs
would incur unacceptable additional memory over-
head in memory-constrained edge GPU scenarios,
or would lead to unacceptable prediction accuracy.
Specifically, small predictors achieve only 50-60%
prediction accuracy, while larger predictors require
an additional 50-100 MB of memory per expert
per layer for state-of-the-art SMoE LLMs. For in-
stance, the Mixtral 8x7B model, which employs
eight experts per layer, would require an additional
7-14 GB of memory to achieve satisfactory predic-
tion accuracy. This additional memory requirement
is unacceptable for the NVIDIA RTX 3090Ti GPU,
which has only 24 GB of memory.

To save memory, our framework utilizes the
model’s own weights to predict expert selection
and neuron sparsity, representing a training-free
approach that requires no additional memory. As
shown in Figure 4, we add a predictor after the i*
Attention layer to predict the (i 4 1) MoE layer.
In the *" predictor, the input is calculated with
the gate function of the (i + 1) layer to predict



. [l
b e Baseline ... e CORM . | [XINon-MoE Layer
Gate Function
Compute Compute [NTGcT P [ Predict Function
vo ro MOoE Layer
N Load
*" Timeline g Timeline s Load
""" - arse Loa
CPU Dense Load <" GPU CPU Sparse Neuron Load 4 GPU P
Layerl Layerl Layerl Layerl
4 N
i
Layer2 Layer2 Layer2 Layer2 I:‘ Layer Cache
o - . . Neuron Cache

Figure 3: Overview of CORM. The core of CORM is loading the active neurons of experts to reduce weight loading
during SMoE LLM inference. We add a predictor before each MoE layer. The predictor predicts the selected experts
and active neurons of next MoE layer. After completing predictions, we perform prefetching and forward inference
in parallel to mask computational latency. During weight loading, we maintain caches for expert and neuron levels.
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Figure 4: Structure of expert selection and neuron spar-
sity predictor. Given the input to MoE layer at Layer ¢,
we utilize the gate function of MoE layer at Layer ¢ + 1
to predict the expert selection for Layer ¢ + 1. Then
calculating input with predicted expert’s W1 layer, and
pass the result through an activation function. Using
the output from activation function, we predict neuron
sparsity by filtering out relatively inactive neurons.

Neuron Sparsity
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expert selection for the (i + 1) layer. Next, we
prefetch the predicted expert’s W1 layer to GPU,
calculate input with W1 layer, and then pass the
result through an activation function. Based on ob-
tained activation values, we employ a filter function
to generate predictions for neuron sparsity. The fil-
ter selects neurons whose absolute activation values
exceed a threshold 6 to predict active neurons.

Our method for predicting expert selection and
neuron sparsity achieves satisfactory accuracy. We
tested Mixtral 8x7B and DeepSeekMoE 16B, with
expert prediction accuracy shown in Figure 5(a).
The accuracy of lower layers is around 75%, and
up to 90% for middle and upper layers. Neuron
prediction accuracy, shown in Figure 5(b), is 80%
to 90% in most layers. This result demonstrates
the feasibility of using the model’s own weights for
prediction. The similarity between adjacent layers’
activations in LLMs, due to the residual network
structure, is approximately 0.99 (Liu et al., 2023),
making prediction accuracy satisfactory.

If the predictor misses, the model proceeds with
the incorrect prediction rather than reloading the
correct weights. This decision is based on a trade-
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Figure 5: CORM'’s prediction accuracy by layer. (a)
illustrates Expert selection prediction accuracy, (b) il-
lustrates neuron sparsity prediction accuracy. CORM
shows expert selection prediction accuracy of around
85% and neuron sparsity prediction accuracy of around
80% on state-of-the-art SMoE LLMs.

off between accuracy and inference speed; reload-
ing the correct weights in response to a miss would
significantly increase latency. Our high accuracy
rate ensuring that predictor misses have minimal
impact on overall model accuracy.

By predicting sparsity in advance, we can
prefetch the needed weights, hiding part of the
computation latency and reducing inference latency.
Throughout the prefetching process, model infer-
ence continues as normal, using CUDA streams to
parallelize weight loading and computation.

4.3 Coarse-to-fine-grained Caching

After determining the experts and neurons required
for inference, efficiently utilizing GPU memory to
reduce expert and neuron loading needs further con-
sideration. Expert caching can effectively reduce
the latency caused by offloading in SMoE LLM in-
ference (Eliseev and Mazur, 2023; Xue et al., 2024).
Frequently reused experts in SMoE LLMs can be
cached in GPU HBM, avoiding costly retrievals
from CPU DRAM. Previous work showed satisfac-
tory hit rates using a simple LRU strategy (Eliseev
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Figure 6: An illustrative example shows how CORM
maintains coarse-to-fine-grained cache. We maintain a
neuron cache in GPU memory for each cached expert.
For cached experts, we only load active neurons that are
not in the cache.

and Mazur, 2023). In CORM, we allocate a fixed
storage space in GPU memory before inference to
cache a fixed number of experts. During inference,
the LRU strategy maintains the cached experts.
However, since we introduce “sparse neuron
loading”, this doesn’t guarantee correct inference
even if the expert is cached, because different ac-
tivation inputs lead to different neuron sparsity.
Therefore, we design a neuron cache mechanism.
As shown in Figure 6, we maintain a neuron cache
on GPU for each cached expert. For cached ex-
perts, we only load active neurons that aren’t in the
neuron cache, updating the neuron cache with the
union of cached and currently active neurons. For
the experts that have just been cached, we set the
expert’s neuron cache to currently loaded neurons.

5 Evaluation

Implementation. CORM is implemented using
NVIDIA’s FasterTransformer (NVIDIA, 2019). We
use HQQ (Badri and Shaji, 2023) data-free quanti-
zation algorithm to quantize SMoE LLMs. In addi-
tion to implementing the coarse-to-fine grained pre-
dicting, prefetching, and caching, we also adjusted
quantization algorithm to suit neuron operations.
For LLMs, one bit usually stores more than a value
in quantized weights. We modified compression di-
mensions of quantization algorithm to ensure each
neuron is compressed into the same bit, maintain-
ing independence of each neuron’s storage to avoid
additional overhead when extracting neurons.
Hardware. We test most of the experiments on a
server with 64 Intel(R) Xeon(R) Gold 6226R CPUs
@ 2.90GHz and 8 NVIDIA RTX 3090Ti GPU with
24GB of HBM. The CPU and GPU communicate
over a PCle (gen4) channel with 32 GB/sec of data
transfer bandwidth. In all our experiments, testing
was conducted using only one GPU.
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Figure 7: End-to-end speedup of Mixtral 8x7B and
DeepSeekMoE 16B. The X axis indicates the output
length. The Y axis represents the speedup. (a,c) is
configured with an input length of around 64, (b,d) is
configured with an input length of around 128.

Model and datasets. We use Mixtral 8x7B
model (Jiang et al., 2024) and DeepSeekMoE
16B (Dai et al.,, 2024) model. Mixtral 8x7B
represent the current state of the art among
open-access SMoE LLMs. We select three
datasets from Winogrande (Sakaguchi et al., 2021),
MMLU (Hendrycks et al., 2021) and PIQA (Bisk
et al., 2020). Winogrande and PIQA test common-
sense reasoning. MMLU is a massive multitask
from various branches of knowledge.

5.1 End-to-End Result

Our end-to-end experiment focuses on edge device
inference scenarios, where the batch size is set to
1. In our experiments, the input lengths are 64 and
128, while the number of output tokens varies from
8 to 512. We conducted prompt sampling on the
C4 (Raffel et al., 2020) and Wikipedia (Foundation,
2023) datasets, which are high-quality text datasets
covering a wide range of domains. Our baseline im-
plementation uses expert offloading. Specifically,
we quantize the model weights to INT4 and store
intermediate activations in FP16. We store the non-
MoE weights and activations of the SMoE LLM on
the GPU, while the MoE layer weights are stored
in CPU DRAM. The expert weights are loaded to
GPU on-demand during inference. This is a com-
mon SMoE LLM offloading strategy used in pre-
vious work. Mixtral-Offload (Eliseev and Mazur,
2023) is a state-of-the-art method for accelerating
SMoE LLM inference on edge devices, utilizing



PIQA Winogrande MMLU
Mixtral 8x7B 82.9% 77.2% 71.2%
Mixtral 8x7B-CORM 82.7% 76.7% 70.3%
Difference -0.2% -0.5% -0.9%
DeepSeekMoE 16B 80.2% 70.2% 45.0%
DeepSeekMoE 16B-CORM 79.3% 70.4% 43.7%
Difference -0.9% +0.2% -1.3%

Table 2: Comparison of SMoE LLM accuracy between
CORM optimized models and their original counter-
parts. Due to the potential to select incorrect experts
and overlook actually active neurons, our approach
inevitably introduces some degree of compromise to
model accuracy. Experimental results demonstrate the
extent of accuracy decline is within acceptable bounds.

speculative expert loading and expert caching.
Figure 7 shows the comparison of end-to-end
generation speedup of CORM under different input
and output lengths. For Mixtral 8x7B, the aver-
age speedups are 1.92x and 1.99x compared to
the baseline, and 1.23x and 1.24x compared to
Mixtral-Offload for input lengths of 64 and 128,
respectively. For DeepSeekMoE 16B, the aver-
age speedups are 2.04x and 2.09x compared to the
baseline, and 1.26x and 1.27x compared to Mixtral-
Offload for the same input lengths. As the gener-
ation length increases, the speedup of CORM im-
proves. This enhancement occurs because a greater
number of generated tokens reduces the weight
loading latency through increased cache hits from
coarse-to-fine-grained cache system.

5.2 Model Accuracy

Given that our method predicts the usage of experts
and the sparsity of neurons, and some neurons are
ignored during inference, it is crucial to explore
the impact of our method on the accuracy of MoE
LLMs. Table 2 compares the accuracy with and
without the use of CORM. Experiments demon-
strate that CORM maintains competitive accuracy
across different models and various downstream
tasks. The accuracy of MoE LLMs may fluctuate
due to possible misselections of experts and the
omission of some actually active neurons. How-
ever, sometimes this even enhance accuracy.

5.3 Ablation Studies

Speedup breakdown. In this section, we examine
the contribution of each module of our method to
overall acceleration. We incrementally tested the
throughput of four schemes. Our baseline imple-
mentation mirrors that of the end-to-end speedup
experiment. Next, we implemented and tested
coarse-to-fine-grained offloading by sparse neuron
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Figure 8: Speedup breakdown for each module of
CORM. “B” denotes baseline implementation. “S” de-
notes coarse-to-fine-grained offloading and expert gran-
ularity mixed quantization module. “P” denotes coarse-
to-fine-grained predicting and prefetching module. “C”
denotes coarse-to-fine-grained caching module.

loading and expert granularity mixed quantization.
Then, we add coarse-to-fine-grained predicting and
prefetching module. Finally, we add the coarse-to-
fine-grained caching module as our full algorithm.

Figure 8 illustrates the generation speedup break-
down for each module of CORM. Adding the
coarse-to-fine-grained offloading and expert granu-
larity mixed quantization module results in speedup
of 1.25x for Mixtral 8x7B and 1.4x for DeepSeek-
MoE 16B, primarily by reducing weight loading
through sparse neuron loading. Incorporating the
coarse-to-fine-grained predicting and prefetching
module achieves speedup of 1.59x and 1.84x by
avoiding the serialized execution of computation
and weight loading. Finally, adding coarse-to-fine-
grained caching module results in speedup of 2.07x
and 2.14x, minimizes the need for repeated weight
loading by efficiently utilizing GPU memory.
Latency breakdown and predictor overhead.
Weight loading time constitutes a significant por-
tion of inference latency in offloading methods,
making it an essential focus for optimization. To
demonstrate the impact of CORM’s optimizations,
we measured and compared the weight loading
costs and computation costs to the time between
tokens (TBT). The latency breakdown results are
shown in table 3. Weight loading times are in-
deed substantial relative to computation times, and
CORM’s optimizations help mitigate this bottle-
neck by implementing coarse-to-fine-grained con-
trol over weight loading process. We also present
overlap latency in table 3, which can account for
over 80% of the computation latency, highlight-
ing effectiveness of our prediction and prefetching
operations in masking computation latency.

The overhead introduced by our dual-level pre-
dictor is a critical factor to measure. Since the



TBT | Weight Loading | Computation | Overlap
Mixtral 8x7B 2450ms 2100ms 350ms N/A
Mixtral 8x7B-CORM 1280ms 1210ms 398ms 328ms
DeepSeekMoE 16B 836ms 706ms 130ms N/A
DeepSeekMoE 16B-CORM | 404ms 370ms 144ms 110ms

Table 3: Latency breakdown of the CORM optimized
models and their original counterparts for generating
one token with a prompt length of 128. “TBT” denotes
the time between tokens, “Overlap” represents the over-
lapping time between weight loading and computation.

TBT Predictor Predictor Latency Ratio
1280ms 48ms 3.75%
405ms 14ms 3.46%

Mixtral 8x7B
DeepSeekMoE 16B

Table 4: Predictor overhead of CORM for generating
one token with a prompt length of 128. “TBT” repre-
sents time between tokens.

predictor requires no additional memory, we mea-
sured the latency overhead it introduces. In table 4,
we provide a breakdown of the predictor latency
compared to the time between tokens(TBT). As
shown, the predictor latency represents a relatively
small portion of the total time per token, ensuring
minimal impact on overall inference performance.
Effect of neuron sparsity on throughput and ac-
curacy. In our method, the sparse neuron loading
module significantly reduces weight loading. We
determine whether a neuron is active by compar-
ing its absolute value of the activation value with
a threshold 6, thus deciding whether it needs to be
loaded. Therefore, the threshold is a critical factor
affecting accuracy. We test impact of threshold
settings on accuracy and throughput below.

Figure 9 shows the relationship between the la-
tency of sparse neuron loading and the percentage
of active neurons for an expert of Mixtral 8x7B.
Sparse neuron loading consists of three parts: com-
pressing active neurons, loading, and decompress-
ing. In our experiments, the decompression op-
eration takes an average of 0.1ms, accounting for
about 1% of the total latency. Therefore we omitted
this part from the figure. It can be observed that the
latency of neuron compression, weight loading and
the total latency are approximately proportional
to the percentage of active neurons. If too many
neurons are active, the latency of sparse neuron
loading will exceed that of directly copying the full
expert (as shown by the red dashed line in Figure 9).
Therefore, we set an upper limit on the percentage
of active neurons, beyond which the full expert is
loaded. For Mixtral 8x7B, this upper limit is 75%.

As fewer active neurons result in lower inference
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Figure 9: Sparse neuron loading latency breakdown
of Mixtral 8x7B at varying number of active neurons.
The red dashed line denote the latency of loading a full
expert. It’s more efficient to load the full expert weight
if the sparse neuron loading latency exceeds the loading
latency of the full expert weight.
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Figure 10: Effect of threshold 8 setting on throughput
and accuracy of Mixtral 8x7B. A larger value of 0 leads
to higher throughput but lower accuracy. We must select
0 judiciously to achieve an optimal balance between
throughput and accuracy. For Mixtral 8x7B, the optimal
value of 6 is 0.25.

latency, we control the number of active neurons
by discarding neurons whose activation function
outputs do not exceed the threshold. However, dis-
carding too many neurons can lead to a decrease in
model accuracy. Figure 10 illustrates the relation-
ship between the threshold 6 and both the through-
put and accuracy of Mixtral 8x7B. As 6 increases,
the throughput gradually iecreases.The model’s ac-
curacy remains above 99% when 6 is below 0.25.
However, at 6 of 0.275, we observe a sudden drop
in accuracy. Therefore, we select § of 0.25 as a
balance between accuracy and throughput.

6 Conclusion

This paper introduces CORM, an efficiently SMoE
LLM inference framework on consumer-grade
GPUs. By leveraging dual-levels of sparsity inher-
ited from SMoE LLMs, it achieves efficient weight
loading and cache management. CORM achieves
up to 2.14x inference speedup while maintaining
comparable model accuracy across various natural
language processing tasks.



7 Ethical Statements

We used publicly available or synthetic datasets
for our experiments to avoid any potential harm to
individuals or groups. The data used in this study
were carefully selected and processed to ensure
privacy and confidentiality. No personally iden-
tifiable information was used, and all data were
anonymized prior to analysis. All artifacts used in
this study were consistent with their intended use.
The artifact we created is designed to accelerate
the inference process of SMoE LLMs on consumer-
grade GPUs, and it is compatible with the original
access conditions.

In considering the application of our research
findings, we acknowledge the potential risks related
to data privacy. In the event of vulnerabilities in
LLMs deployed on edge devices, attackers could
exploit these vulnerabilities to steal data or gain
control of the devices.

For preprocessing, we employed the
HQQ (Badri and Shaji, 2023) data-free quanti-
zation algorithm to quantize SMoE LLMs. We
quantized the models to 4-bit with a group size of
64, scale group size 256, and 2-bit with a group
size of 16, scale group size 128.

The models and datasets used in this study
are open-source. These models include Mix-
tral 8x7B (Jiang et al., 2024) and deepseekMoE-
16B (Dai et al., 2024), with licenses under Apache-
2.0 and MIT, respectively. We tested the mod-
els on all problems in the model test datasets,
which include Winogrande (Sakaguchi et al., 2021),
PIQA (Bisk et al., 2020), and MMLU (Hendrycks
et al., 2021). Winogrande and PIQA test common-
sense reasoning, while MMLU is a large-scale mul-
titask dataset encompassing various branches of
knowledge. Winogrande contains a new collec-
tion of 44,000 problems, PIQA has 16,000 training
examples, 2,000 for development, and 3,000 for
testing. MMLU consists of 57 tasks with 23,000
problems. The usage license for Winogrande is CC-
BY, and the usage license for MMLU is MIT. The
usage license for PIQA was not explicitly found,
but it has been widely used in numerous studies as a
test dataset. The prompt datasets include C4 (Raffel
et al., 2020) and Wikipedia (Foundation, 2023). C4
is a colossal, cleaned version of Common Crawl’s
web corpus based on the Common Crawl dataset,
while the Wikipedia dataset contains cleaned arti-
cles in all languages, built from Wikipedia dumps.
We randomly selected 5,000 prompts each from

C4 and Wikipedia to profile the models, and se-
lected 1,000 prompts each to test the inference
speed and perform ablation experiments. The usage
license for C4 is ODC-BY, and the usage license
for Wikipedia is CC-BY-SA-3.0.

We did not use human annotators or research
involving human subjects, nor did we employ Al
assistants in our research, coding, or writing.

8 Limitations

The proposed approach in this work has several
limitations:

* Our method applies offline mixed-precision
quantization to the experts based on prior
knowledge. Developing a mechanism for dy-
namic mixed-precision quantization during
inference, tailored to the usage characteris-
tics of the experts, could further minimize the
performance impact on SMoE LLMs.

* In this study, the computational tasks of
the SMoE LLM are executed exclusively on
GPUs, without leveraging CPU resources. By
employing efficient planning and scheduling,
it may be possible to accelerate inference
through parallel computation using both CPU
and GPU resources.

* Our caching mechanism pre-allocates mem-
ory on GPUs at the expert granularity. A more
efficient approach would be to dynamically
maintain a cache at the neuron granularity
based on the number of active neurons dur-
ing inference, thereby reducing memory con-
sumption.
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