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Abstract

Diffusion models (DMs) have proven to be effective in modeling high-dimensional distributions,
leading to their widespread adoption for representing complex priors in Bayesian inverse
problems (BIPs). However, current DM-based posterior sampling methods proposed for
solving common BIPs rely on heuristic approximations to the generative process. To exploit
the generative capability of DMs and avoid the usage of such approximations, we propose
an ensemble-based algorithm that performs posterior sampling without the use of heuristic
approximations. Our algorithm is motivated by existing work that combines DM-based
methods with the sequential Monte Carlo (SMC) method. By examining how the prior
evolves through the diffusion process encoded by the pre-trained score function, we derive a
modified partial differential equation (PDE) governing the evolution of the corresponding
posterior distribution. This PDE includes a modified diffusion term and a reweighting term,
which can be simulated via stochastic weighted particle methods. Theoretically, we prove
that the error between the true posterior and the empirical distribution of the generated
samples can be bounded in terms of the training error of the pre-trained score function and
the number of particles in the ensemble. Empirically, we validate our algorithm on several
inverse problems in imaging to show that our method gives more accurate reconstructions
compared to existing DM-based methods.

1 Introduction

Inverse problems are fundamentally challenging tasks that span multiple scientific and engineering fields
like fluid dynamics (Cotter et al., 2009; |Sellier, 2016)), geophysics 2021)), medical imaging
2007), microscopy (Choi et al., 2007; Bertero et al, [2021), etc. These problems basically involve
reconstructing an unknown parameter z from incomplete and noise-corrupted measurements y. Due to
the inherent limitations in measurements, there is often substantial uncertainty in determining the true
parameter x. Instead of pursuing a single point estimate, a more principled approach involves adopting a
Bayesian framework, where we specify a prior distribution on z and characterize the uncertainty through
posterior sampling of p(z|y). However, in many practical inverse problems, the prior distribution is already
high-dimensional and may contain multiple well-separated modes. Coupled with an ill-posed forward model
and noisy observations, such complex priors often induce posteriors that are likewise high-dimensional and
strongly multimodal. Consequently, traditional Markov Chain Monte Carlo (MCMC) methods
[2011} [Welling & Tehl 2011} |Cui et al.| 2016) often struggle with sampling from these posterior distributions
primarily due to metastability, i.e., the difficulty in transitioning between distinct high-probability modes
that are separated by regions of low probability.

To address these limitations, prior work has leveraged generative models like normalizing flows (NFs) (Asim,
et all 2020} [Hou et all [2019; |Zhang et al.| [2021} [Whang et al.| [2021bjiaf [Hagemann et al.| [2022)) and generative
adversarial networks (GANs) (Patel & Oberail 2019} [Bora et al.| [2017) to model and sample from those
high-dimensional and multimodal posterior distributions. Recently, Diffusion models (DMs) and probability
flow-based models (Albergo et all 2023Db; |Albergo & Vanden-Eijnden, 2022} |Lipman et al.| |2022} [Liu et al.|
[2022b}; [Sohl-Dickstein et al.l, 2015 [Ho et al.l, [2020; [Song et all, [2020a); [2021al [Song & Ermonl, 2019} [Song]
et all 2020b} [Zhang et all [2018a) have emerged as leading methods in modern generative modeling. These
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models generate samples from a high-dimensional target distribution pg by inverting a diffusion process that
transforms the target distribution g ~ pg into a simple distribution zr ~ pr (typically Gaussian). The
effectiveness of DMs has led to their adoption as prior distributions in inverse problems, spawning various

DM-based posterior sampling methods (Chung et al., 2022; [Song et al.,[2023b; Wu et al., 2023}

Cardoso et al.|

[2023; Dou & Song|, 2024; [Sun et all [2024; Xu & Chil [2024; Wu et al.
comprehensive review, we refer the readers to either Appendix [A.1|or
can be categorized into two main approaches:

2024c; Bruna & Han

2024)). For a

Daras et al., 2024al). These methods

1. Methods that leverage Bayes’ formula to construct a conditional diffusion model using a pre-trained

score function associated with the prior distribution: Specifically, for any time ¢ € [0, 7T, applying
Bayes’ formula p(:|y) o< pi(@:)pe(y|@:) yields

Va, logpi(xi]y) = Vg, logpi(xy) + Va, log p(y|z:). (1.1)

To implement this approach, one needs to evaluate the left-hand side of , which is known as the
conditional score function and defines a reverse-time diffusion process from pr(xr|y) to po(xo|y).
The first term on the right-hand side is the score function from the pre-trained DM modeling the prior
distribution. The second term requires evaluating an integral p;(y|x:) = fp(y|m0)p0‘t(w0|mt)dmg
over all possible x(’s that could lead to x; through the pre-trained DM, to address which methods in
this category employ various approximations for Vg, log p:(y|x:).

Among different methods belonging to this approach, one group of methods (Song et al., 2020b;
Choi et all 2021}, [Song et al. 20215} [Chung et all [2022} [Song et all, [2023D}; [Boys et al.| 2023}
et all |2023) makes simplifying assumptions, while others (Choi et al., 2021; [Wang et al.| [2022;
Kawar et al| [2022; Rout et all [2023) use empirically constructed updates without structured
assumptions. These heuristic, problem-specific approximations might be inaccurate in certain
scenarios. In particular, assume that the linear inverse problems are modeled by y = yo = Axg +n
with yo € R™, &g € R", A € R™*" and n ~ N(0,x%I,,). Consider a standard and widely used
case of DMs, whose associated forward diffusion process is given by x; = xg + o(t)w with injected
noise w ~ N(0, I,,). The corresponding forward diffusion process for the measurement is further
denoted by y; = yo + o(t)n, where n = Aw is a transformed multivariate Gaussian distribution in
R™. Then we have the following examples of approximations to the term V, logp;(y|x;) used in
existing work like Iterative Latent Variable Refinement (ILVR) (Choi et al| 2021]) and Diffusion
Posterior Sampling (DPS) (Chung et al.| [2022):

1 _
Vaz, logpi(yl|e:) ~ ) (ATA) L AT (y, — Axy), (ILVR)
1
Vaz, log p(y|x:) =~ ?(In + U(t)QVit logpt(:ct))TAT(y — AE[zg|x4)). (DPS)

For a detailed explanation of the intuitions behind the approximations above, we refer the readers to

Appendix

. Approximation-free methods that integrate DMs with traditional posterior sampling methods: Exam-
ples include split Gibbs sampler (SGS) + DM methods (Xu & Chil [2024; [Wu et all, [2024¢}; [Coeurdoux|
et al., 2024; Zheng et al., [2025), which are built upon the split Gibbs sampler for Bayesian infer-
ence (Vono et all 2019; Pereyra et al., 2023, and sequential Monte Carlo (SMC) + DM methods
et al] [2023} [Cardoso et all, [2023; [Dou & Song], 2024} [Kelvinius et all, 2025} [Skreta et al. [2025;
et al 2025; Holderrieth et all, [2025} [Achituve et all, [2025)), which combine DMs with SMC
2001}, |Chopin| 2002 Del Moral et al.l [2006}; [Doucet et al., 2009; Del Moral, |2013; Moral, 2004) to
obtain asymptotically consistent posterior samples.

We advance the second approach by introducing a novel ensemble-based Approxzimation-Free Diffusion
Posterior Sampler (AFDPS). Our method enhances the synergy between DMs and SMC methods, which
use weighted particle ensembles and strategic resampling to approximate the posterior distribution. The key
innovation stems from our principled utilization of pre-trained DMs for prior evolution and our derivation
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of the exact partial differential equation (PDE) governing the corresponding posterior evolution, which
reveals fundamentally distinct dynamics compared to existing approaches. Leveraging the flexibility of our
framework, we propose two different approaches based on SDE and ODE+Corrector, respectively. Through
careful analysis of the discrepancy between the derived PDE dynamics and the time-reversal of the true
diffusion process, we establish error bounds for our posterior sampling algorithm based on stochastic weighted
particle method. In practice, our algorithm demonstrates versatile compatibility with various pre-trained
diffusion models. Extensive experiments on various imaging inverse problems are provided to demonstrate
the effectiveness of our method.

Our Contributions. We summarize our main contributions as follows:

o We propose a novel ensemble-based posterior sampling method that integrates sequential Monte Carlo
with diffusion models to achieve exact posterior sampling without heuristic approximations,
founded on rigorously derived and previously unexplored PDE dynamics.

o We provide comprehensive theoretical guarantees demonstrating that our ensemble-based algorithm,
implemented via stochastic weighted particle methods, converges asymptotically to the derived
PDE dynamics. We additionally derive precise error bounds relating posterior sampling accuracy to
the quality of the pre-trained score function.

o We empirically evaluate our method on multiple imaging inverse problems using large-scale datasets like
FFHQ-256 (Karras et alJ [2019)) and ImageNet-256 (Deng et al., 2009)), showing that our method achieves
better reconstruction quality over existing methods.

2 Preliminaries

In this section, we provide a quick overview of problem setup, basic concepts, and existing work related to
solving Bayesian inverse problems (BIPs) with diffusion models.

2.1 Basics of Inverse Problems

In BIPs, we aim to recover a ground truth parameter  from measurements y. The relationship between x
and y is described by:

y = A(z) +n, (2.1)

where € R, y € R™, A:R” — R™ is a differentiable forward operator (linear or nonlinear), and n € R™
represents measurement noise. Under the Bayesian framework, the posterior distribution we seek to sample
from is:

p(xly) o po(®)p(yl|z) = po(@) exp(—py (), (2:2)

where po(x) denotes the prior distribution and p, () = —logp(y|x) is the negative log-likelihood function
for a fixed observation y.

Many practical inverse problems are ill-posed due to measurement noise and non-injective forward models,
making unique solutions impossible to obtain. Traditional optimization-based methods often fail to capture the
complex solution landscape, motivating the use of Bayesian formulations where posterior sampling methods
can systematically account for uncertainty and explore multiple plausible solutions. For a comprehensive
treatment of BIPs, we refer readers to (Stuart, [2010)).

Deep generative models have emerged as powerful prior distributions that can capture complex solution spaces
while remaining computationally tractable. Unlike traditional priors that rely on structural assumptions,
these models effectively represent high-dimensional and multi-modal distributions given sufficient training
data. In this work, we focus on diffusion models (DMs), which represent the current state-of-the-art in
generative modeling with successful applications across physics (Cotler & Rezchikov} [2023; [Habibi et al.; 2024;
Zhu et al., |2024c), chemistry (Xu et al., [2022; |Alakhdar et al., |2024} Riesel et al.| [2024)), biology (Alamdari
et al., 2023} Watson et al., |2023)), computer vision (Rombach et al. 2022; |Chan et al.| 2024), and natural
language processing (Li et al., 2022b)).
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2.2 Diffusion Models: the EDM Framework

We adopt the “Elucidating the design space of Diffusion Models (EDM)” framework from (Karras et al., [2022)
to model prior distributions. The EDM framework provides a unified approach for the design of diffusion
models by systematically analyzing noise schedules, sampling algorithms, and training objectives.

Building on the continuous formulation of diffusion models (Song et al.| [2020b)), the framework starts off with
a forward diffusion process governed by the stochastic differential equation (SDE):

dxs = F(s)xsds + G(s)dws. (2.3)

where (ws)s>0 is a standard Brownian motion and ps denotes the distribution of x5, with py being the prior

distribution from (2.2]). Following (Anderson| [1982)), the corresponding reverse-time SDE is:
2 2
A&, = [—F(t)ﬁ:t + SV G og pt(:zt)} dt + V(t)dw, (2.4)

where py = pr, Pr = Po, *+ denotes #7_;, and V : R — R is a scalar-valued function. The score function

V log p,(x) is typically approximated by a neural network ¢g(x,t) trained via score matching (Hyvérinen &
|Dayan|, |2()05|; |Vincent|7 |201 1|). We use &; and D, to denote the particle trajectory and its distribution when

using the approximated score function ¢y (x,t), with 50 being an approximation of the distribution p; and

Dr approximating the target distribution py.

The EDM framework reparameterizes the drift coefficient F'(t) and diffusion coefficient G(t) using

s(t) :== exp (/Ot F(f)df) and o(t) := /Ot f((ff))j d¢,

yielding F(t) = % and G(t) = s(t)y/25(t)o(t). This reparameterization enables more accurate score

estimation under appropriate choices of s and o, as demonstrated empirically in (Karras et al., 2022) and
theoretically in (Wang et al., 2024). Also, the framework allows for different implementations based on the
choice of diffusion coefficient V. Setting V' (t) = G(t) = s(t)\/25(t)o () yields the SDE implementation:

A%, = [f%%t + zs(t)%(t)a(t)(pg(%t,t)} dt + s(t)/26 (8o (t)dw:. (2.5)
Alternatively, setting V' (¢) = 0 yields the probability-flow ODE (PF-ODE) implementation:
d; = |~ 40+ s(t)26 (Do (Do, 1) dt. (2.6)

In practice, it is common to focus on the cases when pp converges to some Gaussian distribution under
the EDM framework. For instance, when s(¢) = 1, we have that pp is given by the convolved distribution
po * N(0,02(t)I,)). We note that this is also the setting adopted in both the theoretical analysis and the
experiments of this paper.

3 Methodology

In this section, we present the key derivation underlying our posterior sampling algorithm. Our approach
can be interpreted as solving a high-dimensional PDE that governs posterior distribution evolution using
either the (stochastic) weighted particle method (Degond & Mas-Gallic} [1989; |Degond & Mustieles, [1990;
Rjasanow & Wagner), [1996; Bossy & Talay, [1997; Talay & Vaillant} 2003; Raviart} |2006; Chertock, or
the SMC method (Chopin| [2002}; Del Moral et al., 2006; Doucet et al., 2009; Del Moral, 2013; Moral, [2004)).
Throughout the derivation, we assume the log-likelihood function p, () is at least twice differentiable w.r.t.
x for fixed y. Details of both algorithmic variants are given in the pseudocode in subsection [3.2

3.1 Algorithm Outline
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- (3-2) -

Following the setting in Section [2| we assume the prior distri- pg — T TiOoT— Pr
bution p(x) is represented by a DM under the EDM framework. _e___o‘_f‘_‘;I ““““““ Ie___o‘_”_‘;
Spe(nﬁcally, Do cc is approximated by pT( ), obtained by simu- R (B.3)
latlng or l i from a Gaussian pj. Fix some parametrized Qa,y(,0) 5 Qa (@, T)
curve oy = af — [0, 1] with o9 > 0. We then define lg
the associated tlme—dependent posterior distribution as:

~ . T

Bi@e i@ Quylat

ol ) = B = Geal®l) g

" Yeemv@da  Z,,(t
fR pt aw(t) Figure 1: A roadmap for our posterior sam-

where (. y(z, Q = Pt(w)e_u"iy(w) denotes the unnormalized pling method. I, IT refers to the two stages
posterior and Z, (t) = [, Qu.y(x.t)da represents the nor- of the proposed algorithm.
malizing constant.

Our algorithm consists of the following two stages:

Stage I: Sample from the initial distribution g, ,(x,0). We first need to sample from the initial
distribution g, (2, 0) /50(%)6_"0”3’(1:), which is analogous to the likelihood step in . This
step is highly related to our choice of the parametrized curve «, which in turn induces different distribution
paths. In general, when the likelihood function uy(x) is differentiable, we note that g, ,(x,0) can be
approximately sampled by well-known gradient-based samplers like Metropolis Adjusted Langevin Algorithm
(MALA) (Roberts & Stramer, [2002), Annealed Importance Sampling (AIS) 2001)), or more advanced
methods (Lu et al} 2019b} [Tan & Lu, [2023; |Chen & Ying| [2024a; Lindsey et al.l [2022). However, for certain
special choices of the curve a, we note that the initial distribution can also be sampled in an exact way. For
instance, when ay is an annealing-type curve with ag = 0 and a3 = 1 (e.g., the linear schedule oy = %), the

initial distribution gy (x,0) = 50 is Gaussian and can be sampled directly. Moreover, for linear BIPs with
Gaussian noise, where A := A € R™*™ and n ~ N(0, X), the initial distribution is also normally distributed.
Specifically, assuming p, = N (0, p>I,,), we have that g, ,(x,0) simplifies to:

~ « _ _
Gy (@.0) o< exp (=T (y — A2) =7 (y — Aw) — 2 [2ll3) = N (7. A7),
where A = g ATE 1A 4+ %In and v = A TTATE 1y,
Stage II: Solve the PDE dynamics governing the posterior evolution. Below we first derive the

PDE dynamics (@aﬂy(w, t))tefo,r) from (/Pi)te[O,T] based on the diffusion process 1) which consists of the
following two steps and corresponds to the first phase in Figure [I] above.

1. The Fokker-Planck equation evolving from 50 to ET is given by

9~ 2y () - -
g = Ve ((~F0e + SO gy(@.0)) B) + 5V (1 Ach. (3:2)

2. Substituting %t(w) = @u,y(w, t) exp(aypty) into 1D yields:
9 ~ - _ _
Q== Va- ((H(a:,t) - atV(t)2kuy) Qa,y) 4 V(22000
+ (Uaﬁy(a:, ) — atﬁ(w,t)TVmuy — aéuy) @a,y,

T — G()*+V (1)? 1 2(.2 2

where H(z,t) := —F(t)x + =L gg(w,t) and U, y(z,t) = LV ()? (0F||Vauylld — cilapy). We
remark that the PDE above consists of three main components: the first term corresponds to the drift, the
second to the diffusion, and the third to the reweighting term. On the one hand, the term H(x,t) above
is exactly the original drift used in the Fokker Planck equation that (p;)¢ejo,7) satisfies. On the other
hand, both the additional term V' (£)?V 4, in the drift and the function U(z,t) in the reweighting term
are only dependent on V(¢) and p,, from our derivation, which originates from the tilted term e*v. For a
complete derivation of , the readers may refer to Lemma in Appendix

(3.3)

3. By averaging the linear term on the RHS of (3.3) to “normalize” the PDE dynamics, which corresponds to
the second phase in Figure [I| above, we obtain the PDE dynamics governing the evolution of g, ,(x,t) as
follows:
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PDE Dynamics for Posterior Evolution
0 . — . =
— Vo ((H@ 1) — 0V (02 Vatty) Gay ) + 3V Acilay

aQ(Ly =
+ (Wa_’y(w,t) —

(3.4)
Wa,y<z’t)aa,y<z>dz> o

Rn

where Wy, (@, t) 1= Uqy 4 (x,t) — atﬁ(w7 1) TV ity — &ty (x) in the reweighting part above. We note that
the normalization technique have also been used in recent works like (Skreta et al., 2025; |[Lee et al.|, @t
[Holderrieth et al.l [2025). For a complete proof one may refer to Lemma h in Appendix [Bl Moreover, one of
our method’s key novelties is that the derived PDE includes a linear term proportional to ¢, 4, which
needs to be simulated via keeping track of an ensemble of weighted samples. Intuitively, particles with larger
weights are more likely to lie in high-probability regions of the posterior distribution and thus correspond to
reconstructions of higher quality. In fact, such procedure also admits an interpretation based on debiasing, as
maintaining an ensemble of weighted particles essentially helps reduce simulation bias.

3.2 Posterior Sampling via Weighted Particles

We now present two ensemble-based posterior samplers within the SMC framework, which can also be
interpreted as solving the PDE numerically via (stochastic) weighted particles. Below we use (z¢, ;)
to denote the time-dependent position and weight associated with a single particle. The joint probability
distribution of (@, ;) is further denoted by v, = v (x, ).

(Stochastic) Weighted Particle / Sequential Monte Carlo Methods. As shown in Lemma [B.4] of
Appendix [B| the posterior evolution (3.4)) can be simulated via the following dynamics of a single weighted
particle:

dz; = (H(xy,t) — atV(t)2Vz,uy(a:t)) dt + V(t)dwy,
a8, = (Uny (@) = aH (0, )T Vonpty () — 2}y (1) ) et (3.5)
— /n (Ua,y(m,t) - atiI\(az,t)Tuny(w) — a;,uy(a:)) (Psyt) (az)dw) Bidt,
where Py (x fR B (x, 8)dS above denotes the weighted projection of ’yt onto x. To effectively approx-

imate the mtegral in Pgv;, we then use the empirical measure v;(x, 3) ~ + Zi:l @ B formed by N
v

weighted particles to approximate ~;(x, 8). This leads to the following joint dynamics for {(mS), t(z)) g

Weighted Particle Dynamics for Posterior Evolution

dz{’ = (H@?,t) - a,V(t )2kuy(mt ) i+ V(t)dw?,
48 = (Vay(@(”,t) - a:H(at?, >Tvmuy< 2(7) — oy (")) Bt (3.6)
_<% Zjvzl (U(yy(m,E]),t) O/fH(mt )TV iy (z (J))_aflf (x ))>ﬁj)) 6tl)dt

with initial conditions w(()i) ~ Qa,y(+,0) and 5(()i) =1 for i € [N]. The weighted projection equals %ﬂfj ) when

T = a:gj ) for some 7, and zero otherwise. While numerical discretization of yields a prototypical sampling
algorithm, the particle weights ,Bt(z) may diverge during simulation, reducing the ensemble’s Effective Sample
Size (ESS). To address this, we employ a resampling strategy commonly used in the SMC methods
[2001; |(Chopin), 2002; Del Moral et al., 2006; Doucet et al., [2009; Del Moral, [2013; Moral, 2004), whose detailed
description is provided in Algorithm [I] below. Such resampling sub-routine essentially performs global moves
by eliminating low-weight particles and duplicating high-weight ones, similar to the birth-death process used
in (Moral, |2004; Lu et al., [2019b; Tan & Lu, 2023; |Chen & Ying, [2024a} [Lindsey et al.,|2022). However, the

resampling approach is computationally more efficient as the weight dynamics (3.6)) can be parallelized.
ping app p Yy g Y p
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Algorithm 1: Resampling Step
Input: Threshold ¢ € (0,1), weighted particles {(z?), 3())}
Output: Updated particles {(Z/I:\(j)73(j))}§y:1

N1 N ﬁ(J) 2
1 if ESS = <1§:J15()) < ¢ then

N
Sample {:)3(3)};\7:1 with replacement from {w(j)};v:l with probability {B(])gm} ;
Jj=

2
>
3 BY 1, for j € [N];
4 else
5 | {@D, BN, {0, BON)N
6 end

SDE Approach (AFDPS-SDE). We first consider the SDE implementation of the diffusion model,
where V(t) = G(t) = s(t)\/25(t)o(t). We directly discretize with an Euler-Maruyama scheme and add
Algorithm [T as an adjustment step at the end of each iteration, which leads to Algorithm [2] We have omitted
the averaging term, i.e., the last line of in Algorithm [2| in practical implementation since the update
is the same for all particles and therefore cancels out when we normalize the weights. Such cancellation
property also holds for the ODE approach presented below. For high-dimensional problems, we can further
reduce the computational cost of both the SDE and the ODE approach via practical techniques like using a
smaller ensemble, omitting the resampling step, and simply returning the particle with the highest weight as
the best estimator, as discussed in subsection and Appendix [D]

Algorithm 2: Approximation-Free Diffusion Posterior Sampler via SDE (AFDPS-SDE)
Input: Noisy observation y, log-likelihood fiy(-), functions s(¢) and o(t), parametrized curve oy, time
grid {t;}5 with to = 0 and t; = T, thresholds {¢;}{£,, score function ¢(-,t), ensemble size N,
initial weights B(J) =1 for j € [N].
Output: Posterior approximation ijl BT 5m<Tj>/Z§V:1 ﬁg).
1 Draw {m(()i)}fvzl iid. from G, 4(-,0) via Stage I samplers in Section
2 fork=0to K —1do
3 | Draw {f(j) M iid. from N(0, I,,);
4 for j =1to N do
z) | (1 — (trs1 — tk)sﬁzki) e + s(te) /26 (tr) o (te) (trer — ti)EY)

* 2 ~ (0ol Wmmwmrwﬂwawﬂ,
log B |+ 1log B0 — o,y () + (besr — t)ar, 3V gy () T2l
— 2tg1 — tr)on, s(tk) 2 (t) o (tr) Va iy (2)) o (2, 1r)

(b = )s(60) ()0 (1) (02, [ Vamy @23 - v, Aapiy (@) 5

6 end

7 {(:B(j) m )} < Algorithm [1)( ¢ {(z z0) (J) )}
ty1? tk+1 Jj=1 g k+1 UL s tk+1 Jj=1

8 end

ODE+Corrector Approach (AFDPS-ODE). Next, we consider an alternative implementation based
on the probability flow ODE by setting V(¢) = 0. While this leads to the ODE dynamics ,
relying solely on deterministic evolution may not sufficiently explore the target distribution. To enhance
exploration, we incorporate a stochastic corrector step inspired by predictor-corrector schemes in diffusion
models (Song et al., 2020b; (Chen et al.l |2024c; Bradley & Nakkiran) [2024). The corrector uses the Unadjusted
Langevin Algorithm (ULA, Algorithm |3)) to draw samples from the intermediate posterior distribution
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Joy(x,t) E(w) exp(—ayfiy(x)) at each timestep. The complete ODE+Corrector algorithm (Algorithm ﬂ}
is thus obtained by discretizing the probability flow ODE ({3.6]), and applying both resampling (Algorithm [1)
and ULA correction (Algorithm [3)) steps for adjustments.

For completeness, we provide a brief comparison between the methods AFDPS-SDE and AFDPS-ODE. On
the one hand, the ODE-based method typically requires tuning of the hyperparameters associated with the
corrector, such as the step size and number of steps, whereas the SDE-based method does not. On the other
hand, the ODE-based method is often more amenable to the design of higher-order numerical solvers with
improved accuracy and faster sampling speed. More broadly, we note that the relative advantages of SDE
versus ODE formulations remain an active research topic, and the readers may refer to (Song et al.| [2020b]
[Cao et al] 2023} [Chen et all [2024d]) for related studies.

Algorithm 3: Corrector Step

Input: Initialization o, time ¢, iterations L, stepsize h, log-likelihood piy(-), score function ¢g(-),
parametrized curve ay.
Output: Sample Ty, ~ G (2, 1) ﬁt(w) exp(—aulty(x)).
1 Draw {&},, i.i.d. from (0, T,,);
2 fori=0to L—1do
3 ‘ Ziy1 — T+ h(o(@i,t) — 0 Vaiiy(Z1)) + V2hE 415
4 end

Algorithm 4: Approx.-Free Diffusion Posterior Sampler via ODE+Corrector (AFDPS-ODE)

Input: Noisy observation y, log-likelihood fi,,(-), functions s(t) and o(t), parametrized curve ay, time
grid {;}X, with to = 0 and tx = T, thresholds {¢;}/£ ,, score function ¢(,t), corrector

iterations n., stepsize h., ensemble size N, initial weights ﬁéj ) =1 for Jj € [N].
Output: Posterior approximation ZN:1 ﬂéf)dmm/ Zjvzl ﬂq(f).
T

Draw {moz)}N 1 1id. from gn 4(-,0) via Stage I samplers in Section

1
2 fork=0to K —1do
3 for j =1to N do
4 #0,, (1=t = twiéi’“;) D+ (terr = t)s(t) 25 (b (b)) 60);
5 mgi)ﬂ — Algorlthml wtk+1,tk+1,nc, hey iy (), o (-, ))
log B | log B | — al, iy (@) + (tpr — t) o, STy (wiﬁj) )
6
~ (thes = ), ()6 (0) (00) Vit (28 ) " 60 (610
7 end
8 {(wEkJrl?/Bgill)}] 1 & Algorlthml Ck+1, (wt;H,laﬂgill)}év:l);
9 end

Remark 3.1 (Connection with Feynman-Kac corrector (Skreta et al., 2025) and Guidance (Dhariwal &
[Nichol| 2021} Bradley & Nakkiran| [2024)). Here we will discuss the main novelty of our method compared
to a concurrent work (Skreta et all, |2025), which also proposed an ensemble-based sampler within the
SMC' framework. For a more detailed comparison with other SMC-based methods, the readers may refer
to Appendiz[A 3.3 Specifically, the dynamics derived in our setting differ from those in Proposition D.5
of (Skreta et all, |2025]), which is essentially the ODE case without correctors in our method. The key
difference is the presence of a gradient term, Vi, in the dynamics of x; , which is absent in their
formulation. Such component, previously used in SGS + DM methods (Xu & Chi, 2024, |Wu et al., [2024c)
and in optimization-based denoising algorithms such as ADMM (Gabay & Mercier, |1976; |Wang et all |2008;
Boyd et al., |2011; \Sun et all |2016; |Chan et all 2016; |Ryu et all 2019) and FISTA (Beck & Teboulle, |2009;
Zhang & Ghaneml, |2018; |Xiang et all, [2021), is incorporated into our DM-based framework in a systematic
way. The derivation illustrated in Figure[1] is shown to be essential for the method’s empirical performance
(cf. Section @ A detailed comparison is given in Remark of Appendix @
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In contrast to prior work on guided diffusion sampling (Dhariwal & Nichol, |2021); |Bradley & Nakkiran, |2024);
|Wu et all, |2024d; |Chidambaram et all, |2024) and its extensions (Ho & Salimans, |2022; \Bansal et al., |2025;
[Song et all |2025¢; |He et all, (2025 |Guo et all 2024 |Lu & Wang, |2024; |Zheng et all, |2024]: | Ye et all, |2024)),
which augment single-particle dynamics with a gradient term such as Vg logp:(y|x:) or Vg logpi(xi|y), our
PDE-based derivation naturally yields the gradient term Vg, within a principled framework. Additionally,
our formulation introduces a linear term that must be simulated via an ensemble of weighted particles, rather
than from a single trajectory. Such ensemble-based structure allows us to integrate gradient-based guidance and
diffusion sampling under the SMC framework in a unified way, resulting in improved empirical performance.

4 Theoretical Analysis

In this section, we present our theoretical results of the ensemble-based posterior samplers introduced in
Section Our analysis is conducted in continuous time, based on the weighted particle dynamics ((3.4))
and The impact of numerical discretization, as implemented in Algorithm [2| and Algorithm
not considered here and is left for future work. Without loss of generality, we focus on the backward SDE
setting (2.5)), specifically using s(¢) = 1 and o(t) = t. We begin by introducing several technical assumptions.

Assumption 4.1 (Regularity of the log-likelihood). The log-likelihood function p.,, is twice differentiable and

lower bounded by some constant C?E,l) depending only on the observation y.

Assumption 4.2 (Bounded second moment). The prior distribution py satisfies a second-moment bound:
E [||zc||2] < m2.
Po 2| =My

Assumption 4.3 (Score matching error). The neural network estimator ¢g(x,t) approximates the score
function V5 log p,(x) with uniformly bounded error across t € [0,T):

[ 0@ = Valogp @3 (a)de < ¢ (11)

On the one hand, Assumption ensures the absence of singularities in the log-likelihood fi,, which is
a condition adopted in existing work on BIPs and satisfied by common noise models such
as Gaussian and Poisson (with C'?(,l) = 0). We note that this assumption also ensures the existence of the
time-dependent constant 2a,y(t) introduced at the beginning of subsection Specifically, for any time
t € 10,7, a direct computation yields Zay(z‘) = f}%t(w)e"”“y@)dw < f]tjt(:c)e’“fcydm < max{1, e*CLU}.
On the other hand, Assumptions and [4-3] are aligned with recent theoretical frameworks for diffusion
models (Wang et al [2024} [Chen et al. 2022} [2023a); [Benton et al. [2023; [Chen et all [2024c]). In particular,
Assumption [£.3] quantifies the approximation error due to neural network training and reflects the quality of
the pre-trained score function. We now present our first main result, which quantifies the discrepancy between
the true posterior gy o and the distribution g, , v obtained by evolving our derived PDE dynamics for
time T'. Below we use €; to denote an upper bound on the error incurred when sampling from the initial
distribution Gu y(+,0), i.€., TV (Ga.y,0: Go,y (- 0)) < €.

Theorem 4.1 (Error Bound for Posterior Estimation within the Continuous-Time Dynamics). When
s(t) =1, o(t) =t and Assumptions all hold, the total variation (TV) distance between the
approximate and true posterior distributions satisfies:

2
PN m g
TV(qa,y,;m qy’o) < 0152)\/ _T22 ol T26§ U C!(j%ﬂeh (4.2)

where gy o(x) o po(x) exp(—py(x)) is the exact posterior, and Gu 1 s the solution to the posterior
evolution dynamics with initial distribution Gu.y0- The constant Cz(f) depends only on the

observation y, while C’LS)T on both y and the time T. In particular, when the initial error e; = 0,
ie., Qu,y(-,0) can be sampled exactly, optimizing the right-hand side yields the asymptotic bound

TV(qy,1,qy,0) S /€s when T =< v/ &ar.



Under review as submission to TMLR

A detailed proof of Theorem can be found in Section It essentially combines techniques from
the theory of diffusion models (Chen et al., [2023a; Wang et all |2024) and the well-posedness theory of
Bayesian inverse problems, which is closely related to (Purohit et al |[2024] Theorem 4.1). The result of
Theorem reveals that under Assumptions [L.IH4:3] the discrepancy between the posterior distributions can
be upper-bounded by a term proportional to the discrepancy between the prior distributions when the initial
distribution can be sampled exactly. The upper bound further captures a tradeoff between the error of the
forward process and the score matching error, which is controlled by the time horizon T'. Next, we study the
particle approximation to the PDE solution . In particular, we examine the convergence of the dynamics
of the weighted particle ensemble in the many-particle limit.

Assumption 4.4 (Boundedness and Lipschitz continuity of I). Define the function
I(@,1) == af [Vahy(@)]|3 — a:Aapy(®) — 20000 (2, 1) Vahy(T) — ajuy ().

We assume that I(x,t) s wuniformly bounded and Lipschitz continuous over R™ x [0,T]:
max{|| || Lo rr x[0,77), LiP(1)} < By, for some constant By, depending only on y.

We note that function I(x,t) in Assumption is highly related to the function U, 4 — atﬁTVm,uy — Oy fly
in (3.5) above, which depicts the evolution of the particle weights. Specifically, for the special case when
s(t) =1 and o(t) = t, a direct computation yields

Uny — 0t HTV g fiy — a;uy = % (af ||Vw,uyH§ - atAmuy) — %atqﬂkuy =tI(x,t).

Hence, we have that Assumption [£:4] essentially controls the particle weights during evolution and thereby
mitigates weight degeneracy, which is analogous to Assumption 1 in (Domingo-Enrich et all [2020)). In
practice, however, the particle weights are often controlled via the resampling step and ESS threshold in
Algorithm [I] While we adopt this assumption for analytical tractability, relaxing it and developing a rigorous
theory of the resampling step remain important future directions, which might link to existing theoretical
studies (Lu et al. 2023; |Chen et al.,2023b; [Yan et al.| [2024) on sampling algorithms that use birth-death

dynamics or Fisher-Rao gradient flow.

Theorem 4.2 (Convergence in the Many-Particle Limit). When s(t) = 1, o(t) = ¢t and Assump-
tions .| all hold, the empirical distribution of the particle system converges to the solution of the
posterior PDE. Specifically, for allt € [0,T],

lim EW3 (77, 7)] =0,
N—o0

where v is the law of a single weighted particle pair (x¢, B:) governed by , such that the marginal
Qo (1) is recovered via Py, () = fR BYe(+, B)AB = Gy (-, 1), and v} is the empirical measure of the

() g0\
N -particle system {(:Bt B )} . governed by .
1=

Theorem establishes the mean-field consistency of the weighted ensemble approximation in the 2-
Wasserstein sense. Its proof, which is presented in Appendix is based on results from propagation of
chaos (Sznitman, 1991} Lacker] [2018). Together with Theorem our theoretical results provide both
rigorous guarantee for the accuracy of the continuum posterior approximation and justification of the proposed
ensemble-based implementation.

Overall, we would like to emphasize that our theoretical analysis in this section provides a principled
continuous-time framework for bounding the distributional discrepancy between the true posterior and
the distribution induced by the generated samples. In particular, the bound consists of two components,
where Theorem 4.1 quantifies the contribution from score-matching error and Theorem 4.2 captures the
approximation error induced by using a finite number of particles. More broadly, these results also open
the door to future work on consistency and stability with respect to time discretization. To the best of our
knowledge, pursuing this direction will require more advanced tools from the numerical analysis of stochastic
weighted particle/SMC methods. For a list of related works, we refer the readers to the end of section

10
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5 Experiments

In this section, we evaluate the empirical performance of our method on several BIPs in imaging. We
emphasize that, although we develop a posterior-sampling algorithm here, our empirical evaluations primarily
focus on the reconstruction quality under standard metrics, which is most relevant for practical imaging
applications. This also aligns with the selection criterion adopted in our algorithm, which essentially picks the
best-performing sample among a collection of candidates. For additional details about the implementation
and experimental results, we refer the readers to Appendix [D]| and [E} respectively.

5.1 Linear Inverse Problems

Problem Setting. We consider the following four canonical linear inverse problems: Gaussian Deblurring
(GD), Motion Deblurring (MD), Super Resolution (SR), and Box Inpaint (BI). In all these tasks, we assume
that the observational noise is isotropic Gaussian with variance 0.2, i.e., n ~ N(0,0.21,,) in , a more
challenging setting compared to the commonly used low-noise scenario with variance 2.5 x 1073
[& Song, [2024; (Wu et al.l [2024c|). Experiments are conducted on FFHQ-256 (Karras et al., [2019)) and
ImageNet-256 (Deng et all [2009), two widely used datasets in imaging and vision.

Baselines. We compare our proposed algorithms with several state-of-the-art diffusion model-based posterior
sampling methods:

e DPS (Chung et all,|2029): a sampler that guides the pretrained DM with approximations of manifold-
constrained gradients derived from the measurement likelihood.

« DCDP 120244): a framework alternating between optimization steps that ensure data consistency
and pretrained DMs for posterior sampling.

o SGS-EDM (Wu et al, |2024c): a split Gibbs sampler coupled with a DM for efficient posterior inference.

o FK-Corrector (Skreta et all, |2025): an SMC-based sampler using Feynman-Kac formula to correct
trajectories.

o PF-SMC-DM (Dou & Song, |2024)): a particle filtering framework combining SMC with diffusion models.

Experimental Settings. To ensure a fair comparison, we use the
same checkpoints for the two pre-trained score functions provided
in (Chung et al., 2022) and fix the number of function evaluations
(NFE) to 2 x 10% across all methods. For ensemble-based approaches,
the number of particles is set to N = 10. In the case of AFDPS-
ODE (Algorithm [4]), we reduce the number of particles to N =
5 to offset the additional computational cost from the corrector
step, while maintaining the total NFE consistent with AFDPS-SDE
(Algorithm . Within each ensemble, the particle with the largest
weight is returned as the final estimator of the recovered image,
which is analogous to the best-of-N strategy. Here we choose the

parametrized curve «; to be constant, i.e., oy = 1. We evaluate
reconstruction quality using two metrics: PSNR (Peak Signal-to-
Noise Ratio), which quantifies pixel-level accuracy, and LPIPS
(Learned Perceptual Image Patch Similarity) (Zhang et al., 2018b)),
which measures perceptual similarity. Both metrics are computed

Figure 2: Visualization of posterior
samples by AFDPS on linear inverse
problems. Upper: Original; Middle:
Noisy (Measurement); Lower: Recon-

structed.
between the selected reconstruction sample and the ground truth image over a set of 100 validation images.

Results. The quantitative performance of our proposed methods - AFDPS-SDE (Algorithm [2) and AFDPS-
ODE (Algorithm E[) - is presented in Table |1| for the FFHQ-256 dataset and Table [2| for the ImageNet-256
dataset. On FFHQ-256, both methods consistently demonstrate strong or highly competitive results across
all evaluated inverse problems, frequently outperforming existing baselines in terms of both PSNR and
LPIPS. The two variants show complementary strengths across different tasks, underscoring the benefit of
incorporating both formulations. Similar trends are observed on the more diverse ImageNet-256 dataset,
where both AFDPS methods continue to achieve robust and often superior performance. Qualitative examples
are provided in Figure 2] and more in Appendix [E] illustrating the visual quality of reconstructions across
tasks with comparisons to baselines.

11
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Table 1: Results on 4 linear inverse problems for 100 validation images from FFHQ-256.

Method Gaussian Deblurring | Motion Deblurring Super Resolution Box Inpainting
PSNR (1) LPIPS () | PSNR (1) LPIPS ({) | PSNR (1) LPIPS (}) | PSNR (1) LPIPS ({)

DPS (Chung et al.| 2022 22.57 0.2976 21.00 0.3280 19.09 0.5627 21.57 0.3245
DCD 24.77 0.2868 21.57 0.3487 21.23 0.5139 22.05 0.4525
SGS-EDM (Wu et al.|[2024c 24.78 0.2776 23.45 0.3009 22.41 0.3225 23.69 0.2301
FK-Corrector (Skreta et al.| 2025 21.22 0.4023 20.51 0.4275 20.67 0.4133 16.97 0.5490
PF-SMC-DM (Dou & Song| [2024 23.00 0.3940 26.59 0.3435 18.92 0.5049 25.54 0.3391
AFDPS-SDE (Alg. |2 24.83 0.2580 23.58 0.2869 22.96 0.3063 25.45 0.2084
AFDPS-ODE (Alg.lFibb 24.98 0.2560 23.52 0.2905 21.47 0.3345 25.73 0.1969

Table 2: Results on 4 linear inverse problems for 100 validation images from ImageNet-256.

Method Gaussian Deblurring | Motion Deblurring Super Resolution Box Inpainting
PSNR (1) LPIPS ({) | PSNR (1) LPIPS ({) | PSNR (1) LPIPS (}) | PSNR (1) LPIPS ({)

DPS (Chung et al.|[2022 20.60 0.4351 20.46 0.5328 19.17 0.4940 22.70 0.3765
DCD 22.34 0.4821 20.59 0.5338 20.26 0.5597 21.67 0.4344
SGS-EDM (Wu et al.||2024¢ 19.31 0.4807 20.54 0.4653 19.61 0.4986 21.42 0.4643
FK-Corrector (Skreta et al.|[2025 18.39 0.5973 18.34 0.6022 18.57 0.5887 16.28 0.7132
PF-SMC-DM (Dou & Song| 2024 20.06 0.5927 23.91 0.4195 18.42 0.6462 21.34 0.4195
AFDPS-SDE (Alg. |2 22.38 0.3925 19.46 0.4936 20.97 0.4643 23.15 0.3051
AFDPS-ODE (Alg.lFlpb 22.42 0.4633 21.54 0.4944 19.60 0.5634 22.76 0.2716

6 Discussion and Conclusion

In this paper, we introduced a new method for solving Bayesian inverse problems using diffusion models as
the prior. Our method derives a novel PDE that exactly characterizes the exact posterior dynamics under an
evolving diffusion prior, avoiding the heuristic approximations employed by previous methods and leading to
better SMC-type algorithms in practice. Theoretically, we provide the error bounds of the posterior sampling
algorithm in terms of the score function error, and justify the convergence of the ensemble method in the
many-particle limit. Empirically, our method outperforms state-of-the-art diffusion-based solvers across a
range of computational imaging tasks.

This work opens several promising directions for future research. On the one hand, our method applies
to other inverse problems arising in various fields with twice-differentiable log-likelihoods, including optics,
medical imaging, video analytics, geoscience, astronomy, fluid dynamics, chemistry and biology (Sun et al.

2024; [Wu et alll 2024c} [Zheng et all, 2025} [Jaganathan et all, 2016} [Fienupl, 1982} [Candes et all 2015bfa

Kantas et al [2014; [Daras et all [2024b; [Zhang et all [2025a; [Jing et all [2024; [Maddipatla et all [2025;
Sridharan et all) 2022} Hu et al., [2024). Methodologically, our framework could be extended to settings

such as multi-marginal sampling (Albergo et all, 2023a} [Lindsey], 2025)), conditional sampling
, reward-guided sampling (Uehara et al., |2025)), and other variants of DMs, such as latent diffusion
models (LDMs) (Rombach et al., 2022; |Song et al., 2023a)), discrete diffusion models (Murata et al., [2024;
[Cuan et alll, 2025} [Chu et all, 2025} [Austin et al, [2021}; [Hoogeboom et al.l, 2021alb; [Meng et alll, 2022} [Sunl
et all [2022; Richemond et al. 2022} [Lou et all [2023; [Floto et all [2023} [Santos et al.l [2023; [Chen & Ying|
[2024b} [Ren et all, [2024a), flow matching (Zhang et al., [2024c), or to the general framework of denoising
Markov model with variants like generator matching (Benton et al., |2024; Holderrieth et al., 2024} Ren et al.|
. Essentially speaking, Let pp denote some high-dimensional prior parameterized by a diffusion model
(e.g., a discrete or latent DM), with PDE dynamics P that maps a tractable base distribution p, to pp. An
analogous task is to sample from the tilted /posterior distribution gr o ppet, where p is some log-likelihood
term or reward function. By defining ¢; « p,e* for t € [0,7T] and deriving the corresponding PDE Q governing
(@t)tefo,r) based on P, an algorithm of similar type can be developed by simulating Q with a weighted-particle
(SMC-type) method to obtain samples from gp. Theoretically, further work could explore numerical analysis
of our method (Chen et all [2022; [2023a; 2024c) or incorporate it with faster inference methods like parallel
sampling (Shih et al. 2024} |Tang et al.||2024; |Cao et al., 2024; [Selvam et al., 2024} |Chen et al |2024a; \Gupta
et all [2024), high-order solvers (Karras et al., 2022} |Lu et al., 2022b; |Liu et al., 2022aj [Lu et al.| [2022a; |Zheng
et al.l 2023} [Li et al., [2024af [Wu et al.l [2024b; Ren et al., [2025a) and their variants. In addition, it will also
be of interest to investigate how one may theoretically refine the dependency of the asymptotic bound on the
score matching error e¢; in Theorem

L=
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A Further Discussion on Related Work and Notations

In this section, we provide additional discussion and context around our work through a comprehensive
literature review and clarification of notations used throughout the paper.

A.1 Related Work

In this subsection, we provide a more comprehensive overview of related work.

Solving Inverse Problems via Machine Learning Techniques A wide body of work has tried applying
machine learning (ML) based techniques to tackle inverse problems. In particular, one class of such ML-based
methods deploy the Maximum a posteriori (MAP) approach by directly modeling the inverse mapping via
some neural network. In the context of physical sciences, examples of work include (Yoon et al.l 2018;
Khoo & Ying] 2019} [Fan & Ying] [2019a3b; [Fournier et all [2020; [Sun & Demanet], 2020;
et al) 2021} [2022a); [Zhou et al., [2023; [Fan & Ying] 2023; [Molinaro et all, 2023; Melia et al., [2025). For a
more detailed overview of methods belonging to such class, one may refer to (Arridge et al. 2019; |Ying]
2022Db)). Similar methodologies (Zhang & Ghanem) 2018} [Gilton et al., [2019; Xiang et al., 2021) have
also been applied to inverse problems in computational imaging and computer vision. The second class
of ML-based methods (Hou et al., |2019; Zhang et al., 2021} Whang et all 2021a; Park et al., [2024; Tao|
let al., 12025} Dasgupta et al., [2025]), however, employ a Bayesian approach by leveraging generative priors
like normalizing flows and diffusion models. Such methods have been widely applied in various areas like
medical imaging (Song et al [2021b} [Chung & Yel 2022} [Tu et al, [2025)), cryo-electron microscopy
let al., 2022; [Levy et al., 2024)), PDE-constrained inverse problems (Jiang et al. [2025), sampling marginal
densities (Lindsey, 2025)), inverse scattering (Zhang et al., |2024a)), traveltime tomography (Cao & Zhang,
2024)), nonlinear data assimilation (Ding et al.| [2024]), inverse protein folding (Hsu et al., [2022} [Zhu et al.
2024b)), as well as fluid dynamics (Chen et al. |2024d} Xu et all, 2025} [Molinaro et al.| [2024). For a complete
review of applying diffusion models to solve inverse problems, one may refer to (Daras et al.,2024a)). Moreover,
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for the second class of methods that deploy a posterior sampling approach, recent work have also tried to
combine diffusion models with existing sampling methods like SMC (Wu et al., 2023; |Cardoso et al., [2023;
Dou & Song, 2024} |Albergo & Vanden-Eijnden| [2024} [Chen et al.| 2024b} [Vargas et al.| 2023), SGS
& Chil, 2024} [Wu et all, [2024c; [Wang et al., [2025)), parallel tempering (Zhang et al |2025b) and ensemble
Kalman filtering (Zheng et al., 2024)). For methods using gradients of the log-likelihood in their algorithm
design, we note that they also relate to guidance-based methods (Dhariwal & Nichol, 2021; Wu et al., |2024a;
Chidambaram et all, [2024; [Ho & Salimans| 2022} [Bansal et al., 2023} [Song et al.| [2023c} [He et all, 2023}, [Guo|
et al., 2024} [Ye et all, [2024) proposed for conditional sampling.

Gradient Flows for Sampling and Generative Modeling Gradient flow perspectives, particularly
those based on the Wasserstein metric with foundational insights stemming from optimal transport and the
JKO scheme (Jordan et all [1998), have been extensively studied for both sampling and variational inference.
Recent work in this direction includes (Gao et al., [2019; |Ansari et al., 2020 Fan et al., |2021; Lambert et al.,
2022; |Diao et al., 2023)), with ongoing developments such as (Wild et al., [2023; Shaul et al., 2023; |Zhang &|
Katsoulakis, 2023; (Cheng et al., 2024b; [Yao et al.,2024; |Choi et al., 2024; |Zhu et al., |2024a). Other recent
work (Vidal et all [2023} |Cheng et al., 2024a; Xu et al. [2024; Xie & Cheng, 2025; Boffi et al., 2024; Kassraie|
et al. |2024) also discuss algorithms formulated via proximal operators and local-map learning strategies.
Related developments in quantum Monte Carlo (QMC), particularly diffusion Monte Carlo (DMC) (Caffarel
|& Claveriel [1988ajbl), are reviewed in (Gubernatis et al.,|2016; Becca & Sorella, [2017)) with further applications
to quantum many-body problems discussed in (Lu & Wang} [2020]).

(Stochastic) Weighted Particle Methods and Wasserstein-Fisher-Rao Dynamics Weighted
particle methods, such as those based on the birth-death process and Wasserstein—Fisher-Rao (WFR)
distances (Kondratyev et al., 2016; Liero et al.l 2018; (Chizat et al. 2018)has motivated a series of studies on
ensemble-based sampling dynamics (Lindsey et al., 2022} [Lu et al.| 2019b} Maurais & Marzouk, 2024} |Gabrié|
let all 2022} Tan & Lul [2023} |Chen & Ying|, 2024a}; Pathiraja & Wacker, [2024]) that have been applied to
solving high-dimensional Bayesian inverse problems (Qu et al., 2024; |Chen et al., 2024€) and PDEs
let all [2020} [Zhang et all, [2024b} [Neklyudov et al.| 2024; |Chen et al., 2024f). These techniques have also been
applied to multi-objective optimization (Ren et al., 2024b), density estimation via Gaussian mixtures
let al., 2023Db; [Yan et al., 2024), and reinforcement learning and MDPs (Miiller et al., 2024). Their connection
to min-max optimization is explored in (Domingo-Enrich et al.| [2020; [Ying, 2022a} [Lascu et al., [2024]).

A.2 Notations

We use Vg, Vg and A, to denote the gradient, divergence, and Laplacian operators with respect to any fixed
variable z. The set of positive real numbers is denoted by R*. We further use ¢ for the Dirac delta function.
For measuring distances between probability distributions, we use the Kullback-Leibler (KL) divergence Dxkr,,
Total Variation (TV) divergence TV, and Wasserstein-p distance W,. The l5 norm is denoted by || - [|3. In
general, for any real number p € R* U {oo}, we use || - ||» to denote the LP norm.

A.3 Further Discussion on Related Work
A.3.1 Intuitive Explanations of the Posterior Score Approximations

This subsection is devoted to describing the intuitions behind the approximations adopted in existing work
like ILVR (Choi et al.| [2021)) and DPS (Chung et al., [2022)). We start with deriving the approximation used
in ILVR first. In fact, the approximation in ILVR can be understood as a preconditioned version of the
approximation used in (Song et al.| [2020b)), which we will derive and explain first. Based on the Bayes’
formula py(@|y)  po(@()pi(yler), which mmplies Vi, 10g p(y[21) = Va, 10g p(wiy0) — Vi, log p(azs), we have
that it suffices to derive an approximation of the term Vg, log p(x:|yo). Following the derivation in Appendix
1.4 of (Song et al. [2020b)), we have that y, is almost the same as yo when ¢ is small, which gives us the
approximation p(at|ys, yo) ~ p(x:|y:). Moreover, when ¢ is relatively large, we have that x; is almost the
same as Gaussian noise, which is away from yo and again implies p(@¢|y:, yo) =~ p(@¢|y:). Combining the two
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cases further yields the following approximation:

p(lyo) = / P(@elye, yo)p(welyo)dy: ~ / p(@ iy )p(yelyo)dye ~ p (@ilg) -

where g; above denotes a realization of y;, i.e., g; can be treated as being sampled from p(y:|yo). Then we
can plug in the approximation p(@:|yg) ~ p(x:|g;) derived above and apply Bayes’ formula again, which
indicate

p($t|@t)

=V, lo y: |
(0 log p(§¢|zt)

V:Dt 10gp(y|$t) ~ wa, logp(mt‘gt) - th lng(.’,Kt) - th log
Furthermore, from our definition of y; above we have that
Yy, — Am, = yo + o) — Ao + o(t)w) = yo — Azg = 1~ N(0,0°1,,) = p(@i|z;) o e~ mez oAzl

Then we can further deduce that

R 1 R 1 .
Va, logp(ylz:) = Vg, log p(gs|x:) = —ﬁvmt 9 — Aze||* = ?AT(yt — Axy)

which is exactly the approximation adopted in (Song et al| [2020b)). The ILVR approximation can then be
interpreted as a preconditioned version of the approximation in (Song et al [2020b)) derived above, where
(AT A)~! is the preconditioner.

Then we proceed to derive the DPS-based approximation used in (Chung et al.| [2022]), which is mainly based
on the following factorization:

p(ylz:) = /p(y,wolwt)dwo = /p(ylwo,mt)p(wolwt)dwo
= /p(ylwo)p(wolwt)dwo = Eonp(aolzn) [P(Y]2)] = p (Y20 (1))

where &o(t) = E,p(zo|a,) [2] = E[xo|x;] denotes the conditional expectation of g given x;. Specifically, we
note that the second equation above follows from Bayes’ formula and the third equation above is derived based
on the fact that y is conditionally independent of x; given xy. Moreover, the last equation above follows from
the fact that the expectation of a function can be approximated via its evaluation at the expectation, i.e.,
E[f(Z)] = f(E[Z]) for any random variable Z. Furthermore, applying Tweedie’s formula to ; = xo + o(t)w
yields that

~

&0(t) = Elzo|zi] = 1 + 0(t)*Va, log pi(24)

Then we can apply the operator Vo, log(-) on both sides of the approximation p(y|x:) =~ p (y|Zo(t)) above to
deduce that

Ve log p(yle) = Va, g p(yl#0(t) = — 5 5 Vay 1y — Ado (1)
= (Ve (A0(0)" (y — A1) = — (Va,0(0))7 AT (g — Ad(t)

Plugging in the expression of &((¢) then gives us the DPS approximation of the posterior score function:
1 R R 1
Va, logp(y|z:) ~ ?(mewo(t))TAT(y = Azo(t) = 5 (In + a(1)°Vz, log py(x:))" AT (y — AE[zolz:])

For a complete derivation of the ILVR and DPS approximations described above, as well as a list of all related
approximations, we refer the readers to Figure 1 and Subsection 3.1 of (Daras et all [2024al).
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A.3.2 Comparison with SMC-based methods

Below we discuss the key novelties of our method compared to a class of existing works that solve inverse
problems by combining SMC with diffusion-based priors, which can be summarized from the following two
aspects. The first aspect is our derivation from a continuous-time perspective, which yields a PDE-based
formulation of the algorithm. In contrast, prior approaches such as (Wu et al [2023} |Cardoso et al. [2023}
[Dou & Song], [2024]) are typically defined via proposal kernels based on the discrete-time formulation. Our
PDE-based viewpoint may facilitate future work on designing more efficient numerical schemes and extending
the framework to incorporating with more complicated diffusion processes for the prior evolution, such as
continuous-time Markov chains or Lévy processes. A more detailed discussion on these future directions
is postponed to the end of section [6} The second aspect concerns the choice of likelihood functions, which
determines the induced time-dependent distribution paths. Here we expand on the choices used in the
representative examples (Wu et al.| 2023} |Cardoso et all 2023} [Dou & Song| [2024)). Specifically, (Cardoso
let all 2023} [Dou & Song|, [2024) adopted the setting of particle filtering by generating a corresponding
noisy observation y; based on the observed y for any x;, which in turn leads to the following distribution

path lil)(w) o ﬁt(m)e”‘yt (#) . For a detailed description of how v, is generated, the readers may refer to

Appendix above. Furthermore, (Wu et al 2023)) considers a sequence of evolving posterior distributions

of the form below:
l§2) (x) OC/P%t(iE)p(y‘IEt =x) = ﬁt(m) (/p(y|;1;0 = 2)p(xo = z|zs = :E)dz)
“%t(w) (/p(wo = z|lxy = :I:)e2i2|y~’4(z)|2dz> )

where Tweedie’s formula is further applied to compute p(xo|x;) and approximate the integral above. From
the formulas of [;’s listed above, we have that the two kinds of distribution paths used in
Cardoso et al.L |2023k |Dou & Song[, |2024[) are all different from §o 4 (2, 1) o ]Cyt(m)e’o‘”‘y(w) considered in our
work. Empirically, numerical evidence are also provided in section [§] to demonstrate the advantages of our
method.

B Supplementary Proofs and Justifications for Section [3|

In this section, we provide detailed proofs and justifications for claims listed in Section [3] We will use the
shorthand notation f, () = exp(afiy(x)) for the time-dependent likelihood factor.

Lemma B.1. The PDE dynamics governing the evolution of the unnormalized posterior distribution
Qayl(x.t) : R" x [0,T] = RT is given by

%@w == Vo (H@, 1) = V(1) Vany) Quy ) + 3V (1220Quy

B.1)
1 _ N (
+ (3V 07 @F1Vanyl = o oity) = 0B @)ty — iy ) Qo
where
= G(t)? + V(1)

denotes the original drift in the prior diffusion.
Proof. We begin by rewriting the PDE dynamics that needs simplification:

0 ~ ~ 0 /~

7Qu,y foz,y + (O‘;,uyfa,y) Qu,y = (Qa,yfu,y)

ot ot (B.3)

= Ve (H@ 0Quyuy) + 5V 2e@ayfos)
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where the hIst 1dent1ty above follows from the product rule and the second identity above is derived by
substituting p pT Qa yJa,y into the Fokker-Planck PDE 1D satisfied by p pt Rearranging the equation above
further implies

0 ~ 1

aQu.y = *E V(t)ZAT(@ayfay) - a;ﬂy@\ny (B4)

v, (ﬁ(w,t)@a,yf‘*@ - 2fay

Let I; and Is denote the first two terms on the right-hand side:

I = _7v ( (:E t)Qu yfu y) 5 Iy = V(t)2A;c(©u,yfry,y)- (BS)

Jay © 2fay

Note that ﬁ(m,t) : Rt — R™ is vector-valued, while both @a,y : R™ — Roand f,, : R" — R are
scalar-valued. A direct computation shows that the first term I; simplifies to:

I =— .1 Va - (f{\(a:,t)@a‘yfa?y)
i o _ A
= _fa.,y (v:c ) (H($7t)) Qayfay+H(x,t) TV, (Qa«,yfa,y)) (B.6)

= Vo (H@.0) Quy = T H @0 ((Vau ) few + Qu (Volow))

- V- (ﬁ(x,t)) Ouy — H(,1)VeOoy — o (I/LI\(:c,t)TVmuy> Doy

where the last equality above follows from the fact that ﬁvm fay = Vo for fo, = exp(oyity). Similarly,

expanding the Laplacian term A, (@myfw,y) allows us to simplify the second term I as follows:

1

I = V(1) ((Am@a,y) foay +2 (vmcja,y)T Vafoy + Quy (Ae fa,y))

ifa’y ; ! (B.7)
= iv(t)zAmQa,y + atV(t)Q (vaa,y) vm/~Ly + §V(t)2 (O‘tAm,uy + U‘%”vw/‘yHg) Qy»

where the last equality above follows from the fact that f Agfoy = lDgliy + cyf||Vmuy||2 for fo, =
exp(afly). Summing the two expressions in and ( . then yields

0 ~ — ~ — T ~
aQa,y = Il + IQ = *vm : (H(ﬂ),t)) any + (atv(t)zvmﬂy - H(:B,t)) vaa,y

1 ~ 1 — ~ ~
+ §V(t)2Awa,y + (2V(t)2 (QtAw,UJy + ”fQHVwﬂy”g) - QtH(xvt)va.uy> Qy — a;/‘mey

. _ ~ (B.8)
= Vo ((Hi@, 1) = V(1) Vany) Qy ) = 0V (0)*Aaity Qy
1 - ]_ < _ ~
+ §V(t)2AwQa_y + <2V(t)2 (7| Vatylls + e Appy) — cr H (2, )TV g pyy — a;uy) Qa.y
which is exactly the dynamics given in (B.1]), as desired. O

Lemma B.2. Consider the following PDE dynamics governing the evolution of some unnormalized density
Q(z,t) : R" x [0,T] - RT

0 Q@0 = Vo (K@ 0@, 0) + (000, 1) + J (2,10 1), (B9)
where ¢ : [0,T] — RT and K,J : R? x [0,T] — R. Then we consider the normalized density q(z,t) :
R™ x [0,T] — [0,1] defined as below

_ Q1)
= Ai 0,7]. B.10
q(x,1) IO, t)dx — te[0T] (B.10)

31



Under review as submission to TMLR

The PDE dynamics governing the evolution of the normalized density q(x,t) is then given by

S.0) =~V (K (e, 1) + 6080w, + (et -

Rn

J(z,t)q(z, t)dw) q(zx,t). (B.11)

Proof. By using Z(t fR” (z,t)dx to denote the normalizing constant for any ¢ € [0,T], we can then
compute the time derlvatlve of Z(t ( ) by plugging in as follows

;Z() i( Q(a:,t)da:> —/n <§t@(w,t)> e

- / (Ve (K@ DQ@.1) +¢HAQ(x. 1) + J(@,)Q(w.1)) da

(B.12)
- [ @@ izt [ Vo (€000 - K001 do
- / (@, )0z, )de
Furthermore, we may rewrite the normalized density as g(x,t) = T@(:c, t) and differentiate the expression

with respect to t, which yields

- % (/ J(z, t)@(az,t)daz) i, 1)
Vo (K@ )i(e.0) + SO0 + (Tat) - |

J(x,t)q(x, t)d:c) q(z,t).

n

where the second last equality above follows from and (B.12) the last equality is deduced from the
definition of the normalized density g(a,t). This concludes our proof. O

Remark B.3. By setting

K(@,t) = H(@,t) = o,V (1) Vapy(a), (1) = 5V (),

and
1 —
T(@,0) = V0P (031 Vbt ()3 — 0Bty (2)) — () Vapiy () — sy

one can use Lemma to deduce from .

Lemma B.4. Consider a single particle (x+, Bt) governed by
dey = f{\(wt,t) - atV(t)QVmpy(wt)) dt + V (t)dwy,
a8 = (Uny(we,t) — 0B (e, 1 Vaspy (1) — 0y (2) ) Buct (B.13)
([ (Tantrt) — 0Bt V) = iy (0) (Pa) () )

with initial condition o = x* and By = 1, where x* is sampled from the initial posterior distribution gy(zx,0),
(wy)i>0 is a standard Brownian motion in R™, v,(x, ) denotes the joint probability distribution of (xy, Bt)
on R™ x R,

P/i’Yt / ﬂ%
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denotes the weighted projection of v onto @, and U, (., 1) := LV (1)* (0F || Vapiyl3 — ciAepy). Below we
further define

. 1 -
W y(, t) := §V(t)2 (avam/l,yHE — Ay iy ) — aH (2, )TV ity — oy pigy () (B.14)

= Uqy(x,t) — (lfH(w )TV by — iy ().
Then we have that Py, (x) = Gy(x,t) for any € € R™ and t € [0,T], i.e. Psy(-) solves the following PDE:

0 .

oy == Va- ((ﬁ(w t) — atV(t)ZVm,uy) aa,y) + V(20050

(B.15)
+ (VVa_y(w,t) — / T/I/'a,y(zqt)@a_y(z)dz> Joy-

The main idea behind our proof of the Lemma above is to derive the PDE governing the evolution of the joint
distribution v;(a, ) first, which then leads to a PDE for its weighted projection Pgy;(x). Our derivation
here is mainly based on the theory of semigroups.

Definition B.5 (Two-Parameter Semigroup Operator). Given fized time s > 0, consider a single particle
(x¢, Br) with initial condition (xs,Bs) = (x*, 5*) for any t > s. Then the corresponding semigroup operator

'Ts(f’ﬁ) is defined via

TP o, B7) = E[p(x, B1) | (25, 85) = (&, 8°)], (B.16)
where ¢ : R" x R — R above denotes an arbitrary test function. For the special case when s =0, we write
76(13)5) _ 7;(33,3)'

Definition B.6 (Time-Dependent Infinitesimal Generator). Let I be the identity operator. Then for any

B)

L E me s > ana suitaole tes uncrion @, e mpnitestma genem or s associtatea wi e sengroup
d ti 0 and suitable test functi the infinitesimal tor L& jated with th ;

7;€:f’ﬂ) is defined by

As—0t A

Moreover, for any test function ¢ : R® x R — R and input («*, 8*), we have

B * *
7;(1ﬁt2),t1+t2+t3 7;(17t1+t2¢( 76 ) [¢(mt1+tz+t3’ﬁt1+t2+t3) | (mtl’ﬁtl) = (:B 76 )] (B 18)
B * ’

= 7;(107:t1-5)‘t2+t3¢(m ’ﬂ*)
demonstrating that ﬁgﬁi),tﬁtms ﬁgmglﬁj_w = 7;(1”,’);?4)_)&2“3 for any time t;,t9,t3 > 0.
Furthermore, combining (B.18|) with the definition of the infinitesimal generator in (B.17]), we can directly
deduce the following equation for any time 0 < s < ¢, input (z*, 8*) and test function ¢ : R x R = R,

Te o= dim o (TER, T a5 =t LTSN o (T8, 1) 6@, 5)

At—o+ At '3 At—0+ At

(B.19)
=7V (g (TR -1 ) ola ) = (T30 0L o (e )

At—0+ At

which is essentially the forward Kolgomorov equation expressed in terms of semigroups and infinitesimal
generators. Moreover, for any d € Z1 and two functions ¢, p(®) : R® - R, we use

(1) ,(2) — 1) ()2
<<p P >L2(Rd)- /Rdw ()" (w)da

to denote the inner product between 1) and p(2). Should no confusion arise, we omit the subscript L?(R9)
in all derivations below.
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Proposition B.7. The joint distribution v, = v(x, B) satisfies the following PDE:

0

0 1
a% =—Vg- (Kw.,t'yt) — 372 (bu,t%) + §V(t)2Am'th (B~2O)

op
with indtial condition vo(x, B) = Gu.y(,0) X dg=1, where the two functions K ; : R? > R and b, : RIXR —
R correspond to the drift and reweighting terms in and , ie.,

Koi(x) = H(z,t) — 0,V () Va iy (),

bu,t(ma ﬂ) = (Uﬂ,y(wa t) - aﬁﬁ(mv t)Tuny(:c) - O‘;:U’y (.’E)) B (B21)

, (/ (Uu_y(m*’t) — o H (@ 1) Vg piy () — a;“y(x» (Po) (m*)dm*> 8

Proof. We note that our proof here is mainly based on the weak formulation of PDEs. Specifically, for
any fixed time ¢t and test function ¢ : R™ x R — R, integrating the function ﬁ(m’ﬂ )
distribution o (2, 8) yields

@ over the initial joint

<7Z(w’ﬁ)<ﬂ,70> = TP (@, 87 )70 (27, 37) dz*dB*
R™ xR

= /Rn RE[W(wuﬁt) | (z0,Bo) = (z*, )] 70 (z*, B*) de*dB* (B.22)
N / pla”, B ) (@, 57)dx" A" = (0, 7)) -
R? xR

We integrate on both sides of (B.19)) over the initial joint distribution (2, 8) and plug in (B.22)), which
gives us that for any test function ¢ : R” x R — R,

o \N_d _d /@) _ /9 +@p
<<P7 Bt%> ~q (@, 1) = a <7Z <Pﬁo> = @%,t ®, 70
= (5% 0 £ 0,70) = (T 0 £5P 0,50 ) = (£, 73)

To further simplify the term on the RHS above, we need to compute the explicit form of the infinitesimal
generator defined in (B.17). In fact, applying It6’s formula to the joint SDE (3.5)) yields the following identity
for any test function ¢ : R™ x R = R,

(B.23)

0 1
do(xy, Br) = ((Vmgp)T K.+ %ba,t + iV(t)2 Tr (Vigo)) dt + V(t) (Vee)T dwy), (B.24)
where (w;);>0 is a standard Brownian motion on R™ and the two functions. Taking expectation on both sides
of (B.24) then yields the explicit expression of the infinitesimal generator for any test function ¢ : R* x R — R
as below:

x 0
'Cz(f ”6)90 = (vaO)T K.+ %b

Below we use z; and K, ;; to denote the i-th component of @ and K, ; for any i € [n]. By substituting (B.25])
into the RHS of (B.23), we obtain that for any test function ¢ : R” x R — R,

1
ot + §V(t)2Am<p- (B.25)

x 0 1
<‘C§ 7ﬁ)@7’7t> = <(vw(p)T Ka,t + aigba,t + 2V(t)2Am9077t>

N8 g a9 Logess (&%
- = <axiaK(x.t,1,’7t> + <8Bab(y,f7t> + QV(t) at <8$3 y Yt

K2

(B.26)

"0 0 1
= <907 - Z oz, (Ka.t,zi’Yt) - % (ba,t'Yt) + QV(t)2Aw7t>
(o e

0 1
% (ba.t’Yt) + iv(t)2Am% s
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where the second last equahty above follows from integration by parts. Substituting the last expression
in (B.26) above into ) then gives us the weak form of the PDE associated with the joint distribution 7,
in (B.20]), which concludes the proof. O

Proof of Lemma[B-]} By defining
(@)= Prula) = [ sl

to be the weighted projection of 4, We then have that 4 (x) = 7. y(z,0). Below we proceed to derive
the PDE govering the evolution of v based on - For any test functlon ¥ R = R, taking

o(x, B) = BY(x) : R x R — R in the weak form derived in and (B.26)) yields

(gt ) =g 0af) =5 ([ w </5% ) -)

jt (1) = <<p, gt%> = <¢,—Vm (Kaiv) — 06( atYe) + V( ) Aw%> (B.27)

0 1
=— (¢, Vo (Kaumt)) — <<P» B (ba,t%)> + §V(f)2 (0, Azye) -
For the first and third terms in the last expression of (B.27)), we can further simplify them as follows

(5 (Kn) = [ ([ 66@) (Vo (Kot ) e ) a5

(o (s ([ g

. P(x) (Vm . (Kat(:c)'yf(a:))) dz
= (¢, Va - (Ka7t))

and

)= [ ([ v6@) Aot dr) as

g

/ () (8arP) (@)de = (4, AgrF)

respectively. Moreover, for the second term in the last expression of (B.27), we may plug in the expression of
ba,t and Wy y(x, t) defined in (B.21]) and (B.14) above and apply integration by parts to deduce that

<s0, % (ba.t%)> =— <366<p,bu,m> = —(¥(x), beye)
—— [ vt s) (W)~ [ W fa 098 (@) ) piaas
- [wtenf@ (Wosta - [ W la 0 @)ie ) ao

. <w(m),v§° (@) <Wa.y(w,f> - / Wau(@ i (“’*)dm*» '

Substituting (B.28), (B.29), and into (B.27) then gives us the weak form of the PDE governing the
evolution of the prOJected measure ’yt = Pg%, i.e., v () = Pgy(z) satisfies the following PDE

(B.30)

1 * * *
ol = —Va - (Ka.t'ytp) + §V(t)2Am7tP + (I/Va’y(:c.,t) —/ Wy (x® )7F (%) dee )7,513, (B.31)

35



Under review as submission to TMLR

with initial condition v (z) = G 4 (2, 0). This is exactly the PDE provided in (B.15)), which concludes our
proof. O

Remark B.8 (Comparison with Concurrent Work (Skreta et al.| [2025)). We note that an alternative approach
to derive the dynamics for a weighted particle from the PDE is to use the Feynman-Kac formula
under the formulation of path integrals, as presented in the concurrent work (Skreta et all, |2025, Appendix
A). Here we adopt the approach used for proving (Domingo-Enrich et all, {2020, Lemma 1 and 10), which
is mainly based on the idea of lifting the projected measure to the joint measure and the weak form of PDE
solutions.

We adapt the FK Corrector dynamics from (Skreta et al.,|2025, Proposition D.5) to provide a direct comparison
with our dynamics of a weighted particle (derived from the PDE and presented as ) for the setting
of posterior sampling. This is achieved by setting the parameters in their notations as ; = «ay, the noise
intensity oy = V (t)%, and the reward function r = —pu,,. The resulting drift and reweighting terms for both
methods are juztaposed in Table[3

Table 3: Drift and Reweighting Terms of AFDPS and FK Corrector

Term AFDPS (Ours) FK Corrector
— 2
Drif T el F(e+ Vg0,
—aV(1)* Vg piy
Reweighting sV (t)? (af”vmﬂynf - (,xf,Am/TAy) / -1V (t)? (afHVmﬂyH%’ — Ay piy)
+a; (F(t)w — V()2 ¢o(, 1)) Vapy — iy | +aiF(E)TTVapiy — ofjiy

1t is noteworthy that if V(t) = 0 (i.e., in the absence of the diffusion-based corrector ¢pg and the gradient
guidance Vgl ), both AFDPS and the FK Corrector would simplify to the same ODE dynamics, with their
drift terms reducing to —F (t)x. However, in the more general SDE case where V (t) # 0, the =V (¢)*V iy
term in our AFDPS drift marks a critical difference. Our empirical results, detailed in Section[5, demonstrate
that this specific term plays a vital role in effectively guiding the sampler towards regions of high likelihood,
thereby enhancing performance.

In fact, by using Qu y(x) := Py (x)e 1 (@) to denote the unnormalized posterior associated with the ground-
truth backward SDE with G(t) = V(t), we can directly differentiate Q. with respect to x to obtain
that:

VaQay = Va (Bie” ") = (Vab,) e " — aipre " (Vapy)

o _ _ (B.32)
=pre "M (Vg logpy — 0 Vapiy) = Qa.y (Ve logpy — a;Vapy)

Moreover, a derivation similar to the proof of Lemma yields that the PDE dynamics governing the

evolution of Qy s given by

0 1
—Qay == Vo (H(z,t) — 0,V ()’ Vapy) Qay) + 5V (1) ArQay
ot 2

) , (B.33)
+ (QV(t)2 (7| Vatylls — e Appy) — c H (2, )TV g p1yy — (X;/Ly) Qa.y

where H(z,t) = —F(t)x + V(t)?V log p,(x) is essentially obtained by replacing the neural network-based

approzimation ¢g(x,t) in the expression of H(x,t) defined above with the true score function Vg logp,(x).
For any fized scalar n € R, we may further decompose the term Vg, above as the sum of NV, and
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(1 —n)Vapy and directly simplify the RHS above as follows:

0

57 Q0w == Ve (H(x,t) =101V (1) Vatiy) Qay) + (1= )iV (1) Ve - (Qay Valiy)

1 1
+ EV(t)zAmQa,y + <2V( )2 (af ||Vm,uy||2 oztAmuy) — o H(z,t)"Vapy — (y;uy> Qay
=~ Vo (H(z.t) =V (£)*Vapy) Quy) + (1 =)oV (1) (Vapy)" VaQay
(U= MV (0 Quy (Do) + 5V (0 2aQuy

]‘ /
+(3V 0P @F1Vanyl = o) ~ 00 H @07y ~ iy ) Qo
=—Vao  ((H(z,t) —noy — V(t)*Vapy) Qu.y) — )1ty Qa, y (B.34)
+ (1 - 77) ( ) ( :cMy T v logpt - atvmﬂy) Qa Y + V( ) mQa,y

(
1
+(5V Pt ITany i + (5 - 0) @) Amuy—atH<w,t>Tvmuy—a;,uy)Qa,y

1 /
=—Vg- ((H(a:,t) — oV (t) Vw,uy) Q(,_y) + §V(t)2AQOy — Wy Qo y

1
+ (77 - 2) V(t)? (O‘?”Vzﬂyllg - O‘tAm“y) Qay

+ oy (F(t)a: - nV(t)va log p, <w>)T (Vapy) Qa.y-
where the second last equality above follows from plugging in .

By replacing the true score function Vg logp,(x) in the RHS above with the neural network-based estimator
¢o(x,t), one then obtains the dynamics that can be used in practice. Specifically, for any fixred n € R, the
drift term used in practice is given by

—F(t)x +V(t)*po(x,t) — nowV ()’ Vay, (B.35)

while the reweighting term used in practice is given by

(n - ;) VO (00 | Vattyl12 — 00y ) + 0 (F()m —nV (10 (,1))" Vapty — iy @y (B.36)
By comparing the two terms above with Table[3, we note that n = 0 yields the FK Corrector dynamics while
n =1 yields the AFDPS dynamics. Therefore, for more difficult nonlinear inverse problems, we may control
the magnitude of the term V (t)2Vgpy by tuning the parameter n in practice. This also conforms to strategies
used in existing practical work on guidance like (Dhariwal & Nichol, |2021; |Ho & Salimans, |2022; | Bansal
let all, [2023; |Song et all |2023¢; |He et all, |2025; |Guo et all, |2024;|Ye et al) |2024). Finally, it would be of
independent question to mathematically analyze how the discrepancy between the true dynamics and
the practical dynamics given by and depends on the parameter n in future work.

C Supplementary Proofs and Justifications for Section [4]
In this section, we provide detailed proofs and justifications for claims listed in Section [

C.1 Proof of Theorem [4.1]

We begin by decomposing the total variation error via triangle’s inequality. Specifically, here we slightly
abuse the notation by taking gu.y.¢(-) := Ga,y(-,t) for any ¢t € [0, T, i.e., Goy,¢ satisfies the PDE (3.4)):

0 - = ~ _
aq“ﬁyi =—Vg- ((H(:Cf) - atv(t)vaﬂ/y) @x,y,t) + %V(t)zA:z:Q(x.y,t

+ (Wa,y(x,t) - / Wa,y(z,t)ga,w(z)dZ) G (C.1)
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with initial condition gn,y,0(2) = Ga.y(x,0). A direct application of triangle’s inequality yields
vV (au,y,T-, Qy,O) S TV (@ny,T: qy,O) +TV ((/]\(X.,y,Ta a(x,y,T) . (CQ)

We note that our proof in this section can be divided into two parts, which provide upper bounds on the two
terms on the RHS above respectively.

C.1.1 Bounding the First Term on the RHS of (|C.2)

We start off with bounding the first term TV (¢a,y, 7, ¢y,0) on the RHS above, which requires the following
two lemmas. Specifically, the first lemma below provides a quantitative bound on the discrepancy between
two diffusion processes with different drift functions, while the second lemma describes the convergence of
the forward process towards the target distribution when Gaussian noise is added.

Lemma C.1. For any pair of diffusion processes (€t)icpo,r) and (Z¢)iecjo,r) on R™ defined as follows

da; = b(ay, t)dt + c(t)dw;

o~ (C.3)

and dx; = b(@y,t)dt + c(t)dw;
where b,b : R™ x [0,T] — R™ are the two drift functions, ¢ : [0,T] — Rt and (wi)iepo,m s a standard
Brownian motion. Let p; and p; denote the distribution of ©; and Ty respectively for any t € [0,T], then we
have

Pralorln < Do) + [ [ 5ot o) - bia0 L ptaaza ()

Proof. We remark that the proof of this lemma is essentially the same as the derivations in many previous
works on the theoretical analysis of DMs and variants. Examples include, but are not limited to, (Chen|
Lemma C.1), (Albergo et al, [2023b, Lemma 2.22), and (Wu et all 2024¢, Lemma A.4). For
the sake of completeness, we include a detailed derivation here.

The main idea is to use the Fokker-Planck equations associated with the diffusion processes in (C.3)) and
differentiate the KL divergence between the two evolving densities with respect to time. Specifically, we have
that p; and p; satisfy the following Fokker-Planck equations:

d 1

Tl —Vag - (b(x, t)p;) + §C(t)2Ath,

) - . (C.5)
and 551 = Vo - (bl@, )5 ) + 5e(t) Aaf.

From the definition of the KL divergence

pi(x)
pi(T)

we can differentiate it with respect to the time variable ¢, which yields
d ~ Pt 0pt / 0 0 ~
—D = log = —d —1 - —1 d
g Pxe(pellpe) / o8 or et | gilosr — gploe | pudz
Pt Opy 1 Opy 1 Opy
= log = —d —— == d C.6
/n 85 ot m+/w<pt ot ot )T (C.6)
:/ log g%dm —/ g%dm
n Pt ot R Pt ot
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For the first term in ((C.6) above, we plug in (C.5) and use integration by parts, which yields
/ log 2 pt Opy 9Pt
n pt ot
- c(t)?
=- (logps —logpy) Vg - | | b— 5 Vlogp: | pe | de (C.7)

:/n (Vg logpy — Vg logpr)' ( ot )

Ve log pt> prde.

To simplify the second term in (C.6), we plug in (C.5) apply integration by parts again to obtain that
- )2
—/ ptaptdm:/ ’fvm~<(b—0() leogﬁt> ﬁt> dx
R~ Pt ot Rn Pt 2
~ c(t)? . =~ c(t)? \" Vap
n t

~  c(t)? 2\ ~
= 2 Vg logpt | (Valogpr — Vg logp) prde

Furthermore, substituting and into then yields

d ~ — c(t)?
q; Pxe(pellpe) =/ (Ve logpr — Vg log )T (b— (2) Ve Ingt) prda
RTL

_ ~ t)? _
—l—/ (Vg log py — Vg log py)T (b — %V:ﬂ logpt) prdx

c(t)?

= - T/ |V log pr — Vi log pil|5 prd (C.9)
RTL

~\T .
+/’ (b - b) (Vg log pr — Vg log pt) prda

< 1 / b—EH2 dw—#/
=2c(1)2 Jyn 2P T 212

where the last inequality follows from the AM-GM inequality, i.e. Ty < )2 |3 + C(§)2 lly||3 for any
vectors &,y € R™ and t € [0, T].

Integrating (C.9) from ¢ = 0 to t = T then yields (C.4]), which concludes our proof. O

’b x,t) (w,t)HZpt(az)dx

Lemma C.2. For any distribution p on R™ with bounded second moment m%, ie., Egoplllzl3] < m3, we have

Dk (p* N(0,0%I,)||N(0,0%1,,)) < 2";22 , where (p* q)(x) = [, p( — y)dy denotes the convolution of
the two probability distributions p,q.

Proof. We remark that this is the same as (Wang et al} |2024] Lemma 10), where a complete proof is already
provided. O

With Lemmaand Lemma listed above, we then proceed to bound the term TV (¢ 4,7, Gy,0). Consider
the backward process associated with the true score function under the EDM framework, which can be
formally written as

d, = |- (t) %, + 25(0)26 ()0 (£)V log B, () | dt + s(t)v/26 ()0 (¢)dw;. (C.10)

with initial condition
Zo ~ Py = pr = po * N'(0,T°1,),
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where the last identity follows from results derived in Appendix B.1 in the paper (Karras et al., [2022) that
proposes the EDM framework as well as our particular choices of the scaling functions s(t) = 1 and o(t) = t¢.

Then we consider applying Lemma to compare the two diffusion processes (Zt)e[o,r) and (%t)te[O,T]

defined in 1) and 1) respectively.
By setting c(t )26 (t

b(x,t) = —igw +25(t)26(t)o(t)V log p,(z) = 2tV log ()

and

bz, t) = — 2 g 1 25(1) 26 (£) o (t) o (a, 1) = 2t (1),

we have

Dy (pollpr) = Dxr(5r||pr)

< Dt (5 lIF0) / / L 2t (o (@, £) — Vo log By (@)1 by (@) dadt

(C.11)
= D1, (po * N(0,T°1,) ||N(0 T°I,))

_ 1
+/ / tllo (@, t) — Vo log iy (@) 3 5y (x >dwdt<?+ 5T
0 n

where the second lest inequality above follows from Lemma [C.I] and the last inequality follows from Assump-

tion Assumption and Lemma
Applying Pinsker’s inequality helps us further bound the TV divergence between py and ET as follows

~ = 1 ~ 1 /m3
TV (bropo) = TV (po.br) < \/QDKL(pOHpT) < 2\/T§ TR, (C.12)

Based on the bounds on the distance between the two prior distributions above, we proceed to bound the
distance between the two associated posterior distributions. From our definition of g, 4 in equation (C.1))
above, we have that

~

Gy (@) = Gy (@, T) o (e 7 = fr(@)e ™ and gy (@) x po(a)e ™),
By using

Z\(y) ::/ /p%T(IB)e_l‘y(m)dm and Z(y) ::/ po(x)e_ﬂy(m)dw

n

to denote the two corresponding normalizing constants, we can further deduce that

Zty) - 2w)| = < 2TV (o (C.13)

[ e (Br(@) - m()) de
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where the inequality above follows from Assumption Then we can use the bound on the difference
between the normalizing constants above to further obtain that

= 1 1 = (@ 1 Cw
TV(Qa,y,T,Qy,O) = 5 /n %pT(aj)e Hy(x) _ Z(y)p0($)e By () dx
1/ 1 = _ 1 -~ B
<= _— po(x)e @) — br(z)e @) | de
2 Jen | Z(y) (@) Z()T™)
1/ 1 = _ 1
+ - Pr(x)e M@ — po(x)e™v @ | de
_ 2y - 2(y)] (/ 5o(z)e uy(w)da;)
2Z(y)Z(y) n
1 ~
JE— py(x) (5 _
701 | L e (Br@) - @) do
1 7 —cP f
75 ( Z(y) - Z(y)) 24TV (pT,p0)>
26701(!1) ~ e*Cff) m2
——TV (D < 422 22
>~ Z(y) V (pTvpo) = Z(y) T2 + €3,

where the first inequality above follows from triangle inequality, the second inequality above follows from
Assumption[d.1] the third inequality above follows from (C.13)) and the last inequality above follows from (C.12).

By setting
_o®
0(2) — e CZJ
Y Z(y)

in the last expression above, which is some constant that only depends on vy, we finally obtain the following
upper bound for the first term on the RHS of (C.2)):

2
~ m
TV (Goy,1: 4y.0) < C{,”W. (C.14)

C.1.2 Bounding the Second Term on the RHS of (|C.2)

Then we proceed to upper bound the second term TV (Go,y, 7, oy, 7). Following the same set of notations
used in Appcndix above, we define K (z,t) := H(x,t) — a;V (t)?Vgpuy(z) and ((t) := 1V (t)2. Moreover,
we use P; to denote the following time-dependent operator for any test function ¢ : R™ — R,

(Peo)(x) := K(2,1)TVad(x) + (1) Az () (C.15)

A direct computation yields that the associated adjoint operator P; is exactly the time-dependent infinitesimal
generator given by the sum of the drift and diffusion term on the RHS of (C.1)), i.e.,

(Pi ) (x) := Ve - (K(,t)p(x)) + (1) Axd(T), (C.16)

for any test function ¢ : R™ — R. Furthermore, we use A := A(t, ¢) to denote the functional formed by the
linear term on the RHS of (C.2)), i.e.,

M(@) = (Ww(m) -/ Wa,y<z7t)¢<z>dz) b(x) = (tl(w,t) -t I<z7t>¢(z)dz) b(x)  (CI7)

n
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for any test function ¢ : R™ — R, where the last identity above follows from our definition of I(x,t) given in
Assumption and the special choice that o(t) = t. Then we may use the notations introduced above to
rewrite the PDE (C.1]) as follows:

54(® 1) = (Piq)(x) + Ae(q) (C.18)

Based on the time-dependent infinitesimal generator (C.16]) and the PDE (C.18]) above, we may further define
the two-parameter semigroup operator U ¢ by

(Us19)(w) = E[o(X1)| X = z] (C.19)

for any time interval [s,t] and test function ¢ : R" — R, where (X,),;>, is driven by the following time-
inhomogeneous SDE.
dX, = —K(X,,7)dr + 2¢(t)dW,, X = x. (C.20)

Moreover, based on the theory of semigroups and PDEs, we have an alternative interpretation of U ;.
Specifically, for any test function ¢ : R” — R, we have that (U, .¢)(x) = u(x,t) is exactly the solution of the
following forward PDE:

0
Eu(w,r) =V (K(z,")u(z, 7)) + (1) Agu(x,7) = (Piu)(x) for 7 € (s,t], u(x,s) = ¢(x). (C.21)
From the PDE-based interpretation above, we also have that the adjoint two-parameter semigroup operator
U, of Us s can be defined via the backward PDE associated with P;. Specifically, for any time interval [s, ]
and test function ¢ : R" — R, we have that (UJ,¢)(xz) = v(zx,s) is exactly the solution of the following
backward PDE:

(,%v(ac, 7) = K(x,7)TVav(x,7) + {(T)Azv(z,T) = (Prv)(x) for T € [s,t), v(x,t) = d(x). (C.22)
Furthermore, we note that the two target distributions gn 4,7 and ga 4,7 are essentially solutions to PDEs of
the same form but with two different initial conditions Gy 4.0(-) and Ga,y,7(-) = Ga,y(-,0). Therefore,
in order to upper bound the term, here we only need to prove the stability of PDE above with respect
to the initial conditions. Before proving the generic stability argument, we need to prove the following two
lemmas beforehand. Specifically, the first lemma characterizes solution to the PDE based on the
generator P} and initial condition, while the second lemma shows the contractiveness of the two-parameter
semigroup U, ; with respect to the L' norm.

Lemma C.3 (Duhamel’s Principle/Variation of Parameters Formula). A generic formula of the solution
q(t,x) = q(x) to the PDE with initial condition q(0,x) = qo(x) can be written as follows:

q((L}t) = Z/{O,th + /O (us,t)\s(QS))dS (023)

Proof. We note that the generic formula above directly follows from Duhamel’s Principle/Variation of
parameters formula. For the sake of completeness, we provide a derivation below. In fact, using the fact
that Us ;¢ satisfies the PDE (C.21)) with initial condition u(s, x) = ¢(x) for any ¢, we can differentiate with
respect to ¢t on both sides of &D to deduce that

0 q(z,t) = a(u )+ d /t(u As(gs))ds —g(u )+ Ui A ( )+/ta(u As(gs))ds
8t a1 0,t40 dt s,t s\ (s = ot 0,t40 t,t A\ qt . ot s,t s\ (s

t
= (PiUo.ao) (=) + Mla(w, 1)) + / (Prtdy iho(s)) ds (C.24)
_pr (umqo /usm 2)d )m(( 1) = (Pro)(@) + A(g)
which is exactly the PDE (|C.18]), as desired. O
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Lemma C.4 (Contractiveness of the two-parameter semigroup operator). For any time interval [s,t] C [0,T]
and test function ¢ : R™ — R, we have ||Us, 1P|+ < [0l 11

Proof. We note that it suffices to show that the operator norm |||, , . is bounded by 1. Given that the
dual of the L' norm is exactly the L norm, we have that

[Us,¢

i1 — Sup ||us,t¢||L1 = Sup Sup W,Us,td))m
el <t llellLr <Tllelloe <1

= sup suwp (U= sup (Ul . = U,
ltll oo <1 161 <1 bl e <1

(C.25)

‘LOO—>L°°
where (-,-)2 above denotes the inner product associated with the L? norm, i.e., (1, ¢)r2 = [5, ¢¥(x)¢(z)dx
for any test functions v, ¢ : R™ — R. Therefore, here we only need to show that

Hus*,tHLooﬁLoo < 1’ (C.QG)

i.e., Z/[:’tq/)HLQQ < ||¢]|L= for any bounded test function ¢ : R™ — R. We note that this essentially follows
from applying maximum principle to the backward PDE (|C.22)). Specifically, it suffices to show that the
solution v(x, 7) to the PDE (C.22)) satisfies

sup  v(z,7) < sup v(z,t),
TE([s,t], ®ER™ xeR”™

inf > inf t
Te[s7z]r7l zER™ ’U(:l:, m) 2z :clen]R" U(J:’ ),

(C.27)

when the initial function v(x,t) is bounded with respect to the L> norm. We begin by proving the first
inequality regarding the supremum. For any fixed w > 0 that can be arbitrarily small, we consider the
perturbed solution v*(x, 7) := v(x, 7) — wr. We will first show that the supremum of v* must be attained at
the boundary when 7 =t, i.e.,
sup  vY(x,7) < sup v¥(x,t). (C.28)
TE[s,t], xER™ TER™

A direct computation yields that v* satisfies the following modified backward PDE:

0w _ 9 _ — T _
p (z,7) = Ev(m, T)—w=(Pv)(x) —w=K(x,7)Vav(z,7) + {(T)Agv(x,7) —w

= K(x,7)"Vav’ (2, 7) + (1) Agv® (x,7) —w = (Pro¥) () — w.

(C.29)

For the sake of contradiction, assume that sup, ¢, 4 zern V¥ (2, 7) > SUpgern v (2, 1) d.c., the supremum
of v over (x,7) € R™ x [s,1] is attained at some point (z*,7*) € R™ x [s,t). Since (x*,7*) is also a local
maximum, we must have

9
or
Substituting the inequalities and equality above into the modified PDE ((C.29) then yields

v (2", 7) >0, Vv (2", 77) =0, Ago® (z*,77) <0. (C.30)

0< Bng (", 7") = Agv? (2", 77) —w < —w <0, (C.31)
T

which leads to a contradiction. Therefore, the assumption is wrong and (C.28) is proved. Based on the
definition of v and v*, we have the following inequality

v, ) <v(x,7) =0, T) + wr <v¥(x,7) + T, (C.32)

for any (x,7) € R™ X [s,t]. Taking supremum with respect to (x,7) in the inequality above and plugging

in (C.28) then imply

sup  v(x,T) < sup  vY(x,7) +wl < sup v¥(x,t) +wT < sup v(x,t) + wT.
TE[s,t], ®ER™ TE[s,t], wER™ xzeR" xrER?
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Taking the limit w — 0% in the inequality above then implies sup,¢(s  pern (%, T) < SUPgepn v(,1),
which completes our proof of the first inequality in (C.27]) above. For the second inequality regarding the

infimum, we note that sup(—v) = — inf v. Hence, the second inequality can be proved in the same way by
considering —v and the corresponding perturbation (—v)* := —v + w7. This concludes our proof of (C.20)
and Lemma O]

With the two lemmas above, we may now prove stability of the PDE (C.21)). In general, consider any
two solutions ¢ (z,t) (i = 1,2) to (C.21) with two different initial conditions ¢ (z,0) = ¢{" () and
4@ (2,0) = ¢\” (@), i.c.,

0 1 * (1 7 .
200, t) = (Pra?) @)+ (49) .6 =1,2) (C.33)
Applying the formula (C.23)) derived in Lemma above, we also have that the two solutions satisfy

0D (@, ) = Up.ql” + /0 t (us,tAs (qﬁ“)) ds (i = 1,2). (C.34)

We further use () := ¢ (x,t) — ¢'® (x,t) to denote the difference between the two solutions. Then it
suffices to show that the total variation

2
can be upper bounded by the initial error TV (q(1 (-,0),¢?(-,0)) = 2 [|ro]| ;1 up to some constant depending

on y and ¢. In fact, taking the difference of the two equations in (|C.34) and applying the linearity of the
two-parameter semigroup operator U ;, we have that

o (s — o >>+/tust<A <“>>—A (4)) as
.

< o (4 - o) /y e (3 (4 =2 (42)]

((”)H s

where the first and second inequality above follows from triangle inequality and contractiveness of the
semigroup operator proved in Lemma above, respectively. Moreover, plugging in the expression of A

defined in (C.17)) above yields
[ (@) =2 ()], = o] 1@e9) (4 = a2) = (190,00 1200 + (1 9),02) 20

<s Hl(wa 5) (qﬁ” - Q§2)) Hu +s H (<I(-7 s), ¢ — q§2)>L2) qs”HLl (C.37)

+8H(< $),¢)L )(flﬁ”*(ﬂﬁ”)’

Furthermore, applying the upper bound on I(x, s) in Assumption [4.4] then yields that for any @ and s € [0, ¢],
(1) _ 4
=By Hqs as

|r6.5) (o - a?) B
o= ([ st o - @) ae) (| q§1><w>dw>

(1), a0 = )r2) g
<5, | 1q§1>(a:> - q§2><m>] = By [Ja® — of

1
= 5lrellga (C.35)

Ll

7]l 1

ds (C.36)
1

<[]+

2N

(C.38)

() (-, <[
:< I(@,5)|a.” (2 )dﬂ?)IHqﬁl)—qﬁ
<% </ 0% (@) dm) Hq(l) =By HQ§” —q!
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Substituting the three bounds derived above into (C.37)) and (C.36) then gives us that

t
Irell o < liroll 2 + / 3Bys [0 — o] ds < [ 3Byslrlids+ ol (C.39)
J0

ft 3By sds

Applying Gronwall’s inequality then implies that ||r¢| . < ||7o][,. e/o 3Byt

= ||roll . €27¥", d.e.,
. 1 1 3
TV (00,8, 42 (1) = S Irellr < 5 lroll o 250" = AP TV (¢0(,0),¢P(,0)) . (C.d0)

By taking ¢ (-,t) := Jo,y,¢ and g (1) := Ja,y,¢ in the stability inequality above, we obtain that

~ ~ 3 2 5 ~ 3 I N 3
TV (Ga,y,1 Goy,) < €277 TV (Go,y,0, Ga,y,0) = CL,%“TV (@o,y,0, 4oy (-, 0)) = Cz(/,%“ef’ (C.41)
where €; is the initial error introduced before Theorem above and C!(f .= ¢3ByT” i some constant

depending on y,7T only. This concludes our proof of thc upper bound for the second term on the RHS

of .

Finally, substituting the two upper bounds proved in Appendix and above into (C.2)) yields

Tv(qayTaQyO) <C(2)\/ T2 +T2 2+CyT6]7

which concludes our proof of Theorem 1} In particular, for the case when the initial sampling error e; = 0,
balancing the two terms in the last expression above also yields TQZ =12 je, T =, /2% gives us the

optimal upper bound
TV(qAa,y,T7 Qy,O) < 0:152) Vv M2eEg,
which is proportional to the square root of the score matching error defined in Assumption

C.2 Proof of Theorem

Our proof of Theorem [4.2]is mainly based on arguments from propagation of chaos (Sznitman| |1991; Lacker]

2018). Recall that
XN
-N Z JECIEH
i=1

N
denotes the joint measured formed by the N weighted particles {(wg), 9)} given by 1i and ~, is the
i=1
joint probability distribution of the single weighted particle (x,, ;) satisfying (3.5]).
Now we consider an auxiliary system of N weighted particles {(:L'EZ), t(l)) *, sampled identically and
independently from the single particle dynamics (3.5)), i.e.,

@ = (HED 1) — oVt )2vmuy(5§”)) dt + V(t)dw?,
B = (Vg (@7,1) =l H@, )Tty (@) = iy () ) Bt (C.42)
([ (Uatat) = B 07Ty ) = iy (@) (P () ) Bt

We note that the initial conditions of 1) are given by Eéi) = acgi) ~ Qo y(+,0) and Ei) =1 for i € [N].
Moreover, we have that the ( ,@) clo1] is the same standard Brownian motion used in li for any i € [N,

which implies :c( ) = mg ) for any ¢ € [N] and ¢ € [0,7]. Then we consider the joint empirical measure
1
N = — ~
W (@8) =5 Z_l 0@ 5) (C43)
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IEUINNIN '
formed by the N weighted particles {(5§Z)7 5151)) }

1=

given by (C.42).
1

Before we proceed, we establish the following upper bound:

Lemma C.5. The following upper bound on the absolute values of the weights holds for any t € [0,T]

max {13/, |51

1€[N]

[

} < exp (Bth) . (C.44)

Proof. Below we will only prove the upper bound in above for the weight 551) governed by ,
as the same upper bound for ﬂt(i) governed by and fB; governed by can be proved via the same
procedure. By integrating from 0 to ¢ on both sides of and applying the bound on I provided in the
statement of Theorem [£.2] we have that

0| <[ (e (387) = 0 B (80.7) Ty (&) = sy (227)) A0e] 4 )
+ /t (/ (U(y,y(m,T) - arﬁ(m,r)vauy(m) — ()(,’le,y (m)) (Psyr) (m)dm) Eg)dT
0 n

(C.45)
dr+1

S/
0

t
§2/ ByT‘Bg)
0

I (5@, T) B’Q)

t
dT+/
0

dr + 1,

T (/ I(z,7)(Psv-) (sc)da;> 3O

where the last inequality above follows from the assumed upper bound on I and Lemma [B4] which shows
that the weighted projection P~y is a probability measure on R" for any ¢ € [0,T]. Applying Gronwall’s

inequality to (C.45)) then yields the upper bound in (C.44}), as desired. O

Proof of Theorem[{.4 By recalling the definition of the Wasserstein-2 distance as follows

Wauo) = nt ([ e - sl ey ) (C.46)
R4 xR4

Pell(p,v)

where II(p1, v) denotes the set of couplings between any two distributions i, on R? for fixed d, we can apply
triangle inequality

lla + b3 < 2 (llall3 + 1I]13) .
and take expectation on both sides to deduce that for any fixed ¢ € [0, T] and 7 € [0, ], the following inequality
E Wi )] < 2E W3 (07 30)] + 2B WE (T, e )] (C.47)

holds for any N.

Taking supremum with respect to 7 € [0,¢] on both sides above then yields

sup E W5 (77, 77)] <2 sup E [Wi(h,370)] +2 sup E WS, 70)] - (C.48)
T€10,t] T€0,t] T€[0,t]

We then need to bound the two terms on the RHS of (C.47).
For the first term in (C.47)), we note that the empirical measure

1 N
T 2 Ol 50 @0 50,
1=1
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defined on R"T! x R"*! is a coupling between v~ and 7~ for any time 7 € [0,1]. Setting I' in (C.43) to be
such a coupling then gives us the following upper bound on the expected Wasserstein-2 distance:

)

2 . ~
|80 - B

N

~ 1 i)~

up VRO 32)] < sup. (NZE [
i=1

T€[0,t] TE€[0,t
N (C.49)
= iz sup E Uﬂt(i) 7@(1‘) 2] .
N 1 T€[0,t]
where the equality above follows from the observation a:l(f) = %gi) for any ¢ € [N] and t € [0,T].

Below, we use
L(z,t) := Uy y(z,t) — 0, H(2, )TV gty (2) — )iy (x)

to denote the drift function appearing in the dynamics (3.6) and (C.42). By plugging in the choices
s(t) = 1,0(t) = t stated in Theorem we then have

L="Usy— 0 H gy — )piy =t (af IV tiylls — atAmuy) — 2t P Vg ply — Ay ply = t1, (C.50)

where I = I(x,t) is defined in the statement of Theorem 4.2

Now we return to bound the RHS of (C.49)). By taking the difference between the two dynamics (3.6)
and 1| and applying triangle inequality, we then plug in iﬁ” = azgl) to obtain the following decomposed
upper bound for any 7’ € [0, 7] with fixed 7 € [0,¢] and i € [N]:

<[ (ar) (57 - 8))
(L p@r e @ne ) (5 - 59)|

| s (6N @) 1 (2.8) dwdﬂ‘

Rn+1
5 -5

d oo d =4
’dr’ﬂT' gy

ﬂ(z;) (0.51)

< 2By7'/

+ BI (z,7") (vi\f(w, B) — v+ (x, B)) dedB

7’ exp (ByT’Z) ,
Rt

where the last inequality above follows from (C.44) and assumed upper bound on the function I = 1 L.

Furthermore, we recall the following property of the Wasserstein distances Wy and Whs:

W)= s [ g (u(e) (e de < Waln) (€52

From the assumed upper bound on Lip (I) given in Theorem we have Lip (B%,I ) < 1. Setting

I /
e, 0) = &7
Yy

p:=+Y, and v := v, in (C.52) above for any 7’ € [0, 7] then implies

BI (@) (v (@, B) = 7o (. B) dwdﬁ‘ < BB Wy (4 7)

Rn (C.53)

< ByeByT/2W2 (77]—\’]777—’) .
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Substituting (C.53|) into (C.51)), squaring on both sides and applying AM-GM inequality indicate that for
any 7/ € [0,7] and i € [N]:

d 7 d (1 2 7 ~(3 2
‘(17_,57(./) — diﬁf./) ﬁi/) - 57(_/) + ByT/ exp (QByT/Q) Ws (fy_lr\,r, ’yT/))

7_/

< (28,7

(C.54)

L2
< 8337/2 ﬁi,) - BL) + 2337"2 exp (4Bym?) W3 (AN, v+) -

Integrating from 7" = 0 to 7/ = 7 on both sides above and applying Cauchy-Schwarz inequality imply that for
any 7 € [0,¢] and ¢ € [N]:
(Ao d e ] / ’ L
— B = , d < d
/0 (dT’ pr dr’ fr =7 0 4

o . ~y |2
§8B§T/ 729 — 3O a7 (C.55)
0

+ 27/ Bt exp (4Bym?) W3 (v, v ) d7r'.
0

2

N~ d d ~
(5 _ 3@ - O =10}
KA dr’ br dr’ br

L2
Applying Gronwall’s inequality to the function 2 BS) — 59 in (C.55)) above then yields

T

Lla0 _ 5
T T T

2 T T ’ ’
=7 (/ B2r" exp (4By ™) Wi (1, 77) dT’) eyt (C.56)
0

Then we multiply 7 and take the expectation on both sides of (C.56). A direct application of Fubini’s
Theorem then indicates that for any i € [N] and 7 € [0, ¢]:

?|

B — B

2 T
} < 27re2ByT /o 337/2 exp (4By7'/2) E [WQQ (’y,f_\{, 'yT/)] dr’

). [T (C.57)
< 2337’362397— 4By / sup E W3 (7N, vr)] dr’.
0 7el0,]
Taking supremum with respect to 7 € [0,¢] on both sides of (C.57) further implies
N (2 ¢
sup E [‘ﬂg) _ ﬁs_l) :| < 2B§t3623124t4+4Byt2 / sup E [W22 ('7?’77’77")] d’T, (058)
T€[0,t] 0 €[0,7]
for any 7 € [N] and t € [0,T].
Substituting (C.58)) above into (C.49) and then (C.48)) indicates
t
sup E [W3(vN,7,)] <4B2i3e2But' +4But* / sup B [W3 (v, 7)) dr
T€[0,¢] 0 €l0,7]
+2 sup B W3GEY 7))
o (C.59)
S/ 4B§T36235T4+43y7~2 sup E [WQQ (Vi\{v%')} dr
0 7/€[0,7]
+2 sup EW(Y )]
T€[0,t]
for any ¢ € [0, 7.
Applying Gronwall’s inequality again to the function Sup,cjo,4 E [W22 (v, fyT)] further implies that
sup B [W3(327,)] < 2exp (ABXTBETHBT) sup B WG )] (C.60)

T€[0,t] T€[0,t]
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for any t € [0, 7).
By setting t = T in (C.60]) above and taking the limit N — oo, we then have

Jim B VG 50)] = Jim BRG] =0

for any 7 € [0,T] with T fixed, where the last equality above follows from Lemma and the law of large
numbers (See, for instance, (Lacker, 2018, Corollary 2.14)). This concludes our proof. O

Remark C.6. We note that one may also adopt similar arguments used in (Domingo-Enrich et all |2020)
to prove existence and uniqueness of solutions to the SDE systems (@ and . In fact, such type of
mean field analysis based on arguments from propogation of chaos have been widely adopted for studying
different types of PDEs arising from subfields of not only physical sciences but also data sciences, such as fluid
dynamics (Goodman et al), [1990), kinetic theory (Carrillo & Vaed, |2021; [Borghi & Pareschi, [2025), theory
of two layer neural networks (Mei et al., |2019; |Hu et all, |2021), ensemble-based sampling and variational
inference (Lu et all, [2019d; Kelly et al., 2014} |Schillings & Stuard, [2017; [2018; [Ding & Li, [2021dlb)). For
some good reference on related mathematical models, one may refer to (Muntean et all, |2016). Therefore, it
would be of independent interest to investigate whether we can develop more refined mathematical theory for
the two sampling algorithms proposed in this paper by combining perspectives from gradient flows or numerical
analysis. Moreover, it would also be interesting to investigate how existing mathematical theory (Eberle €
Marinelli, [2006; |Schweizer|, [2012; |[Eberle & Marinelld, [2013; [Beskos et all, [2014b]d; [2016; |Giraud & Del Moral,
12017) developed for SMC' can be applied to analyze Algorithm@ and Algom'thm that we proposed here.

D Additional Implementation Details for Linear Inverse Problems

D.1 Datasets, model checkpoints and inverse problem setups

Data usage We mainly test our methods and the baseline methods on the FFHQ-256 (Karras et al., 2019)
dataset and the ImageNet-256 (Deng et all [2009) dataset. All images used for the tests in this paper are in
RGB. For FFHQ-256, the 100 testing images were selected to be the first 100 images in the dataset, whoses
indexes range from 00000 to 00099. For ImageNet-256, the 100 testing images were selected to be the first
100 images in the ImageNet-1k validation set.

Model checkpoints The two pretrained score functions for the FFHQ-256 and the ImageNet-256 datasets
used in this paper were directly taken from the ones used in (Chung et all [2022)), which are available
in the following Google Drive El However, since these checkpoints were all trained based on the DDPM
formulation 2020)), we adpoted the same transformation used in (Wu et all, 2024¢)) to convert the
pretrained score function from the DDPM formulation to the EDM formulation (Karras et al.,[2022). One
may refer to the “Preconditioning” subsection in Appendix C.2 of (Wu et all, [2024c) for an explicit formula
of the transformation deployed here.

Inverse problem setups Below we provide a discussion on the mathematical formulations of the four
inverse problems we tested on here.

Super-resolution The forward model in (2.1]) associated with the super-resolution problem we test on
here can be written as

y=Prx+n

where Py € R7*™ implements a block averaging filter that downscales each image by a factor of f and
n ~ N(0, 0.2I%). Using similar setups as many previous work (IChung et al.l7 |2022|; |Kawar et al.|, |2022F

2024c|) on solving inverse problems via diffusion models, here we pick f = 4.

IPretrained score functions used in (Chung et al., [2022)
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Gaussian and motion deblurring The forward model associated with any deblurring problem can be
summarized as
y=DBirx+n

where n ~ N (0,0.21,,) and By € R™™" is a circulant matrix that realizes a convolution with the kernel k
under circular boundary condition. Again, we adopt the same settings used in most previous work (Chung
et al.l [2022; [Kawar et al., |2022; [Wu et al., 2024c).

Specifically, for the Gaussian deblurring problem, the convolutional kernel & is fixed to be a Gaussian kernel
of standard deviation 3.0 and size 61 x 61. For the motion deblurring problem, the kernel & is randomly
generated via code used in previous work (Kawar et al.| [2022; Wu et al., 2024c), where the size is chosen to
be 61 x 61 and the intensity is set to be 0.5. In order to ensure a fair comparison, we use the same motion
kernel k for each image across different methods.

Box inpainting The forward model for the box inpainting problem is given by
y=Dx+n

where n ~ N(0,0.21,) and D is a diagonal matrix with either 0 or 1 on its diagonal. In particular, here we
choose D such that a centered square patch of size 64 x 64 (i.e., the side length is a quarter of the original
image’s side length) is masked out.

D.2 Implementation details of AFDPS and all baseline methods

Regarding computing resources, all experiments included in this paper were conducted on NVIDIA RTX A100
and A6000 GPUs. A major part of the code implementing Algorithm [2]and [] in this paper were adapted from
the following Github repositorylﬂ Specifically, we used the same numerical discretization as that of the EDM
framework (Karras et al., 2019), which is also deployed in (Wu et al., [2024c|). One major difference is that we
had tuned the terminal time to be 7' = 8 for both AFDPS-SDE (Alg. [2) and AFDPS-ODE (Alg. [4)), while T
is set to be 80 for both the SGS-EDM method (Wu et al., 2024c|) and the original EDM framework (Karras
et al.l 2022)). Moreover, we increased the number of discretized timesteps as our methods avoids running
multiple backward diffusion processes for different iterations. Specifically, for AFDPS-SDE the number
particles and discretized timesteps were set to be 10 and 2000, respectively. For the AFDPS-ODE method, in
order to control the total number of evaluations (NFEs), we set the number of particles, discretized timesteps
and number of corrector steps at each time to be 5, 1000 and 4, respectively. Moreover, for both AFDPS-SDE
(Algorithm [2)) and AFDPS-ODE (Algorithm , we save computational cost by skipping the resampling step
specified in Algorithm [I] in our implementation, which allows us to implement the dynamics of the particles’
positions and weights in a parallel way. Finally, we return the particle associated with the largest weight as
our best estimator of the recovered image. Given that we already take the logarithm of the weights in both
AFDPS-SDE and AFDPS-ODE, they are guaranteed to remain numerically stable as time increases.

Here we further elaborate on the implementation details associated with the baseline methods. One thing to
note is that two extra baselines are included in the extended numerical results presented in Tables [T] and 2]
above. The following list provides an extended summary of these baselines and how we choose the parameters:

e DPS (Chung et all,|2022): a method that performs posterior sampling by guiding the reverse diffusion
process with manifold-constrained gradients derived from the measurement likelihood, enabling efficient
inference in general noisy (non)linear inverse problems. We adopt most parameters usedin the default
setting. The only difference is that we increase the number of discretized timesteps from 1000 to 1500,
which helps make the method more tolerant of problems with higher observational noises

e DCDP (Li et al) |2024b): a framework that alternates between data-consistent reconstruction and
diffusion-based purification, which decouples data fidelity and prior sampling to improve flexibility and
performance in image restoration tasks. In order to make the DCDP method adaptive to problems
with higher observational noise, we change their settings by picking the number of iterations involved
in both the data-reconstruction step and the diffusion-based purification step to be 100. Regarding

2Source code for (Wu et al., [2024c)
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the learning rates used for the data-reconstruction step, we have tuned them to yield the best possible
performance. Specifically, the learning rates for the Gaussian deblurring, box inpainting, motion deblurring
and super-resolution problems were set to be 10,7,10 and 3, respectively.

e SGS-EDM (Wu et all 12024¢): a method that couples a split Gibbs sampler with a diffusion model,
interpreting posterior inference as alternating between likelihood-based updates and Gaussian denoising
via a learned generative prior. For the SGS-EDM method, we adopt the default setting used in (Wu et al.,
2024c]).

o FK-Corrector (Skreta et al.,|2025): a method that uses the Feynman-Kac formula to design corrector steps
within a sequential Monte Carlo framework, improving the accuracy of samples from forward diffusion
trajectories. We use the same set of parameters deployed in the AFDPS-SDE method by setting the
number of particles and discretized timesteps to be 10 and 2000 as well, which ensures a fair comparison.

e PF-SMC-DM (Dou & Song, |2024)): a framework that formulates posterior sampling as a particle filtering
problem, combining sequential Monte Carlo with diffusion models for efficient inference in high-dimensional
spaces. Again, to ensure a fair comparison, we increase the number of particles and discretized timesteps
to be 10 and 2000 for PF-SMC-DM as well.

E Additional Experimental Results and Discussions

In this section, we provide additional experimental results and detailed qualitative comparisons between our
proposed methods and existing baselines.

Summary. Across the diverse inverse problems evaluated on FFHQ-256 and ImageNet-256 (detailed in
Table [If and Table , the AFDPS framework consistently delivers strong results. The AFDPS-SDE variant,
in particular, frequently distinguishes itself by producing visually compelling outcomes, excelling in the
generation of sharp details and fine textures that contribute to high perceptual quality. This is evident in
FiguresBlj6}] where AFDPS-SDE’s reconstructions often appear more intricate and realistic. The AFDPS-ODE
variant also provides coherent results, which are typically characterized by a notable smoothness. For
tasks where capturing the utmost detail and textural accuracy is paramount, AFDPS-SDE often provides a
particularly effective solution, frequently leading in or strongly competing for the best perceptual metrics
(LPIPS).

Gaussian Deblurring. In Gaussian deblurring, AFDPS-SDE showcases its ability to produce perceptually
rich outputs, achieving the best LPIPS on ImageNet-256 (0.3925) and a competitive LPIPS on FFHQ-256
(0.2580). Figure [3| highlights SDE’s strength in rendering sharp, defined textures like the dog’s fur (ImageNet,
row 2). Concurrently, AFDPS-ODE achieves high PSNR, on both datasets and the best LPIPS on FFHQ-256
(24.98 PSNR, 0.2560 LPIPS), delivering notably clean and smooth outputs, for example, on the baby’s facial
skin (FFHQ, row 2).

Motion Deblurring. For motion deblurring, AFDPS-SDE demonstrates strong perceptual quality, securing
the best LPIPS score (0.2869) on FFHQ-256, while PF-SMC-DM leads in PSNR. Figure 4] emphasizes SDE’s
proficiency in transforming blurred images into sharp, detailed reconstructions, meticulously recovering fine
details like individual hair strands in FFHQ portraits (e.g., row 5). AFDPS-ODE also effectively removes
blur, yielding coherent results, typically with a characteristically smoother finish.

Super-Resolution. AFDPS-SDE stands out in super-resolution, achieving the best PSNR and LPIPS
scores on both FFHQ-256 (22.96 PSNR, 0.3063 LPIPS) and ImageNet-256 (20.97 PSNR, 0.4643 LPIPS).
Figure [5| compellingly shows SDE generating sharp, highly detailed images from severely degraded inputs,
adeptly reconstructing fine facial features (FFHQ, row 2 and 5) and intricate object textures like butterfly
patterns (ImageNet, row 2). AFDPS-ODE also provides coherent upscaled outputs, especially for FFHQ
dataset, reaffirming the metrics in the tables.

Box Inpainting. In box inpainting combined with denoising, AFDPS-SDE shows robust performance,

securing the highest PSNR on ImageNet-256 (23.15). Figure [6] highlights SDE’s ability to generate detailed
and realistically textured inpainted regions, such as the intricate dog fur (ImageNet, row 1) or sharp keyboard
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key structures (ImageNet, row 4). AFDPS-ODE also performs strongly, achieving best LPIPS on both
datasets (FFHQ: 0.1969, ImageNet: 0.2716) and best PSNR on FFHQ (25.73), producing notably smooth
and coherent fills, like seamless facial features (FFHQ, row 1).
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Figure 4: Additional visual examples for the motion deblurring problem on FFHQ and ImageNet.
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Measurement Ours (SDE) Ours (ODE) Ground Truth Measurement,  Ours (SDE) Ours (ODE) Ground Truth

Figure 5: Additional visual examples for the super-resolution problem on FFHQ and ImageNet.
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Figure 6: Additional visual examples for the box inpainting problem on FFHQ and ImageNet.
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