
AdaptLink: A Heterogeneity-Aware Adaptive Framework for Distributed MLLM
Inference

Xinyi Hu1, Zihan Chen2, Kun Guo3, Meng Zhang1, Howard H. Yang1*

1ZJU-UIUC Institute, Zhejiang University
2Singapore University of Technology and Design

3School of Communications and Electronics Engineering, East China Normal University
xinyih@zju.edu.cn, zihan chen@mymail.sutd.edu.sg, kguo@cee.ecnu.edu.cn, mengzhang@intl.zju.edu.cn,

haoyang@intl.zju.edu.cn

Abstract

Multimodal Large Language Models (MLLMs) have demon-
strated exceptional performance in tasks such as common-
sense reasoning and visual scene understanding. Despite their
success, deploying such models onto resource-constrained
edge devices remains challenging due to their cost-intensive
properties, while lightweight on-device deployment tech-
niques often compromise performance, which is particularly
undesirable for tasks requiring fine-grained generalization.
In this paper, we propose AdaptLink, a framework that en-
ables a set of edge devices to perform collaborative paral-
lel inference on MLLMs, fully utilizing the available but
heterogeneous resources. Unlike prior approaches that uni-
formly split the model and assign equal computational work-
load across devices, neglecting the diversity across their com-
putational and hardware conditions, AdaptLink dynamically
partitions the model into sub-blocks and assigns comput-
ing tasks based on device-specific capabilities, accounting
for heterogeneous computational power, memory capacity,
and inter-device bandwidth. AdaptLink achieves desirable in-
ference performance by ensuring parallel execution, mini-
mizing idle time, and optimizing resource utilization. Addi-
tionally, the proposed framework incorporates a stability as-
surance mechanism by pre-loading backup sub-blocks onto
inactive devices, aiming to mitigate delay caused by de-
vice dropout and redeployments. Extensive experiments on
LLaVA-series models demonstrate that compared to base-
line methods, AdaptLink achieves up to a 1.37× speedup in
inference throughput while maintaining model performance.
These results underscore the potential of AdaptLink as a ro-
bust solution for deploying large-scale MLLMs in mobile
edge systems, offering efficiency and adaptability in hetero-
geneous networks.

Introduction
The advent of Multimodal Large Language Models
(MLLMs) represents a groundbreaking transformation in
AI capabilities, augmenting off-the-shelf LLMs (OpenAI
2023; MetaAI 2024) to support seamless integration of
vision and language via cost-effective training strategies.
The emergence of MLLMs, including LLaVA series (Liu
et al. 2023c, 2024, 2023b), BLIP-2 (Li et al. 2023a), and

*Corresponding author
Copyright © 2025, Association for the Advancement of Artificial
Intelligence (www.aaai.org). All rights reserved.

Flamingo (Alayrac et al. 2022), has unlocked new pos-
sibilities for multimodal applications. These models can
process and analyze complex visual inputs, such as high-
resolution images and lengthy videos, and generate coher-
ent and contextually accurate textual outputs. This techno-
logical leap has paved the way for applications ranging from
autonomous systems (Cui et al. 2024) and smart homes (Li
et al. 2024b) to healthcare (Liu et al. 2023a) and entertain-
ment (Ge et al. 2024; Qin et al. 2024). Nonetheless, a criti-
cal challenge remains–these advancements also impose sig-
nificant computational demands (Chen et al. 2024), particu-
larly in tasks involving long video understanding (Ren et al.
2024) or generating detailed and extended textual descrip-
tions from high-resolution visual inputs (Li et al. 2024c).
Moreover, deploying MLLMs over edge networks further
exacerbates these challenges due to limited computational
power, memory, and network bandwidth.

Recent efforts to deploy MLLMs in edge devices could
be mainly categorized into two themes. One involves tak-
ing existing pre-trained MLLMs and reducing the model
size to fit resource-constrained devices through compres-
sion techniques such as pruning (Wang et al. 2024b), quan-
tization (Lin et al. 2024; Zhang et al. 2024b), and distil-
lation (Wang et al. 2024a). However, this inevitably incurs
performance loss. The second theme involves collaborative
edge computing, capitalizing on the substantial resources
available on the geo-distributed edge devices. For example,
the Cloud-Edge method (Wang et al. 2023; Chen et al. 2023)
partitions the model into two parts evenly: one is allocated to
the edge device, and another is allocated to the cloud server.
While this protects privacy, transferring intermediate activa-
tions does require much more than transferring data, intro-
ducing more significant latency than deploying the model in
the cloud. On the other hand, techniques (Zhang et al. 2024c;
Zhao et al. 2024) like EdgeShard underutilized computa-
tional resources due to the sequential inference structure.
Thus, even when multiple edge devices are available, they
cannot be effectively exploited to accelerate inference fur-
ther. This underscores the need for methods that efficiently
utilize multiple edge devices to accelerate inference without
compromising performance.

To improve the responsiveness and accuracy of device
models within privacy-sensitive environments, we present
AdaptLink, a framework that enables the distributed deploy-



Edge Network

AdaptLink

Collect Device 
Information

Deployment
Adapting to 

Edge Network

Real-World Application
Cloud

Server
Primary
Device

Secondary
Device

Backup
Device

Is there anything to eat or drink?

Assistant: There are also some snacks, like 
a bag of chips, a box of cereal, some cola, and 
energy drinks.

User:

User: What else do I need to buy for my 
two classmates who will be coming to play?

Assistant:

strawberries—easy to snack on.

Along with the food you already
have, consider adding some fresh fruit and
sweet treats, such as, ice cream, cookies and

Assistant:

Server Holds the Full Model Edge Devices Hold Sub-blocks

Figure 1: AdaptLink designed for privacy- and latency-sensitive scenarios, embodies a collaborative parallel inference paradigm
for heteroogeneous edge networks. As illustrated on the left side of the figure, our approach efficiently utilizes the computational
redundancy of local edge devices to enable device-to-device collaborative inference, reducing response time while safeguarding
user privacy. Additionally, the inclusion of backup devices enhances the adaptability of MLLMs deployed on edge, allowing
them to respond seamlessly to dynamic participation, such as device joining or exiting. On the right is an application example
of AdaptLink, showcasing its capability to deliver accurate and rapid responses.

ment of MLLMs across heterogeneous edge devices in col-
laborative manner. As depicted in Figure 1, our approach
is built upon tensor parallelism, which divides the trans-
former block into multiple sub-blocks of different sizes,
each assigned to a different device. The core idea is to as-
sign computational tasks according to the device’s capabil-
ity (e.g., computational power, memory capacity, and inter-
device bandwidth). For powerful devices (named primary
devices), we assign more computationally demanding tasks.
On the contrary, weak devices (named secondary devices)
afford less computing loads. In this fashion, it ensures all
activated devices complete their computations and commu-
nication in parallel, minimizing idle time and maximizing
resource utilization. Besides, our framework also provides
a stability assurance mechanism via preloading backup sub-
blocks onto inactive devices (named backup devices) to mit-
igate the extra delay in the case of device dropout and rede-
ployments.

Note that in our framework, these devices are considered
“trusted”, allowing less powerful secondary devices to ben-
efit from MLLM services without risking data leakage. For
instance, mobile devices shared among various applications
(e.g., surveillance systems, smart TVs, and robotic vacuums)
or a trusted group of family and friends in a smart home
environment can collaboratively process different computa-
tional modules of MLLM inference in parallel, thus ensuring
both efficiency and privacy security. This collaborative com-
putation also minimizes the need for extensive quantization
of model weights while maintaining model performance. To
summarize, our paper presents the following contributions:

• We propose a general framework for deploying MLLMs
in edge networks, enabling collaborative inference across
heterogeneous edge devices.

• Our method classifies available devices into primary and

secondary groups based on computational capabilities,
memory, and bandwidth. By dynamically partitioning the
model, our method achieves balanced workload distribu-
tion and maximizes resource utilization.

• We introduce a mechanism to preload backup sub-blocks
onto inactive devices, effectively reducing latency caused
by device dropouts or redeployments.

• Our method achieves up to 1.37× speedup in inference
throughput on LLaVA-series models while preserving
model performance.

Related Work
MLLMs
MultiModal pre-training research has witnessed significant
advancements in recent years (Zhang et al. 2024a), consis-
tently pushing performance boundaries across a spectrum
of downstream tasks (Li et al. 2020; Wang et al. 2022;
Zellers et al. 2022; Cai et al. 2024; Ye et al. 2024). The de-
but of GPT-4 (Vision) (OpenAI 2023) and Gemini (Team
et al. 2023) marked a turning point, showcasing impres-
sive multimodal understanding and generation capabilities
and sparking a research fervor on MLLMs. Early research
primarily focused on multimodal content comprehension
and text generation. For instance, BLIP-2 (Li et al. 2023a),
LLaVA (Liu et al. 2023c), MiniGPT-4 (Zhu et al. 2023),
and OpenFlamingo (Awadalla et al. 2023) advanced image-
text understanding, while works like VideoChat (Li et al.
2023b), Video-ChatGPT (Maaz et al. 2023), and LLaMA-
VID (Li, Wang, and Jia 2025) extended these capabilities
to video-text understanding. Subsequently, the functional-
ity of MLLMs has expanded to support specific modality
outputs. For example, GILL (Koh, Fried, and Salakhutdi-
nov 2024), MiniGPT-5 (Zheng, He, and Wang 2023), and



SpeechGPT (Zhang et al. 2023) targeted visual, textual,
and speech generation, respectively. Recent efforts have
sought to mimic human-like any-to-any modality conver-
sion, as exemplified by Visual ChatGPT (Wu et al. 2023),
HuggingGPT (Shen et al. 2024), and AudioGPT (Huang
et al. 2024). These advancements shed light on the path
to artificial general intelligence. However, as the scale of
models and datasets expands, the excessive computational
costs of MLLMs impede their deployment, particularly in
resource-constrained environments. Existing methods like
pruning (Wang et al. 2024b), quantization (Lin et al. 2024),
and distillation (Wang et al. 2024a) trade off efficiency
for performance, while collaborative edge computing ap-
proaches often underutilize available resources (Zhang et al.
2024c; Zhao et al. 2024).

To address these computational challenges, this work in-
troduces a new paradigm for on-device MLLM deployment.
By leveraging parallelism across multiple heterogeneous de-
vices, our approach ensures efficient resource utilization
while maintaining model performance. This represents a
critical step toward enabling MLLM inference in resource-
constrained settings.

On-Device Deployment

MLLMs are both computationally intensive and memory-
demanding, presenting significant challenges for deploy-
ment in resource-constrained environments. To address the
*memory wall* problem, quantization has emerged as a
widely adopted technique (Xie et al. 2024; Jin et al. 2024).
For instance, AWQ (Lin et al. 2024) refines the quantization
process by prioritizing the preservation of salient weights,
while SmoothQuant (Xiao et al. 2023) mitigates activa-
tion outliers through per-channel smoothing factors, facili-
tating more effective activation quantization. Despite these
advances, quantized MLLMs still face two critical limita-
tions: (1) the computational power and memory capacity of
a single device remain insufficient for handling large-scale
models, and (2) the performance of quantized models often
falls short of their full-scale counterparts. To overcome these
limitations, other methods have explored distributed com-
putation across multiple devices. PrivateLoRA (Wang et al.
2023) distributes computations between cloud servers and
edge devices, while EdgeShard (Zhang et al. 2024c) parti-
tions models layer-by-layer, assigning them across edge de-
vices. Similarly, LinguaLinked (Zhao et al. 2024) enhances
system stability by repeatedly deploying model layers on de-
vices. However, these approaches are often constrained by
sequential inference or fine-tuning, leading to underutiliza-
tion of device capabilities and increased communication la-
tency.

In contrast, our proposed inference framework introduces
a novel approach by leveraging adaptive parallel computa-
tion to fully exploit the arithmetic capabilities of heteroge-
neous edge devices. By dynamically adjusting the computa-
tional workload assigned to each device, our method mini-
mizes the additional latency incurred by inter-device com-
munication, offering an efficient and scalable solution for
deploying MLLMs in edge environments.

System Model
In this section, we detail our system model for deploying
MLLMs in distributed edge networks with powerful de-
vice, two secondary and backup devices as example, clar-
ifying key objective that guides the optimization direction.
We identify existing challenges and potential improvements
within these systems and establish the performance met-
rics used throughout this paper. Notably, this system model
is versatile, supporting a range of complex reasoning tasks
based on the MLLM backbone, including those involving
image, video, and multimodal representations.

Consider a distributed edge network comprising a global
server and D edge devices. In this setup, the global server
partitions the MLLM into K sub-blocks—typically by
layer (Zhang et al. 2024c; Zhao et al. 2024)—and allocates
them to selected devices for collaborative inference, ensur-
ing user privacy by not sharing any data with the server. The
devices exhibit heterogeneous computational and memory
capabilities, with the global server possessing significantly
greater computational resources than the edge devices. The
memory wall is denoted by Mava, and the required mem-
ory of the sub-block is denoted by Mreq. Besides, we use a
binary variable Hk,d to indicate whether sub-block k is allo-
cated to device d. The goal of all the entities is to minimize
the overall inference latency, formally expressed as:

min

(
K∑

k=1

D∑
d=1

T k,d
compHk,d +

K∑
k=1

D∑
d=1

D∑
d′=1

T k,d,d′

comm Hk,dHk,d′

)

s.t.
K∑

k=1

Mk
reqHk,d ≤ βMd

ava, ∀d ∈ {1, . . . , D},

(1)
where the component T k,d

comp is defined as follows:

T k,d
comp =

Fk

Pd
, (2)

where Fk denotes the number of floating-point operations
(FLOPs) for sub-block k, and Pd represents the FLOPs per
second (FLOP/s) of device d. The other component T k,d,d′

comm
is defined as:

T k,d,d′

comm =

{
Ok

Bd,d′
, if d ̸= d′

0, if d = d′,
(3)

where B represents the bandwidth between two devices, and
O denotes the size of the sub-blocks’ output.

Notably, most existing research partition models by layers
to perform sequential inference (Zhang et al. 2024c; Zhao
et al. 2024) or partition and assign models by tensors uni-
formly (Xu and You 2023; Li et al. 2023c), enabling large
model functions to operate locally on resource-constrained
devices. However, from a system perspective, sequential
reasoning is inefficient because it underutilizes device re-
sources by keeping other devices idle during individual com-
putations. As a result, this approach falls short in optimizing
response time, resource utilization, and adaptability, partic-
ularly in scenarios with significant differences in the com-
putational power of edge devices.



Self-Attention

Add + Normalize

Add + Normalize

Primary
Device

FFN1 FFN2 FFN3 FFN5FFN4

Secondary 
Device 1

FFN4

Backup 
Device 1 

FFN5

Backup 
Device 2 

Secondary 
Device 1

Figure 2: Illustration of transformer block partitioning, using
the FFN layer as an example.

To reduce model response time, a natural approach is
to minimize inter-device communication time and enable
parallel computation across multiple devices. Therefore, in
this paper, we propose the AdaptLink framework, which
maximizes computation on capable devices (i.e., primary
devices) and delegates less complex computations to sec-
ondary devices to enable parallel processing. This approach
requires transmitting only a few parameters, enhancing col-
laborative inference efficiency. Additionally, AdaptLink de-
ploys redundant blocks on inactive devices to ensure fault
tolerance against secondary device dropout, thus enhancing
the overall resilience of the framework.

AdaptLink Framework
In contexts such as smart cities, autonomous vehicles, and
industrial IoT, edge networks demand both high responsive-
ness and adaptability, particularly given the dynamic nature
of edge devices, which can unpredictably disconnect from
or rejoin the network. These dynamic conditions necessi-
tate a robust framework that can seamlessly manage and
distribute computational workloads across available devices
while maintaining low-latency responses. AdaptLink intro-
duces a novel approach that harnesses the collective com-
putational resources of edge devices, effectively balancing
communication overhead with processing power to optimize
efficiency and responsiveness. Its key components include:

• Edge Network Profiling: The cloud server gathers critical
metrics from the edge network, such as device memory
constraints, computational capacities, and inter-device
bandwidths.

• Model Partitioning: The model is divided into sub-blocks
based on a predefined strategy for parallel computation.

• Dynamic Allocation: AdaptLink allocates sub-blocks to
edge devices tailored to each device’s capabilities and the
network’s overall resource distribution.

• Stability Assurance: A stability mechanism dynamically
adapts to changes in the edge network, ensuring consis-
tent performance even under fluctuating device availabil-
ity or capacity.

𝑏𝑏𝑏𝑏

ℎ

ℎ

4ℎ

× 𝑏𝑏𝑏𝑏

4ℎ

𝑋𝑋11 𝑋𝑋12
𝑋𝑋21 𝑋𝑋22

𝑏𝑏𝑏𝑏/𝑞𝑞

ℎ/𝑞𝑞

𝑋𝑋11 𝑋𝑋12

ℎ/𝑞𝑞

4ℎ/𝑞𝑞

𝑊𝑊11 𝑊𝑊21

𝑊𝑊11 𝑊𝑊12
𝑊𝑊21 𝑊𝑊22

𝑋𝑋𝑋

𝑋𝑋21 𝑋𝑋22

𝑋𝑋21 𝑋𝑋22

𝑊𝑊12 𝑊𝑊22

𝑊𝑊11 𝑊𝑊21

𝑊𝑊12 𝑊𝑊22

𝑋𝑋11𝑊𝑊11 + 𝑋𝑋12𝑊𝑊21𝑏𝑏𝑏𝑏/𝑞𝑞

𝑋𝑋11𝑊𝑊12 + 𝑋𝑋12𝑊𝑊22

𝑋𝑋21𝑊𝑊11 + 𝑋𝑋22𝑊𝑊21

𝑋𝑋21𝑊𝑊12 + 𝑋𝑋22𝑊𝑊22

× =

× =

× =

4ℎ/𝑞𝑞

C
on

ca
te

na
te

=

(a) Matrix multiplications on single device 

(b) Parallel matrix multiplications on multiple devices 

Figure 3: Illustration of the 2D non-uniform partition.

Model Partition for Parallel Inference
The backbone of MLLMs typically comprises multiple
transformer layers stacked sequentially. Each transformer
layer contains a self-attention layer and a feed-forward net-
work (FFN) layer. These two components have comparable
parameter sizes and share identical input-output activation
shapes, represented as [b, s, h], where h denotes the hidden
state size, b the batch size, and s the sequence length. In this
section, we introduce a generalized 2D partitioning strat-
egy (Xu and You 2023) to optimize layer partitioning for
parallel inference.

Notably, approximately 90% of the computation within
a transformer block is concentrated in the FFN layer, mak-
ing it a particularly compelling target for parallel execution.
While this section focuses on the FFN layer illustrated in
Figure 2 shown. The same partitioning methodology can be
applied to the self-attention layer.

We employ a 2D partitioning strategy (Xu and You 2023)
to accelerate the inference of extremely large-scale MLLMs.
The FFN layer consists of two matrix multiplications sepa-
rated by a non-linear activation function. In the first matrix
multiplication, we compute the product X ′ = W × X , as
Figure 3 (a) shown, where X ∈ Rbs×h represents the input
and W ∈ Rh×4h denotes the weight matrix.

To enable parallel processing, the weight and input ma-
trices are uniformly divided into q × q sub-blocks, resulting
in submatrices Wij , Xij , and X ′

ij , where i, j ∈ {1, . . . , q}.
The computational work of these submatrices will be sub-
sequently distributed according to the capacity of the de-
vices. The matrix multiplications are then executed in par-
allel across these sub-blocks, as Figure 3 (b) shown. For
each sub-block k, the k-th column of W and the k-th row of
X are broadcast across their respective rows and columns,
allowing distributed processors to compute partial products
independently. The partial product for each submatrix is cal-
culated as:

X ′
ij =

q∑
k=1

Wik ×Xkj . (4)

This block-wise computation, combined with strategic



broadcasting, minimizes inter-processor communication by
ensuring that necessary data is localized within each proces-
sor after the broadcast. Once all partial products are com-
puted, the final matrix X ′ is reconstructed by aggregating
the results from all processors. The second matrix mul-
tiplication follows the same partitioning and computation
methodology, ensuring consistent efficiency throughout the
FFN layer. Overall, the 2D non-uniform partition strategy
introduces some communication overhead but significantly
reduces the memory and computational demands on indi-
vidual devices, thereby lowering the barriers to on-device
model deployment.

Dynamic Allocation Strategy
Previous parallel approaches (Li et al. 2024a; Shoeybi
et al. 2019; Xu and You 2023) generally assign tensors
equally across devices, as these approaches are primarily
designed for high-performance cluster environments. How-
ever, such strategies are unsuitable for heterogeneous edge
networks, where device capabilities, such as computation
speed and memory, vary significantly and require tailored
allocations to maximize efficiency. To address this issue,
AdaptLink deploys as many sub-blocks as possible on high-
capability devices (primary devices), while less powerful de-
vices (secondary devices) serve in an auxiliary computation
role. AdaptLink implements a layer-by-layer allocation strat-
egy, beginning with the last transformer layer and iterating
through each layer in sequence. For each layer, AdaptLink
assesses whether the primary device has sufficient memory
to perform the inference. If memory is insufficient, a portion
of the FFN’s computation is offloaded to the secondary de-
vice. Once a layer is allocated entirely to the primary device,
no further divisions are made for preceding layers.

In a transformer block, the computationally intensive FFN
layer is offloaded to a secondary device, while the remain-
ing computations are retained on the primary device. The
proportion of FFN computations handled by the primary de-
vice is denoted as p, with 1− p representing the portion ex-
ecuted by the secondary device. The primary device’s com-
putation time for the FFN layer is thus p · F

Ppri
. To complete

the sub-blocks’ computation, the primary device must wait
for the secondary device to finish its auxiliary calculations,
resulting in a waiting time of (1−p)

(
F
Psec

+ O
B

)
. Since both

devices need to complete their respective tasks before pro-
gressing to the next computation stage, p is adjusted to bal-
ance the load, aiming for both devices to finish their tasks in
approximately the same time to minimize idle periods. The
optimal value of p could be obtained by solving the follow-
ing optimization problem:

argmin
p

∣∣∣∣p F
Ppri

− (1− p)

(
F
Psec

+
O
B

)∣∣∣∣ (5)

This approach ensures optimal load balancing between pri-
mary and secondary devices, enhancing overall efficiency.
This allocation policy is determined in the cloud, and once
sub-block parameters are deployed to edge devices, they re-
main unchanged.

Stability Assurance Mechanism
To improve the stability and robustness of our proposed
framework in the context of potential device dropout, we
adopt a stability assurance mechanism. In this mechanism,
sub-blocks on secondary devices are duplicated onto the in-
active devices to enhance system resilience. If a secondary
device fails, an inactive device with the same sub-block can
be activated to perform identical computation tasks. When a
new device joins the network, it is allocated unassigned sub-
blocks and evaluated against the performance of the origi-
nal device. If the new device demonstrates superior perfor-
mance, it is promoted to secondary status, while the original
device is relegated to a backup role. This mechanism allows
computationally stronger devices to replace weaker standby
devices, thereby maximizing resource utilization across the
edge network and ensuring system stability in response to
dynamic device changes.

Experiments
In this section, we first detail our experimental setup, includ-
ing the baseline models and evaluation protocol. Next, we
present the primary results, focusing on both quality and ef-
ficiency. We further discuss related studies to provide con-
text and deeper insights into our work. Finally, we validate
the rationale behind each design choice.

Experimental Setups
Model. Our method relies on off-the-shelf pretrained mod-
els, wherein we primarily experiment with the state-of-the-
art open-source image-to-text model, LLaVA (Liu et al.
2024). LLaVA aligns a visual encoder with a large language
model via a lightweight projection layer, enabling seamless
image-text interaction. It uses a pretrained language model
as its backbone to generate coherent, context-aware outputs.
Compared to traditional vision-language models, LLaVA in-
tegrates richer cross-modal attention and fine-tunes its align-
ment with carefully curated multimodal datasets, resulting
in a more robust and versatile model. However, these im-
provements increase computational complexity and resource
demands, limiting its suitability for resource-constrained or
latency-sensitive scenarios.
Baselines. We compare our framework against the following
baselines in terms of both quality and efficiency:

• Edge-Only: This baseline deploys the entire model on a
single edge device without partitioning, relying solely on
the computational resources of the local device. If the
model’s memory requirements exceed the device’s mem-
ory, quantization (Xiao et al. 2023) is applied to com-
press the model.

• Cloud-Only (Liu et al. 2023c): In this configuration, the
model resides entirely on a cloud server, with edge de-
vices transmitting data to the cloud for inference and re-
ceiving the results.

• Layer-Partitioned (Zhang et al. 2024c; Gugger et al.
2022): This approach partitions the model layer-by-layer
across multiple devices, executing inference sequentially
through the designated layers on each device.



Table 1: Throughput (tokens/s) comparison across different
model scales.

Method
LLaVA-7B LLaVA-13B LLaVA-34B

Value Speedup Value Speedup Value Speedup

Cloud-Only 10.95 - 8.5 - 4.9 -

Edge-Only 14.95 1.37× 0.82 0.096× 7.73 1.57×
(8-bit) (4-bit)

Layer-Partitioned 10.65 0.97× 7.74 0.9× 4.7 0.95×
Ours 14.98 1.37× 9.29 1.09× 5.88 1.2×

Metrics. This study focuses on image-to-text tasks where
the number of tokens generated in each response varies, la-
tency is not a representative metric. Instead, we evaluate it
in terms of text generation quality and throughput, measured
as the number of tokens generated per second (tokens/s).
This provides a more reliable assessment of the system’s ef-
ficiency in handling variable-length outputs.
Implementation details. We simulate the collaborative
edge network using five 4090 GPUs, each with different
memory constraints. One GPU, designated as the primary
device, is allocated the full 24GB of GPU memory, while
the remaining four GPUs, serving as secondary or badckup
devices, are evenly split, with two allocated 12GB and the
other two allocated 6GB of GPU memory, respectively.

Main Results
Compared to the theoretical computation reduction, on-
hardware acceleration is more critical for real-world appli-
cations. To demonstrate the effectiveness of our method, we
report the end-to-end throughput and speedups in Table 1.
When deploying the smaller-scale LLaVA-7B model, our
approach demonstrates a significant acceleration compared
to the Cloud-Only and Layer-Partition approaches. This is
primarily due to the limited bandwidth (typically 1Mbps)
for transferring images, which range in size from a few
hundred kilobytes to several megabytes, from the local de-
vice to the cloud. In the Cloud-Only approach, the major-
ity of the latency is caused by the communication with the
cloud server. In contrast, the delay in the Layer-Partitioned
method arises from the intermediate activation communi-
cation required during its sequential computation. Because
the Layer-Partitioned approach does not dynamically adjust
the model partitioning process, it unnecessarily offloads the
model to secondary devices even when the primary device
is capable of handling the full model, thus increasing the
communication time. The Edge-Only, like our approach in
the current setup, involves deploying the entire model on
the primary device, avoiding any additional communication
overhead, and achieving a speedup of 1.37×.

As the model size increases, the advantages of our par-
allelized computation strategy over alternative methods be-
come more evident. Specifically, for LLaVA-13B, the Edge-
Only method cannot meet the model’s larger memory re-
quirements, necessitating quantization, which introduces

Challenging example from LLaVA-Bench (In-the-Wild)

Question 1 Is there strawberry-flavored yogurt in the
fridge?

Ours Yes, there is a container of strawberry-
flavored yogurt in the fridge. It’s located on
the top shelf, to the right of the milk.

Edge-Only Yes, there is a container of strawberry-flavo-
(4-bit) red yogurt in the fridge. It’s on the top shelf,

to the right of the milk.
Question 2 What is the brand of the yogurt?

Ours The brand of the blueberry-flavored yogurt
is Yoplait.

Edge-Only The brand of the blueberry-flavored yogurt
(4-bit) is “Fage”.

Table 2: Example prompt from the LLaVA (Liu et al. 2024)
paper for comparing the capabilities of visual reasoning and
capabilities. Compared to the 4-bit quantized LLaVA-34B
model deployed with the Edge-Only method, the LLaVA-
34B model deployed using our method demonstrates a more
accurate understanding of the image and performs better on
challenging samples..

performance bottlenecks. This is particularly true for devices
like the NVIDIA 4090 GPU used in our experiments, where
the lack of hardware support for quantization acceleration
leads to slower inference despite reduced memory usage. In
contrast, the Layer-Partitioned suffers from the inefficien-
cies of sequence inference, resulting in slower performance
compared to our parallelized computation strategy.

When deploying the larger LLaVA-34B model, we had
to use 4-bit quantization, as 8-bit quantization failed to
meet the memory requirements for the Edge-Only deploy-
ment. Notably, the NVIDIA 4090 GPUs demonstrated bet-
ter support for 4-bit quantization, resulting in faster infer-
ence speeds that even exceeded those of our approach. This
highlights that the deployment of models on edge devices
depends on their support for specific algorithms, and even
widely-used quantization techniques are not supported on
all devices. It is also well-established that higher levels of
quantization lead to greater performance degradation. The



1 50 100 150 200 250 300
Bandwidth (MB/s)

0

2

4

6

8

10

12

14

Th
ro

ug
hp

ut
 (t

ok
en

s/
s)

Layer Partitioned
Ours

(a) LLaVA-7B

1 50 100 150 200 250 300
Bandwidth (MB/s)

0

2

4

6

8

Th
ro

ug
hp

ut
 (t

ok
en

s/
s) Layer Partitioned

Ours

(b) LLaVA-13B

1 50 100 150 200 250 300
Bandwidth (MB/s)

0.0

0.5

1.0

1.5

2.0

2.5

3.0

Th
ro

ug
hp

ut
 (t

ok
en

s/
s) Layer Partitioned

Ours

(c) LLaVA-34B

Figure 4: Impact of Bandwidth to Throughput.

4-bit quantized model, while faster in inference, suffers
from reduced performance in graph image comprehension,
as demonstrated in Question 2 of Table 2.

The results of the above experiments demonstrate that
our method achieves superior throughput for larger mod-
els by efficiently distributing computation across multiple
devices. This approach mitigates the drawbacks associated
with quantization and sequence inference, showcasing the
effectiveness of our method in handling large-scale LLaVA
models while optimizing both throughput and computational
efficiency

Impact of Bandwidth
This section investigates the impact of network bandwidth
on performance. Since the performance of Cloud-Only and
Edge-Only methods are unaffected by inter-device commu-
nication bandwidth, we only compare our method with the
distributed inference approach, i.e., Layer-Partitioned.

As shown in Figure 4 (a), for LLaVA-7B, our method
can deploy the entire model on the primary device since
the available memory is sufficient, thus eliminating the need
for inter-device communication. This results in significantly
higher throughput compared to the Layer-Partitioned ap-
proach, and the performance is independent of local band-
width. For LLaVA-13B and LLaVA-34B, however, due to
memory constraints, we must employ a distributed deploy-
ment. As illustrated in Figures 4 (b) and (c), our method
begins to demonstrate its advantages when the bandwidth
exceeds 150MB, as the additional communication overhead
is offset by improved computational efficiency.

Stability Evaluation
To assess the impact of unexpected device dropout, we sim-
ulate the random disconnection of a device within the edge
network and perform a single inference. The results reveal
distinct behaviors based on the role of the disconnected
device. When the primary device is dropped, the through-
put of our method decreases to 3.02 tokens/s, compared to
2.9 tokens/s for the Layer-Partition approach, reflecting an
approximate 50% reduction. This performance decline oc-
curs because the primary device lacks backup and requires
reloading the model, with the model loading time being

comparable to the inference time, both approximately 20
seconds.

In contrast, when a secondary/backup device is discon-
nected, our method maintains a throughput of 5.71 tokens/s
with negligible degradation, while the Layer-Partition ap-
proach experiences a 50% reduction, dropping to 2.86 to-
kens/s. This stability in our method is attributed to the de-
ployment of standby modules capable of seamlessly replac-
ing dropped devices. These findings demonstrate that our
approach effectively adapts to dynamic changes within the
edge network, ensuring robust and stable performance.

Limitation and Discussion
The results indicate that our method provides a significant
advantage in high-bandwidth scenarios, such as LANs of
various institutions, and similar environments. However, in
low-bandwidth scenarios, our approach performs less favor-
ably compared to the Layer-Partitioned method, primarily
due to frequent communication overheads. To address this,
we plan to explore the integration of an asynchronous com-
munication strategy (Li et al. 2024a), which aims to mitigate
the impact of communication latency by overlapping com-
munication with computation, enabling better adaptation to
various bandwidth environments

Conclusion
In this paper, we proposed AdaptLink, a method to deploy
MLLMs on heterogeneous edge networks through paral-
lelism. Our approach partitions the model into multiple sub-
blocks and assigns them to edge devices based on their avail-
able memory, computational capability, and network band-
width. Our method achieves the lossless deployment of the
large-scale LLaVA series model at the edge while improving
throughput, especially in high bandwidth scenarios. This ad-
vancement offers a novel perspective for the future deploy-
ment of generative AI applications in real-world scenarios.

References
Alayrac, J.-B.; Donahue, J.; Luc, P.; Miech, A.; Barr, I.; Has-
son, Y.; Lenc, K.; Mensch, A.; Millican, K.; Reynolds, M.;
et al. 2022. Flamingo: a visual language model for few-shot



learning. Advances in neural information processing sys-
tems, 35: 23716–23736.
Awadalla, A.; Gao, I.; Gardner, J.; Hessel, J.; Hanafy, Y.;
Zhu, W.; Marathe, K.; Bitton, Y.; Gadre, S.; Sagawa, S.;
et al. 2023. Openflamingo: An open-source framework for
training large autoregressive vision-language models. arXiv
preprint arXiv:2308.01390.
Cai, M.; Liu, H.; Mustikovela, S. K.; Meyer, G. P.; Chai,
Y.; Park, D.; and Lee, Y. J. 2024. Making Large Multimodal
Models Understand Arbitrary Visual Prompts. In IEEE Con-
ference on Computer Vision and Pattern Recognition.
Chen, Y.; Li, R.; Zhao, Z.; Peng, C.; Wu, J.; Hossain, E.; and
Zhang, H. 2023. Netgpt: A native-ai network architecture
beyond provisioning personalized generative services. arXiv
preprint arXiv:2307.06148.
Chen, Z.; Yang, H. H.; Tay, Y. C.; Chong, K. F. E.; and Quek,
T. Q. S. 2024. The Role of Federated Learning in a Wireless
World with Foundation Models. IEEE Wireless Communi-
cations, 31(3): 42–49.
Cui, C.; Ma, Y.; Cao, X.; Ye, W.; Zhou, Y.; Liang, K.; Chen,
J.; Lu, J.; Yang, Z.; Liao, K.-D.; et al. 2024. A survey on
multimodal large language models for autonomous driving.
In Proceedings of the IEEE/CVF Winter Conference on Ap-
plications of Computer Vision, 958–979.
Ge, Z.; Huang, H.; Zhou, M.; Li, J.; Wang, G.; Tang, S.; and
Zhuang, Y. 2024. Worldgpt: Empowering llm as multimodal
world model. In Proceedings of the 32nd ACM International
Conference on Multimedia, 7346–7355.
Gugger, S.; Debut, L.; Wolf, T.; Schmid, P.; Mueller, Z.;
Mangrulkar, S.; Sun, M.; and Bossan, B. 2022. Accelerate:
Training and inference at scale made simple, efficient and
adaptable. https://github.com/huggingface/accelerate.
Huang, R.; Li, M.; Yang, D.; Shi, J.; Chang, X.; Ye, Z.; Wu,
Y.; Hong, Z.; Huang, J.; Liu, J.; et al. 2024. Audiogpt: Un-
derstanding and generating speech, music, sound, and talk-
ing head. In Proceedings of the AAAI Conference on Artifi-
cial Intelligence, volume 38, 23802–23804.
Jin, Y.; Li, J.; Liu, Y.; Gu, T.; Wu, K.; Jiang, Z.; He, M.;
Zhao, B.; Tan, X.; Gan, Z.; et al. 2024. Efficient multi-
modal large language models: A survey. arXiv preprint
arXiv:2405.10739.
Koh, J. Y.; Fried, D.; and Salakhutdinov, R. R. 2024. Gener-
ating images with multimodal language models. Advances
in Neural Information Processing Systems, 36.
Li, J.; Li, D.; Savarese, S.; and Hoi, S. 2023a. Blip-2:
Bootstrapping language-image pre-training with frozen im-
age encoders and large language models. In International
conference on machine learning, 19730–19742. PMLR.
Li, K.; He, Y.; Wang, Y.; Li, Y.; Wang, W.; Luo, P.; Wang,
Y.; Wang, L.; and Qiao, Y. 2023b. Videochat: Chat-centric
video understanding. arXiv preprint arXiv:2305.06355.
Li, M.; Cai, T.; Cao, J.; Zhang, Q.; Cai, H.; Bai, J.; Jia, Y.;
Li, K.; and Han, S. 2024a. Distrifusion: Distributed parallel
inference for high-resolution diffusion models. In Proceed-
ings of the IEEE/CVF Conference on Computer Vision and
Pattern Recognition, 7183–7193.

Li, S.; Liu, H.; Bian, Z.; Fang, J.; Huang, H.; Liu, Y.; Wang,
B.; and You, Y. 2023c. Colossal-ai: A unified deep learning
system for large-scale parallel training. In Proceedings of
the 52nd International Conference on Parallel Processing,
766–775.
Li, X.; Yin, X.; Li, C.; Zhang, P.; Hu, X.; Zhang, L.; Wang,
L.; Hu, H.; Dong, L.; Wei, F.; et al. 2020. Oscar: Object-
semantics aligned pre-training for vision-language tasks. In
Computer Vision–ECCV 2020: 16th European Conference,
Glasgow, UK, August 23–28, 2020, Proceedings, Part XXX
16, 121–137. Springer.
Li, X.; Zhang, M.; Geng, Y.; Geng, H.; Long, Y.; Shen, Y.;
Zhang, R.; Liu, J.; and Dong, H. 2024b. Manipllm: Em-
bodied multimodal large language model for object-centric
robotic manipulation. In Proceedings of the IEEE/CVF
Conference on Computer Vision and Pattern Recognition,
18061–18070.
Li, Y.; Wang, C.; and Jia, J. 2025. Llama-vid: An image
is worth 2 tokens in large language models. In European
Conference on Computer Vision, 323–340. Springer.
Li, Z.; Yang, B.; Liu, Q.; Ma, Z.; Zhang, S.; Yang, J.; Sun, Y.;
Liu, Y.; and Bai, X. 2024c. Monkey: Image resolution and
text label are important things for large multi-modal models.
In Proceedings of the IEEE/CVF Conference on Computer
Vision and Pattern Recognition, 26763–26773.
Lin, J.; Tang, J.; Tang, H.; Yang, S.; Chen, W.-M.; Wang, W.-
C.; Xiao, G.; Dang, X.; Gan, C.; and Han, S. 2024. AWQ:
Activation-aware Weight Quantization for On-Device LLM
Compression and Acceleration. Proceedings of Machine
Learning and Systems, 6: 87–100.
Liu, F.; Zhu, T.; Wu, X.; Yang, B.; You, C.; Wang, C.; Lu,
L.; Liu, Z.; Zheng, Y.; Sun, X.; et al. 2023a. A medical
multimodal large language model for future pandemics. NPJ
Digital Medicine, 6(1): 226.
Liu, H.; Li, C.; Li, Y.; and Lee, Y. J. 2023b. Improved Base-
lines with Visual Instruction Tuning.
Liu, H.; Li, C.; Li, Y.; Li, B.; Zhang, Y.; Shen, S.; and Lee,
Y. J. 2024. LLaVA-NeXT: Improved reasoning, OCR, and
world knowledge.
Liu, H.; Li, C.; Wu, Q.; and Lee, Y. J. 2023c. Visual Instruc-
tion Tuning.
Maaz, M.; Rasheed, H.; Khan, S.; and Khan, F. S.
2023. Video-chatgpt: Towards detailed video understand-
ing via large vision and language models. arXiv preprint
arXiv:2306.05424.
MetaAI. 2024. Introducing Meta Llama 3: The most capable
openly available LLM. Meta AI Blog.
OpenAI. 2023. GPT-4 Technical Report.
Qin, Y.; Zhou, E.; Liu, Q.; Yin, Z.; Sheng, L.; Zhang, R.;
Qiao, Y.; and Shao, J. 2024. Mp5: A multi-modal open-
ended embodied system in minecraft via active perception.
In 2024 IEEE/CVF Conference on Computer Vision and Pat-
tern Recognition (CVPR), 16307–16316. IEEE.
Ren, S.; Yao, L.; Li, S.; Sun, X.; and Hou, L. 2024.
Timechat: A time-sensitive multimodal large language
model for long video understanding. In Proceedings of



the IEEE/CVF Conference on Computer Vision and Pattern
Recognition, 14313–14323.
Shen, Y.; Song, K.; Tan, X.; Li, D.; Lu, W.; and Zhuang,
Y. 2024. Hugginggpt: Solving ai tasks with chatgpt and its
friends in hugging face. Advances in Neural Information
Processing Systems, 36.
Shoeybi, M.; Patwary, M.; Puri, R.; LeGresley, P.; Casper,
J.; and Catanzaro, B. 2019. Megatron-lm: Training multi-
billion parameter language models using model parallelism.
arXiv preprint arXiv:1909.08053.
Team, G.; Anil, R.; Borgeaud, S.; Alayrac, J.-B.; Yu, J.; Sori-
cut, R.; Schalkwyk, J.; Dai, A. M.; Hauth, A.; Millican, K.;
et al. 2023. Gemini: a family of highly capable multimodal
models. arXiv preprint arXiv:2312.11805.
Wang, G.; Liu, J.; Li, C.; Zhang, Y.; Ma, J.; Wei, X.; Zhang,
K.; Chong, M.; Zhang, R.; Liu, Y.; et al. 2024a. Cloud-
Device Collaborative Learning for Multimodal Large Lan-
guage Models. In Proceedings of the IEEE/CVF Conference
on Computer Vision and Pattern Recognition, 12646–12655.
Wang, M.; Zhao, Y.; Liu, J.; Chen, J.; Zhuang, C.; Gu, J.;
Guo, R.; and Zhao, X. 2024b. Large Multimodal Model
Compression via Iterative Efficient Pruning and Distillation.
In Companion Proceedings of the ACM on Web Conference
2024, 235–244.
Wang, P.; Yang, A.; Men, R.; Lin, J.; Bai, S.; Li, Z.; Ma, J.;
Zhou, C.; Zhou, J.; and Yang, H. 2022. Ofa: Unifying archi-
tectures, tasks, and modalities through a simple sequence-to-
sequence learning framework. In International conference
on machine learning, 23318–23340. PMLR.
Wang, Y.; Lin, Y.; Zeng, X.; and Zhang, G. 2023. Pri-
vatelora for efficient privacy preserving llm. arXiv preprint
arXiv:2311.14030.
Wu, C.; Yin, S.; Qi, W.; Wang, X.; Tang, Z.; and Duan, N.
2023. Visual chatgpt: Talking, drawing and editing with vi-
sual foundation models. arXiv preprint arXiv:2303.04671.
Xiao, G.; Lin, J.; Seznec, M.; Wu, H.; Demouth, J.; and Han,
S. 2023. Smoothquant: Accurate and efficient post-training
quantization for large language models. In International
Conference on Machine Learning, 38087–38099. PMLR.
Xie, J.; Zhang, Y.; Lin, M.; Cao, L.; and Ji, R. 2024. Advanc-
ing Multimodal Large Language Models with Quantization-
Aware Scale Learning for Efficient Adaptation. In Proceed-
ings of the 32nd ACM International Conference on Multime-
dia, 10582–10591.
Xu, Q.; and You, Y. 2023. An efficient 2d method for train-
ing super-large deep learning models. In 2023 IEEE In-
ternational Parallel and Distributed Processing Symposium
(IPDPS), 222–232. IEEE.
Ye, Q.; Xu, H.; Ye, J.; Yan, M.; Hu, A.; Liu, H.; Qian, Q.;
Zhang, J.; and Huang, F. 2024. mplug-owl2: Revolution-
izing multi-modal large language model with modality col-
laboration. In Proceedings of the IEEE/CVF Conference on
Computer Vision and Pattern Recognition, 13040–13051.
Zellers, R.; Lu, J.; Lu, X.; Yu, Y.; Zhao, Y.; Salehi, M.; Kusu-
pati, A.; Hessel, J.; Farhadi, A.; and Choi, Y. 2022. Mer-
lot reserve: Neural script knowledge through vision and lan-

guage and sound. In Proceedings of the IEEE/CVF Confer-
ence on Computer Vision and Pattern Recognition, 16375–
16387.
Zhang, D.; Li, S.; Zhang, X.; Zhan, J.; Wang, P.; Zhou, Y.;
and Qiu, X. 2023. Speechgpt: Empowering large language
models with intrinsic cross-modal conversational abilities.
arXiv preprint arXiv:2305.11000.
Zhang, D.; Yu, Y.; Li, C.; Dong, J.; Su, D.; Chu, C.; and Yu,
D. 2024a. Mm-llms: Recent advances in multimodal large
language models. arXiv preprint arXiv:2401.13601.
Zhang, H.; Ji, X.; Chen, Y.; Fu, F.; Miao, X.; Nie, X.; Chen,
W.; and Cui, B. 2024b. Pqcache: Product quantization-
based kvcache for long context llm inference. arXiv preprint
arXiv:2407.12820.
Zhang, M.; Cao, J.; Shen, X.; and Cui, Z. 2024c. EdgeShard:
Efficient LLM Inference via Collaborative Edge Computing.
arXiv preprint arXiv:2405.14371.
Zhao, J.; Song, Y.; Harris, I.; Jyothi, S. A.; et al. 2024. Lin-
guaLinked: Distributed Large Language Model Inference on
Mobile Devices. In Proceedings of the 62nd Annual Meeting
of the Association for Computational Linguistics (Volume 3:
System Demonstrations), 160–171.
Zheng, K.; He, X.; and Wang, X. E. 2023. Minigpt-5: In-
terleaved vision-and-language generation via generative vo-
kens. arXiv preprint arXiv:2310.02239.
Zhu, D.; Chen, J.; Shen, X.; Li, X.; and Elhoseiny, M.
2023. Minigpt-4: Enhancing vision-language understand-
ing with advanced large language models. arXiv preprint
arXiv:2304.10592.


