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Abstract

Model merging aims to cheaply combine individual task-specific models into a single multi-
task model. In this work, we view past merging methods as leveraging different notions of a
“task parameter subspace” in which models are matched before being merged. We connect
the task parameter subspace of a given model to its loss landscape and formalize how this
approach to model merging can be seen as solving a linear system of equations. While
past work has generally been limited to linear systems that have a closed-form solution, we
consider using the conjugate gradient method to find a solution. We show that using the
conjugate gradient method can outperform closed-form solutions, enables merging via lin-
ear systems that are otherwise intractable to solve, and flexibly allows choosing from a wide
variety of initializations and estimates for the “task parameter subspace”. We ultimately
demonstrate that our merging framework called “Matching Models in their Task Parameter
Subspace” (MaTS) achieves state-of-the-art results in multitask and intermediate-task model
merging. We release all of the code and checkpoints used in our work.1

1 Introduction

The widespread fine-tuning of public pre-trained models has produced a huge number of specialized models.
These specialized models may be trained on different tasks, where a “task” is simply the input-output
relationship that we aim to train a model to perform (e.g. sentiment analysis of text, object recognition
in images, etc.). Alternatively, the Stable Diffusion XL model (Podell et al., 2023) forms the basis of over
a thousand specialized image generation models on the Hugging Face Model Hub that are specialized to
different styles or content types. How can we recycle these specialized models to create better base models
(Choshen et al., 2022; Ramé et al., 2022)? Model merging (Wortsman et al., 2022b; Matena & Raffel, 2022)
aims to tackle this problem by combining specialized models into a single model that retains the individual
models’ capabilities. A common example application of merging is constructing a multitask model from
individual-task models, which is the primary application we explore in our paper. Compared to multitask
learning, merging does not require simultaneous access to the individual-task datasets. Compared to output-
space ensembling of M models, merging produces a model that is M times cheaper to run.

While merging via simple parameter averaging can work well for models that share an architecture and
initialization (McMahan et al., 2017; Stich, 2018), recent merging methods improve over simple averaging by

1https://github.com/r-three/mats
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considering parameter importance (Matena & Raffel, 2022), matching activations (Jin et al., 2022), omitting
the contribution of the pre-trained model (Ilharco et al., 2022), or resolving interference across models (Yadav
et al., 2023).

In our work, we show how several recent merging methods can be viewed as finding a single model that
matches task-specific models in their respective “task parameter subspaces”. We define a task parameter
subspace as the subspace implicitly used by a given merging method that aims to correspond to the important
dimensions in parameter space for the task. To match models in their task parameter subspace, merging
methods upweight each model in its task parameter subspace, which aims to ensure that the task-relevant
components of a given model will not be washed out after the models are combined. In particular, we show
how Fisher merging (Matena & Raffel, 2022), RegMean (Jin et al., 2022), and simple parameter averaging
(McMahan et al., 2017; Stich, 2018) all perform merging in this way and differ only in their choice of task
parameter subspace. Concurrently, other works have focused on inaccuracies in model merging stemming
from gradient mismatches in different models, and use these insights to connect diagonal Fisher merging and
Task Arithmetic Daheim et al. (2023).

Matching models in their task parameter subspace requires solving a linear system of equations. This
linear system implicitly defines a merging objective that relates to a given merging method’s choice of task
parameter subspace. While previous merging methods used merging objectives with a tractable closed-form
solution, we instead develop a merging framework that uses the conjugate gradient method (Hestenes &
Stiefel, 1952) to solve a given linear system. We refer to our merging framework as MaTS (Matching Models
in their Task Subspace). By using the conjugate gradient method, MaTS flexibly supports different merging
objectives and initializations (which can impact convergence speed). MaTS also enables the use of merging
objectives for linear systems that don’t have a tractable closed-form solution. To explore this possibility, we
leverage insights from K-FAC (Grosse & Martens, 2016; Martens & Grosse, 2015) and introduce a merging
method where a model’s task parameter subspace is based on a block-diagonal approximation of the Fisher
information matrix.

To explore the effectiveness of MaTS, we comprehensively compare it to existing merging methods on multitask
and intermediate-task merging of language models and vision models trained via parameter-efficient or full-
model fine-tuning. We first explore using preexisting merging methods as an initialization for MaTS and
demonstrate that MaTS can significantly boost performance given a suitable choice of merging objective.
In particular, in multitask language model merging, we find that MaTS attains state-of-the-art results by a
large margin. We use insights from this exploration to develop an effective merging recipe (i.e. a consistent
initialization and objective to use) for parameter-efficient and full-model fine-tuning, which we then apply to
multitask vision model merging and intermediate-task language model merging. In both cases, we validate
that MaTS can boost performance over its initialization and often attains state-of-the-art results. Finally,
we discuss how MaTS has a higher computational cost than existing merging methods but is nevertheless
dramatically cheaper than explicit multitask training. Taken as a whole, our results validate both our
perspective of model merging as matching models in their task parameter subspace as well as the effectiveness
of using the conjugate gradient method for solving the corresponding linear system.

2 Background

In this paper, we assume we are given M models to merge, all sharing a common architecture and initialization
(e.g. a pre-trained model) and denote the parameters of model m as θm, the input as x, and the output as
y over which the model aims to parameterize a distribution pθm(y|x). We further assume we have access
to the dataset Dm (containing Nm examples) and the loss function Lm used to train model m. All of the
models we study use a typical neural network architecture that is made up of a series of linear operations
(“layers”) with parameter-free nonlinearities in between. Consider linear layer l in some particular model m
with weight matrix Wm ∈ Rd×k. Let z ∈ Rd be the layer’s input activation, o ∈ Rk be the output activation,
and o′ ∈ Rk be the gradient of the loss function with respect to the linear layer’s output activation for one
particular input. Throughout this work, we assume that models use a cross-entropy loss function, so that s′

can be considered as the gradient of the log probability of the correct class with respect to the linear layer’s
output. For brevity, we refer to this quantity simply as the “output activation gradient”. Let Zm ∈ RNm×d
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be the input activations stacked row-wise, Om ∈ RNm×k be the output activations stacked row-wise, and
O′

m ∈ RNm×k be the output activation gradients stacked row-wise. The operation computed by the linear
layer can therefore be expressed as Om = ZmWm. We also allow for a slight abuse of notation and use θm

to refer to either the dk-dimensional vector of the parameters of a particular linear layer (e.g. by flattening a
corresponding matrix) or the p-dimensional vector of all parameters in the model. When clear from context,
in inline equations we abbreviate summation limits (e.g.

∑
m in place of

∑M
m=1).

2.1 Simple Averaging

A common way to merge models is to simply average their parameters, i.e. compute θ⋆ = 1
M

∑
m θm Such

parameter averaging has been widely used in federated learning (McMahan et al., 2017) and distributed
optimization (Stich, 2018) but has more recently been used to merge models to retain out-of-distribution
performance (Wortsman et al., 2022b), improve a pre-trained model (Choshen et al., 2022; Don-Yehiya et al.,
2022), or create multimodal models (Sung et al., 2023).

2.2 Fisher Merging

Matena & Raffel (2022) view the problem of merging models as finding the set of parameters with the highest
joint probability according to the individual model’s posteriors:

θ∗ = arg max
θ

M∑
m=1

log P (θ|Dm) (1)

Since maximum likelihood-based training of neural networks does not provide access to a posterior distribu-
tion over parameters, the posterior must be approximated. Matena & Raffel (2022) point out that simple
averaging solves eq. (1) if parameters are assumed to be sampled from isotropic Gaussian posteriors. How-
ever, an isotropic Gaussian is likely a poor approximation of the true posterior, so Matena & Raffel (2022)
use the Laplace approximation, which assumes that parameters are sampled from a Gaussian distribution
with a mean θt and a covariance set to the inverse of the Fisher information matrix (“Fisher”) Fm. The
Fisher can be generically defined for some model pθ(y|x) as

Fm = E
x∼Dm

[
E

y∼pθ(y|x)

[
∇θ log pθ(y|x)∇θ log pθ(y|x)⊤]] (2)

Since computing, storing, and inverting the Fisher is intractable for modestly large neural networks, Matena
& Raffel (2022) use a diagonal approximation of the Fisher F̂ (i.e. assuming parameter values are indepen-
dent), which results in a matrix whose diagonal entries correspond to the the average of the per-example
gradients squared. Under this approximation, the parameter values that maximize eq. (1) have the following
closed-form solution:

θ∗ =
(

1
/ M∑

m=1
F̂m

)
M∑

m=1
F̂mθm (3)

In practice, it is common to use the empirical Fisher where the expectation over labels is replaced by the
ground-truth label for a given datapoint. The empirical Fisher has been shown to have certain limitations
compared to the true Fisher when used in the Natural Gradient algorithm (Kunstner et al., 2019). However,
we found that for model merging the empirical Fisher worked better (see section 6.6 for full results) and is
computationally cheaper and therefore we use it throughout this work.

2.3 RegMean

RegMean (Jin et al., 2022) aims to find a merged model that minimizes the distance between the output
activations of the original model and the output activations of the merged model. To make this goal
tractable, RegMean merges the parameters of each linear layer separately. This per-layer objective can then
be formulated as the least squares regression problem

min
W

M∑
m=1

1
Nm

∣∣∣∣Om − ZmW
∣∣∣∣2

2 (4)
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Jin et al. (2022) solve this least squares regression problem using its closed-form solution:2

W ∗ =
( M∑

m=1

1
Nm

Z⊤
mZm

)−1( M∑
m=1

1
Nm

(Z⊤
mZm)Wm

)
(5)

Using RegMean for merging therefore requires computing and inverting the gram matrices Z⊤
mZm. To ensure

invertibility, RegMean scales the nondiagonal terms of the Gram matrix with a constant λ (with 0 < λ < 1)
whose value can be tuned based on performance on held-out data.

3 Matching Individual Models in their Task Parameter Subspace

While simple averaging, diagonal Fisher merging, and RegMean appear to be unrelated in their approach,
we now demonstrate that all three methods can be seen as computing a merged model that has the generic
form

θ∗ =
( M∑

m=1
Cm

)−1( M∑
m=1

Cmθm

)
(6)

=
( M∑

m=1
QmΛmQ⊤

m

)−1( M∑
m=1

QmΛmQ⊤
mθm

)
(7)

where Cm is a (approximate) covariance matrix of some random variable (i.e. some data). As we will
discuss later, prior merging methods primarily differ in terms of the choice of the random variable. Since the
covariance matrix is positive semi-definite, we can obtain its eigendecomposition Cm = QmΛmQ⊤

m. If Cm

is the covariance of some data Pm with SVD decomposition Pm = UmΣmV ⊤
m , then Qm = Vm as shown in

appendix A.3. The top singular vectors in Vm and, equivalently, Qm are the directions that best capture
the variance of Pm. In other words, the top column vectors in Vm and Qm can therefore viewed as forming
a basis that is “best aligned” with the data Pm. We therefore refer to Qm as the basis vectors of the “task
parameter subspace” whose relative importance are determined by Λm.

3.1 The Task Parameter Subspace of Prior Merging Methods

Having established the idea of a task parameter subspace, we now apply our perspective to past merging
methods and uncover each method’s choice of task parameter subspace.

Simple Averaging. Simple averaging sets Cm = I (the identity matrix) thereby setting Qm = I and
Λm = I. Setting Qm = I means that merging is performed in the original model’s parameter space and
setting Λm = I implies that that each direction in the task parameter subspace is equally important.

Fisher Merging. As established in appendix A.1, the closed-form solution for Fisher merging (i.e. without
necessarily making any diagonal approximation to the Fisher) is given by

θ∗ =
( M∑

m=1
Fm

)−1( M∑
m=1

Fmθm

)
(8)

In this case, Cm = Fm is the covariance of the per-example gradients of the datapoints from a task. The
true (i.e. not the empirical) Fisher is equal to the Hessian (in expectation) when the negative log-likelihood
loss is used (Grosse, 2022a;b; Martens, 2020). In this paper, we only consider the use of the the cross entropy
(negative log-likelihood) loss function. While Kunstner et al. (2019) note that the empirical Fisher should go

2While Jin et al. (2022) do not include the 1
Nm

in their definitions, the constant 1
Nm

is used in practice in their implemen-
tation and experiments (see https://github.com/bloomberg/dataless-model-merging/blob/main/regmean_demo.ipynb). The
constant ensures that each dataset is equally weighed, even if the datasets have different number of examples. Appendix A.2
shows the proof that this modified closed-form solution solves the modified objective.

4

https://github.com/bloomberg/dataless-model-merging/blob/main/regmean_demo.ipynb


Published in Transactions on Machine Learning Research (03/2024)

Diagonal Fisher merging

Block-diagonal Fisher merging

Simple averaging

Figure 1: Diagram visualizing what several merg-
ing methods are doing in the loss landscape for a
particular layer of the model. The ellipses repre-
sent the level sets of the losses for different task.
Different merging methods modify the individual
models in various ways before summing the mod-
ified models (with an appropriate normalization
constant). Averaging does not modify the model
in any way. Diagonal Fisher merging modifies
each model by amplifying each parameter along
an axis-aligned projection. Block-diagonal Fisher
merging modifies each model by amplifying each
parameter along a projection along the steepest
directions of the loss landscape.

to zero as the model converges whereas the true Fisher doesn’t, we follow the insight from Singh & Alistarh
(2020) that gradients do not actually vanish for well-optimized neural networks. Thus, we view the (empirical
or true) Fisher as approximating the Hessian and therefore Qm can be viewed as the eigenvectors of the
Hessian and Λm are the corresponding eigenvalues. The Hessian captures the curvature of the model’s log-
likelihood (Kristiadi, 2018; Martens, 2020), so its top eigenvectors capture the directions of sharpest change
in the loss landscape and the bottom eigenvectors capture directions where the loss function is roughly flat
(Maddox et al., 2020). As we will discuss in section 3.2, Fisher merging therefore encourages merging to
shift models along the given model’s parameters “flat” directions.

Diagonal Fisher Merging. Diagonal Fisher merging (Matena & Raffel, 2022) approximates Cm as a
diagonal Fisher matrix. This corresponds to assuming that Qm is the identity matrix I, which is equivalent
to computing the importance score Λm in axis-aligned parameter space.

RegMean. Inspecting eq. (5) suggests that RegMean sets Cm as a function of the scaled Gram matrix
1

Nm
Z⊤

mZm, i.e. the covariance of the input activations. Since eq. (5) is defined in terms of a weight matrix
and eq. (6) is defined in terms of a parameter vector, RegMean sets Cm as a block-diagonal matrix whose
blocks are repeated instances of the scaled Gram matrix 1

Nm
Z⊤

mZm. RegMean therefore computes the basis
Qm and important score Λm based on the directions that best capture the variance in the input activations.

3.2 Matching in Task Parameter Subspace

Recall the closed-form solution as written in eq. (6):

θ∗ =
( M∑

m=1
QmΛmQ⊤

m

)−1

︸ ︷︷ ︸
1

( M∑
m=1

QmΛmQ⊤
mθm

)
︸ ︷︷ ︸

2

(9)

The terms of the second summation can be seen as projecting the parameters θm using QmΛmQ⊤
m. What

does the projection with QmΛmQ⊤
m imply?

1. Q⊤
mθm rotates θm into the task parameter subspace whose basis vectors are the eigenvectors con-

tained in Qm.

2. ΛmQ⊤
mθm amplifies the the dimensions in this rotated coordinate system based on their importance

as defined by the eigenvalues.

3. QmΛmQ⊤
mθm rotates back into the original parameter space

The first summation in eq. (9) can then be seen as a normalizing constant to account for all modifications
done in the second term. Overall, eq. (9), when QmΛmQT

m is the decomposition of a covariance matrix,
can be seen as upweighting the “important” components of the model as measured in the task parameter

5
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subspace so that the important components don’t get washed out during merging. Thus, the least important
component of the models will be shifted more during merging. The components are not constrained to be
individual parameters but can be any direction in parameter space. Figure 1 combines this insight with the
discussion from section 3.1 and provides a visualization of the different task parameter subspaces implicit in
prior merging methods.

Additionally, note that we can re-write the closed-form solution eq. (6) as finding θ∗ such that

M∑
m=1

QmΛmQ⊤
mθ∗ =

M∑
m=1

QmΛmQ⊤
mθm (10)

One way to satisfy eq. (10) would be if QmΛmQ⊤
mθ∗ matched QmΛmQ⊤

mθm across all tasks m. In other
words, the extent to which a solution θ∗ satisfies eq. (10) depends on how close QmΛmQ⊤

mθ∗ is to each
QmΛmQ⊤

mθm. Note that this does not measure the closeness of θ∗ and θm directly, but rather through
the projection QmΛmQ⊤

m, which (as discussed above) effectively measures closeness in the task parameter
subspace.

4 Merging via the Conjugate Gradient Method

Merging models by solving for θ∗ in eq. (6) is equivalent to solving a linear system of the form Ax = b, where
A =

∑
m Cm and b =

∑
m Cmθm. Different ways to compute the task parameter subspace define different

merging objectives for this linear system. All past merging methods discussed in section 2 provide a tractable
closed-form solution to this linear system. However, there may be performant merging methods that do not
have such a closed-form solution. In addition, since the solution in eq. (6) involves a matrix inversion, some
past methods deviate from the true solution to ensure invertibility. In this work, we therefore explore finding
θ∗ via optimization rather than a closed-form solution. Specifically, to solve the linear system, we use the
conjugate gradient method (Hestenes & Stiefel, 1952) (CG), a first-order iterative optimization procedure
for solving linear systems when A is positive semi-definite (Hayami, 2018). We include more details of CG
in appendix B. Note that for eq. (6) A is positive semi-definite since it is the sum of the covariance matrices
computed on some data.

A notable benefit of the conjugate gradient method is that it allows for solving a linear system without
having to compute a matrix inverse or to compute A explicitly. Specifically, the step size and the update
direction can be computed as long as Ax and b can be computed. This is particularly useful if A is too large
and/or cannot be explicitly computed. In addition, avoiding the matrix inverse can make CG more stable
than a closed-form solution that relies on an inverse. For example, RegMean Jin et al. (2022) has to scale
the non-diagonal entries of the gram matrix by a constant to ensure the inverse is not ill-conditioned; we
show later in section 6 that CG can find a performant solution to the RegMean objective without applying
this scaling. On the whole, we refer to our framework for matching models in their task subspace using
conjugate gradient as MaTS.

5 Block-Diagonal Fisher Merging

Since CG allows merging via linear systems that do not have a tractable closed-form solution, we now intro-
duce a new Fisher merging method that makes use of an improved approximation to the Fisher. Specifically,
we follow K-FAC (Grosse & Martens, 2016; Martens & Grosse, 2015) and approximate the Fisher as a
block-diagonal matrix (BFM). The closed-form solution of the resulting objective is intractable but can be
efficiently optimized with CG.

5.1 Connecting Fisher Merging and RegMean

To motivate our use of a block-diagonal approximation to the Fisher, we first note that RegMean can be
seen as a form of Fisher merging under certain assumptions. Specifically, RegMean assumes the output
neurons are independent and that the gradient of the output activation is constant. Under this assumption,

6
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for a particular linear layer W l ∈ Rd×k, the Fisher matrix F l ∈ Rdk×dk is block diagonal matrix with k
blocks, each of size d × d. The gradient of a linear layer is the outer product of the input activation and
the output activation gradient: ∇W log pθ(y|x) = zo′⊤. Assuming the output activation gradient o′ is 1,
for some particular dataset with N examples the ith block of a given per-layer Fisher F l can be shown (in
appendix A.4) to be given by 1

N ZZ⊤. Replacing Fm in the Fisher merging objective from eq. (6) with
the RegMean-specific Fisher derived gives the RegMean closed-form solution from eq. (5). Following Grosse
et al. (2023), this also assumes the gradients of the tokens within an example are independent.

5.2 Using K-FAC for Fisher Merging

Can we approximate the Fisher as a block-diagonal matrix without assuming that the output activation
gradient is constant? In general, the closed-form solution for Fisher merging with a block-diagonal Fisher
approximation would not be tractable to compute for typical neural networks because, for an activation
dimensionality of 1024, the Fisher for a single linear layer (i.e. a block in the block-diagonal Fisher ap-
proximation) would have 1 trillion entries. One possibility would be to use the K-FAC approximation of
the Fisher Martens & Grosse (2015); Grosse & Martens (2016), which approximates the Fisher of a linear
layer as the Kronecker product of the covariance of the input activations and the covariance of the output
activation gradients:

Fm =
(

1
Nm

Z⊤
mZm

)
⊗
(

1
Nm

O′⊤
m O′

m

)
(11)

where ⊗ is Kronecker product.

However, even if we use the K-FAC Martens & Grosse (2015); Grosse & Martens (2016) approximation for the
Fisher, a closed-form solution to eq. (6) would still not be tractable. Plugging in the K-FAC approximation
into eq. (6) in appendix A.5, we see that

W ∗ =
[

M∑
m=1

(
1

Nm
Z⊤

t Zt

)
⊗
(

1
Nm

O′⊤
t O′

t

)]−1 [ M∑
m=1

(
1

Nm
Z⊤

t Zt

)
Wt

(
1

Nm
O′⊤

t O′
t

)]
(12)

Though the second term can be easily computed, the first term cannot be since the sum of Kronecker
products is not equal to the Kronecker product of sums. While we could assume the sum of Kronecker
products is the Kronecker product of sums (an assumption made in (Grosse & Martens, 2016; Martens &
Grosse, 2015) to use the K-FAC approximation for optimization), we found in preliminary experiments that
this would cause the merged model’s performance to crash.

The conjugate gradient method, however, can be used to solve the Fisher merging objective with a block-
diagonal Fisher approximation. Specifically, using the K-FAC approximation for the Fisher, we can efficiently
compute the matrix vector product Ax (as shown in appendix A.6), even if A cannot be computed with:

Ax =
M∑

m=1

( 1
Nm

Z⊤
t Zt

)
W
( 1

Nm
O′⊤

t O′
t

)
(13)

b =
M∑

m=1

( 1
Nm

Z⊤
t Zt

)
Wt

( 1
Nm

O′⊤
t O′

t

)
(14)

where x = vec(W ). Each term in the summands above involve multiplying matrices whose dimensions
correspond to the activation dimensions of the model, thereby incurring a modest computational cost. As
a result, the use of CG not only avoids an intractable inverse but also produces a computationally feasible
method for Fisher merging with a block-diagonal Fisher approximation.

6 Experiments

Now that we have introduced MaTS, we empirically explore various design choices and validate the effectiveness
of our approach. Specifically, we first consider different initializations and objectives in order to identify an

7
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effective fixed recipe to apply in various settings. We mainly focus on merging task-specific models into a
single multitask model, but we also consider intermediate-task training in section 6.4. To ensure our method
generalizes well to different settings, we perform experiments on both language models and vision models
as well as both full-model and parameter-efficient fine-tuning with (IA)3 (Liu et al., 2022), which inserts a
trainable vector into specific linear layers.

6.1 Baselines

In our experiments, we compare MaTS against the following baseline merging methods:

Simple Averaging averages the parameter values of the models being merged.

Ensembling ensembles the predicted probabilities from the model to merge. Note that this does not result
in 1 model, but in M models.

Task Arithmetic (Ilharco et al., 2022) introduces a task vector for a particular task as the difference
between the fine-tuned parameters (found after training on the task) and the original pre-trained
parameters. To construct the merged model, Task Arithmetic adds the scaled sum of the task vectors
for all tasks to the pretrained model’s parameters. Task Arithmetic introduces the hyperparameter
λ to rescale the summed task vectors.

TIES-Merging (Yadav et al., 2023) improves upon task arithmetic by removing interference between
the task vectors. Specifically, TIES zeros out entries in a given task vector that have low magnitude
and resolves sign conflicts across different task vectors. Similar to Task Arithmetic, TIES-Merging
also uses a hyperparameter λ to scale the task vectors after removing interference.

Diagonal Fisher Merging (Matena & Raffel, 2022) performs Fisher Merging with a diagonal approx-
imation to the Fisher, as described in section 2.2). To better distinguish between different approxi-
mations of the Fisher, we call this method Diagonal Fisher Merging (DFM).

RegMean (Jin et al., 2022) solves a linear system to match activations between the merged model and
the original models. In practice, RegMean scales the non-diagonal terms of the Gram matrix with
a hyperparameter λ for numerical stability when computing the inverse. Note that RegMean can
only be applied to linear layers since a closed-form solution does not exist otherwise.

Multitask training (where a model is trained on all the tasks jointly) is included wherever appropriate and
can be considered as a loose upper bound on the performance of a merged multitask model.

We also experimented with Tangent Task Vectors (Ortiz-Jimenez et al., 2023) but were unable to attain
reasonable performance with it and therefore did not include it in our results.

We compute the empirical Fisher over the validation set and compare various ways of computing the Fisher
in section 6.6. The only hyperparameter in MaTS is the number of iterations to run the conjugate gradi-
ent method, which we allow to take on values ranging from 10 to 100 in step sizes of 10. We tune the
hyperparameters for each method based on validation set performance.

6.2 Conjugate Gradient Initializations and Objectives

As discussed in section 3, our use of CG in MaTS allows us to consider objectives that various merging methods
(implicitly) aim to optimize. In addition, since CG is an iterative optimization method, MaTS can flexibly
support different choices of an initialization for optimization. While solving the linear system corresponding
to eq. (6) is a convex optimization problem, the choice of initialization will effect convergence speed which
is of particular importance because we only run CG for at most 100 iterations. We therefore consider using
different merging methods (including those that do not fit our framework) to produce an initialization for
MaTS.

8
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Figure 2: We show the performance using CG to optimize the objectives implicitly defined by various
merging methods with various initializations. The number indicates the raw performance and the subscript
(and color) indicate the change in performance relative to the initialization.

Experimental set-up. As an experimental setting, we focus on merging models fine-tuned on datasets
from the T0 mixture (Sanh et al., 2021) to form a multitask models. Zhou et al. (2022) found eight datasets
(listed in appendix D.2) were the most important for performance and thus we first focus on merging models
fine-tuned on these eight datasets. We compare merging models in the full model fine-tuning setting and in
the parameter-efficient fine-tuning setting with (IA)3. We use T5-Large-LM-Adapt (Lester et al., 2021), a
variant of T5-Large (Raffel et al., 2020) that was further trained with a language modeling objective as the
pre-trained model and include more details on fine-tuning the per-task models in appendix D.1.

Compatibility considerations. In this experiment, we consider every possible initialization/objective
combination for MaTS with the following exceptions: First, when merging (IA)3-trained models, we cannot
use RegMean since RegMean is a method for merging linear layers and (IA)3 adds vectors that are elementwise
multiplied with activations and does not train any linear layers. We therefore do not consider RegMean as
an initialization or objective for models trained with (IA)3. Second, in the full-model fine-tuning setting, we
perform BFM using the K-FAC (Grosse & Martens, 2016) approximation as described in section 4 and apply
RegMean as usual. However, when merging models fine-tuned with (IA)3, we can perform BFM without
resorting to an approximation since the vectors trained by (IA)3 are sufficiently small to perform BFM
exactly.

Results. In fig. 2, we show the raw performance and performance gain over initialization using MaTS
with every possible initialization/objective combination. We see that MaTS often significantly improves
performance compared to a given initialization, except when a relatively poor objective is applied to an
effective initialization (e.g. using the “simple averaging” objective with the Task Arithmetic initialization).
Notably, we found that using RegMean as both an initialization and objective for MaTS led to an improvement
in performance over the RegMean-based initialization. This performance boost likely comes from the fact
that the matrix inverse needed in RegMean is numerically unstable and so the closed-form solution does
not actually result in the optimal solution. To confirm this possibility, we found that using the conjugate
gradient method to optimize the RegMean objective achieves a lower objective value than the closed-form
solution.

Based on the results in fig. 2, we now design a consistent recipe to apply in the experiments in the rest of the
paper. For initialization, we use the Task Arithmetic method due to its strong performance and efficiency
in both parameter-efficient and full-model fine-tuning. For the merging objective, in the (IA)3 setup, we use
the block-diagonal Fisher merging objective and in the full model fine-tuning setup we use the RegMean
objective.

6.3 Multitask Models
In this section, we compare the recipe for MaTS that we designed in the previous experiment to various other
baseline methods on the problem of merging task-specific models to create a single a multitask model in
two settings for language and one setting for vision. For language, in the first setting, we use the same
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Domain Language Language Vision
Tasks Zhou et al. (2022) Yadav et al. (2023) Ilharco et al. (2022)
Model (IA)3 Full Model (IA)3 Full Model ViT-B/32 ViT-L/14

Simple Averaging 48.1 56.4 52.1 60.5 65.8 79.5
Task Arithmetic 57.6 63.8 67.1 71.9 70.1 84.4
TIES-Merging 56.8 62.8 66.0 69.6 73.6 85.9

Diagonal Fisher merging 55.9 57.7 61.4 64.0 66.3 82.5
RegMean – 69.1 – 78.9 82.0 89.6

MaTS 65.1 72.5 75.3 81.5 82.6 90.2
Ensemble 62.8 64.9 74.8 74.1 74.0 80.0

Multitask (Upper Bound) 76.7 80.5 82.2 84.5 89.0 93.5
Individual Models 78.2 80.7 86.0 85.9 90.5 94.2

Table 1: Performance (average accuracy across tasks) of various merging methods and a multitask training-
based baseline. The highest score (excluding the multitask performance) is shown in bold.

eight key tasks from the T0 training mixture as done in section 6.2 and additionally consider merging fine-
tuned variants of T5-Large-LM-Adapt models on the seven tasks used by Yadav et al. (2023) (listed in
appendix D.3). For vision, we follow Ilharco et al. (2022); Yadav et al. (2023) and merge the same set of
CLIP-based models (Radford et al., 2021) fine-tuned on eight tasks listed in appendix D.4.3 We present the
average test-set performance across all tasks in each mixture attained by each merging method in table 1.
Notably, MaTS outperforms all other methods, often by a significant margin. The gains are most pronounced
when merging (IA)3-based models in the language domain, where MaTS outperforms prior methods by about
8% absolute. However, we note that none of the methods (including MaTS) match the multitask training-
based baseline, suggesting that there still remains room for improvement when merging many individual-task
models to create a multitask model. Per-task performance is reported in appendix F.

6.4 Intermediate-Task Training

Intermediate task MNLI QNLI QQP
Fine-tuning method (IA)3 Full Model (IA)3 Full Model (IA)3 Full Model

RTE (baseline) 79.8 75.5 79.8 75.5 79.8 75.5
Simple Averaging 79.8 78.3 79.8 75.1 79.8 78.3
Task Arithmetic 79.8 77.6 74.7 75.5 76.3 78.2
TIES-Merging 78.3 76.5 75.8 75.8 74.7 77.1

Diagonal Fisher merging 79.8 76.2 79.8 75.1 79.8 75.1
RegMean – 78.0 – 75.1 – 78.3

MaTS 83.0 79.4 80.5 76.9 78.7 77.3
Sequential Training (upperbound) 87.0 86.6 79.1 79.4 80.1 78.0

Ensemble 79.4 77.3 79.4 73.3 80.1 74.4

Table 2: RTE performance when merging a model fine-tuned on RTE with a model fine-tuned on various
intermediate tasks. We bold the highest score.

Next, we consider intermediate-task model merging as introduced by Matena & Raffel (2022). Intermediate-
task training (Phang et al., 2018; Pruksachatkun et al., 2020) involves first fine-tuning a model on an
intermediate task before fine-tuning it on a target downstream task in hopes of improving performance. In-
stead of performing sequential training, intermediate-task model merging instead merges two models trained
independently in parallel on the intermediate task and the target task. Following Matena & Raffel (2022),
we consider fine-tuned BERT (Devlin et al., 2018) models with RTE (Dagan et al., 2005) as the target task

3We use the exact checkpoints released by Ilharco et al. (2022) at https://github.com/mlfoundations/task_vectors
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and experiment with MNLI (Williams et al., 2017), QNLI (Rajpurkar et al., 2016; Wang et al., 2018), and
QQP (Sharma et al., 2018) as the intermediate tasks. We compare the performance of MaTS with other
merging methods, the original performance of the RTE-fine-tuned model, and the performance of actually
doing sequential training in table 2. Overall, we find that MaTS often outperforms all baselines with the
exception of intermediate-task merging with QQP, where most methods fail to provide a major improvement
(perhaps because QQP is not a particularly effective intermediate task for RTE).

6.5 Cost

Merging method (IA)3 Full Model
Simple Averaging 2.3E6 6.3E9
Task Arithmetic 4.8E6 1.3E10
TIES-Merging 5.0E7 1.8E11

Diagonal Fisher merging 1.2E10 3.2E13
RegMean – 2.0E13

MaTS 1.3E14 1.2E14
Multitask Training 1.1E18 2.2E17

Table 3: FLOPS for various merging methods.

Having compared the performance of various merg-
ing methods, we now compare their computational
costs. Specifically, we show the FLOPs required for
MaTS (using the recipe found in section 6.2) and
other merging methods in table 3. Though MaTS
requires substantially more computation than other
methods, most of the corresponding FLOPs consist
of matrix multiplications which are efficient to per-
form on GPUs. Also, the number of FLOPs required
for MaTS is still dramatically less than the FLOPS
for multitask training. In practice, we found that
merging with MaTS in the setting from section 6.2
only takes about 11 minutes on a single NVIDIA

A6000 GPU, which is a relatively modest amount of time in the realm of training large neural networks. We
provide the formulas used to derive the FLOP counts in appendix E.1 and provide wall-clock times of all
methods in appendix E.2. We separately note that the storage costs required for the models and “metadata”
required by each merging method is comparable and, for the models we consider, is small enough to fit on a
single GPU.

6.6 Computing the Fisher

As discussed in section 2.2, there exist different perspectives as to whether it is appropriate to use the
empirical Fisher (based on ground-truth labels) or true Fisher (based on the model’s output distribution) in
different settings. We therefore performed an ablation to compare using the empirical Fisher and the true
Fisher in the experimental setting from section 6.2. For completeness, we also compare computing the Fisher
on the training set or the validation set. Results are shown in table 4, where we confirm that the overall
performance is best when using the empirical Fisher computed on the validation set.

Merging method Diagonal Fisher Merging Block-diagonal Fisher Merging
Fine-tuning method (IA)3 Full Model (IA)3 Full Model

Empirical Fisher Train 57.7 57.7 67.1 74.3
Validation 59.1 63.8 68.8 76.1

Fisher Train 59.6 56.6 67.1 74.2
Validation 61.4 62.8 69.6 74.5

Table 4: Average multitask language model accuracy (following the same experimental setting as section 6.2)
using the empirical or true Fisher for diagonal and block-diagonal Fisher merging.

6.7 Discussion

Overall, our experimental results confirm that MaTS significantly improves merging performance while in-
curring a manageable increase in computational costs. One notable finding is that using the block-diagonal
Fisher merging (BFM) objective did not provide the best performance in the full-model fine-tuning setting
despite the fact that we might expect it to provide the most reliable notion of a “task parameter subspace”
among methods we consider (as discussed in section 5). We performed some additional analysis to explore
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this discrepancy. First, we consider whether a better initialization could yield better performance with BFM.
Specifically, since using a task vector-based initialization with the RegMean objective in MaTS performed well,
we considered using the solution found by this recipe as an initialization for an additional round of MaTS using
the BFM objective. In the experimental setting of section 6.2, adding an additional round of BFM-based
merging increased the average performance across tasks from 72.5 to 73.5, outperforming all other methods.
This result further emphasizes the importance of the choice of initialization in MaTS and also hints at the pos-
sibility of improved performance via multiple rounds of merging. Separately, we experimented with whether
optimizing the BFM-based objective would benefit from more iterations of CG. However, when increasing
the maximum number of iterations from 100 to 5K, we observed that the average performance could drop
significantly and include graph in appendix G. We hypothesize this is due to numerical instability of the
gradients. More broadly, however, our results generally suggest that improved approximations of the Fisher
could improve the performance of Fisher merging-based methods.

7 Related Work

7.1 Loss Landscape

One common assumption for merging models is that the models lie in a “basin” of low loss in parameter
space (Ilharco et al., 2022). There have been many past works focused on finding simple (not necessarily
linear) paths of low loss between two models (Kuditipudi et al., 2019; Draxler et al., 2018; Garipov et al.,
2018; Tatro et al., 2020; Benton et al., 2021). Entezari et al. (2021) hypothesize that all models trained
with SGD can be permuted such that they are all linear mode connected (i.e. there is no barrier of high
loss along the linear path connecting two models) (Frankle et al., 2020; Nagarajan & Kolter, 2019). The
permutation symmetries present in neural networks imply that activations in models trained from different
initializations may require permuting to put the models in the same loss basin. Neyshabur et al. (2020)
show that models fine-tuned from the same pre-trained checkpoint lie in the same basin and Qin et al.
(2022) studies the effect of hyperparameters on mode connectivity. Singh & Jaggi (2020); Ainsworth et al.
(2022); Jordan et al. (2022); Peña et al. (2023) introduce various algorithms that account for soft or hard
permutation symmetries in neural networks when performing merging and Stoica et al. (2023) extend this
idea to merging models with different architectures. A related finding is the “monotonic linear interpolation
property”, which states that the loss of complex neural networks monotonically decreases when trained
with SGD (Goodfellow et al., 2014) though models can be trained in such a way where this property does
not always hold (Lucas et al., 2021). When linear mode connectivity does not hold, Lubana et al. (2023)
show that models can use dissimilar mechanisms for making predictions and Juneja et al. (2022) show that
non-mode-connected models generalize differently.

Past work has also aimed to analyze the structure of the loss landscape and try to directly learn a subspace
of low loss. Some examples include Wortsman et al. (2021) learning a line, Hochreiter & Schmidhuber (1997)
optimizing a box, or Fort & Jastrzebski (2019) finding an intersection of wedges. Other works have proposed
that this “important subspace” can be found via the top eigenvectors of the Hessian (Fort & Ganguli, 2019),
which correspond to the singular vectors of the covariance matrix (Izmailov et al., 2020), where the covariance
can be estimated via SWAG (Maddox et al., 2019; Shwartz-Ziv et al., 2022) or other approximations such
as the Laplace approximation (Maddox et al., 2020).

7.2 Fisher

There has been a great deal of work on better approximating the Fisher, usually in the context of using
Natural Gradient Descent for optimization (Amari, 1998). K-FAC (Martens & Grosse, 2015) approximates
the Fisher for linear layers as the Kronecker product of the covariance of the input activations and the
covariance of the output activations. This have been extended to convolutional neural networks (Grosse &
Martens, 2016) and recurrent neural networks (Martens et al., 2018). Other works have focused on reducing
K-FAC’s compute (Tang et al., 2021) or memory (Pauloski et al., 2021) and extending K-FAC for distributed
training (Ba et al., 2017; Osawa et al., 2023). George et al. (2018) improve upon K-FAC by ensuring the
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diagonal of the K-FAC approximation is unbiased. We note that using the Fisher is only one instance of the
covariance matrix in our unified framework and MaTS uses the RegMean objective for full-model fine-tuning.

7.3 Additional Applications of Model Merging

Recently, many works have focused on merging models for different use cases. This includes merging models
for intermediate task-training (Choshen et al., 2022; Gueta et al., 2023), generalizing better to out-of-
distribution shifts (Wortsman et al., 2022b;a; Ramé et al., 2022), and combining modality-specific models
into a multimodal model (Sung et al., 2023). Concurrently, other works have focused on inaccuracies in
model merging stemming from gradient mismatches in different models, and use these insights to connect
diagonal Fisher merging and Task Arithmetic Daheim et al. (2023).

8 Conclusion

We propose MaTS, a framework that connects past merging methods by viewing merging as matching indi-
vidual models in their task parameter subspace. In general, using MaTS requires solving a linear system, so
we propose using the conjugate gradient method which enables solving linear systems that would otherwise
be intractable to solve. To explore a merging objective that has no tractable closed-form solution, we develop
a variant of Fisher merging that makes a block-diagonal approximation of the Fisher. Experimentally, we
show that MaTS achieves state-of-the-art results in merging to create multitask models from individual-task
language and vision models and in intermediate-task merging. Our work provides a new perspective on
model merging and motivates future work on improved methods for estimating a model’s task parameter
subspace.
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A Derivations

A.1 Fisher Merging

Let p be the number of parameters in the model and θi ∼ N (µi, Σi) The joint likelihood can be written as

M∑
i=1

log
[
(2π)− p

2 det Σi exp
(

− 1
2(θ − θi)Σ−1

i (θ − θi)
)]

The derivative of the joint log likelihood is:

d
dθ

M∑
i=1

log P (θ|θi) = d
dθ

M∑
i=1

log
[
(2π)− p

2 det Σi exp
(

− 1
2(θ − θi)Σ−1

i (θ − θi)
)]

= d
dθ

M∑
i=1

− p

2 log(2π) + log det Σi − 1
2(θ − θi)Σ−1

i (θ − θi)

= d
dθ

M∑
i=1

− 1
2(θ − θi)Σ−1

i (θ − θi)

= −
M∑

i=1
Σ−1

i (θ − θi)

= −
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i=1
Σ−1

i θ +
M∑

i=1
Σ−1

i θi

Setting the derivative to 0 and solving, we get
M∑

i=1
Σ−1

i θ =
M∑

i=1
Σ−1

i θi

θ =
( M∑

i=1
Σ−1

i

)−1( M∑
i=1

Σ−1
i θi

)

A.2 RegMean

The minimization objective is below:

min
W

M∑
m=1

1
Nm

∣∣∣∣Om − ZmW
∣∣∣∣2

2

= min
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The gradient of the objective is
M∑

m=1

1
Nm

(
− 2Z⊤

mOm + 2Z⊤
mZmW

)
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Setting the derivative to 0 and solving, we get

M∑
m=1

1
Nm

2Z⊤
mOm =

M∑
m=1

1
Nm

2Z⊤
mZmW (15)
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A.3 Task Parameter Subspace Derivation

Cm = P ⊤
m Pm

= (UmΣmV ⊤
m )⊤(UmΣmV ⊤

m )
= VmΣmU⊤

mUmΣmV ⊤
m

= QmΛmQ⊤
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A.4 Connecting Fisher Merging and RegMean Derivation

F l
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N
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log pθ(yn|xn)∇Wi
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= 1
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= 1
N
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where Wi refers to the ith column of W .

A.5 K-FAC Derivation
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A.6 Conjugate Gradient Derivation
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B Conjugate Gradient Method

Instead of using the gradient of the linear objective Ax − b though, CG uses the gradient of a convex
quadractic objective 1

2x⊤Ax − x⊤b. Both the linear objective and the convex quadratic objective have
the same minimum. The advantage of using the quadractic objective to compute the gradient is that its
gradient is equal to Ax − b, which is just the “error” of our current estimate of x in the linear objective.
CG additionally constrains all update directions computed at every iteration to be conjugates. While two
vectors are consider orthogonal if their dot product is 0, two vectors are conjugates if their dot product with
respect to a matrix (in this case A) is 0. Constraining the update directions to be conjugates implies that
all future updates do not affect the optimality of a previous update, and thus the optimal step size for a
given update direction can be computed. This ultimately ensures that the number of iterations required for
convergence is upper bounded by the dimension of the linear system. In practice, we observe the number
of iterations necessary for convergence to be much smaller since the update direction corresponds to the
gradient of an objective with the same minimum.

C Algorithm

We show the algorithm for MaTS in the (IA)3 setting in algorithm 1. In the full-model setting, the outer
product of the gradients is replaced with the outer product of the input activations.
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Algorithm 1: MaTS Algorithm
Input : θ1...θM ▷ M fine-tuned models sharing a common architecture and initialization
Input : D1 ... DM ▷ M validation datasets to compute model statistics
Output: θ∗ ▷ Merged model
// For each task, compute the Fisher. For brevity, we only show computing the Fisher

for each layer.
for m = 1, m ≤ M , m + 1 do

Fm = 0
for (x, y) ∈ Dm do

Fm += ∇θ log pθm(y|x)∇θ log pθm(y|x)⊤ ▷ Outer product of per-example gradient
end
Fm = Fm/|Dm| ▷ Normalize Fisher by number of examples

end

b =
M∑

m=1
Fmθm ▷ b in the linear system Ax = b

θ = θtask_arithmetic ▷ Initialize θ using Task Arithmetic
// Conjugate Gradient Method
for i = 1, m ≤ Number of Iterations, i + 1 do

Update θ using conjugate gradient where Ax =
M∑

m=1
Fmθ

end
return θ

D Experimental Setup

D.1 Fine-tuning Details

For all the models we fine-tuned, we use the same hyperparameter setup to be consistent. Concretely, we
use AdamW, learning rate of 1e−4, batch size of 1024, bfloat16 during training, training for 5K batches,
checkpointing every 100 batches, and early stopping if the model has not improved for 5 checkpoints. For
(IA)3, the only difference is the learning rate is set to 5e−3.

We use the templates from PromptSource (Bach et al., 2022) to format the input/output pairs in natural
language. All the models were trained and evaluated on all the templates available in PromptSource. Instead
of evaluating the dataset across all templates, we randomly assign a fixed template to each datapoint and
evaluate the dataset once. This is equivalent to averaging the performance across templates.

D.2 8 Keys tasks for the T0 Mixture

The tasks and datasets were question-answering (CosmosQA (Huang et al., 2019), SocialIQA (Sap et al.,
2019), QuAIL (Rogers et al., 2020), Wiki QA (Cohen et al., 2018), QuaRTz (Tafjord et al., 2019), QASC
(Khot et al., 2020), ROPES (Lin et al., 2019)) and paraphrasing (PAWS (Zhang et al., 2019)).

D.3 TIES Mixture

The datasets are PAWS (Zhang et al., 2019), QASC (Khot et al., 2020), QuaRTz (Tafjord et al., 2019),Story
Cloze (Sharma et al., 2018), Wiki QA (Cohen et al., 2018), Winogrande (Sakaguchi et al., 2020), and WSC
(Levesque et al., 2012).

D.4 Vision Tasks

These checkpoints were initialized from CLIP (Radford et al., 2021) and individually fine-tuned on eight
image classification datasets: Cars (Krause et al., 2013), DTD (Cimpoi et al., 2014), EuroSAT (Helber
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et al., 2019; 2018), GTSRB (Houben et al., 2013), MNIST (Yann, 1998), RESISC45 (Cheng et al., 2017),
SUN397(Xiao et al., 2016), and SVHN (Yuval, 2011).

E Cost

E.1 FLOPS Derivation

We assume each model has p parameters, or |θ| = p and the total number of tokens and examples used
to compute the model statistics (i.e. the Fisher or the covariance of the input activations) are T and N
respectively. We follow Kaplan et al. (2020); Liu et al. (2022) to estimate the FLOPS to compute the gradient
(forward pass + backward pass) as 3pT and the number of FLOPS to compute a forward pass in a model is
pT .

Averaging requires Mp FLOPS. Summing the models requires (M − 1)p FLOPS and dividing by the total
number of models requires another p FLOPS.

Task Arithmetic requires 2Mp + p FLOPS. Computing the task vector requires Mp FLOPS, adding task
vectors requires (M − 1)p FLOPS, adding the pretrained model requires p FLOPS, and multiplying the final
task vector by the scalar λ requires another p FLOPS.

Diagonal Fisher merging requires 3Mp − p + M(3pT + Np) FLOPS. Computing the gradient requires 3pt
FLOPS. Computing the diagonal Fisher requires Np FLOPS, since it is an element-wise multiplication for
each gradient computed per-example. This results in M(3pT + Np) FLOPS to compute the diagonal Fisher
across all model. Scaling each model by its diagonal Fisher requires Mp FLOPS, adding the models scaled
by the diagonal Fisher requires (M − 1)p FLOPS, adding the diagonal Fishers requires (M − 1)p FLOPS,
and dividing the sum of the scaled models by the sum of the diagonal Fishers requires another p FLOPS.

TIES requires 9.8Mp + Mp log p − 2p FLOPS. The trimming stage requires a total of 1.8Mp + Mp log p
FLOPS. Mp FLOPS to compute the magnitude for each parameter across all models, Mp log p FLOPS to
sort the magnitudes for each model, and 0.8Mp FLOPS to reset the bottom the 0.8 parameters by magnitude
to 0. The elect stage requires a total of 6Mp − p total FLOPS. For the elect stage, computing the positive
mass requires Mp FLOPS to compute the sign for each parameter across all models, Mp FLOPS to multiply
a parameter by its sign, (M − 1)p FLOPS to sum the positive mass for models. Computing the negative
mass doubles the amount of FLOPS. Comparing the positive and negative mass and keeping the larger mass
requires another p FLOPS. The disjoint merging stage requires a total of 2Mp − p FLOPS. This includes
MP FLOPS to multiply the parameters by the correct sign (or 0 if the parameter should be masked out)
and another (M − 1)p FLOPS to sum the parameters.

RegMean requires Mpt+
L∑

l=1
(M −1)d2

l + 2
3d3

l +Md2
l kl +(M −1)dlkl +d2

l kl +Nd2
l FLOPS, where dl and kl are

the input dimension and output dimension for layer l. For a given linear layer, summing the gram matrices
requires (M − 1)d2 FLOPS, inverting the sum of the gram matrices requires 2

3d3 FLOPS, multiplying the
gram matrices by the model weight requires Md2k FLOPS, summing the model weights modified by the
gram matrices requires (M −1)dk FLOPS, and multiplying the final 2 terms require d2k FLOPS. Computing
the forward pass activations requires pT FLOPS per model.

We assume MaTS requires I iterations. For merging full models, MaTS requires MpT +
L∑

l=1
(M −1)d2

l +Md2
l kl +

(M − 1)dlkl + I(d2
l kl + 12dlkl) + Td2

l FLOPS. For merging (IA)3, MaTS requires 3MpT +
L∑

l=1
(M − 1)d2

l +

Md2
l kl + (M − 1)dlkl + I(d2

l kl + 12dlkl) + Nd2
l FLOPS

For a given layer, summing the gram matrices and summing the models multiplied by the gram matrices
requires (M − 1)d2 and Md2k + (M − 1)dk FLOPS respectively just as in RegMean. Within each iteration,
the matrix vector product requires d2k FLOPS and the 12 vector operations within each iteration to compute
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the step size require 12dk FLOPS. This means I iterations requires I(dk + 12d2k) FLOPS. Computing the
input activations covariances for linear layers requires Td2 FLOPS, since it is a matrix multiplication between
a matrix of size d x T and T x d and the blockwise Fisher matrices for IA3 requires Nd2 FLOPS since it is
a matrix multiplication between a matrix of size d x N and N x d. Computing the forward pass activations
requires pT FLOPS per model and computing the gradient requires 3pT FLOPS per model.

For multitask learning, we follow Kaplan et al. (2020); Liu et al. (2022) to estimate the FLOPS to train an
encoder-decoder model as 3pT where T is the total number of tokens during training. The batch size is 1024
and the average sequence length is 138.5. For full model fine-tuning, the model was trained 2K batches and
for (IA)3, the model was trained 10K batches.

For full-model fine-tuning, there are 783M parameters, with 288 linear layers that have input and output
dimension 1024, 96 layers that have input dimension 1024 and output dimension 2816 and 48 linear layers
that have input dimension 2816 and output dimension 38. For (IA)3, there are 282K parameters, with 144
vectors having dimension 1024 and 48 vectors having dimension 2816. The number of tokens used to estimate
the Fisher is roughly T = 1385 since the average sequence length is 138.5 and the Fisher is computed on 1K
examples.

E.2 Wall Clock Time

In table 5, we show the wall-clock time for merging various methods on an A6000 machine. The wall-clock
time only includes computing the merge (and statistics for methods that require them) and not actually
loading any checkpoints. Though MaTS is slower than other methods, it is only by a factor of 2 − 3x for
full-model fine-tuning and is less than 6 seconds for (IA)3.

Time (seconds)
Method (IA)3 Full Model

Avg. 1.1E−2
9.5E−3 6.02.0

Task Arithmetic (Ilharco et al., 2022) 1.7E−2
2.4E−3 8.91.7

TIES (Yadav et al., 2023) 4.0E−2
5.4E−3 75.711.9

DFM (Matena & Raffel, 2022) 11049 127215
RM (Jin et al., 2022) – 66517.7

MaTS 11283.1 128728

Table 5: Wall-clock time for various merging methods. We report the mean and standard deviation across
10 runs.

F Full Results

The full results of the performance of various merging methods on the individual tasks is shown below. This
includes full-model fine-tuning and (IA)3 on the 8 key tasks from the T0 training mixture and the 7 tasks
from the TIES mixture on T5-Large.

G Performance vs. Number of Iterations

We include a graph of the performance of the merged model and the error in solving the linear system vs.
the number of iterations of the conjugate gradient method in fig. 3. We show the performance using the
block-diagonal Fisher merging objective on (IA)3 and full-model fine-tuning and the RegMean Jin et al.
(2022) objective on full-model fine-tuning.

In most cases, we do find that the merging objective value decreases as the number of iterations increases.
In some cases, we observe a small amount of noise in the merging objective, which we attribute to numerical
instability, but even in these cases the objective value tends to decrease. In some cases, we do not observe
the performance (e.g. accuracy) to increase as the number of CG iterations increases.
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Method Avg. CosmosQA SocialIQA PAWS QuAIL WikiQA QuaRTz QASC ROPES
Avg. 56.4 41.8 51.6 55.7 49.3 66.3 62.2 82.6 41.4

Task Arithmetic 63.8 54.5 56.9 61.1 56.9 76.5 76.6 79.0 48.7
TIES 62.8 55 60.1 88.7 58.5 35.9 80.2 76.6 47.3
DFM 57.7 44.9 51 51.5 56.1 49.5 81.5 78.0 49.4

RegMean 69.1 47.6 59.1 79.6 54.2 88.9 80.5 94.2 48.3
MaTS 72.5 53.7 60.2 84.2 56.5 94.0 85.2 94.8 51.6

Ensemble 64.9 50.0 51.1 89.2 56.1 72.6 78.4 79.2 42.3
Multitask 80.5 69.3 62.3 94.7 64.9 95.4 89.1 97.8 70.4

Table 6: Accuracy of different merging methods on the 8 keys tasks from the T0 training mixture when
using full-model fine-tuning.

Method Avg. CosmosQA SocialIQA PAWS QuAIL WikiQA QuaRTz QASC ROPES
Avg. 48.1 37.4 47.6 48.6 43.3 37.1 58.9 81.6 30.7

Task Arithmetic 57.6 43.9 53.0 59.0 52.3 49.4 74.0 88.4 41.1
TIES 56.8 40.7 50.4 76.1 47.9 52.2 72.9 75.0 39.3
DFM 55.9 40.1 46.4 52.0 46.2 44.5 87.5 77.0 53.9
MaTS 65.1 48.5 53.2 65.8 55.2 77.8 77.6 87.8 55.0

Ensemble 62.8 49.4 50.6 79.5 51.3 61.7 84.9 88.2 36.8
Multitask 76.7 64.3 59.6 94.5 60.7 95.5 83.9 96.4 58.5

Table 7: Accuracy of different merging methods on the 8 keys tasks from the T0 training mixture when
using (IA)3.

Method Avg. PAWS QASC QuaRTz StoryCloze WikiQA Winogrande WSC
Avg. 60.5 55.9 71.6 54.4 56.4 76.7 53.4 54.8

Task Arithmetic 71.9 76.5 64.2 70.6 80.5 90.9 65.5 54.8
TIES 69.6 89.5 78.8 78.1 73.8 36.0 73.2 57.7
DFM 64.0 55.7 75.6 85.9 69.6 50.4 59.0 51.9

RegMean 78.9 82.2 94.8 76.6 80.6 93.9 61.6 62.5
MaTS 81.5 86.6 95.2 81.8 83.0 94.5 66.6 62.5

Ensemble 74.1 88.9 60.6 76.3 74.6 92.2 64.7 61.5
Multitask 84.5 95.2 97.2 87.5 92.1 95.9 74.5 49.0

Table 8: Accuracy of different merging methods on the tasks from the TIES training mixture for T5-Large
when using full-model fine-tuning.

Method Avg. PAWS QASC QuaRTz StoryCloze WikiQA Winogrande WSC
Avg. 52.1 49.7 67.8 53.4 57.4 39.0 52.5 45.2

Task Arithmetic 67.1 55.2 75.0 69.5 77.7 75.8 58.9 57.7
TIES 66.0 70.1 80.6 72.9 73.3 56.2 58.1 51.0
DFM 61.4 51.2 73.0 89.3 72.8 45.0 57.1 41.3
MaTS 75.3 75.6 83.8 78.4 81.6 86.6 61.6 59.6

Ensemble 74.8 85.4 79.6 83.6 87.8 72.8 60.4 53.8
Multitask 82.2 94.9 95.8 81.2 88.2 95.3 66.4 53.8

Table 9: Accuracy of different merging methods on the tasks from the TIES training mixture for T5-Large
when using (IA)3.
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Figure 3: Performance of the merged model and the in error solving the linear system vs. the number of
iterations in the conjugate gradient method.
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