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ABSTRACT

Most investigations into double descent have focused on supervised models while
the few works studying self-supervised settings find a surprising lack of the phe-
nomenon. These results imply that double descent may not exist in self-supervised
models. We show this empirically in two additional previously unstudied settings
using a standard and linear autoencoder. We observe the test loss has either a
classical U-shape or monotonically decreases, rather than exhibiting the double-
descent curve. We hope that further work on this will help elucidate the theoretical
underpinnings of this phenomenon.1

1 INTRODUCTION AND BACKGROUND

Double descent is a hallmark phenomenon of deep learning, showing the rift between classical
learning theory and the generalization capabilities of deep learning systems (Belkin et al., 2019). It
manifests as a model’s test loss deviating from the classical U-shape in the bias-variance tradeoff as
the model becomes overparameterized (Neal et al., 2018; Belkin et al., 2019; Nakkiran et al., 2019).
This form of the phenomenon is known as model-wise double descent, where once the model’s
number of parameters is increased the test loss reaches a local maxima known as the interpolation
peak. This peak occurs when the number of parameters is approximately equal to the product of
the dataset’s size and the dimension of the model’s output, where the model can just interpolate the
data (Belkin et al., 2019). After passing the peak the model improves, resulting in the training loss
decreasing further and the test loss monotonically decreasing as model capacity increases.

However, previous works study almost only supervised settings. This raises the question, what
happens in the self-supervised case? The few works that asked this found that double descent is not
as universal as it seemed. For example, Gedon et al. (2023) showed analytically and empirically
that double descent does not occur in PCA. Luzi et al. (2021) found that Generative Adversarial
Networks (GANs) do not exhibit it either, except in an artificial pseudo-supervised setting. Dar
et al. (2020) contrasted the unsupervised and supervised settings by showing that when going from
the former to the latter in subspace fitting tasks, double descent gradually appears. Dubova (2022)
observed double descent in an autoencoder (AE) but the implications of their results are not obvious
as it is unclear whether their task is supervised and the location of their interpolation peak seems to
be independent of the model’s capacity.

Following these findings, we hypothesize that double descent does not occur in self-supervised
settings. We provide evidence for this claim through an empirical analysis of an autoencoder (AE)
(Kramer, 1991; Hinton et al., 2011), showing that it does not exhibit double descent. We choose
an AE because of the tension with Dubova (2022)’s results. We hope that our findings will help
elucidate the theory of overparameterized models.

∗All authors contributed equally.
1Code can be found at https://github.com/YonatanGideoni/double_descent_tiny_

paper.
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2 EXPERIMENTS

We search for double descent when training an AE on artificial data, akin to the analysis done in
Gedon et al. (2023). A detailed overview of the experiment can be found in Appendix B. The dataset
{xi}Ni=1 is generated through the relation, xi = Dzi + ϵi where zi ∼ N (0, Id) are the latent
variables, ϵi ∼ N (0, In) are noise vectors, n is the number of features, d is the latent dimension
of the data, and Dij ∼ N (0, r) is a random matrix used to project the latent features into a higher-
dimensional space, where r is a constant used to control the signal-to-noise ratio (SNR).

To learn the latent distribution of the data, we used an AE with fully-connected single-layer decoders
and encoders, each with the same number of hidden units. The latent layer’s width was varied
independently of the hidden layers’ widths because of uncertainty regarding where double descent
would occur. Previous results (Dubova, 2022) imply that if double descent occurs in AEs then it
might be independent of the hidden width. Although the interpolation peak is where the number of
model parameters is equal to the dataset’s size multiplied by the dimension of the output, it is unclear
what is the output’s size. For example, one could argue it is the AE’s latent dimension or its number
of features. This ambiguity is dealt with by using a wide range of hidden and latent dimensions in
the AE to cover both cases. The results are shown in Figure 1. The test loss never exhibits double
descent, with its specific behavior depending on how the model was overparameterized.

Figure 1: No double descent-like interpolation peak is observed across different latent and hidden
widths. When going from a small latent dimension to a high one the loss has a bias-variance-like
U-shape. However, when increasing the hidden dimension the loss only decreases. The black lines
signify locations where the interpolation peak would be if we assume different output sizes.

We find that the test loss never exhibits double descent. Its specific behavior depends on how the
model was overparameterized. An additional experiment with a linear AE is given in Appendix A.

3 DISCUSSION

We have found evidence that double descent does not occur in self-supervised settings. Our results
add to the literature supporting this finding. The discrepancy between supervised and self-supervised
settings may be due to their different formulations—while the former assumes noisy data, in the
latter, the model tries to learn a distribution. A fundamental analysis and more extensive experiments
are necessary to test this. As a theory is best understood through its shortcomings, we believe that
building on these conjectures will help advance our understanding of overparameterized systems.
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Figure 2: The test loss for different parameterization ratios in the linear AE experiment. Again, no
double descent curve is seen.

A LINEAR AE EXPERIMENT

As double descent is also known to occur in linear regression (Nakkiran, 2019; Derezinski et al.,
2019; Bach, 2023), it is natural to test our hypothesis on a similar task. This prompts the use of a
linear autoencoder—an autoencoder with no non-linear activation functions. Given the ambiguity in
the interpolation peak’s location, this autoencoder’s architecture was kept constant while the dataset
size was varied, from being lower than the input dimension to far larger than the number of param-
eters. The resulting test loss, relative to different parameterization ratios, is shown in Figure 2. We
find that there is still no discernible interpolation peak.

A.1 EXPERIMENT DETAILS

The experiment’s hyperparameters are given in Table 1. In this setting, the model had 29, 445
trainable parameters.

Parameter Name Value
Learning rate 0.001

Epochs 1000
Batch size 20

Data’s latent dimension, d 10
Number of features, n 25
AE hidden dimension 100
AE latent dimension 20
Train dataset size, N 8 · 100 − 1.1 · 106

Test dataset size 1000

Table 1: Parameters used for the linear AE experiments.
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B EXPERIMENT DETAILS

B.1 PARAMETER VALUES

The parameters used for the data generation and training procedures are given in Table 2. The
optimizer used for training was Adam (Kingma & Ba, 2014) and the reconstruction loss was MSE.

Parameter Name Value
Learning rate 0.001

Epochs 200
Batch size 10

Data’s latent dimension, d 20
Number of features, n 50
Train dataset size, N 5000

Test dataset size 10000
SNR 10

Table 2: Parameters used for the AE experiments.

B.2 SNR

To control the SNR, r is chosen such that E[||Dz||2]
E[||ϵ||2] has the desired value. As all the random variables

are Gaussian, this amounts to setting r = SNR2

d .

B.3 PLOT DETAILS

The parameter space shown in Figure 1 was not sampled in a linear or logarithmic grid because we
expected some regions to have a higher chance of exhibiting double descent than others. To show all
the results at once, we colored the parameter space based on the loss of the closest measured point.
The logarithmic distance is used instead of the normal one, so 100 is closer to 1000 than it is to 1.

B.4 TRAINING LOSS

The training loss corresponding to the results shown in Figure 1 is given in Figure 3. The autoen-
coder transitions to the interpolation regime in a large part of the parameter space, which is necessary
for DD to occur. This transition happens when the latent dimension is about 20, which is the latent
dimension of the data, or when the hidden width is about 28. This could imply that interpolation is
possible only when the autoencoder does not have an information bottleneck induced by its layers’
widths.
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Figure 3: The train loss for the experiment discussed in section 2.
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