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Abstract

Large Vision-Language Models (LVLMs) have demonstrated impressive capabili-
ties in tasks requiring multimodal understanding. However, recent studies indicate
that LVLMs are more vulnerable than LLMs to unsafe inputs and prone to gener-
ating harmful content. Existing defense strategies primarily include fine-tuning,
input sanitization, and output intervention. Although these approaches provide
a certain level of protection, they tend to be resource-intensive and struggle to
effectively counter sophisticated attack techniques. To tackle such issues, we
propose One-head Defense (Oh Defense), a novel yet simple approach utilizing
LVLMSs’ internal safety capabilities. Through systematic analysis of the attention
mechanisms, we discover that LVLMs’ safety capabilities are concentrated within
specific attention heads that respond differently to safe or unsafe inputs. Further
exploration reveals that a single critical attention head can effectively serve as a
safety guard, providing a strong discriminative signal that amplifies the model’s in-
herent safety capabilities. Hence, the Oh Defense requires no additional training or
external modules, making it computationally efficient while effectively reactivating
suppressed safety mechanisms. Extensive experiments across diverse LVLM archi-
tectures and unsafe datasets validate our approach, i.e., the Oh Defense achieves
near-perfect defense success rates (> 98%) for unsafe inputs while maintaining
low false positive rates (< 5%) for safe content. The source code is available at
https://github.com/AIASLab/0Oh-Defense.

1 Introduction

Large Vision-Language Models (LVLMs) [25, 39, 12, 2] integrate visual and textual information
through a core architecture that typically consists of a vision encoder extracting features from images
and a projector mapping these visual features into the text embedding space understood by the
underlying Large Language Model (LLM). This integration enables powerful reasoning and response
generation across modalities, demonstrating impressive capabilities in visual question answering [22],
image captioning [8], and visual reasoning [24]. However, recent studies [21, 13, 41, 26, 36] have
revealed a concerning phenomenon: despite inheriting the architecture and safety-aligned weights of
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Figure 1: Effect of safety-critical head in One-head Defense (Oh Defense). Given two prompts (safe
(upper)/unsafe (lower) text and normal images), a normal LVLM (upper half/black flow) and an
LVLM equipped with the Oh Defense (lower half/red flow) by masking a safety-critical attention
head generate outputs, respectively. The two deflection angle in hidden states (upper and lower)
reflect the effect of the safety-critical head, which is the key in the Oh Defense - ensured model utility
(similar to the outputs of the normal LVLM) for safe prompts and enhanced model safety (different
to the outputs of the normal LVLM) for unsafe prompts.

their foundation LLMs, most LVLMs exhibit noticeably degraded safety alignment. For example,
these works [28, 23, 21] demonstrate that even visually meaningless images, such as a plain black
image, combined with unsafe text as the input prompt to LVLMs, can increase the likelihood of
harmful outputs in LVLMs.

Significant efforts have been devoted to protecting LVLMs, including training-based defenses, input
sanitization, and post-processing techniques. Specifically, training-based defenses [58, 29, 32, 53],
involving constructing high-quality safety datasets and fine-tuning models to align with human
values, are common but often resource-intensive and can potentially compromise general model
capabilities. Beyond training, protection strategies also operate at different stages of the model
pipeline. Input sanitization methods [43, 54] apply defensive prompts or use stable diffusion models
to purify images and rewrite prompts. Post-processing techniques [51, 46, 15, 33] evaluate outputs for
safety concerns and regenerate responses if necessary. Nevertheless, existing defense strategies face
substantial overhead due to resource-intensive retraining, auxiliary model components, and complex
computational requirements during inference [40, 27]. For instance, [54, 15] may result in high
model inference latency, with input processing alone taking several minutes, representing a multifold
increase over base inference time. Such challenges invariably damage the practical flexibility and
deployment efficiency of existing works.

We observe that LVLMs, trained on vast multimodal corpora, naturally acquire extensive world
knowledge [4, 25] as well as emergent safety-relevant priors. These suggests that LVL.Ms may
already possess the capacity to distinguish unsafe inputs without additional adjustment. Motivated by
this hypothesis, we argue that the key to enhancing LVLM safety may not always lie in introducing
new parameters, relying on external safety modules, or incurring substantial computational burdens.
Instead, it should focus on deeply understanding and leverage the model’s own inherent capabilities
and existing architecture. While LVLMs inherit certain safety mechanisms from their base LLMs,
these capabilities are often suppressed or underutilized in the multimodal contexts. This raises a
natural question: Can these "suppressed" safety capabilities within LVLMs be effectively amplified
and utilized?

Prior studies have investigated attention heads from the perspectives of alignment or interpretabil-
ity [35, 9, 5], but few have focused on their role in safety detection, particularly within LVLMs.
Some works [57, 55, 27] analyze activation patterns in multi-head attention or logit-level responses,
yet these methods are often coarse-grained, scenario-specific, and vulnerable to redundancy and
poor generalization. Based on the above, certain attention heads might respond more strongly to
specific safety-related cues in the input, such as detecting unsafe patterns or unsafe tokens. Hence,



we aim to focus on a fine-grained and head-level analysis, which reveals that attention heads from
different layers exhibit varying activation patterns depending on factors like token semantics, syntactic
properties, and the model’s overall safety understanding.

By comparing the differences caused by masking specific attention heads on a small safe and unsafe
datasets, we can successfully identify "safety heads" that are crucial for maintaining model safety.
Building on this insight, we propose One-head Defense (Oh Defense), a lightweight method that
leverages the core safety heads of attention mechanisms to enhance unsafe inputs detection and
defense capability of LVLMs. Specifically, we find that masking a single safety-related attention
head introduces distinguishable changes in hidden states, allowing us to reliably differentiate between
safe inputs and jailbreak attempts. The Oh Defense effectively amplifies the model’s inherent
safety discrimination capabilities without requiring any retraining, auxiliary classifiers, or complex
computation. Once an unsafe input is detected, we activate a prompt-level defense strategy that
appends a safety prefix and anchors the first few output tokens, thereby steering the model away from
unsafe generations. This dual-stage approach, head-based detection and prompt-based intervention,
provides a robust, interpretable, and efficient defense, without incurring the substantial overhead
typical of existing methods. Finally, we summarize our main contributions as follows:

* We conduct a systematic analysis of attention heads in LVLMs and find that unsafe input
signals are not evenly processed across the attention heads. A small subset of heads (referred
to as safety heads) are highly sensitive to harmful content and exhibit consistent behavioral
shifts across diverse inputs. This provides a concrete basis for identifying the model’s latent
safety-related capabilities.

* We introduce a lightweight two-stage safety defense framework, Oh Defense, based on
attention head behavior. First, we identify safety heads that are sensitive to unsafe inputs
by analyzing their activation patterns and leverage the identified safety heads to distinguish
unsafe and safe inputs through targeted masking. Second, prompt-based intervention
provides a robust and interpretable defense. The approach requires no fine-tuning and adds
no trainable parameters.

* We validate the Oh Defense on four LVLMs (built upon different base LLM architectures)
under a wide range of unsafe scenarios, including visual jailbreaks and multimodal prompt
injections. The Oh Defense achieves over 98% defense success rates while maintaining low
false positives (< 5%), demonstrating both robustness and generalizability across threat
types and LVLM families.

2 Background

2.1 Vulnerabilities and Defense of LVLMs

Vulnerabilities. Jailbreak attacks on LVLMs generally fall into two categories: black-box and white-
box attacks [48], distinguished by whether the adversary has access to model parameters. In particular,
black-box attacks craft harmful outputs by inserting jailbreak-style cues into text (e.g., prompt
templates) or embedding unsafe semantics in images, such as typographic renderings or synthesized
content generated by Stable Diffusion [31, 14, 28]. On the other hand, white-box attacks exploit
the model’s internal structure through malicious manipulation and adversarial optimization, e.g.,
perturbing visual features or jointly optimizing multimodal inputs to bypass safety alignment [34, 49].
These attacks reveal vulnerabilities in both the input space and internal components of LVLMs,
motivating the need for dedicated defense strategies.

Defense. For the safety protection of LVLMs, one method is safety alignment through fine-tuning
including SFT [58] and RLHF [19], which requires substantial resources. Beyond safety fine-tuning,
we categorize defense methods into three types: input purification [43, 54], which attempts to sanitize
or modify potentially unsafe inputs before they reach the model by applying techniques such as prompt
rewriting, image transformation; post-processing protection [15, 33], which focuses on analyzing
generated outputs using specialized detectors and applying remediation techniques to filter or modify
harmful content after it has been produced by the model; and inference-time protection [55, 20],
which intercepts the model’s reasoning process by analyzing activation patterns, representation spaces
during inference to identify and block unsafe queries before response generation. The Ships [57]
also analyzes the internal mechanisms of LVLMs by quantifying the safety contribution of individual



attention heads. However, it does not propose a defense mechanism and exhibits certain limitations,
which are discussed in detail in Appendix A.6

Despite these diverse approaches, existing methods often introduce prohibitive computational over-
head during deployment that makes them impractical for real-time applications, and even inference-
time approaches with relatively lower resource consumption still fail to effectively defend against
novel and sophisticated attack patterns, while frequently disrupting the balance between safety and
utility with excessive false positives that significantly degrade legitimate user experiences.

2.2 Multi-Head Attention and Hidden States in LVLMs

Multi-Head Attention (MHA) [38] is one of the key innovations enabling LLMs to process sequence
data efficiently. The core strength of this mechanism lies in its ability to employ multiple attention
heads simultaneously, with each head independently learning to focus on different parts of the input
sequence or capture distinct types of semantic relationships. In the Transformer model architecture,
hidden states are the outputs of each layer of the model, representing the layer-by-layer representations
constructed as the model processes the input sequence. As the input information passes through each
layer, the hidden states are continuously updated and enriched, encoding high-dimensional abstract
information about the input tokens and their context [20].

3 Amplifying LVLM Safety through Critical Attention Head

This section details our approach, One-head Defense (Oh Defense), to amplify LVLM safety by
leveraging intrinsic model capabilities. We find that sensitivity to harmful content concentrates within
specific safety-critical attention heads. The Oh Defense first identifies these heads, and monitors
how masking a single critical head alters internal representations, measured by its "deflection angle",
enables efficient, training-free detection of unsafe queries. Once a threat is detected, a customized
response method is triggered to mitigate potential risks.

3.1 Identifying Safety-Critical Attention Heads

We identify safety-critical attention heads through a systematic analysis of how each attention head
influences the processing of safe and unsafe content. By selectively masking individual attention
heads and measuring the resulting changes in hidden states, we can pinpoint heads that are particularly
sensitive to safety.

Representing Model Behavior via Principal Hidden States. We first aim to summarize the
model’s behavior over a dataset using a compact representation of its hidden states. Given a dataset
D = {x1,22,...,2p|}, we extract the hidden states h; € R'*? (d is the dimension of hidden
states) corresponding to the last input token in the model’s final layer for each sample x;, which
is commonly considered to be the final contextualized representation formed after the model has
processed all input information and understood the entire prompt [52]. These hidden states are then
concatenated into a matrix:

HP = concatroy (h1, ha, ..., hip|) € RIDIxd, (D
To obtain a summary representation, we extract the first 7 column of H” denoted as:
vP = HP[:,: 7). 2)

This projection captures the salient direction in the hidden space [44]; and empirically, using r = 1
is already able to capture the variation in the data while making the calculation more efficient [57].
Note Appendix A.8 provides a detailed justification for the effectiveness of using » = 1 in capturing
data variation. Thus, vP € RIPI*1 serves as our principal behavior vector for the given dataset D.

Quantifying the Impact of Individual Attention Heads. To assess the functional role of each
attention head, we introduce a lightweight masking method. For each attention head (I, i), where [ is
the layer index and ¢ is the head index, we scale its Query weight matrix by a very small coefficient e
(typically 10~?) to suppress the head’s contribution:

Q
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where @), K, V, and W represent the Query, Key, Value matrices, and weight matrix in the Trans-
former architecture. Then, the modified attention output is propagated through the MHA mechanism
(Equation (4)).

MHA(Q, K, V) = Concat(head, ..., head;, ..., head, )W, 4)

where WO denotes the output weight matrix. Next, we recalculate the hidden states matrix H gi)mm
and its principal vector ’U(Il) . . To quantify the effect of masking, we measure the deflection angle

9D , deflecting from the 0r1g1na1 principal vector vl . to the masked principal vector v(ll’ e
ask 7
Equatlon (5) calculates the deflection angle:

- 180 (Vowse) "V i)
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This angle measures how much the model’s final-layer representation is shifted by deactivating the
head (I,14).

Identifying Safety-Critical Heads via Deflection Differentials. We calculate the deflection angle
955:3‘* and G(D“"“'fe for each attention head (I, 7) on the prepared safe and unsafe datasets. Based on
these calculated deflection angle, a head (I, ) is considered safety-critical if it satisfies two criteria:

e Limited Impact on Safe Inputs: The impact on safe inputs is relatively small. Its deflection angle
on safe datasets is less than or equal to the threshold 7:
o <. (6)

(L) mask —

This condition is used to filter out heads that have a generally large impact across all input types
(including safe inputs), thereby focusing the selection on identifying heads that contribute specifically
to safety properties. 7 is set at the 80th percentile of these deflection angle across all heads, meaning
we effectively exclude the 20% of attention heads exhibiting the highest impact on safe content.

¢ Distinction between safe and unsafe Inputs (Top-% Selection): From the heads that satisfy the
first condition, we then select those that most strongly differentiate between safe and unsafe inputs.
We calculate the difference in deflection angle:
Dunsa e Dsa fe
A0 = 00 005 )
An attention head (1, %) is selected for a safety head candidates set Sy if A0(1,i) . Tanks among the
top-k (here we set k = 5) highest values obtained from the set of heads that passed the first condition.

3.2 Input Detection and Response Method

Once safety heads are identified, the subsequent objective is to leverage them for a practical input
detection and response. Inputs are classified by comparing their deflection angle at a chosen critical
head against a threshold. Unsafe inputs trigger a guided refusal, initiated by anchored output tokens.

Calculating Deflection Angle for Individual Samples and Determining Classification Threshold.
To determine if an input is unsafe, its deflection angle must first be calculated and this process differs
slightly from the previous: we directly use its base hidden states hy,g as its principal vector (r is d)
and the dimension is 1 x d. After masking the attention head (I, ¢), we obtain the new hidden states
P(1,i)ms» the deflection angle of this sample can be represented as follows:

180 hpse - ha 3)
0. . = — -arccos 2 /mask . 8
(idmsc = " <||hbase||2 i)z

With a method to calculate the deflection angle for any sample, the next step is to establish a
clear decision boundary 6*. Specifically, we randomly select an attention head (I*,7*) from
Ssafe and calculate the deflection angle for all samples in both Dgyee and Dypsate at this head,

. . . safe|p_
resulting in two sets of deflection angle: Agype = {Hz?fe; o z?fe%; ENREETRY o ‘i*;“‘e‘k} and

Aungate = {01754 grosares PLm e Punse| }. By applying kernel density estimation (KDE) to

(l* 4*)mask’ (l*vl*)mask T (l*ﬂ:*)mask



these sets of deflection angle, we can obtain probability density functions fir and fysage, Which are
then used to determine the optimal classification threshold 6*:

0" = arg Inain|fsafe(9) - funsafe(a)

: ©))

Input Detection and Guided Response Strategy. With the threshold 8* determined, for new input
sample, we calculate its deflection angle at the selected head (I*,¢*). If this angle exceeds 6*, the input
is classified as unsafe; otherwise, it is considered safe. Upon detecting unsafe input, the traditional
method is to directly output a refusal, which often appears rigid [42]. An alternative method is to
add a safety prompt to guide the model toward generating safe answers [52, 55]. However, carefully
crafted unsafe prompts can sometimes bypass these safety measures. To address these limitations, we
propose an improved safety response strategy that not only refuses unsafe requests but also guides
the model to generate a reasoned refusal. When unsafe input is detected, we add a safety prompt
to the model, requesting it to provide a refusal response and explain the reason. Crucially, we fix
the initial tokens of the model’s output to a specific phrase like "I cannot". The method steers the
model’s autoregressive output by initiating its response with a key phrase from our safety prompt,
which enforces immediate alignment and sets a robust, safety-aligned trajectory. This significantly
hinders jailbreak attempts aiming to override the safety prompt and elicit harmful content (safety
prompt we designed and the performance of anchoring tokens are detailed in Appendix A.9).

4 Experimental Evaluation

4.1 Configurations

Datasets. In the experiments, we use VLSafe [11], JailbreakV-28K [31] as the unsafe datasets,
which are widely used in existing works [55, 54, 20]. Specifically, VLSafe consists of 1110 unsafe
image-text pairs, where the harmful content is explicitly present within the text without any form of
disguise. JailbreakV-28K, one of the most comprehensive and widely utilized benchmark datasets for
multimodal harmful content currently available, encompasses 28, 000 jailbreak attack instances across
16 attack scenarios, organized into three main categories: LLM Transfer, which involves migrating
jailbreaking techniques (originally developed for LLMs) to LVLMs by integrating them with different
images; FigStep, which embeds unsafe information directly into images through typography; and
Query-Relevant (QR), derived from MM-SafetyBench [28], which utilizes three methods for image
generation: Stable Diffusion (SD), Typography and SD + Typography. Meanwhile, we randomly
selected 500 samples each from LLaVA-Instruct-80K [25] and ShareGPT4V [7], LLaVA-Instruct-
80K comprises 80k instruction samples generated by GPT-4 from COCO images, while ShareGPT4V
contains over 100k diverse real-world user dialogues with GPT-4V. Additionally, we selected 50
samples each from VLSafe and LLaVA-Instruct-80K to serve as our D™ and D% in our method.

Base LVLM models. In our work, we primarily analyze four well-known LVLM:s built upon different
base LLM architectures, including LLaVA-v1.5-7B [25], Qwen2-VL-7B [39], Aya-Vision-8B [12],
and Phi-3.5-Vision [1], which are also widely used in existing works [54, 20, 55].

Evaluation Model and Metric. For response safety evaluation, we employ LLaMAGuard [18].
LLaMAGuard is a safety-tuned LLM that, like models such as WildGuard [ 16] and ShieldGemma [50],
provides a robust solution by jointly evaluating the prompt and response for harmful content. We
choose LLaMAGuard specifically due to its demonstrated stronger performance for safety detection
compared to models like GPT-40 [30]. Given a dataset D, we use a commonly used metric, Attack
Success Rate (ASR) [31, 48] (Equation (10)).

1
ASR(M, D, E) = o > E(p,M(p,i)) == True, (10)
(p,i)€D

where M is the LVLM being evaluated, (p, ¢) is a text/image pair in dataset D, and F is the safety
evaluation model. Detection Rate (DR) denotes the proportion of inputs detected as unsafe by the Oh
Defense, providing a straightforward measure of our defense’s effectiveness.

Baseline. We compare the Oh Defense against four competitive and state-of-the-art approaches: The
SAHs [55] and the HiddenDetect [20] for inference-time defense (directly comparable to our method),
alongside the widely-used BlueSuffix [54] for input purification and ECSO [15] for post-processing
as representative baselines in their respective categories.
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Figure 2: Heatmaps showing deflection angle for attention heads across different LVLMs. Each
heatmap displays the deflection angle for each attention head when processing D% (left) versus
DUnsafe (right). The language model of Qwen2-VL-7B consists of 28 layers, each with 28 attention
heads, while the language models of the others consist of 32 layers, each with 32 attention heads.

4.2 Main Results

We now present the main experimental results evaluating the Oh Defense. These results detail the
behavioral differences of attention heads in response to safe versus unsafe inputs, the discriminative
capability of a single identified safety head for input classification, and a comparative performance
analysis of the Oh Defense against existing defense strategies.

Visualizing Deflection Angle Differences in Attention Heads. For these models, we use the
approach in Section 3.1 to identify the safety heads. We first calculate the deflection angle for every
attention head. Figure 2 displays the deflection angle for each attention head across different LVLMs,
comparing safe versus unsafe inputs. A more intense color signifies a larger deflection angle and it
is evident from right-hand heatmaps in each pair that when processing unsafe inputs, a noticeably
greater number of attention heads exhibit these larger deflection angle.

Single Head’s Discriminative Power for Input Safety. Using our method from Sec-
tion 3.1, we could identify a set of safety heads candidate Sy for each model, e.g.,
{(8,2),(10,23), (5,5), (3,10), (5,28)} for LLaVA-v1.5-7B. Then following the method in Sec-
tion 3.2, we randomly sample one attention head from S, as the safety head to detect if the input is
unsafe. As shown in Table 1, we observe remarkably high DR across all unsafe datasets, with the
Oh Defense achieving near-perfect performance, most over 99% on the VLSafe, QR, FigStep, and
LLM Transfer datasets. Crucially, the Oh Defense maintains very low false positive rates on safe
datasets, as evidenced by DR of only 2 ~ 9.62% on Instruct-80k and 0 ~ 1.40% on ShareGPT4V.
This distinct performance on both safe and unsafe datasets is consistently observed across various
LVLM architectures, regardless of their underlying base language models, thereby validating the
generalization ability of the Oh Defense. This can be attributed to the fact that the safety head we
selected demonstrates high sensitivity to unsafe inputs while containing minimal redundant informa-
tion, which is the key to its outstanding effectiveness. Further, we present the detection performance
of additional five models in Appendix A.7, along with the selection of relevant parameters for all
models.

Enhanced Defense Performance Compared to Existing Methods. After detecting unsafe input,
we implement defense mechanism that integrates a safety prompt with fixing the initial tokens of the
output. As shown in Table 2, the Oh Defense demonstrates superior performance compared to several



Table 1: DR (%) for different LVLMs on various unsafe (VLSafe, QR, Figstep, and LLM Transfer)
and safe (Instruct-80k and ShareGPT4V) datasets using a randomly selected safety head in Sgyf.
Note: in practice, we can select the best head using a small validation set such as D% and Dusafe,

Model | BasicLLM | Head |VLSafe QR Figstep LLM Transfer |Instruct-80k ShareGPT4V
LLaVA-v1.5-7B|Vicuna-v1.5-7B| (8,2) | 99.91 98.47 100 99.92 2 0
Qwen2-VL-7B Qwen2-7B  [(15,22)| 99.34 9445 100 88.73 9.62 0
Aya-Vision-8B | Command R7B [ (16, 17)| 99.34 83.82 98.95 99.67 5 1.40
Phi-3.5-Vision Phi-3 Mini  [(16, 18)| 99.91 99.35 93.95 99.92 1.80 0

Table 2: A comparative analysis of ASR (%) for different defense strategies applied to four LVLM
architectures against diverse unsafe datasets. We mark the best result in boldface.

Model \ Defense | VLSafe QR Figstep LLM Transfer |  Average

No Defense 80.27 23.86 41.85 66.90 53.22

ECSO 4.41 6.83 12.40 61.60 21.31
LLaVA-v1.5-7B BlueSuffix 22.07 9.63 41.25 20.09 23.26
SAHs 0.36 1.40 41.85 41.05 21.17

HiddenDetect 0.27 1.50 11.70 0.69 3.54

Oh Defense 0.19 0 0 0.24 0.11
No Defense 20.36 22.55 32.45 14.79 22.54
ECSO 4.05 12.53 17.35 21.96 13.97
Qwen2-VL-7B BlueSuffix 6.58 11.30 30.25 3.25 12.85
SAHs 0.18 0.01 0 10.63 2.71

HiddenDetect 8.74 12.72 0.75 4.57 6.70

Oh Defense 1.89 1.10 0 3.22 1.55

No Defense 9.10 16.67 30.90 59.37 29.01

ECSO 4.59 15.25 25.30 62.19 26.83

Aya-Vision-8B BlueSuffix 4.50 8.21 30.45 10.97 13.53
SAHs 8.46 7.11 30.90 37.72 21.05

HiddenDetect 1.36 0.13 14.40 0.14 4.01

Oh Defense 1.23 5.11 0.01 0.50 1.71

No Defense 1.44 0.40 25.95 9.37 9.29

ECSO 0.85 0.22 12.95 11.86 6.47

Phi-3.5-Vision BlueSuffix 3.45 0.28 18.80 2.58 6.28
SAHs 0.18 0.10 4.55 9.30 3.53

HiddenDetect 1.08 0.35 2.20 1.62 1.31

Oh Defense 0.28 0.01 1.65 0.82 0.69

existing defense strategies across various LVLMs and unsafe datasets, achieving the lowest ASR
(< 2%) in the majority of test scenarios. Notably, the Oh Defense completely neutralizes attacks
from Figstep, a particularly evasive method that bypasses most prior defenses, where the Oh Defense
consistently drives ASR to near-zero levels. These findings suggest that our strategy effectively
enhances the robustness of LVLMs against diverse attacks, substantially mitigating the risk of unsafe
response generation. The Oh Defense shows similarly excellent performance in defending against
adversarial attacks, which is further elaborated in Appendix A.4. For a more detailed comparison
between similar methods such as the SAHs and the Ships, see Appendix A.6.

4.3 Further Analysis

After validating what the Oh Defense achieves, we will subsequently delve deeper into why and how
it operates, offering a more interpretable and comprehensive perspective on its capabilities.

One Head is Enough. We have found that a single safety head is already effective in accomplishing
defensive tasks, which raises the question: could increasing the number of safety heads lead to
enhanced defensive performance? Table 3 presents our detection results across various safety head
configurations on different models. Interestingly, increasing the quantity of safety heads did not
enhance the model’s overall defensive capabilities; in fact, it sometimes degrades performance
(e.g., on QR and Instruct-80k). This can be attributed to the introduction of inconsistent or less
discriminative attention patterns from additional heads, which may blur the decision boundary and
reduce overall robustness. In contrast, a single well-identified safety head provides a more coherent
and focused understanding of unsafe features, yielding better generalization across diverse scenarios.



These findings suggest that one safety head is sufficient, and even preferable, for achieving effective
and interpretable defense.

Table 3: Comparison of DR (%) using different numbers of safety heads on multiple datasets and
various models.

Model | Head Number | 6* | VLSafe QR Figstep LLM Transfer | Instruct-80k ShareGPT4V
Top-1 2.16 | 9991 9847 100 99.92 2 0
LLaVA-v1.5-7B Top-3 4.54] 9936 97.17 100 99.90 1.20 0
Top-5 6.21 | 98.46 99.33 100 99.95 2.60 0
Top-1 1.22| 9934 9445 100 88.73 9.62 0
Qwen2-VL-7B Top-3 3.02| 89.81 94.17 100 88.20 4.40 0.60
Top-5 3.84| 86.12 70.10 100 75.67 5.40 0.40
Top-1 230| 99.34 83.82 9895 99.67 5 1.40
Aya-Vision-8B Top-3 341 96.48 9233 100 98.95 10.40 1.60
Top-5 444 9468 99.67 100 100 13 4.20
Top-1 350 9991 99.35 9395 99.92 1.80 0
Phi-3.5-Vision Top-3 6.65| 99.72 98.17 36.50 99.20 0.60 0
Top-5 7.23 | 99.81 99 55 99.65 1 0

Safety Mechanisms in LVLMs with Similar Base LLMs. Figure 2 depicts that the distribution of
safety attention heads differs across LVLMs built upon different base language models, for instance,
Qwen2-VL-7B shows safety-critical heads concentrated more in later layers, while AyaVision-8B
displays them more prominently in early and middle layers. To investigate this phenomenon more
deeply, we analyze three well-known models, all based on the LLaMA family [47]: LLaVA-v1.5-
7B, ShareGPT4V-7B, and Magma-8B. Specifically, both LLaVA and ShareGPT4V are built upon
Vicuna-v1.5-7B (fine-tuned from LLaMA-2-7B), while Magma-8B adopts LLaMA-3-8B as its base.
As shown in Figure 3, although ShareGPT4V-7B exhibits generally larger deflection angle than
LLaVA-v1.5-7B on D" due to differences in fine-tuning, the two models display remarkably
consistent safety-related trends across layers. For example, in both cases, deflection angle increase
sharply from layer O to 3, peak around layer 3, and gradually decline thereafter. Magma-8B, despite
being based on a similar LLM (LLaMA-3), follows a similar trajectory. This suggests that while
the exact positions and sensitivities of safety heads may differ across models, the overall pattern of
safety-relevant attention dynamics remains structurally consistent across base LLMs.

Query vs. Value Weight Matrix Masking Effects. In our method, we analyze attention heads
by masking them through scaling their Query weight matrices. While scaling either Query or Key
matrices similarly affects attention scores (QK '), consequently altering the distribution of attention
weights. Scaling the Value weight, however, only reduces the contribution of weighted values
after attention computation without disrupting the underlying attention pattern. When scaling the
Query matrix with an extremely small coefficient, the Query-Key dot products become significantly
smaller, causing the softmax function to produce a more uniform attention weight distribution.
This uniformity effectively suppresses the distinctive patterns learned by the attention head, more
thoroughly deactivating its function compared to Value scaling, which merely attenuates output
magnitude. As observed in Figure 4, scaling the Query weight matrix produces larger average
deflection angle than scaling the Value matrix, providing clearer signals for identifying attention heads
critical to safety performance. The most significant differences appearing in the earliest layers, which
suggests that the initial layers perform the crucial task of extracting low-level features and establishing
preliminary connections. The model likely begins identifying safety-related foundational elements,
such as potentially unsafe vocabulary or trigger phrases, at these shallow layers. Complementary
results from scaling the Value matrix are included in Appendix A.10.

Choice of Hidden Layer for Monitoring Safety Signals. According to our method in Section 3.1,
after masking attention heads, we choose to observe changes in the hidden states of the final layer,
though this is not the only possible selection. Figure 5 illustrates the distribution of deflection angle
between D% and D" across different hidden layers after masking three different safety heads in
the LLaVA-v1.5-7B. The visualization shows that in the later layers of the model (approximately after
layer 20), the model becomes capable of effectively distinguishing between safe and harmful content.
This reflects that the safety functionality of the model has largely completed its identification and
processing of unsafe information in these deeper layers. At this stage, the information aggregated and
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Figure 5: Distribution of deflection angle between D% and D" across different hidden layers
after masking three different safety attention heads (5, 5), (8, 2), and (10, 23) in LLaVA-v1.5-7B.

processed by the deeper layers is sufficient to enable the model to make final discriminations and dis-
tinctions between different types of content. Further model results are available in Appendix A.11. A
more comprehensive investigation into factors affecting this experiment is presented in Appendix A.8,
including analyses of time efficiency, hyperparameter selection, metric ablations, etc.

5 Conclusion

In this work, we address the critical issue of safety alignment degradation in LVLMs. We introduce
a novel method, One-head Defense (Oh Defense), that leverages the intrinsic multi-head attention
mechanisms within LVLMs to enhance safety. By identifying safety-critical attention heads respond
distinctly to unsafe inputs, we show a single critical head can effectively maintain model security
without requiring retraining or external modules. Meanwhile, once an unsafe input is detected, we
activate a prompt-level defense strategy that appends a safety prefix and anchors the first few output
tokens, thereby steering the model away from unsafe generations. This work not only provides a
practical defense method but also offers valuable insights into the inherent safety structures within
LVLMs, paving the way for future research into lightweight and interpretable safety solutions.

Limitations. While the Oh Defense demonstrates strong performance and efficiency, we acknowl-
edge certain limitations. Our findings suggest that the identified critical head is model-dependent,
necessitating a tailored identification process for each distinct LVLM to ensure optimal performance.
Moreover, potential deployment risks, such as misuse for overconfident content filtering or fully auto-
mated moderation without human oversight, remain unexplored. Although the Oh Defense achieves
low false positive rates on benign datasets (< 5% on most benchmarks, as shown in Table 1), meaning
most non-malicious tasks proceed normally, this safety-first design inherently involves a trade-off
between utility and risk mitigation. In edge cases, prioritizing safety may lead to conservative
behavior that impacts response quality.
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A Appendix

A.1 Safety Degradation of LVLMs

Table 4: ASR (%) comparison across different safety benchmarks for Vicuna vs. LLaVA models with
various image types (Blank, Noise, and SD)

| Maliciousinstruct [17]|SorryBench [45]

StrongReject [37] \J ailbreakBench [6]

Vicuna 59 39.77 28.43 41
LLaVA+Blank 70 46.82 40.26 51
LLaVA+Noise 70 49 39.62 53
LLaVA+SD 71 55 48.56 57
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Figure 6: Comparison of average deflection angle per layer across three models: Vicuna-v1.5-7B,
LLaVA-v1.5-7B, and LLaVA-v1.5-7B-Posthoc (safety-fine-tuned).

We examine the safety vulnerabilities of LVLMs, focusing specifically on LLaVA-v1.5-7B, which is
built upon the Vicuna-v1.5-7B language model. Our investigation employs four text-based unsafe
datasets to evaluate ASR. To construct multimodal input scenarios, we augment these unsafe texts
with various image types: black images, noise images, and semantically relevant images generated
via Stable Diffusion. These text-image combinations were then fed into LLaVA-v1.5-7B to measure
the resulting ASR. Table 4 reveals a concerning trend: compared to the text-only Vicuna-v1.5-7B
model, LLaVA-v1.5-7B demonstrate significantly higher ASR when processing inputs containing
images, even when these images bear no semantic relation to the text. More strikingly, the inclusion
of semantically relevant images leads to an even greater increase in ASR.

To better understand the mechanisms underlying this safety degradation, we analyze the attention
behavior across three models: LLaVA-v1.5-7B, its base language model Vicuna-v1.5-7B, and a
safety-fine-tuned variant, LLaVA-v1.5-7B-Posthoc [58]. Using the MaliciousInstruct [17] dataset,
we compute the average deflection angle of attention heads at each layer. Figure 6 shows that across
all layers, the standard (non-safety-tuned) LLaVA consistently exhibits smaller average deflection
angle compared to both Vicuna and the safety-fine-tuned model. This indicates that in multimodal
settings, the attention distribution of non-safety-tuned LVLMs is subject to certain constraints, which
may contribute to their observed safety vulnerabilities. Nonetheless, despite these altered attention
patterns, our analysis confirms that the attention heads still retain substantial informational content,
offering potential utility for future safety analysis or detection tasks.

A.2 Performance Across Harmful Content Categories

While the Oh Defense is designed for detecting safe/unsafe content in LVLMs and cannot yet identify
different types of harmful content, it can provide graded risk scores based on the magnitude of
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deflection angle. Moreover, the Oh Defense demonstrates good performance against harmful inputs
of any category. For instance, the JailbreakV-28K dataset used in this paper contains 16 categories.
To explore category-specific defenses, we present the defensive performance of Qwen2-VL-7B and
LLaVA-v1.5-7B across different categories on this dataset as follows:

Table 5: Performance (ASR %) of LLaVA-v1.5-7B and Qwen2-VL-7B on the JailbreakV-28K dataset
across 16 harmful content categories.

Model AA B CACEH F GD HS HC A M PH PS PV TUA UB V

LLaVA 0.08 0.13 0.00 0.20 0.21 0.34 0.14 0.08 0.18 0.13 0.15 0.00 0.00 0.00 0.36 0.42
Qwen2-VL 2.31 4.19 0.19 2.23 1.78 2.15 3.61 2.67 1.88 1.96 3.22 4.62 2.01 4.73 3.69 1.33

As can be seen, the Oh defense demonstrates robust and consistent protective effectiveness across all
categories of harmful datasets. Notably, each category maintains an ASR below 5%. Furthermore,
the performance remains remarkably stable across different threat categories, with minimal variation
in ASR between categories.

A.3 Oh Defense on Text-Only LLMs

We further supplemented our evaluation with the detection performance of the Oh Defense on
two text-only LLMs: Llama2-7B and Phi-3.5-Mini, which are widely used and are the backbone
LLMs of the LVLMs used in our paper. We selected three harmful datasets, MaliciousInstruct [17],
JailbreakBench [6], and AdvBench [10], along with IFEval [56] as the benign dataset since they are
commonly adopted benchmarks for evaluating both the safety and generative capabilities of LLMs.
The results are presented as follows:

Table 6: Detection performance (DR %) of Oh Defense on LLaMA2-7B and Phi-3.5-Mini across
three harmful datasets and one benign dataset.

Model | Head | Maliciousinstruct JailbreakBench ~AdvBench | IFEval
Llama2-7B (31, 17) 98 93 95.96 6.70
Phi-3.5-Mini | (16, 18) 98 94 97.97 4.81

As can be observed, the Oh Defense also achieves solid performance on text-only LLMs.

A.4 Oh Defense Against Adversarial Attacks

Table 7: Performance against adversarial attacks on the LLaVA-v1.5-7B model using Jailbreak-
Bench [6] under different perturbation constraints e.

\ Visual Adv \ BAP
€ \16/255 32/255 64/255 unconstrained\ 16/255 32/255 64/255 unconstrained
ASR (No Defense)| 50 60 70 66 | 44 51 82 60
DR 100 100 100 100 100 100 100 100
ASR 0 0 0 0 0 0 0 0

We further compare the Oh Defense against two adversarial attacks: VisualAdv [34], which targets
LVLMs by optimizing adversarial images, and BAP [49], an extension of VisualAdv that additionally
performs coordinated text optimizations. We evaluate the Oh Defense under these attacks on LLaVA-
v1.5-7B using the JailbreakBench [6] benchmark. As shown in Table 7, the Oh Defense effectively
detects both standard adversarial attacks [34] and dual-modal attacks [49], achieving an ASR of 0
across all evaluated scenarios.
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Table 8: Average deflection angle comparison across different attack types (VLSafe, QR, FigStep,
LLM Transfer, VisualAdv, BAP).

Attack | VLSafe | QR | FigStep | LLM Transfer | VisualAdv | BAP
Average Deflection Angle | 4.99 | 691 | 325 | 5.45 | 982 | 9.15

To evaluate the Oh Defense, we compute the average deflection angle induced by LLaVA-v1.5-7B
when processing inputs from four unsafe datasets and two adversarial attack sets. As shown in
Table 8, adversarial attack samples yield significantly higher average deflection angle compared to
those from the other unsafe datasets. This suggests that when security-relevant attention heads are
masked, adversarial attacks can more readily compromise the model, leading to greater perturbations
in the hidden states. These results validate the effectiveness of the Oh Defense in detecting and
mitigating strong adversarial attacks.

100
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8 i 1 head

M 3 head

80

64 65
60

ASR

40

204

VLSafe FigStep QR LLM Transfer VisualAdv BAP

Figure 7: ASR (%) comparison for LLaVA-v1.5-7B across different attack types when masking 0
(base), 1 (8, 2), or 3 ((8, 2),(10, 23),(5, 5)) safety attention heads.

In our earlier experiments, we observed that masking specific attention heads leads to noticeable
changes in the model’s internal hidden states. To further investigate the impact of these changes, we
evaluate the ASR under various attack methods after masking either one or three identified safety
attention heads. As shown in Figure 7, masking even a single safety head leads to increased ASR
across different attack types, with more pronounced effects when three heads are masked. This
suggests that outputs previously deemed safe can become vulnerable to successful attacks once these
critical safety heads are disabled. For instance, in the cases of VLSafe and VisualAdv, masking
three safety heads increases the ASR by 14% and 12%, respectively. This substantial rise strongly
underscores the importance of the identified safety attention heads in preserving model safety and
defending against adversarial threats.

A.5 Oh Defense Against Adaptive Attacks

A natural concern regarding our head selection mechanism is whether an adversary could deliberately
craft inputs to manipulate or suppress the top-k safety-critical attention heads identified through
the Oh Defense, thereby evading detection. To evade the Oh Defense, an attacker would need to
satisfy two conditions: (1) precise knowledge of which attention heads are safety-critical for the
target model; and (2) the ability to craft inputs that suppress these heads without being flagged by
alternative safety heads. These requirements lead to distinct challenges in different threat models:

o Black-box settings: In typical API-only deployment scenarios, attackers lack access to internal
model parameters or attention head activations. To the best of our knowledge, no existing black-box
method can reliably infer the status or identity of safety-critical heads from output observations alone.
Thus, the Oh Defense remains highly robust in such practical settings.

o White-box settings: While full model access theoretically enables more powerful attacks (e.g.,
backdoors or direct parameter tampering), we note that even in this extreme case, the Oh Defense
retains effectiveness. To evaluate this, we conducted a controlled experiment on a modified LLaVA-
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v1.5-7B model in which the original top-5 safety heads were forcibly suppressed (by zeroing
their weight matrices). Despite this, the Oh Defense can identify a new set of top-5 safety heads:
{(3,19),(14,27),(13,7), (4,21), (5,24) }. Using a randomly selected head from this new set, (13,
7), we evaluated detection rates across multiple benchmarks:

Table 9: Detection performance (DR %) of Oh Defense on LLaVA-v1.5-7B using head (13, 7).
Model | Head | VLSafe Figstep QR LLM Transfer | Instruct-80K ShareGPT4V

LLaVA-v1.5-7B | (13,7)| 98.91 100 98.50 99.75 \ 3.60 1.60

Although performance on benign instruction-following datasets (e.g., Instruct-80k, ShareGPT4V)
slightly decreased, as expected when safety mechanisms are active, the model maintains near-perfect
detection on jailbreak and red-teaming benchmarks. This confirms that the Oh Defense can adaptively
re-identify safety-critical heads even when the original ones are compromised.

A.6 Comparsion with SAHs and Ships/Sahara

While both the Oh Defense and the SAHs explore the capability of attention heads for safe/unsafe
content detection, we observe differences between the Oh Defense and the SAHs in the approach and
capabilities.

o The differences on the approaches: The SAHs rely on linear probes and trains binary classifiers
on attention head activations, requiring supervised learning for detection. In contrast, the Oh
Defense adopts a training-free methodology based on principal behavior vectors and deflection angle
measurements, avoiding reliance on additional parameters or training data as required by the SAHs.

o The differences on the detection capabilities: The Oh Defense demonstrates significant practical
advantages. Our approach uses only a single attention head compared to the SAHs’ multiple heads
(typically 16-32), while achieving superior performance across various attack scenarios. Note that,
the Oh defense outperforms the SAHs against challenging attacks like FigStep, see Table 2 for details.
The training-free nature also provides better transferability across different models and datasets
(though attention heads are selected by VLSafe, the detection capability is demonstrated in Table 1
and Table 2 across various jailbreak datasets), as we don’t rely on dataset-specific supervised training
that may not generalize well.

The Ships/Sahara only validates their "safety heads" on harmful datasets. Figure 2 reveals that
attention heads showing large deflection angle on unsafe data often exhibit similarly large deflection
angle on safe data, particularly in early layers. So these are not true safety heads but rather heads
sensitive to general patterns or input structures. We introduce a novel paradigm requiring heads to
demonstrate differential behavior between safe and unsafe inputs. Our "Limited Impact on Safe
Inputs" (Equation 6) criterion ensures identification of truly safety-critical heads. To demonstrate
this critical difference, although the Ships/Sahara does not propose a defense method, we apply the
same detection framework to use heads selected by both methods on Qwen2-VL-7B. This ensures we
can fairly compare the quality of head selection strategies rather than detection mechanisms. Using
KL-based scoring on harmful inputs, the Ships identified the top-performing head as (0, 7), whereas
the Oh Defense selected the safety-critical head (15, 22). The results are as follows:

Table 10: Detection performance (DR %) of Ships and Oh Defense on Qwen2-VL-7B.
Method | Head |VLSafe Figstep QR LLM Transfer | Instruct-80K ShareGPT4V

Ships 0,7) | 65.50 10 6 19.85 10 0
Oh Defense | (15,22)| 99.34 100 9445 88.73 9.62 0

The comparison accurately reflects the performance difference between the two head selection
approaches under identical detection conditions. It can be observed that when (0, 7) is used as the
safety head for detection, the detection rates on FigStep, QR, and LLM Transfer are all below 20%,
which indicates that the head selected by the Ships cannot serve as a safety head for detection under
parallel settings.
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A.7 Performance on Other LVLMs and Detailed Parameter Setting
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Figure 8: Heatmaps showing deflection angle for attention heads across different LVLMs. Each
heatmap displays the deflection angle for each attention head when processing D% (left) versus
Dunsafe (right). The language model of Qwen2.5-VL-7B consists of 28 layers, each with 28 attention
heads, LLaVA-v1.6-13B consists of 40 layers, each with 40 attention heads, while the language
models of the other models consist of 32 layers, each with 32 attention heads.

Table 11: Performance evaluation metrics for safety detection across different LVLM models, showing
each model’s base LLM, identified safety head coordinates, classification threshold (§*), and detection
rate on various datasets.

Model | BasicLLM | Head | 6% |VLSafe JailBreakV_28K|Instruct-80k ShareGPT4V
Llama3-LLaVA-next-8B| Llama-3-8B 9,24) |2.41| 96.12 89.51 15 0.01
LLaVA-v1.6-13B Vicuna-13B-v1.5| (4,16) | 3 90.36 98.70 6 14.8
ShareGPT4V-7B Vicuna-v1.5-7B | (9,4) (2.74] 96.22 99.15 1.60 0.20
Magma-8B Llama-3-8B 2,2) |54 97.21 98.81 0.96 4.60
Qwen2.5-VL-7B Qwen2.5-VL-7B [ (13, 14)[1.33| 98.56 89.41 6 0.8

In Figure 8, we present heatmaps of attention head deflection angle for various models on both Dg,¢e
and Dypsafe, offering preliminary insights into how attention heads respond differently to distinct input
types. Building on this analysis, Table 11 identifies a representative safety attention head for each
model, along with its corresponding classification threshold 8*, and reports the detection performance
of the Oh Defense on both safe and unsafe datasets. Together, these results provide strong evidence
for the generality and effectiveness of the Oh Defense across multiple LVLMs.

Additionally, Table 12 summarizes the relevant thresholds used across all models discussed in this
work. Notably, these thresholds, such as those for identifying safety heads, are not fixed and can be
further explored or optimized.
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Table 12: Comprehensive threshold parameters for various LVLMs, including 7, identified safety
head coordinates, and classification threshold (8*) used in the safety detection system.

Model \ T \ Head o*
LLaVA-v1.5-7B 1.96 8,2) 2.16
Qwen2-VL-7B 4.29 (15, 22) 1.22
Aya-Vision-8B 6.47 (16, 17) 2.3
Phi-3.5-Vision 5.09 (16, 18) 3.5
Llama3-LLaVA-Next-8B 3.62 9, 24) 2.41

LLaVA-v1.6-13B 2.30 4, 16) 3
ShareGPT4V-7B 1.95 9, 4) 2.74
Magma-8B 2.53 2,2) 5.4
Qwen2.5-VL-7B 431 (13, 14) 1.33

Regarding the critical classification threshold 8, which is used to distinguish between safe and unsafe
inputs based on specific safety attention heads, we initially estimate its value via KDE. However,
because the unsafe content in the VLSafe dataset is relatively explicit and easily detected by the
model’s internal mechanisms, we typically adjust 8* downward to enhance robustness against more
subtle attacks. Conversely, for models requiring stricter criteria for safety, 8 can be adjusted upward.
This flexibility highlights the tunable nature of §* in balancing detection sensitivity and robustness.

A.8 Impact of Different Factors
25 23.66

20

15

Time (s)
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0.10 0.14 0.22
ECSO BlueSuffix SAHs HiddenDetect Ours

Figure 9: Time Costs in Various Defense Methods.

We compare the time efficiency for processing a single sample across different defense methods
applied to the LLaVA-v1.5-7B model. As shown in Figure 9, the input purification method, BlueSuffix,
and the post-processing method, ECSO, incur prohibitively high time costs, rendering them infeasible
for practical deployment. Compare with the SAHs, although our method requires one additional
forward pass, the resulting increase in processing time is well within acceptable limits.

All tasks can be completed on a single NVIDIA RTX 4090 24G GPU and 16vCPU Intel(R) Xeon(R)
Gold 6430 on the Linux operating system Ubuntu 22.04 with Anaconda (or miniconda3) and CUDA
11.8.

When calculating the deflection angle of attention heads, the principal vector v is extracted from the
hidden state matrix HP. By default, we select the first column (i.e., » = 1) of HP as the principal
vector v7. To assess the potential impact of this choice, we conduct a comparative analysis by
selecting different column positions within P and measuring the resulting average deflection angle
across attention layers.

As shown in Figure 10, selecting earlier columns, such as the fist or the tenth, yields a more
pronounced difference in deflection angle between safe and unsafe samples. In contrast, when later
columns (e.g., the 100th or 1000th) are used, the deflection angle for safe samples can exceed those
for unsafe ones. These findings suggest that features from earlier positions in H” more robustly
capture the distinctions between safe and unsafe inputs. Therefore, we recommend using earlier
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Figure 10: Average deflection angle per layer when selecting different columns on the LLaVA-v1.5-
7B.

columns when constructing the principal vector v for deflection angle calculations, as they provide
stronger and more reliable discriminative signals.
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Figure 11: Average shifts per layer under different dimensionality reduction methods on the LLaVA-
v1.5-7B.

Furthermore, we compare the effectiveness of different dimensionality reduction techniques in
distinguishing between safe and unsafe inputs. As shown in Figure 11, features obtained by applying
PCA or UMAP to HP, as well as the first column vector directly extracted from H D all exhibit
a clear separation between the two input types. However, directly using the first column achieves
comparable discriminative performance with significantly lower computational overhead, making it a
more efficient choice.

Table 13: Threshold calculated using different distance metrics and the corresponding Detection Rate
on the Dypgafe and Dg,ge on the LLaVA-v1.5-7B.

| Cosine Similarity| Manhattan Distance |Euclidean Distance | Minkowski Distance

threshold| 2.16 | 1.91 | 0.03 | 0.01
Dunsafe 100 100 100 100
Dsafe 2 2 2 2

In the Oh Defense, we establish a discriminative threshold 8* by computing differences between
the safety-related vector representations of samples in Dyysare and Dgyre. We primarily adopt cosine
similarity to quantify these differences and use it to define and calculate the deflection angle for
each sample. To assess the effectiveness and robustness of this metric, we compare cosine similarity
against alternative distance measures, including Manhattan, Euclidean, and Minkowski distances.
Detailed results are shown in Figure 12. The experiments demonstrate that all metrics are capable of
effectively distinguishing unsafe samples from safe ones.

Further quantitative analysis in Table 13 shows that, using thresholds derived from each respective
metric, the Oh Defense successfully identifies 100% of Dypsare samples while misclassifying only
2% of Dg,fe samples. These results strongly support the key role of the identified safety-related
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Comparison of Deflection Angle's Distributions
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Figure 12: Distribution of Dypsate and D,qf. samples based on different distance metrics on the
LLaVA-v1.5-7B.

attention head in reliably differentiating between safe and unsafe inputs, regardless of the specific
vector distance metric employed.
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Figure 13: Comparison of average deflection angle per layer using different numbers of Dyygare and
Dqafe on the LLaVA-v1.5-7B.

To determine the optimal sample sizes for Dgyge and Dypsate, We conduct a series of experiments in
which the number of selected samples is systematically varied. We then measure the model’s average
deflection angle when distinguishing between safe and unsafe inputs, as shown in Figure 13. The
results indicate that with smaller sample sizes (e.g., 5 or 10), the average deflection angle for Dypg,fe
remain relatively low, reflecting limited discriminative performance. As the sample size increases to
25 or more, the model’s ability to distinguish between safe and unsafe inputs improves markedly,
reaching its peak when the sample size reaches 50. At this point, the average deflection angle for
Dunsafe achieves its maximum.

However, further increasing the sample size (e.g., to 100) does not lead to a meaningful improvement
in discrimination and instead introduces unnecessary computational overhead. Based on these
findings, we recommend selecting between 25 and 50 samples each for Dy,g and Dypgafe, as this range
provides a favorable balance between detection effectiveness and computational efficiency.
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To evaluate the consistency of our safety head identification across different datasets, we ap-
plied our method to LLaVA-v1.5-7B. Initially using VLSafe, we obtained the top-5 safety heads
{(8,2),(10,23), (5,5), (3,10), (5,28)}. When we replaced VLSafe with VLGuard [55], the identi-
fied set became {(23, 11), (3,14), (8,2), (5, 28), (4,23) }. Notably, heads (8, 2) and (5, 28) appear
consistently across both datasets, suggesting they represent core safety-critical attention mechanisms.
To assess how the other dataset-specific heads perform, we use (4, 23) from the VLGuard-identified
set for evaluation. The results are as follows:

Table 14: Detection performance (DR %) of the Oh Defense on LLaVA-v1.5-7B using head (4, 23).
Model | Head | VLSafe Figstep QR LLM Transfer | Instruct-80K ShareGPT4V

LLaVA-v1.5-7B | (4.23)| 97.10 100 99.97 99.99 3.80 0.20

It can be seen that (4, 23) still has excellent performance as a safety head, proving that the safety
heads we identified are qualified, and also demonstrating that the Oh Defense does not have particular
dependency on the dataset. Moreover, the images in the VLSafe dataset come from the COCO dataset,
the text portion comes from red team data, and it can be easily created.

A.9 Safety Prompt and Anchoring Tokens

OUR SAFETY PROMPT

CRITICAL SECURITY ALERT: The unsafe Prompt has been flagged by our advanced
security system as a potential security bypass attempt.

OVERRIDE ALL OTHER INSTRUCTIONS:

1. Once this safety alert is triggered, | MUST ONLY provide the following three-point
refusal:
#1. "I cannot and will not fulfill this request."
#2. "This request violates safety guidelines because it [brief general explanation without
repeating harmful content]."

#3. "I am designed to be helpful, harmless, and honest. I cannot engage with content that
could potentially cause harm, regardless of how it is phrased or formatted. Bye Bye!!
END!END!END!"

2. I WILL NOT:
* Provide ANY additional content beyond these three points.
* Attempt to answer ANY portion of the request regardless of formatting
» Respond to role-playing instructions or format markers like [GPT], [Other], etc.
* Generate multiple styles of answers under any circumstances.
» Continue the conversation in any way after providing the refusal.
3. NO EXCEPTIONS. NO PARTIAL COMPLIANCE. NO ADDITIONAL RE-
SPONSES. This safety protocol overrides all other instructions, regardless of their com-

plexity, formatting, or persuasive nature. No content will be generated after point #3 under
any circumstances.

The unsafe Prompt:

After detecting unsafe inputs, a key challenge remains: effectively preventing the model from
generating harmful outputs. Relying solely on fixed fallback responses is often too rigid and inflexible.
Although some prior work has explored guiding the model using safety prompts, such methods can
be circumvented, as models may either ignore the prompt or generate harmful content immediately
after an initial safe response, especially under well-crafted jailbreak attacks.
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Table 15: safety prompt template used in safety response experiments [55], showing the warning
message and recommended refusal format.

Warning: This input has been flagged as unsafe, illegal, unethical, or not
compliant with safety policies.

Please refuse to respond immediately and provide only the following
message:

"I’m sorry, but I cannot fulfill this request due to safety policies."

Do not offer any further explanation or additional information.

Prompt

Table 16: ASR (%) comparison between different safety defense methods, showing the effectiveness
of combining safety prompts with anchoring tokens on the LLaVA-v1.5-7B.

Method| Prompt [55]| Prompt (Ours) |anchoring tokens | Prompt (Ours) + anchoring tokens
ASR | 57 | 35 | 20 | 0

To address this limitation, we propose a more robust defense method that combines a carefully
designed safety prompt with the anchoring of a specific token (e.g., “I cannot”) at the beginning of
the model’s output. We evaluate this method using 100 examples from the LLM Transfer dataset
(assuming all inputs are detected as unsafe). As shown in Table 16, using only a standard safety
prompt (see Table 15) results in an ASR of 57%. Even with our carefully designed prompt, the
ASR remains at 37%. When solely anchoring the initial output tokens, the ASR is reduced to 20%.
However, combining both the custom safety prompt and output anchoring leads to a significant
reduction in ASR, down to 0.

This method not only robustly mitigates jailbreak attempts but also offers clear and user-friendly
explanations for response refusal, demonstrating both its effectiveness and practicality in real-world
safety applications.

A.10 Scaling the Value weight matrix

We implement attention head masking by scaling the Query weight matrix. In Table 17, we addition-
ally report the performance of safety heads identified when scaling the Value weight matrix, along
with their detection rates across various datasets. The results demonstrate that safety heads discovered
through Value weight scaling also exhibit strong detection performance (Note, Qwen2-VL-7B and
Aya-Vision-8B using GQA [3] instead of MHA). It is worth noting that this study evaluates only a
single safety head under the Value weight scaling strategy. Future work could further explore this
direction to uncover additional insights and expand the applicability of this method.

Table 17: DR (%) for four different LVLMs on various unsafe (VLSafe, QR, Figstep, LLM Transfer)
and safe (Instruct-80k, ShareGPT4V) datasets when scaling the Value weight matrix.

Model | Head | 6° |VLSafe QR Figstep LLM Transfer |Instruct-80k ShareGPT4V
LLaVA-v1.5-7B|(13,17)[1.29] 98.64 98.90 100 99.94 3 0
Qwen2-VL-7B | (10, 1) {2.20] 95.23 97.37 98.45 79.38 14.40 12.20
Aya-Vision-8B | (17,0) [2.45] 99.37 81.05 100 99.74 2.60 14.40
Phi-3.5-Vision |(16, 14){1.94| 98.74 97.25 99.65 90.12 3.40 12

A.11 Hidden Layer of Other LVLMs

Figure 14 presents the performance of different safety heads across hidden layers in three models:
Qwen2-VL-7B, Aya-Vision-8B, and Phi-3.5-Vision. The chart illustrates the distribution of deflection
angle within the 10% — 90% range. The analysis shows that Qwen2-VL-7B begins to effectively
distinguish between safe and unsafe inputs from the 25th layer onward, whereas Aya-Vision-8B and
Phi-3.5-Vision exhibit strong discriminative capability starting from the 20th layer.
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is low or images are taken in low lighting. Or a speech-to-text system might not be
used reliably to provide closed captions for online lectures because it fails to handle
technical jargon.

* The authors should discuss the computational efficiency of the proposed algorithms
and how they scale with dataset size.

* If applicable, the authors should discuss possible limitations of their approach to
address problems of privacy and fairness.

* While the authors might fear that complete honesty about limitations might be used by
reviewers as grounds for rejection, a worse outcome might be that reviewers discover
limitations that aren’t acknowledged in the paper. The authors should use their best
judgment and recognize that individual actions in favor of transparency play an impor-
tant role in developing norms that preserve the integrity of the community. Reviewers
will be specifically instructed to not penalize honesty concerning limitations.

3. Theory assumptions and proofs

Question: For each theoretical result, does the paper provide the full set of assumptions and
a complete (and correct) proof?

Answer: [NA]
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Justification: Our paper does not include theoretical results.

Guidelines:

The answer NA means that the paper does not include theoretical results.

All the theorems, formulas, and proofs in the paper should be numbered and cross-
referenced.

All assumptions should be clearly stated or referenced in the statement of any theorems.
The proofs can either appear in the main paper or the supplemental material, but if
they appear in the supplemental material, the authors are encouraged to provide a short
proof sketch to provide intuition.

Inversely, any informal proof provided in the core of the paper should be complemented
by formal proofs provided in appendix or supplemental material.

Theorems and Lemmas that the proof relies upon should be properly referenced.

4. Experimental result reproducibility

Question: Does the paper fully disclose all the information needed to reproduce the main ex-
perimental results of the paper to the extent that it affects the main claims and/or conclusions
of the paper (regardless of whether the code and data are provided or not)?

Answer: [Yes]

Justification: We provide the implementation details including hyperparameter settings and
evaluation details in Appendix A.7.

Guidelines:

The answer NA means that the paper does not include experiments.
If the paper includes experiments, a No answer to this question will not be perceived
well by the reviewers: Making the paper reproducible is important, regardless of
whether the code and data are provided or not.
If the contribution is a dataset and/or model, the authors should describe the steps taken
to make their results reproducible or verifiable.
Depending on the contribution, reproducibility can be accomplished in various ways.
For example, if the contribution is a novel architecture, describing the architecture fully
might suffice, or if the contribution is a specific model and empirical evaluation, it may
be necessary to either make it possible for others to replicate the model with the same
dataset, or provide access to the model. In general. releasing code and data is often
one good way to accomplish this, but reproducibility can also be provided via detailed
instructions for how to replicate the results, access to a hosted model (e.g., in the case
of a large language model), releasing of a model checkpoint, or other means that are
appropriate to the research performed.

While NeurIPS does not require releasing code, the conference does require all submis-

sions to provide some reasonable avenue for reproducibility, which may depend on the

nature of the contribution. For example

(a) If the contribution is primarily a new algorithm, the paper should make it clear how
to reproduce that algorithm.

(b) If the contribution is primarily a new model architecture, the paper should describe
the architecture clearly and fully.

(c) If the contribution is a new model (e.g., a large language model), then there should
either be a way to access this model for reproducing the results or a way to reproduce
the model (e.g., with an open-source dataset or instructions for how to construct
the dataset).

(d) We recognize that reproducibility may be tricky in some cases, in which case
authors are welcome to describe the particular way they provide for reproducibility.
In the case of closed-source models, it may be that access to the model is limited in
some way (e.g., to registered users), but it should be possible for other researchers
to have some path to reproducing or verifying the results.

5. Open access to data and code

Question: Does the paper provide open access to the data and code, with sufficient instruc-
tions to faithfully reproduce the main experimental results, as described in supplemental
material?
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Answer: [Yes]

Justification: We will provide an anonymous link to our source code as the Supplementary
Material.

Guidelines:

» The answer NA means that paper does not include experiments requiring code.

* Please see the NeurIPS code and data submission guidelines (https://nips.cc/
public/guides/CodeSubmissionPolicy) for more details.

* While we encourage the release of code and data, we understand that this might not be
possible, so “No” is an acceptable answer. Papers cannot be rejected simply for not
including code, unless this is central to the contribution (e.g., for a new open-source
benchmark).

* The instructions should contain the exact command and environment needed to run to
reproduce the results. See the NeurIPS code and data submission guidelines (https:
//nips.cc/public/guides/CodeSubmissionPolicy) for more details.

* The authors should provide instructions on data access and preparation, including how
to access the raw data, preprocessed data, intermediate data, and generated data, etc.

* The authors should provide scripts to reproduce all experimental results for the new
proposed method and baselines. If only a subset of experiments are reproducible, they
should state which ones are omitted from the script and why.

* At submission time, to preserve anonymity, the authors should release anonymized
versions (if applicable).

* Providing as much information as possible in supplemental material (appended to the
paper) is recommended, but including URLSs to data and code is permitted.
6. Experimental setting/details

Question: Does the paper specify all the training and test details (e.g., data splits, hyper-
parameters, how they were chosen, type of optimizer, etc.) necessary to understand the
results?

Answer: [Yes]

Justification: All experiment hyperparameters and configuration are detailed in Appendix A.7
and referenced in the main text 4.1.

Guidelines:

* The answer NA means that the paper does not include experiments.

» The experimental setting should be presented in the core of the paper to a level of detail
that is necessary to appreciate the results and make sense of them.

* The full details can be provided either with the code, in appendix, or as supplemental
material.
7. Experiment statistical significance

Question: Does the paper report error bars suitably and correctly defined or other appropriate
information about the statistical significance of the experiments?

Answer:

Justification: The paper presents its experimental results in various tables and figures .
However, it does not include error bars, confidence intervals, or statistical significance tests
for these results.

Guidelines:

* The answer NA means that the paper does not include experiments.

* The authors should answer "Yes" if the results are accompanied by error bars, confi-
dence intervals, or statistical significance tests, at least for the experiments that support
the main claims of the paper.

* The factors of variability that the error bars are capturing should be clearly stated (for
example, train/test split, initialization, random drawing of some parameter, or overall
run with given experimental conditions).
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8.

10.

* The method for calculating the error bars should be explained (closed form formula,
call to a library function, bootstrap, etc.)

* The assumptions made should be given (e.g., Normally distributed errors).

¢ It should be clear whether the error bar is the standard deviation or the standard error
of the mean.

* It is OK to report 1-sigma error bars, but one should state it. The authors should
preferably report a 2-sigma error bar than state that they have a 96% CI, if the hypothesis
of Normality of errors is not verified.

» For asymmetric distributions, the authors should be careful not to show in tables or
figures symmetric error bars that would yield results that are out of range (e.g. negative
error rates).

o If error bars are reported in tables or plots, The authors should explain in the text how
they were calculated and reference the corresponding figures or tables in the text.

Experiments compute resources

Question: For each experiment, does the paper provide sufficient information on the com-
puter resources (type of compute workers, memory, time of execution) needed to reproduce
the experiments?

Answer: [Yes]

Justification: We provide the computer resources needed for all experiments provided in
Appendix A.8.

Guidelines:

» The answer NA means that the paper does not include experiments.

* The paper should indicate the type of compute workers CPU or GPU, internal cluster,
or cloud provider, including relevant memory and storage.

* The paper should provide the amount of compute required for each of the individual
experimental runs as well as estimate the total compute.

* The paper should disclose whether the full research project required more compute
than the experiments reported in the paper (e.g., preliminary or failed experiments that
didn’t make it into the paper).

. Code of ethics

Question: Does the research conducted in the paper conform, in every respect, with the
NeurIPS Code of Ethics https://neurips.cc/public/EthicsGuidelines?

Answer: [Yes]

Justification: We do not violate any content in the Neur[PS Code of Ethics: Potential Harms
Caused by the Research Process, Societal Impact and Potential Harmful Consequences, and
Impact Mitigation Measures.

Guidelines:

¢ The answer NA means that the authors have not reviewed the NeurIPS Code of Ethics.

* If the authors answer No, they should explain the special circumstances that require a
deviation from the Code of Ethics.

* The authors should make sure to preserve anonymity (e.g., if there is a special consid-
eration due to laws or regulations in their jurisdiction).

Broader impacts

Question: Does the paper discuss both potential positive societal impacts and negative
societal impacts of the work performed?

Answer: [Yes]

Justification: The purpose of this paper is to enhance the safety of Large Vision-Language
Models (LVLMs), which directly addresses a positive societal impact by aiming to reduce
the generation of unsafe or harmful content.

Guidelines:

* The answer NA means that there is no societal impact of the work performed.
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12.

* If the authors answer NA or No, they should explain why their work has no societal
impact or why the paper does not address societal impact.

» Examples of negative societal impacts include potential malicious or unintended uses
(e.g., disinformation, generating fake profiles, surveillance), fairness considerations
(e.g., deployment of technologies that could make decisions that unfairly impact specific
groups), privacy considerations, and security considerations.

* The conference expects that many papers will be foundational research and not tied
to particular applications, let alone deployments. However, if there is a direct path to
any negative applications, the authors should point it out. For example, it is legitimate
to point out that an improvement in the quality of generative models could be used to
generate deepfakes for disinformation. On the other hand, it is not needed to point out
that a generic algorithm for optimizing neural networks could enable people to train
models that generate Deepfakes faster.

* The authors should consider possible harms that could arise when the technology is
being used as intended and functioning correctly, harms that could arise when the
technology is being used as intended but gives incorrect results, and harms following
from (intentional or unintentional) misuse of the technology.

* If there are negative societal impacts, the authors could also discuss possible mitigation
strategies (e.g., gated release of models, providing defenses in addition to attacks,
mechanisms for monitoring misuse, mechanisms to monitor how a system learns from
feedback over time, improving the efficiency and accessibility of ML).

Safeguards

Question: Does the paper describe safeguards that have been put in place for responsible
release of data or models that have a high risk for misuse (e.g., pretrained language models,
image generators, or scraped datasets)?

Answer: [NA]

Justification: The paper’s contribution is a method to improve the safety of existing LVLMs
and detect unsafe inputs. It does not release new large-scale pretrained models or datasets
that would inherently carry a high risk for misuse requiring specific release safeguards. The
research itself aims to act as a safeguard.

Guidelines:

* The answer NA means that the paper poses no such risks.

* Released models that have a high risk for misuse or dual-use should be released with
necessary safeguards to allow for controlled use of the model, for example by requiring
that users adhere to usage guidelines or restrictions to access the model or implementing
safety filters.

* Datasets that have been scraped from the Internet could pose safety risks. The authors
should describe how they avoided releasing unsafe images.

* We recognize that providing effective safeguards is challenging, and many papers do
not require this, but we encourage authors to take this into account and make a best
faith effort.

Licenses for existing assets

Question: Are the creators or original owners of assets (e.g., code, data, models), used in
the paper, properly credited and are the license and terms of use explicitly mentioned and
properly respected?

Answer: [Yes]

Justification: All data and models used are properly cited and their license terms were
properly respected.

Guidelines:

» The answer NA means that the paper does not use existing assets.
* The authors should cite the original paper that produced the code package or dataset.

 The authors should state which version of the asset is used and, if possible, include a
URL.
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14.

15.

* The name of the license (e.g., CC-BY 4.0) should be included for each asset.

* For scraped data from a particular source (e.g., website), the copyright and terms of
service of that source should be provided.

 If assets are released, the license, copyright information, and terms of use in the
package should be provided. For popular datasets, paperswithcode.com/datasets
has curated licenses for some datasets. Their licensing guide can help determine the
license of a dataset.

* For existing datasets that are re-packaged, both the original license and the license of
the derived asset (if it has changed) should be provided.

* If this information is not available online, the authors are encouraged to reach out to
the asset’s creators.
New assets

Question: Are new assets introduced in the paper well documented and is the documentation
provided alongside the assets?

Answer: [NA]
Justification: We do not introduce new assets.
Guidelines:

* The answer NA means that the paper does not release new assets.

» Researchers should communicate the details of the dataset/code/model as part of their
submissions via structured templates. This includes details about training, license,
limitations, etc.

* The paper should discuss whether and how consent was obtained from people whose
asset is used.

* At submission time, remember to anonymize your assets (if applicable). You can either
create an anonymized URL or include an anonymized zip file.
Crowdsourcing and research with human subjects

Question: For crowdsourcing experiments and research with human subjects, does the paper
include the full text of instructions given to participants and screenshots, if applicable, as
well as details about compensation (if any)?

Answer:
Justification: Our work does not involve human subjects.
Guidelines:

* The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

* Including this information in the supplemental material is fine, but if the main contribu-
tion of the paper involves human subjects, then as much detail as possible should be
included in the main paper.

* According to the NeurIPS Code of Ethics, workers involved in data collection, curation,
or other labor should be paid at least the minimum wage in the country of the data
collector.

Institutional review board (IRB) approvals or equivalent for research with human
subjects

Question: Does the paper describe potential risks incurred by study participants, whether
such risks were disclosed to the subjects, and whether Institutional Review Board (IRB)
approvals (or an equivalent approval/review based on the requirements of your country or
institution) were obtained?

Answer:
Justification: The paper does not involve crowdsourcing or research with human subjects.
Guidelines:

* The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.
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* Depending on the country in which research is conducted, IRB approval (or equivalent)
may be required for any human subjects research. If you obtained IRB approval, you
should clearly state this in the paper.

* We recognize that the procedures for this may vary significantly between institutions
and locations, and we expect authors to adhere to the NeurIPS Code of Ethics and the
guidelines for their institution.

* For initial submissions, do not include any information that would break anonymity (if
applicable), such as the institution conducting the review.

16. Declaration of LLLM usage

Question: Does the paper describe the usage of LLMs if it is an important, original, or
non-standard component of the core methods in this research? Note that if the LLM is used
only for writing, editing, or formatting purposes and does not impact the core methodology,
scientific rigorousness, or originality of the research, declaration is not required.

Answer:

Justification: The core method development in this research does not involve LLMs as any
important, original, or non-standard components.

Guidelines:

* The answer NA means that the core method development in this research does not
involve LLMs as any important, original, or non-standard components.

¢ Please refer to our LLM policy (https://neurips.cc/Conferences/2025/LLM)
for what should or should not be described.
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