
ML for Computer Architecture and Systems (MLArchSys), ISCA 2025

How Low Can LoRA Go: System-Level
Throughput, Energy, and Model Quality Tradeoffs

when Fine-Tuning Adapters
Connor Espenshade∗, Umesh Deshpande†, Yue Zhu†, Eun Kyung Lee†, Martha A. Kim∗

∗ Columbia University. connor.espenshade@columbia.edu, martha@cs.columbia.edu
† IBM Research. udeshpa@ibm.com, yue.zhu@ibm.com, eunkyung.lee@us.ibm.com

Abstract—As models scale beyond trillions of parameters,
extending their functionality is increasingly achieved through
fine-tuning existing base models. However, fine-tuning all pa-
rameters remains computationally expensive. Recent techniques
such as Low-Rank Adaptation (LoRA) have been developed to
reduce the number of trainable parameters. LoRA adapters have
gained widespread adoption, but their effects on GPU system
metrics, such as throughput and energy efficiency, are not yet
well understood.

In this study, we examine these system-level metrics as a func-
tion of the LoRA adapter rank. Our findings show that reducing
the rank of LoRA adapters does not lead to a significant drop
in model quality, while simultaneously improving throughput,
energy efficiency, and memory usage by up to 2.7x. Further, we
find that the presence of a LoRA adapter, rather than its rank
size, can greatly improve model quality compared to a zero-
shot inference base model. This makes smaller LoRA adapters
a compelling choice from both a system and a model quality
perspective.

I. INTRODUCTION

As large language models (LLMs) continue to grow in
size, the time and computational resources required to train
them from scratch have increased proportionally. For many
general tasks, these models already possess sufficient capa-
bilities to meet performance requirements. However, for more
specialized tasks, such as summarization, or domain-specific
applications, such as legal or medical contexts, the model often
requires additional adaptation. In these cases, the base model
can be fine-tuned to extend its general knowledge with the
specific requirements of the target task or domain [6].

Due to the substantial size of modern LLMs, fine-tuning
all of its parameters remains computationally expensive. To
address this, parameter-efficient fine-tuning (PEFT) techniques
adapt the base model by training a small number of additional
parameters, reducing compute and memory requirements. This
not only makes fine-tuning more lightweight but also results
in compact adapters that are easier to store and distribute.

This paper examines the GPU-level implications of fine-
tuning and inference using Low-Rank Adaptation (LoRA)
adapters. LoRA introduces trainable low-rank matrices into
the model, effectively reducing the dimensionality of the
adaptation layer, which can then be projected back to match
the original parameter space. We analyze the impact of LoRA
adapter rank on both fine-tuning and inference performance

across two benchmark tasks: general language modeling to
reproduce Wikipedia text from the Wikitext dataset and extrac-
tive question answering to answer questions based on given
context from the SQuAD dataset [11], [12].

While prior work has studied the effectiveness of LoRA
in terms of model quality and architecture design [4], [7], its
influence on systems-level behavior—such as GPU compute
utilization, latency, and memory consumption—remains less
well understood. This paper aims to bridge that gap by
quantifying how these performance metrics, along with model
quality, vary as a function of the LoRA adapter rank.

In this study, we find that system performance does not
significantly vary even when fine-tuning or running inference
on models thousands of times larger. As we sweep ranks
from 1 to 2048, we find that increasing ranks early on
can improve model quality and accuracy without negatively
impacting throughput, memory, or energy. However, when
larger ranks are reached, the returns from increased model
quality diminish or even reverse. In fine-tuning, we find that
variance occurs largely when batch size changes, suggesting
strong links between parallelism and LoRA capability.

II. BACKGROUND ON LOW-RANK ADAPTATION (LORA)

Low-Rank Adaptation (LoRA) is a parameter-efficient fine-
tuning technique that reduces the number of trainable param-
eters by approximating updates to weight matrices using low-
rank decompositions.

In standard fine-tuning, the output of a pre-trained model
is given by h = W0x, where W0 is a fixed, pre-trained
weight matrix and x is the input [7]. Fine-tuning introduces a
learnable adjustment ∆W to the base model weights, yielding
an updated output:

h′ = (W0 +∆W )x = W0x+∆Wx.

In LoRA, the adjustment ∆W is not learned directly. In-
stead, it is expressed as the product of two lower-dimensional
matrices, A and B, such that ∆W = AB. Given an original
weight matrix W0 ∈ Rd×k, LoRA defines A ∈ Rd×r and
B ∈ Rr×k, where r ≪ min(d, k). This formulation reduces
the number of trainable parameters from d × k (full-rank) to
2× r×max(d, k) in the worst case [7], significantly lowering
memory and computational requirements.

1

mailto:connor.espenshade@columbia.edu
mailto:martha@cs.columbia.edu
mailto:udeshpa@ibm.com
mailto:yue.zhu@ibm.com
mailto:eunkyung.lee@us.ibm.com


For example, in the LLaMA 3.1-8B model, the query
and output projection matrices in the attention modules have
dimensions d = k = 4096 [5]. Using LoRA with a rank
of r = 16, the number of trainable parameters per attention
matrix drops from d2 = 16,777,216 to 2 × d× r = 131,072,
representing a 99.2% reduction. This leads to significant
savings in terms of optimization during fine-tuning, storage
of adapter weights, and computational cost during inference.

III. METHODOLOGY

In this section, we describe our experiment setup. All fine-
tuning and inference workloads were run for one full epoch
on an NVIDIA A100-80GB, with Intel(R) Xeon(R) Platinum
8260 CPU @ 2.4GHz.

A. Base Model

We use LLaMA 3.1-8B as the base model, selected for
its compatibility with the A100-80GB GPU as it fits within
memory without requiring quantization. It uses a d = 4096
embedding dimension, 32 attention heads, and 8 key-value
heads [5]. We use the base non-instruct version to isolate the
effects of fine-tuning.

B. Fine-Tuning Datasets

To evaluate the impact of LoRA adapters at different ranks,
we fine-tuned two distinct datasets across a range of adapter
rank values.

1) WikiText-2: WikiText-2 is a language modeling dataset
of 720 curated Wikipedia articles, totaling approximately 2.5
million tokens [11]. In our setup, the fine-tuned model can be
prompted with a phrase corresponding to a Wikipedia topic,
and it responds by generating text as if writing a Wikipedia-
style article on that subject. As such, adapters fine-tuned on
WikiText-2 reflect general-purpose language modeling ability
and serve as a strong baseline for evaluating adapter perfor-
mance. High-quality adapters trained on this dataset tend to
perform well on next-token prediction tasks in decoder-style
architectures.

WikiText-2 models are evaluated based on the loss com-
puted over test samples, or the natural log of this loss, which
is defined as their perplexity [2], [3]. Perplexity measures
the model’s confidence in predicting the next token in a
sequence, with lower perplexity indicating greater certainty
and accuracy. As such, it serves as a strong indicator of the
language modeling quality of an adapter trained on WikiText-
2.

2) SQuAD: The Stanford Question Answering Dataset
(SQuAD) is a benchmark dataset for extractive question an-
swering (QA) tasks [12]. Each of the 98,200 samples consists
of a context paragraph describing a story, event, or topic,
a question, and an answer. The answer is extractive—that
is, it appears as a span directly within the context text.
To ensure consistency in training and inference performance
across samples, the context and answer are either truncated
or padded to a fixed length of 512 tokens, depending on
whether the input is too long or too short for the model. This

normalization is standard across BERT and HuggingFace as
GPU kernels and accelerators perform better on fixed-length
inputs [9].

Adapters fine-tuned on SQuAD are evaluated using
SQuAD’s official evaluation script, which measures both exact
match (EM) and F1 score. The exact match metric checks
whether the model’s predicted answer matches the ground
truth span verbatim, while the F1 score accounts for partial
overlap between the predicted and true answers [12]. This pa-
per uses SQuAD v2.0, which includes unanswerable questions
where no answer is present in the context. For simplicity and
since our focus is on the impacts on system performance, our
experiments focus exclusively on the subset of questions that
have valid answers within the context.

C. Evaluation Workloads

For each workload, we conducted fine-tuning and inference
experiments using LoRA adapters for WikiText-2 and SQuAD
with ranks ranging from 1 to 2048 by powers of two. A
maximum rank of 2048 was chosen because it corresponds to
the full reconstruction of all parameters initially present in the
model. Specifically, if the matrices A and B have dimensions
d×r = 4096×2048, the total number of weights stored in the
two matrices (2 × d × r) equals the total number of weights
d2 = 40962 present during full fine-tuning. We establish this
as a baseline, and report our measurements of smaller adapters
normalized to r = 2048.

We initially attempted to use full-parameter fine-tuning
without LoRA as the baseline. However, these workloads
consistently encountered out-of-memory errors and could not
fit on a single GPU without substantial optimizations be-
yond those applied in the other experiments. As a result,
we excluded full-parameter fine-tuning from the comparison.
Therefore, the baseline for our study is the LoRA adapter with
the largest rank that mirrors the total number of parameters in
the fully fine-tuned model, i.e., r = 2048.

D. Hyperparameter Selection

LoRA was applied to the attention module’s weight matri-
ces, specifically, the query (q_proj), key (k_proj), value
(v_proj), and output (o_proj) projections. No LoRA
adapters were applied to the feed-forward network layers.

The learning rate for both workloads was set to 5× 10−5,
consistent with prior work on parameter-efficient fine-tuning
[10]. Batch size during fine-tuning was workload dependent
(discussed in results).

LLaMA-based tokenizers padded all prompts to a fixed
token length of 512 for both workloads to ensure consistency
across training samples. All fine-tuning and inference used
mixed precision during computations: compute steps were
performed using 16-bit floating point (fp16) precision (half
precision) to speed up computation, yet the inputs and outputs
remained 32-bit floats [1]. We elected to save quantization for
future investigations, as quantization often decreases accuracy
as a trade-off for lower memory usage, where we wanted to
focus on the impacts of LoRA ranks for general models [8].

2



1 2 4 8 16 32 64 12
8

25
6

51
2

10
24

20
48

Rank

0.0

0.5

1.0

1.5

2.0

2.5

3.0
R

el
at

iv
e 

to
 R

an
k 

20
48

Batch 8 Batch 1

Wikitext Fine-Tuning

Memory
Compute
Power
Samples/Sec
J/Sample

Fig. 1. Fine-tuning Wikitext-2 shows constant system performance for
batch 8, a sharp degradation at the change in batch size, and an accelerating
decline in system performance as ranks surpass 256.

1 2 4 8 16 32 64 12
8

25
6

51
2

10
24

20
48

Rank

0.0

0.5

1.0

1.5

2.0

2.5

3.0

R
el

at
iv

e 
to

 R
an

k 
20

48

Batch 8 Batch 4 Batch 1

SQuAD Fine-Tuning

Memory
Compute
Power
Samples/Sec
J/Sample

Fig. 2. Fine-tuning SQuAD across 3 batch sizes shows more consistency in
system performance compared to Fig. 1. However, larger ranks necessitate
smaller batch sizes, which still significantly impact throughput and energy.

1 2 4 8 16 32 64 12
8

25
6

51
2

10
24

20
48

Rank

0.0

0.5

1.0

1.5

2.0

2.5

3.0

R
el

at
iv

e 
to

 R
an

k 
20

48

Wikitext Inference

Memory
Compute
Power
Samples/Sec
J/Sample
Perplexity (lower is better)

Fig. 3. Inference on Wikitext-2 demonstrates stark consistency across all
ranks up to 512. Perplexity, measuring model quality where lower is better,
remains unchanged from ranks 1 to 2048.

1 2 4 8 16 32 64 12
8

25
6

51
2

10
24

20
48

Rank

0.0

0.2

0.4

0.6

0.8

1.0

1.2

1.4

R
el

at
iv

e 
to

 R
an

k 
20

48

SQuAD Inference

Memory
Compute
Power
Samples/Sec
J/Sample
Answer F1 (higher is better)

Fig. 4. Inference on SQuAD yields highest F1 score on rank 8, with
system performance tradeoff for ranks less than 256. However, F1 quality
declines after rank 128, showing small ranks remain optimal.

E. Performance Metrics

In each experiment, we collected both GPU metrics and
model accuracy/performance metrics. For GPU metrics, we
use nvidia-smi to query GPU power, memory usage, and
GPU utilization at four times per second for the duration of
the workload. For model accuracy metrics, we tracked the
model loss, perplexity and F1 score when using WikiText-
2 and SQuAD, respectively. For model performance metrics,
we gathered number of samples processed per second.

IV. RESULTS & ANALYSIS

For all measurements, each workload is normalized to the
largest adapter, with rank 2048. This corresponds to the full
parameter count of the base model. All measurements are
normalized to this value, with smaller ranks representing
reductions in the number of parameters in the adapter.

A. Fine-Tuning Performance Flat within a Given Batch Size
When Varying Rank

Fine-tuning adapters on WikiText-2 and SQuAD, shown in
Figures 1 and 2, respectively, results in minimal differences in
system-level performance as adapter rank is increased, despite
substantial changes in adapter size. Figure 1 demonstrates
that for WikiText-2, reducing the rank from 64 to 1 de-
creases the adapter size by 64×, from 218 MB to 3.4 MB,
without any noticeable change in throughput or energy per
sample. This indicates that fine-tuning adapters with rank 1
or 64 yields equivalent training performance, making smaller
adapters preferable. Similarly, for SQuAD (Figure 2), there
is negligible impact on memory and compute usage, average
power, and time and energy per sample. This suggests that
fine-tuning 64× more parameters has no meaningful effect on
overall system performance.

3



B. Large Ranks Require Small Batches, Limiting Fine-Tuning
Performance

During fine-tuning, the batch size was set to the maximum
that could fit on a single NVIDIA A100 GPU (80 GB). For
WikiText-2, a batch size of 8 was used for ranks r < 100,
and a batch size of 1 for r > 100. For SQuAD, batch size
had to be reduced more incrementally with increasing rank:
8 for r < 100, 4 for 100 < r < 1000, and 1 for r > 1000.
These batch size cutoffs are indicated by gray dashed lines in
Figures 1 and 2.

We observe exceptions to the general at the highest ranks
and smallest batch sizes. In WikiText-2, a sharp drop in
performance is observed when the batch size decreases from
8 to 1. Specifically, throughput decreases by 1.5× between
ranks 64 and 128, whereas similar rank increases elsewhere
produce no noticeable throughput change. At this inflection
point, overall GPU memory usage also drops by approximately
30%, reducing efficiency and slightly increasing energy per
sample. Beyond rank 128, both memory usage and energy per
sample continue to increase following a parabolic trend, while
throughput mirrors that pattern in its decline.

In the case of SQuAD, fine-tuning occurs across three
distinct batch size regions, resulting in a more gradual decline
in throughput. However, each reduction in batch size to accom-
modate the increasing number of parameters at higher ranks
leads to a noticeable drop in relative throughput. For example,
rank 2048 processes 3× fewer samples per second than rank
1. Additionally, rank 2048, which uses the smallest batch size,
shows a 2.1× increase in relative energy per sample.

So, in terms of fine-tuning performance, batch size emerges
as a key limiter for larger adapters. As rank increases, the
resulting adapter size constrains parallelism during training,
leading to significantly reduced throughput and increased
energy consumption. From an energy standpoint, the GPU’s
energy per sample remains relatively stable until an inflection
point at rank 512, beyond which energy consumption begins
to rise more noticeably.

C. Inference Performance Is Consistent Across Ranks

Inference results for WikiText, shown in Figure 3, are
even more consistent, with minimal variance up to rank 256.
All evaluations use a constant batch size of 4 to ensure
comparability across ranks. In addition to performance, we
assess model quality during inference. Perplexity improves
slightly, decreasing from 8.04 at rank 1 to 7.92 at rank 128, a
relative improvement of 1.5%, then stabilizes at this level for
higher ranks.

Turning to SQuAD inference results in Figure 4, model
quality, as measured by the Answer F1 score, increases for
ranks 1 through 8, before remaining constant and even declin-
ing as system performance begins to worsen between ranks
128 to 2048. The F1 score improves by 21% from rank 1 to a
peak at rank 8, representing a 1.4times improvement over the
full-parameter (rank=2048) version. From rank 8 to 64, the F1
score remains stable before dropping at higher ranks. Notably,

the rank 2048 adapter performs worse than even the smallest
rank 1 model in terms of F1 score.

System performance for SQuAD inference follows a similar
pattern, but with the starker effects appearing at higher ranks:
initially negligible for smaller ranks, eventually noticeable for
larger ranks. Energy per sample and throughput are both 20%
better than the full parameter rank 2048 adapter for ranks 1
to 256. At rank 512, these values begin converging to weaker
performance through rank 2048, with memory also rising 15%
compared to all other adapters, with inference batch size is
kept constant at 8.

D. Adapter Presence Matters More than Size

Given our observations of negligible inference quality and
performance changes for adapters with 256× fewer bits, one
explanation could be that the LLaMA-3.1-8B base model itself
has enough information to generate Wikipedia-like summaries
and answer SQuAD’s questions. If that were the case, the base
model alone should yield a similar perplexity and F1 score.
However, for Wikitext-2, zero-shot inference has a perplexity
3.5× higher than any Wikitext LoRA adapter and over 200×
greater than the difference in perplexity between rank 1 and
2048. Similarly for SQuAD, the base model has an F1 score
7.7% lower than the rank 1 adapter and 30% lower the peak
F1 at rank 8. Here, moving from no adapter to a rank 1 adapter
yields a larger bump in inference quality than increasing the
adapter by 64× from rank 8 to 256.

Consequently, we find that LoRA adapters are extremely
efficient: very small adapters (i.e., rank 1 for Wikitext-2 and
rank 8 for SQuAD) achieve strong model quality while pro-
viding the lowest energy consumption and highest throughput.
Increasing the adapter size can improve model quality without
impacting performance, up to 64× the size of the original
adapter. However, beyond this point, further increases yield
either marginal improvements and potentially reductions in
quality.

V. FUTURE WORK

To more fully understand the impact of LoRA rank on
system performance, more workloads could give an enhanced
view of if some applications do have systems tradeoffs. Indeed,
preliminary experiments of a summarization adapter fine-tuned
on the CNN-DailyMail dataset have resulted in lower ROUGE
scores compared to the zero-shot inference model, where we
run inference against the “raw” base model.

VI. CONCLUSION

In this study, we study the relation between system-level
performance and model quality as we enlarge the internal
dimension of LoRA adapters for fine-tuning. We find that there
is little variance in model quality and system performance, but
that including a LoRA adapter significantly improves model
quality.

4



REFERENCES

[1] Feb 2023. [Online]. Available: https://docs.nvidia.com/deeplearning/
performance/mixed-precision-training/index.html

[2] N. Carlini, F. Tramer, E. Wallace, M. Jagielski, A. Herbert-Voss,
K. Lee, A. Roberts, T. Brown, D. Song, U. Erlingsson, A. Oprea, and
C. Raffel, “Extracting training data from large language models,” 2021.
[Online]. Available: https://arxiv.org/abs/2012.07805

[3] S. F. Chen, D. Beeferman, and R. Rosenfeld, “Evaluation metrics for
language models,” 1998.

[4] T. Dettmers, A. Pagnoni, A. Holtzman, and L. Zettlemoyer, “Qlora:
Efficient finetuning of quantized llms,” 2023. [Online]. Available:
https://arxiv.org/abs/2305.14314

[5] A. Grattafiori, A. Dubey, A. Jauhri, A. Pandey, A. Kadian, A. Al-
Dahle, A. Letman, A. Mathur, A. Schelten, A. Vaughan, A. Yang,
A. Fan, A. Goyal, A. Hartshorn, A. Yang, A. Mitra, A. Sravankumar,
A. Korenev, A. Hinsvark, A. Rao, A. Zhang, A. Rodriguez,
A. Gregerson, A. Spataru, B. Roziere, B. Biron, B. Tang, B. Chern,
C. Caucheteux, C. Nayak, C. Bi, C. Marra, C. McConnell, C. Keller,
C. Touret, C. Wu, C. Wong, C. C. Ferrer, C. Nikolaidis, D. Allonsius,
D. Song, D. Pintz, D. Livshits, D. Wyatt, D. Esiobu, D. Choudhary,
D. Mahajan, D. Garcia-Olano, D. Perino, D. Hupkes, E. Lakomkin,
E. AlBadawy, E. Lobanova, E. Dinan, E. M. Smith, F. Radenovic,
F. Guzmán, F. Zhang, G. Synnaeve, G. Lee, G. L. Anderson, G. Thattai,
G. Nail, G. Mialon, G. Pang, G. Cucurell, H. Nguyen, H. Korevaar,
H. Xu, H. Touvron, I. Zarov, I. A. Ibarra, I. Kloumann, I. Misra,
I. Evtimov, J. Zhang, J. Copet, J. Lee, J. Geffert, J. Vranes, J. Park,
J. Mahadeokar, J. Shah, J. van der Linde, J. Billock, J. Hong,
J. Lee, J. Fu, J. Chi, J. Huang, J. Liu, J. Wang, J. Yu, J. Bitton,
J. Spisak, J. Park, J. Rocca, J. Johnstun, J. Saxe, J. Jia, K. V.
Alwala, K. Prasad, K. Upasani, K. Plawiak, K. Li, K. Heafield,
K. Stone, K. El-Arini, K. Iyer, K. Malik, K. Chiu, K. Bhalla,
K. Lakhotia, L. Rantala-Yeary, L. van der Maaten, L. Chen, L. Tan,
L. Jenkins, L. Martin, L. Madaan, L. Malo, L. Blecher, L. Landzaat,
L. de Oliveira, M. Muzzi, M. Pasupuleti, M. Singh, M. Paluri,
M. Kardas, M. Tsimpoukelli, M. Oldham, M. Rita, M. Pavlova,
M. Kambadur, M. Lewis, M. Si, M. K. Singh, M. Hassan, N. Goyal,
N. Torabi, N. Bashlykov, N. Bogoychev, N. Chatterji, N. Zhang,
O. Duchenne, O. Çelebi, P. Alrassy, P. Zhang, P. Li, P. Vasic,
P. Weng, P. Bhargava, P. Dubal, P. Krishnan, P. S. Koura, P. Xu,
Q. He, Q. Dong, R. Srinivasan, R. Ganapathy, R. Calderer, R. S.
Cabral, R. Stojnic, R. Raileanu, R. Maheswari, R. Girdhar, R. Patel,
R. Sauvestre, R. Polidoro, R. Sumbaly, R. Taylor, R. Silva, R. Hou,
R. Wang, S. Hosseini, S. Chennabasappa, S. Singh, S. Bell, S. S. Kim,
S. Edunov, S. Nie, S. Narang, S. Raparthy, S. Shen, S. Wan, S. Bhosale,
S. Zhang, S. Vandenhende, S. Batra, S. Whitman, S. Sootla, S. Collot,
S. Gururangan, S. Borodinsky, T. Herman, T. Fowler, T. Sheasha,
T. Georgiou, T. Scialom, T. Speckbacher, T. Mihaylov, T. Xiao, U. Karn,
V. Goswami, V. Gupta, V. Ramanathan, V. Kerkez, V. Gonguet, V. Do,
V. Vogeti, V. Albiero, V. Petrovic, W. Chu, W. Xiong, W. Fu, W. Meers,
X. Martinet, X. Wang, X. Wang, X. E. Tan, X. Xia, X. Xie, X. Jia,
X. Wang, Y. Goldschlag, Y. Gaur, Y. Babaei, Y. Wen, Y. Song,
Y. Zhang, Y. Li, Y. Mao, Z. D. Coudert, Z. Yan, Z. Chen, Z. Papakipos,
A. Singh, A. Srivastava, A. Jain, A. Kelsey, A. Shajnfeld, A. Gangidi,
A. Victoria, A. Goldstand, A. Menon, A. Sharma, A. Boesenberg,
A. Baevski, A. Feinstein, A. Kallet, A. Sangani, A. Teo, A. Yunus,
A. Lupu, A. Alvarado, A. Caples, A. Gu, A. Ho, A. Poulton,
A. Ryan, A. Ramchandani, A. Dong, A. Franco, A. Goyal, A. Saraf,
A. Chowdhury, A. Gabriel, A. Bharambe, A. Eisenman, A. Yazdan,
B. James, B. Maurer, B. Leonhardi, B. Huang, B. Loyd, B. D.
Paola, B. Paranjape, B. Liu, B. Wu, B. Ni, B. Hancock, B. Wasti,
B. Spence, B. Stojkovic, B. Gamido, B. Montalvo, C. Parker, C. Burton,
C. Mejia, C. Liu, C. Wang, C. Kim, C. Zhou, C. Hu, C.-H. Chu,
C. Cai, C. Tindal, C. Feichtenhofer, C. Gao, D. Civin, D. Beaty,
D. Kreymer, D. Li, D. Adkins, D. Xu, D. Testuggine, D. David,
D. Parikh, D. Liskovich, D. Foss, D. Wang, D. Le, D. Holland,
E. Dowling, E. Jamil, E. Montgomery, E. Presani, E. Hahn, E. Wood,
E.-T. Le, E. Brinkman, E. Arcaute, E. Dunbar, E. Smothers, F. Sun,
F. Kreuk, F. Tian, F. Kokkinos, F. Ozgenel, F. Caggioni, F. Kanayet,
F. Seide, G. M. Florez, G. Schwarz, G. Badeer, G. Swee, G. Halpern,
G. Herman, G. Sizov, Guangyi, Zhang, G. Lakshminarayanan, H. Inan,
H. Shojanazeri, H. Zou, H. Wang, H. Zha, H. Habeeb, H. Rudolph,
H. Suk, H. Aspegren, H. Goldman, H. Zhan, I. Damlaj, I. Molybog,
I. Tufanov, I. Leontiadis, I.-E. Veliche, I. Gat, J. Weissman, J. Geboski,

J. Kohli, J. Lam, J. Asher, J.-B. Gaya, J. Marcus, J. Tang, J. Chan,
J. Zhen, J. Reizenstein, J. Teboul, J. Zhong, J. Jin, J. Yang,
J. Cummings, J. Carvill, J. Shepard, J. McPhie, J. Torres, J. Ginsburg,
J. Wang, K. Wu, K. H. U, K. Saxena, K. Khandelwal, K. Zand,
K. Matosich, K. Veeraraghavan, K. Michelena, K. Li, K. Jagadeesh,
K. Huang, K. Chawla, K. Huang, L. Chen, L. Garg, L. A, L. Silva,
L. Bell, L. Zhang, L. Guo, L. Yu, L. Moshkovich, L. Wehrstedt,
M. Khabsa, M. Avalani, M. Bhatt, M. Mankus, M. Hasson, M. Lennie,
M. Reso, M. Groshev, M. Naumov, M. Lathi, M. Keneally, M. Liu,
M. L. Seltzer, M. Valko, M. Restrepo, M. Patel, M. Vyatskov,
M. Samvelyan, M. Clark, M. Macey, M. Wang, M. J. Hermoso,
M. Metanat, M. Rastegari, M. Bansal, N. Santhanam, N. Parks,
N. White, N. Bawa, N. Singhal, N. Egebo, N. Usunier, N. Mehta,
N. P. Laptev, N. Dong, N. Cheng, O. Chernoguz, O. Hart, O. Salpekar,
O. Kalinli, P. Kent, P. Parekh, P. Saab, P. Balaji, P. Rittner, P. Bontrager,
P. Roux, P. Dollar, P. Zvyagina, P. Ratanchandani, P. Yuvraj, Q. Liang,
R. Alao, R. Rodriguez, R. Ayub, R. Murthy, R. Nayani, R. Mitra,
R. Parthasarathy, R. Li, R. Hogan, R. Battey, R. Wang, R. Howes,
R. Rinott, S. Mehta, S. Siby, S. J. Bondu, S. Datta, S. Chugh, S. Hunt,
S. Dhillon, S. Sidorov, S. Pan, S. Mahajan, S. Verma, S. Yamamoto,
S. Ramaswamy, S. Lindsay, S. Lindsay, S. Feng, S. Lin, S. C. Zha,
S. Patil, S. Shankar, S. Zhang, S. Zhang, S. Wang, S. Agarwal,
S. Sajuyigbe, S. Chintala, S. Max, S. Chen, S. Kehoe, S. Satterfield,
S. Govindaprasad, S. Gupta, S. Deng, S. Cho, S. Virk, S. Subramanian,
S. Choudhury, S. Goldman, T. Remez, T. Glaser, T. Best, T. Koehler,
T. Robinson, T. Li, T. Zhang, T. Matthews, T. Chou, T. Shaked,
V. Vontimitta, V. Ajayi, V. Montanez, V. Mohan, V. S. Kumar,
V. Mangla, V. Ionescu, V. Poenaru, V. T. Mihailescu, V. Ivanov, W. Li,
W. Wang, W. Jiang, W. Bouaziz, W. Constable, X. Tang, X. Wu,
X. Wang, X. Wu, X. Gao, Y. Kleinman, Y. Chen, Y. Hu, Y. Jia, Y. Qi,
Y. Li, Y. Zhang, Y. Zhang, Y. Adi, Y. Nam, Yu, Wang, Y. Zhao,
Y. Hao, Y. Qian, Y. Li, Y. He, Z. Rait, Z. DeVito, Z. Rosnbrick,
Z. Wen, Z. Yang, Z. Zhao, and Z. Ma, “The llama 3 herd of models,”
2024. [Online]. Available: https://arxiv.org/abs/2407.21783

[6] Z. Han, C. Gao, J. Liu, J. Zhang, and S. Q. Zhang, “Parameter-efficient
fine-tuning for large models: A comprehensive survey,” 2024. [Online].
Available: https://arxiv.org/abs/2403.14608

[7] E. J. Hu, Y. Shen, P. Wallis, Z. Allen-Zhu, Y. Li, S. Wang,
and W. Chen, “Lora: Low-rank adaptation of large language
models,” CoRR, vol. abs/2106.09685, 2021. [Online]. Available:
https://arxiv.org/abs/2106.09685

[8] I. Hubara, M. Courbariaux, D. Soudry, R. El-Yaniv, and Y. Bengio,
“Quantized neural networks: Training neural networks with low pre-
cision weights and activations,” journal of machine learning research,
vol. 18, no. 187, pp. 1–30, 2018.

[9] M. Kosec, S. Fu, and M. M. Krell, “Packing: Towards 2x NLP BERT
acceleration,” CoRR, vol. abs/2107.02027, 2021. [Online]. Available:
https://arxiv.org/abs/2107.02027

[10] Y.-S. Lee, R. F. Astudillo, R. Florian, T. Naseem, and S. Roukos, “Amr
parsing with instruction fine-tuned pre-trained language models,” 2023.
[Online]. Available: https://arxiv.org/abs/2304.12272

[11] S. Merity, C. Xiong, J. Bradbury, and R. Socher, “Pointer sentinel
mixture models,” 2016. [Online]. Available: https://arxiv.org/abs/1609.
07843

[12] P. Rajpurkar, R. Jia, and P. Liang, “Know what you don’t know:
Unanswerable questions for squad,” CoRR, vol. abs/1806.03822, 2018.
[Online]. Available: http://arxiv.org/abs/1806.03822

5

https://docs.nvidia.com/deeplearning/performance/mixed-precision-training/index.html
https://docs.nvidia.com/deeplearning/performance/mixed-precision-training/index.html
https://arxiv.org/abs/2012.07805
https://arxiv.org/abs/2305.14314
https://arxiv.org/abs/2407.21783
https://arxiv.org/abs/2403.14608
https://arxiv.org/abs/2106.09685
https://arxiv.org/abs/2107.02027
https://arxiv.org/abs/2304.12272
https://arxiv.org/abs/1609.07843
https://arxiv.org/abs/1609.07843
http://arxiv.org/abs/1806.03822

	Introduction
	Background on Low-Rank Adaptation (LoRA)
	Methodology
	Base Model
	Fine-Tuning Datasets
	WikiText-2
	SQuAD

	Evaluation Workloads
	Hyperparameter Selection
	Performance Metrics

	Results & Analysis
	Fine-Tuning Performance Flat within a Given Batch Size When Varying Rank
	Large Ranks Require Small Batches, Limiting Fine-Tuning Performance
	Inference Performance Is Consistent Across Ranks
	Adapter Presence Matters More than Size

	Future Work
	Conclusion
	References

