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Abstract. Graph Convolutional Networks (GCNs) have emerged as pow-
erful tools for learning on network structured data. Although empiri-
cally successful, GCNs exhibit certain behaviour that has no rigorous
explanation—for instance, the performance of GCNs significantly de-
grades with increasing network depth, whereas it improves marginally
with depth using skip connections. This paper focuses on semi-supervised
learning on graphs, and explores the above observations through the lens
of Neural Tangent Kernels (NTKs). To analyse the influence of depth,
we derive NTKs corresponding to infinitely wide GCNs with and with-
out skip connections and allowing non-linear output layer. While the
constancy property of NTK is lost with the non-linear output layer, we
show empirically that the approximation is similar to linear output layer.
Using the newly derived NTK we analyze the influence of depth in GCNs
and provide a comparison of different skip connections.

Keywords: Graph Convolutional Networks · Neural Tangent Kernels ·
Semi-Supervised Learning.

1 Introduction

Graph structured data are ubiquitous in various domains, including social net-
work analysis, bioinformatics, communications engineering among others. In re-
cent years, graph neural networks have become an indisputable choice for var-
ious learning problems on graphs, and have been employed in a wide range of
applications across domains. Several variants of graph neural networks have been
proposed, including graph convolutional network [Kipf and Welling, 2017], graph
recurrent network [Scarselli et al., 2008, Li et al., 2016], graph attention network
[Velickovic et al., 2018], to name a few. The popularity of graph neural networks
can be attributed to their ability to tackle two conceptually different learning
problems on graphs. In supervised learning on graphs, each data instance is a
graph and the goal is to predict a label for each graph (for example, a protein
structure). In contrast, semi-supervised learning on graphs (also called node clas-
sification or graph transduction) refers to the problem of predicting the labels of
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nodes in a single graph. For instance, given the memberships of a few individuals
in a social network, the goal is to predict affiliations of others.

This work focuses on the latter problem of semi-supervised learning. GCNs,
along with its variants that locally aggregate information in the neighbourhood
of each node, have proved to be superior methods in practice [Defferrard et al.,
2016, Kipf and Welling, 2017, Chen et al., 2018a, Wu et al., 2019, Chen et al.,
2020], outperforming classical, and well-studied, graph embedding based ap-
proaches. Among the different variants of GCNs, we focus on the methods based
on approximations of spectral graph convolutions [Defferrard et al., 2016, Kipf
and Welling, 2017], rather than spatial graph convolutions [Hamilton et al., 2017,
Xu et al., 2019]. Surprisingly, these papers suggest shallow networks for the best
performance, and unlike the standard neural networks that gain advantage with
depth, the performance of GCN has been reported to decrease for deeper nets.
This appears to be due to the over smoothing effect of applying many convolu-
tions, that is, with repeated application of the graph diffusion operator in each
layer, the feature information gets averaged out to a degree where it becomes
uninformative. As a solution to this, Chen et al. [2020] and Kipf and Welling
[2017] proposed different formulations of skip connections in GCNs that over-
come the smoothing effect and thus outperform the vanilla GCN empirically.
These networks achieve state-of-the-art results by directly operating on graphs
which enables effective capturing of the complex structural information as well
as the features associated with the entities. However, similar to standard neural
networks, tuning the hyper-parameters is particularly hard due to the highly
non-convex objective and the over-parameterised setup making it computation-
ally intense. As a result, there is no theoretical framework that supports rigorous
analysis of graph neural networks. Moreover, the graph convolutions increase the
difficulty of analysis. Motivated by this, we are interested in a more formal ap-
proach to analyze GCNs and, specifically, to understand the influence of depth.

Explaining the empirical evidence of deep neural networks through mathe-
matical rigour is an active area of research. In contrast, theoretical analysis of
graph neural networks has been limited in the literature. From the perspective of
learning theory, generalisation error bounds have been derived for graph neural
networks using complexity measures like VC Dimension and Rademacher com-
plexity [Esser et al., 2021, Scarselli et al., 2018, Garg et al., 2020]. However, it is
often debated whether generalisation error bounds can explain the performance
of deep neural networks [Neyshabur et al., 2017]. Another line of research re-
lies on the connection between graph convolutions and belief propagation [Dai
et al., 2016] to analyse the behaviour of graph neural networks in both supervised
and semi-supervised settings using cavity methods and mean field approaches
[Zhou et al., 2020b, Kawamoto et al., 2019, Chen et al., 2018b]. However, the
above lines of research do not completely explain the empirical trends observed
in GCNs, especially with regards to the aspects analysed in our work.

In this paper, we explain the empirically observed trends of GCNs using the
recently introduced Neural Tangent Kernel (NTK) [Jacot et al., 2018]. NTK was
proposed to describe the behaviour and generalisation properties of randomly
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initialised fully connected neural networks during training by gradient descent
with infinitesimally small learning rate. Jacot et al. [2018] also showed that, as
the network width increases, the change in the kernel during training decreases
and hence, asymptotically, one may replace an infinitely wide neural network
by a deterministic kernel machine, where the kernel (NTK) is defined by the
gradient of the network with respect to its parameters as

Θ(x, x′) = E
W∼N

[〈
∂F (W,x)

∂W
,
∂F (W,x′)

∂W

〉]
. (1)

Here F (W,x) represents the output of the network at data point x and the
expectation is with respect to W , that is, all the parameters of the network
randomly sampled from Gaussian distribution N . There has been criticism of
the ‘infinite width’ assumption being too strong to model real (finite width)
neural networks, and empirical results show that NTK often performs worse
than the practical networks [Arora et al., 2019, Lee et al., 2019]. Nevertheless,
theoretical insights on neural network training gained from NTK have proved
to be valuable, particularly in showing how gradient descent can achieve good
generalisation properties [Du et al., 2019a]. Subsequent works have derived NTK
to analyse different neural network architectures in infinite width limit, including
convolutional networks, recurrent networks among others [Arora et al., 2019,
Du et al., 2018, 2019a, Alemohammad et al., 2021]. The most relevant work
in the context of our discussion is the work of Du et al. [2019b] that derived
NTK for graph neural networks in the supervised setting (each graph is a data
instance to be classified) and empirically showed that graph NTK outperforms
most graph neural networks as well as other graph kernels for the problem of
graph classification.

Focus of this paper and contributions. The focus of the present paper
differs from existing work on graph NTK [Du et al., 2019b] in two key aspects—
we derive NTK for semi-supervised node classification with non-linear output
layer and, more importantly, we use the derived NTKs to rigorously analyse cor-
responding GCN architectures and demonstrate the cause for surprising trends
observed empirically in GCNs, as opposed to standard deep neural networks.
More precisely, we make the following contributions:

1. In Section 2, we derive the NTKs for GCNs used in semi-supervised node
classification [Kipf and Welling, 2017, Wu et al., 2019] in infinite width limit. In
contrast to simplifying assumptions in most NTKs derivations, we allow a non-
linear (sigmoid) pooling in the last layer—a natural choice in practical networks
for binary classification (can also be extended to the multi class setting through
one vs. all strategy). Although non-linear output layer results in non-constant
NTK, our experiments demonstrate that the consequence of linear approxima-
tion is similar for both sigmoid and linear output layers. In addition, we show
that the NTK captures the general trend in performance of GCN.

2. Due to the observation that NTK is a hyper-parameter free alternative
which approximates the behaviour of GCNs, we analyse the impact of skip con-
nections in GCNs [Chen et al., 2020, Kipf and Welling, 2017] by deriving the
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corresponding NTKs in Section 3. Our empirical studies suggest the choice of
skip connection for improved performance and the application of NTK to assess
relative importance of structure and feature information in graph datasets.

3. In Section 4, we explain an empirical finding—unlike vanilla GCNs, the
performance of NTK for certain skip connections converge with network depth.
This is because the NTKs for skip connections converge with network depth,
whereas this is less prominent in the case of NTK for vanilla GCNs.

We conclude in Section 5, and provide the NTK derivations and further
experimental details in the appendix.

Notation. We represent the matrix Hadamard (entry-wise) product by �
and the scalar product by 〈., .〉. We use M�k to denote Hadamard product of
matrix M with itself repeated k times. Let N (µ,Σ) be Gaussian distribution
with mean µ and co-variance Σ. For a function σ(.), σ̇(.) represents its derivative.
We use 1n×n for the n× n matrix of ones, In for identity matrix of size n× n,
E [.] for expectation, ‖.‖F , ‖.‖2 , ‖.‖∞ denote Frobenius, Euclidean and Spectral
norms, respectively, and [d] = {1, 2, . . . , d}.

2 Derivation of NTK for non-linear Vanilla GCN

Before presenting the NTK for GCN, we discuss the theoretical implications of
the NTK for networks with non-linear output layer. While non-linear output
layers are standard in practice, Liu et al. [2020] showed that the NTKs for such
networks do not remain constant during training. The constancy of NTK during
training is of great significance as this allows for deterministic characterisation
of the network using the NTK in infinite width limit as detailed below: Consider
the Taylor expansion of network F (w, x) modeled by parameters w and data x
around the weight initialisation w0:

F (w, x) ≈ F (w0, x)+∇wF (w0, x)
T (w−w0)+

1

2
(w−w0)

T∇2
wF (w0, x)(w−w0).

For NTK to be constant, F (w, x) should be linear which implies the second order
term should vanish as the width of the network m goes to infinity. Note that
(w − w0)

T∇2
wF (w0, x)(w − w0) ≤ ‖w − w0‖2‖∇2

wF (w0, x)‖∞.
Theoretical implications of non-linear last layer. Liu et al. [2020]

showed that the second order term of the Taylor-expansion does not vanish for
network with non-linear output layer: We note that ‖(w0 − w)‖2 = O(1) and for
non-linear output layer

∥∥∇2
wF (w0, x)

∥∥
∞ = O(1). On the other hand, for linear

output layer
∥∥∇2

wF (w0, x)
∥∥
∞ = O(1/

√
m) and therefore NTK is constant only

for linear output layer.
Empirical observation. Contrasting the linear output layer assumption,

most networks used in practice rely heavily on the use of non-linear output layer.
Therefore we investigate empirically how well the graph NTKs approximate
networks with non-linear output layer as compared to linear output networks as
theoretically suggested by Liu et al. [2020]. For this purpose, we consider node
classification setup and measure prediction difference between graph NTKs and
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Fig. 1. (left) Comparison of GCN and NTK prediction. (middle/right) Performance
of NTK vs GCN in linear and non-linear architectures. The performance trend of NTK
matches its corresponding GCN in both the architectures. Experiments performed on
Cora.

trained GCNs. Formally, for the unlabeled nodes u, we compute the prediction
difference 1

|u|
∑u
i=1 1{yNTKi 6= yGCNi } where yNTKi and yGCNi are predictions

from NTK and GCN respectively. This measure gives an estimate of how well the
graph NTK approximate its corresponding trained GCN. The results for different
architectures of GCNs (formally described later) with linear and sigmoid outputs
for depths {1, 2, 4, 8} are illustrated in the left plot of Figure 1. In contrast to
the theory, we observe empirically that the NTKs approximate GCNs with both
linear and non-linear outputs similarly, supporting the hypothesis that NTKs
are good representative of the networks despite the non-constancy of the kernel
in non-linear output case. This observation suggests theoretical gap at least in
the graph setting and we leave the investigation as a possible future work.

2.1 Formal Setup of GCN

We consider the problem of node classification in graphs in a semi-supervised
setting,3 where the labels are observed only for a subset of the nodes. Formally,
given a graph with n nodes and a set of node features {xi}ni=1 ⊂ Rf , we may
assume without loss of generality that the set of observed labels {yi}mi=1 corre-
spond to first m nodes. We consider a binary classification problem such that
yi ∈ {±1} for simplicity of the derivation and then extend it to a K-class setting
in the experimental section. The goal is to predict the n − m unknown labels
{yi}ni=m+1. We represent the observed labels of m nodes as Y ∈ {±1}m×1, and
the node features as X ∈ Rn×f with the assumption that entire X is available
during training. We define S to be the graph diffusion operator. The analysis
holds for any diffusion S, but for simulations, we consider the symmetric degree
normalized diffusion S := (D + In)

− 1
2 (A+ In)(D + In)

− 1
2 where A is the adja-

cency matrix and D is the degree matrix. We adapt the GCN proposed by Kipf
3 More precisely, transductive setting as we assume all features are available during
training at the same time.



6 M. Sabanayagam et al.

and Welling [2017] as follows,

FW (X,S) := Φ

(√
cσ
hd
S . . . σ

(√
cσ
h1
Sσ (SXW1)W2

)
. . .Wd+1

)
(2)

where d is the network depth and W := {Wi ∈ Rhi−1×hi}d+1
i=1 is the set of

learnable weight matrices with h0 = f and hd+1 = 1, and Φ : R → (−1,+1)
is re-scaled sigmoid since we consider binary node classification with labels in
{±1}, hi is the size of layer i ∈ [d] and σ : R → R is the point-wise activation
function. We initialise all the weights to be i.i.d N (0, 1) and optimise it using
stochastic gradient descent. We study the limiting behavior of this network with
respect to the width, that is, h1, . . . , hd →∞.

Remark 1 (cσ). While this setup is similar to Kipf and Welling [2017], it is
important to note that we additionally consider the normalisation

√
cσ/hi for

layer i to ensure that the input norm is approximately preserved. Here, cσ is
a scaling factor to normalize the input in the initialization phase and cσ =(
Eu∼N (0,1)

[
(σ(u))

2 ])−1 from Du et al. [2019a].

2.2 NTK for Vanilla GCN

We derive the NTK for vanilla GCN by first rewriting FW (X,S) as defined in
(2) using the following recursive definitions with g1 := SX:

gi :=

√
cσ
hi−1

Sσ(fi−1) ∀i ∈ {2, . . . , d+ 1}, fi := giWi ∀i ∈ [d+ 1]

Output: FW (X,S) := Φ(fd+1), where Φ(x) := 2(1 + exp(−x))−1 − 1 (3)

Using the definitions in (3), the gradient with respect to Wi can be written as

∂FW (X,S)

∂Wi
:= gTi bi with bi :=

√
cσ
hi
ST bi+1W

T
i+1 � σ̇(fi) (4)

and bd+1 := Φ̇(fd+1). We derive the NTK, as defined in (1), using the recursive
definition of FW (X,S) in (3) and its derivative in (4). The following theorem
defines the NTK between every pair of nodes, and the n × n NTK matrix can
be computed at once, as shown below (proof in appendix).

Theorem 1 (NTK for Vanilla GCN). For the vanilla GCN defined in (2),
the NTK Θ is given by

Θ =

d+1∑
i=1

Σi �
(
SST

)�(d+1−i) �

d+1−i⊙
j=i

Ėj

� E
f∼N (0,Σd)

[
Φ̇ (f) Φ̇ (f)

T
]
(5)

Here Σi ∈ Rn×n is the co-variance between nodes of the layer fi, and is given
by Σ1 := SXXTST , Σi := SEi−1S

T with Ei := cσEf∼N (0,Σi)

[
σ(f)σ(f)T

]
and

Ėi := cσEf∼N (0,Σi)

[
σ̇(f)σ̇(f)T

]
.
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Each entry of the expected matrix in (5) can be approximately computed as
follows. For ∆ ∈ R2×2,

E
(p,q)∼N (0,∆)

[
Φ̇ (p) Φ̇ (q)

]
=

1

4
− ∆00 +∆11

16
+
∆00∆11 + 2∆2

01

64
+
∆2

00 +∆2
11

32
+
ε3

16

for |ε| ≤ max {∆00, ∆11}.
Inference using NTK. The NTK matrix Θ ∈ Rn×n defines the pairwise kernel
among all labeled and unlabeled nodes, where each entry Θpq represents the
kernel between nodes (or features) xp and xq. For inference, consider the sub-
matrix Θl ∈ Rm×m that consists of the kernel computed between all pairs of
labeled nodes, and Θu ∈ R(n−m)×m that consists of the kernel computed between
all pairs of unlabeled and labeled nodes. In the case of squared loss minimisation
by stochastic gradient descent with infinitesimally small learning rate η → 0,
the training dynamics resemble kernel regression [Arora et al., 2019]. Hence, the
labels for unlabeled nodes Yu can be inferred as

Yu = ΘuΘ
−1
l Y ∈ Rn−m (6)

which, when thresholded entry-wise at 0, yields the class prediction for unlabeled
nodes.

The NTK derived in (5) holds for vanilla GCN with arbitrary activation func-
tion in (2). Since the focus of this work is explaining the empirical performance
trends of GCNs, we focus on specific activation functions that fix the network
architecture allowing the NTK to be evaluated exactly. We first consider a lin-
ear activation, that results in the SGC network [Wu et al., 2019], and derive the
NTK as follows.
Corollary 1 (Linear GCN). Consider σ(x) := x in FW (X,S), then Ei =
cσΣi and Ėi = cσ1n×n in Theorem 1, resulting in the following NTK

Θ = cdσ

[
d+1∑
i=1

(
SiXXT

(
ST
)i)� (SST )�(d+1−i)

]
� E

f∼N (0,Σd)

[
Φ̇ (f) Φ̇ (f)

T
]
.

where the last expectation is approximated as in Theorem 1. The natural choice
of normalisation constant cσ is cσ = 1 based on Remark 1.

Considering a non-linear network with ReLU activation, the NTK can be
computed as shown below.

Corollary 2 (ReLU GCN). Consider σ(x) := ReLU(x) in FW (X,S). The
NTK kernel is computed as in (5), where given Σi at each layer, one can evaluate
the entries of Ei and Ėi using a result from Bietti and Mairal [2019] as(

Ei

)
pq

=
cσ
2

√
(Σi)pp (Σi)qq κ1

 (Σi)pq√
(Σi)pp (Σi)qq

 and (7)

(
Ėi

)
pq

=
cσ
2
κ0

 (Σi)pq√
(Σi)pp (Σi)qq

 ,
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where κ0(x) :=
1

π
(π − arccos (x)) and κ1(x) :=

1

π

(
x (π − arccos (x)) +

√
1− x2

)
.

Based on Remark 1, the natural choice for normalisation constant cσ is cσ = 2.

2.3 Empirical Analysis of Depth

Many studies have shown that the performance of vanilla GCN drastically drops
with depth due to the over smoothing effect of convolutional layers [Li et al.,
2018, Kipf and Welling, 2017, Chen et al., 2020]. To validate it, we empirically
study the performances of GCN and its NTK counterpart. We evaluate the per-
formances of linear and ReLU GCNs as stated in Corollary 1 and 2, respectively,
and their corresponding NTKs for different depths d = {1, 2, 4, 8} by fixing the
size of hidden layers hi = 2000, same across all layers to reduce the number of
hyper-parameters and set the learning rate η to 0.01.

NTK captures the performance trend of GCN. The right plots of
Figure 1 show the performance of both the GCN architectures with its NTK
counterpart evaluated on 7 class dataset Cora [McCallum et al., 2000]. The
performance of GCN decreases with depth in both linear and non-linear archi-
tectures, as observed in other papers. This trend is also confirmed in NTK and
thus making it a suitable method to analyse finite width GCN, despite the fact
that the actual performance of the NTK is usually worse than the corresponding
GCN. While there is a drop in performance in both the GCNs and the corre-
sponding NTKs, the drop is not as drastic as it has been reported in other papers.
This is due to two factors: first, increasing network size hi in combination with
appropriate learning rate η can reduce the performance drop with depth. Sec-
ond, using correct normalisation cσ (see Remark 1) stabilises training, thereby
enabling the network to learn faster and achieve best results. In addition, we
observe that the performances of NTKs with linear and non-linear output layer
are very close.

3 NTK Analysis of Skip Connections

Skip connections [Chen et al., 2020, Kipf and Welling, 2017] are one way to
overcome the performance degradation with depth in GCNs, but little is known
about the effectiveness of different forms of available skip connections. Inspired
by the observation of the previous section that the NTK is a hyper-parameter
free model that captures the trends of GCNs, we use NTK to investigate different
skip connections for GCN. We consider two formulations of skip connections with
two variants each that are described in subsequent sections. To facilitate skip
connections, we need to enforce constant layer size, that is, hi = hi−1. Therefore,
we transform the input layer to H0 of size n × h where h is the hidden layer
size. This transformation is necessary as otherwise we would have to assume
hi = f ∀i ∈ [d] and hi → ∞ would not be possible. For this work, we do not
consider this transformation as a learnable parameter in the network. As we
consider constant layer size, the NTKs are derived considering h→∞. We first
define a skip connection related to the one in Kipf and Welling [2017], where
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the skip connection is added to the features before convolution (we refer to it as
pre-convolution or Skip-PC).

Definition 1 (Skip-PC). In a Skip-PC (pre-convolution) network, the trans-
formed input H0 is added to the hidden layers before applying the diffusion, lead-
ing to the changes in the recursive definition of (3) with g1 :=

√
cσ
h Sσs(H0),

fi := giWi ∀i ∈ [d+ 1] and

gi :=

√
cσ
h
S (σ (fi−1) + σs (H0)) ∀i ∈ {2, . . . , d+ 1}, (8)

where σs(.) can be linear or ReLU accounting for two different skip connections.

We refer to the network with linear σs(.) and ReLU σs(.) as Linear Skip-
PC and ReLU Skip-PC, respectively. The above definition deviates from Kipf
and Welling [2017] in the fact that we skip to the input layer instead of the
previous layer. This particular change helps in evaluating the importance of
graph information in a dataset which we discuss in the following section. We
also consider a skip connection similar to the one described in Chen et al. [2020].

Definition 2 (Skip-α). Given an interpolation coefficient α ∈ (0, 1) and a
function σs(·), a Skip-α network is defined such that the transformed input H0

and the hidden layer are interpolated linearly, which changes the recursive defi-
nition in (3) as g1 :=

√
cσ
h ((1− α)Sσs(H0) + ασs(H0)), fi := giWi ∀i ∈ [d+1]

and

gi :=

√
cσ
h

((1− α)Sσ (fi−1) + ασs (H0)) ∀i ∈ {2, . . . , d+ 1}, (9)

Similar to Skip-PC, σs(.) can be linear or ReLU accounting for two different
skip connections. We refer to the network with linear σs(.) and ReLU σs(.) as
Linear Skip-α and ReLU Skip-α, respectively. Chen et al. [2020] recommends
the choices for α as 0.1 or 0.2.

Remark 2 (Change of the normalization factor cσ due to Skip connections). Note
that the normalisation constant cσ for GCN with skip connections is not the same
as defined in Remark 1 of vanilla GCN, since we add the transformed input to
the hidden layers and derive it for a GCN with σ(x) := ReLU(x), to be ' 0.67.

3.1 NTK for GCN with Skip Connections

We derive NTKs for the skip connections – Skip-PC and Skip-α. Both the NTKs
maintain the form presented in Theorem 1 with the following changes to the co-
variance matrices. Let Ẽ0 = Ef∼N (0,Σ0)

[
σs(f)σs(f)

T
]
.

Corollary 3 (NTK for Skip-PC). The NTK for an infinitely wide Skip-PC
network is as presented in Theorem 1 where Ei is defined as in the theorem, but
Σi is defined as

Σ0 := XXT , Σ1 := SẼ0S
T and Σi := SEi−1S

T +Σ1. (10)
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Fig. 2. (left/middle) Performance of NTKs corresponding to the different skip con-
nections where Skip-α is plotted for α = 0.2. (right) Impact of α in Skip-α evaluated
on Cora and WebKB datasets.

Corollary 4 (NTK for Skip-α). The NTK for an infinitely wide Skip-α net-
work is as presented in Theorem 1 where Ei is defined as in the theorem, but Σi
is defined with Σ0 := XXT ,

Σ1 := (1− α)2 SE0S
T + α (1− α)

(
SE0 + E0S

T
)
+ α2E0

Σi := (1− α)2SEi−1ST + α2Ẽ0. (11)

Both Corollary 1 and 2 for linear and ReLU activations, respectively, hold for
the derived NTKs corresponding to Skip-PC and Skip-α.

3.2 Empirical Analysis

Despite studies [Chen et al., 2020, Kipf and Welling, 2017] showing that hav-
ing skip-connections gives a significant performance advantage, there is no clear
way to choose one formulation of the skip connection over others due to the
empirical fluctuation in GCN training. This practical problem can again be seen
in the NTK setting as the derived NTKs have similar structure except the co-
variance between the nodes, thus making it difficult to compare analytically.
Therefore, we empirically study the performance of different NTKs in order to
determine the preferred formulation, thereby avoiding computational intensive
hyper-parameter tuning. In addition, we show that the NTK corresponding to
Skip-α can be used for assessing the relevance of structure and feature informa-
tion of graph in a dataset.

Experimental setup.We evaluate the performance of NTKs corresponding
to GCNs with skip connections for depth one to ten using non-linear activation
σs(x) := ReLU(x) (see (2)) for the GCNs. The linear transformation of the
input X is done by H0 = XT where T is a f × h matrix and each entry is
sampled from N (0, 1). The interpolation coefficient α in Skip-α is chosen to be
{0.1, 0.2, 0.5}. NTKs for all the formulations of skip connections discussed in the
previous section are evaluated on different multi-class datasets, namely Cora,
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Citeseer [Giles et al., 1998] and WebKB [Craven et al., 1998]. Figure 2 shows
the empirical observations.

We validate the expected performance advantage of GCN with skip connec-
tions over vanilla GCN, through NTK counterparts, and observe the following
main findings.

Shallow net for GCNs with skip connection. Empirical analysis reveals
a distinct behavior of skip connections with σs(.) being linear and ReLU, which
is illustrated in the left plot of Figure 2. We observe that there is no performance
gain with depth for both Skip-PC and Skip-α, and hence we restrict our focus
to shallow depths. With regards to linear and ReLU σs(.), the performances
are close and there is not a significant difference between the architectures. In
addition, this experiment also validates the general practice of using shallow
nets for GCNs. Hence, we propose skip connections with ReLU σs(.) and using
shallow nets to achieve best performance in practice.

NTK as a model to assess relevance of structure and feature infor-
mation of graphs. In the left plot of Figure 2, we notice that the performance of
Skip-α on WebKB improved significantly as compared to Skip-PC and moreover,
its performance continued to improve with depth, which is in contrast to other
datasets. We further investigate this by analysing the interpolation coefficient
α, and the corresponding results on Cora and WebKB datasets are shown in the
right plot of Figure 2. Large value of α in Skip-α implies that more importance
is given to feature information than the structural information of the graph.
Therefore, from the figure, we infer that the structural information is not as
important as the feature information for WebKB which is in contrast to Cora.
Besides, NTK is a ready-to-use model without the need for hyper-parameter
tuning. As a result, we propose NTK corresponding to Skip-α as a stand-alone
model to determine the relative importance of structure and feature information
in tasks where GCNs are employed.

4 Convergence of NTK with depth

In Figure 2, we observe that the performance of NTKs corresponding to GCNs
with skip connections does not change significantly beyond a certain depth.
We investigate this behaviour of the NTK further by measuring the amount of
change between NTKs of different depths. To this end, we consider the alignment
between the NTKs in the eigenspace following Fowlkes et al. [2004, Section 4.2].
Figure 3 shows the alignment of the NTKs for the discussed non-linear ReLU
architectures (σ(.) := ReLU in (2)), evaluated on Cora dataset.

The learning happens in shallow depth. The different alignment plots
illustrate the general influence of depth in GCN. We observe significant changes
in the alignment between NTKs of shallow depths indicating that this is where
learning happens. Since the NTKs for both vanilla GCN and GCN with skip
connections converge with depth, it is clear that deep GCNs have no advantage
or in other words, no new information is learned at deeper depths.
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Influence of Skip connection. In addition, we observe that the NTKs
reach almost perfect alignment with depth for GCNs with skip connection, sug-
gesting that the networks reached saturation in learning as well. We can further
distinguish the presented skip connections: overall Skip-PC has slow convergence
most likely because the skip connection facilitates learning; Skip-α converges fast.
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Fig. 3. Convergence of NTK with depth for all the discussed ReLU architectures,
evaluated on Cora dataset. The plots show perfect alignment of NTKs for higher depths
in GCNs with skip connections.

5 Conclusion

In this work, we derive NTKs for semi-supervised GCNs, including different for-
mulations of skip connections. The deterministic hyper-parameter free nature
of NTK makes it preferable choice for analysing its neural network counterpart
since it captures the behaviour of the networks very well, as demonstrated in
our experiments. While Liu et al. [2020] shows that the NTK does not remain
constant under non-linear output layer theoretically, we observe empirically that
this more practically used setup can still be analyzed using NTK. Under consid-
eration of those findings, the primary goal of our work is to use NTK to advance
our understanding of GCN, particularly on the impact of depth and network
architectures. From our analysis, we suggest the NTK corresponding to the skip
connection Skip-α to determine the relative importance of structure and feature
information in graphs, which we believe to be of great practical value. There
is a possibility of expanding the application of NTK to analyse robustness or
explainability of GCNs, or other contexts that involve repeated training of net-
works. Another direction of research is to incorporate practical considerations of
network architecture in the NTK derivation. The present paper allows sigmoid
functions in the output layer, which is included through a Taylor expansion. It
would be interesting to derive NTKs considering max-pooling or dropout, and
use NTKs to analyse the impact of these techniques on network performance.
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A Proofs of NTKs for GCN and GCN with Skip
Connections

We provide proofs of Theorem 1 and all corollaries with additional empirical
results in this section.

A.1 Proof of NTK for Vanilla GCN (Theorem 1)

Co-variance between Nodes.
We will first derive the co-variance matrix of size n×n for each layer comprising
of co-variance between any two nodes p and q. The co-variance between p and q in
f1 and fi are derived below. We denote p-th row of matrixM asMp. throughout
our proofs.

E
[
(f1)pk (f1)qk′

]
= E

[
(g1W1)pk (g1W1)qk′

]
= E

[
h0∑
r=1

(g1)pr (W1)rk

h0∑
s=1

(g1)qs (W1)sk′

]
(W1)xy∼N (0,1)

= 0 ; if r 6= s or k 6= k′

E
[
(f1)pk (f1)qk

]
r=s
=
k=k′

E

[
h0∑
r=1

(g1)pr (g1)qr (W1)
2
rk

]
(W1)xy∼N (0,1)

=

h0∑
r=1

(g1)pr (g1)qr

=
〈
(g1)p. , (g1)q.

〉
(12)

E
[
(fi)pk (fi)qk

]
r=s
=
k=k′

E

hi−1∑
r=1

(gi)pr (gi)qr (Wi)
2
rk


(Wi)xy∼N (0,1)

=

hi−1∑
r=1

(gi)pr (gi)qr

=
〈
(gi)p. , (gi)q.

〉
(13)

(12) :
〈
(g1)p. , (g1)q.

〉
=
〈
(SX)p. , (SX)q.

〉
= Sp.XX

TST.q

= (Σ1)pq (14)
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(13) :
〈
(gi)p. , (gi)q.

〉
=

cσ
hi−1

〈
(Sσ(fi−1))p. , (Sσ(fi−1))q.

〉
=

cσ
hi−1

hi−1∑
k=1

(Sσ(fi−1))pk (Sσ(fi−1))qk

hi−1→∞
= cσE

[
(Sσ(fi−1))pk (Sσ(fi−1))qk

]
; law of large numbers

= cσE

[(
n∑
r=1

Sprσ (fi−1)rk

)(
n∑
s=1

Sqsσ (fi−1)sk

)]

= cσE

[
n∑
r=1

n∑
s=1

SprSqsσ (fi−1)rk σ (fi−1)sk

]
(a)
=

n∑
r=1

n∑
s=1

Spr (Ei−1)rs S
T
sq

= Sp.Ei−1S
T
.q

= (Σi)pq (15)

(a): using E [(fi−1)rk (fi−1)sk] = (Σi−1)rs and the definition of Ei−1 in Theo-
rem 1.

NTK for Vanilla GCN.
Let us first evaluate the tangent kernel component from Wi respective to nodes
p and q. The following two results are needed to derive it.

Result 1 (Inner Product of Matrices).
Let a and b be vectors of size d1 × 1 and d2 × 1, then

〈
abT , abT

〉
= tr

(
abT

(
abT

)T)
= tr

(
abT baT

)
= tr

(
aTabT b

)
=
(
aTa

)
�
(
bT b
)

= 〈a, a〉 � 〈b, b〉 (16)

Result 2
〈
(br)p. , (br)q.

〉
.

We evaluate
〈
(br)p. , (br)q.

〉
=
(
brb

T
r

)
pq

which appears in the gradient.
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(
brb

T
r

)
pq

=
cσ
hr

hr∑
k=1

(
ST br+1W

T
r+1

)
pk
σ̇(fr)pk

(
ST br+1W

T
r+1

)
qk
σ̇(fr)qk

=
cσ
hr

hr∑
k=1

n,hr+1∑
i,j

Sip (br+1)ij (Wr+1)kj σ̇(fr)pkσ̇(fr)qk

n,hr+1∑
i′,j′

Si′q (br+1)i′j′ (Wr+1)kj′

=
cσ
hr

n,hr+1∑
i,j

n,hr+1∑
i′,j′

(br+1)ij (br+1)i′j′ SipSi′q

hr∑
k=1

(Wr+1)kj σ̇(fr)pkσ̇(fr)qk (Wr+1)kj′

=

hr+1,hr+1∑
j,j′

(
ST br+1

)
pj

(
ST br+1

)
qj′

cσ
hr

hr∑
k=1

(Wr+1)kj σ̇(fr)pkσ̇(fr)qk (Wr+1)kj′

hr→∞=

hr+1∑
j

(
ST br+1

)
pj

(
ST br+1

)
qj
cσE

[(
W 2
r+1

)
kj
σ̇(fr)pkσ̇(fr)qk

]
; 0 for j 6= j′

(b)
=
〈(
ST br+1

)
p.

(
ST br+1

)
q.

〉
cσE [σ̇(fr)pkσ̇(fr)qk]

(16)
=
(
SST

)
pq
〈br+1, br+1〉pq cσE [σ̇(fr)pkσ̇(fr)qk]

=
(
SST

)
pq
〈br+1, br+1〉pq

(
Ėr

)
pq

(17)

(b): (Wr+1)kj is independent and E
[(
W 2
r+1

)
kj

= 1
]
.

Now, lets derive
〈(

∂F
∂Wi

)
p
,
(
∂F
∂Wi

)
q

〉
and

〈(
∂F
∂W1

)
p
,
(
∂F
∂W1

)
q

〉
using the

above results.〈(
∂F

∂Wi

)
p

,

(
∂F

∂Wi

)
q

〉
=
〈
(gi)

T
p. (bi)p. , (gi)

T
q. (bi)q.

〉
(16)
=
〈
(gi)p. , (gi)q.

〉
�
〈
(bi)p. , (bi)q.

〉
(15),(17)

= (Σi)pq
(
SST

)
pq
〈br+1, br+1〉pq

(
Ėr

)
pq

(c)
= (Σi)pq

((
SST

)
pq

)d+1−i
d+1−i∏

j=i

(
Ėj

)
pq

 〈bd+1, bd+1〉pq

(d)
= (Σi)pq

((
SST

)
pq

)d+1−i
d+1−i∏

j=i

(
Ėj

)
pq

(Φ̇ (fd+1) Φ̇ (fd+1)
T
)
pq

(18)

(c): repeated application of (17).
(b): definition of bd+1.
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Extending (18) to all n nodes which will result in n× n matrix,

〈
∂F

∂Wi
,
∂F

∂Wi

〉
= Σi �

(
SST

)�d+1−i
d+1−i⊙
j=i

Ėj � Φ̇ (fd+1) Φ̇ (fd+1)
T

E
Wi

[〈
∂F

∂Wi
,
∂F

∂Wi

〉]
= Σi �

(
SST

)�d+1−i
d+1−i⊙
j=i

Ėj � E
f∼N (0,Σd)

[
Φ̇ (f) Φ̇ (f)

T
]

(19)

Finally, NTK Θ is,

Θ =
d+1∑
i=1

E
Wi

[〈
∂F

∂Wi
,
∂F

∂Wi

〉]

=

d+1∑
i=1

Σi �
(
SST

)�(d+1−i) �

d+1−i⊙
j=i

Ėj

� E
f∼N (0,Σd)

[
Φ̇ (f) Φ̇ (f)

T
]
(20)

We will now compute E
f∼N (0,Σd)

[
Φ̇ (f) Φ̇ (f)

T
]
. We use Lagrange form of the

remainder to approximate the Taylor’s expansion for the re-scaled sigmoid func-
tion Φ(.) which gives better bound.

Φ(x) =
2

1 + exp−x
− 1 =

x

2
− x3

24
+

x5

240
+ · · ·

Φ̇(x) =
1

2
− x2

8
+
x4

48
+
x6Φ̇6(ξ)

6!
; last term is the Lagrange form of the remainder.

(21)

To evaluate the expectation of an entry i, j in the matrix Φ̇ (f) Φ̇ (f)
T , let us

define ∆ as a 2× 2 co-variance matrix as follows, ∆ =

[
(Σd+1)ii (Σd+1)ij
(Σd+1)ji (Σd+1)jj

]

E
(x,y)∼∆

[
Φ̇ (x) Φ̇ (y)

]
(21)
= E

(x,y)∼∆

[(
1

2
− x2

8
+
x4

48
+
x6Φ̇6(ξ)

6!

)(
1

2
− y2

8
+
y4

48
+
y6Φ̇6(ξ)

6!

)]

=
1

4
E

(x,y)∼∆

[
1− x2

4
− y2

4
+
x4

24
+
y4

24
+
x2y2

16
− x4y2

96
− x2y4

96

+
x4y4

576
+
x6Φ̇6(ξ)

6!

(
1

2
− y2

8
+
y4

48
+
y6Φ̇6(ξ)

6!

)]
(22)
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Compute E
x∼N (0,λ2)

[
xk
]
and E

(x,y)∼N (0,∆)

[
xiyj

]
.

E
x∼N (0,λ2)

[
xk
]
=

2√
2πλ

∫ ∞
0

xk exp

(
−x2

2λ2

)
dx

=
2λk√
2π

∫ ∞
0

tk exp

(
−t2

2

)
dt ; x = λt =⇒ dx = λdt

=
2λk√
2π

(k − 1)

∫ ∞
0

tk−2 exp

(
−t2

2

)
dt

Thus, E
x∼N (0,λ2)

[
xk
]
= (k − 1)λ2 E

x∼N (0,λ2)

[
xk−2

]
(23)

E
(x,y)∼N (0,∆)

[
xiyj

]
= E

(x,y)∼N (0,∆)

[
xi (y ± αx)j

]
;α =

E [xy]

E [x2]
then x, y − αx are independent

= E
(x,y)∼N (0,∆)

[
xi

(
j∑

k=0

jCk (y − αx)j (αx)k
)]

= E
(x,y)∼N (0,∆)

[
j∑

k=0

jCkα
k (y − αx)j xk+i

]
(e)
=

j∑
k=0

jCkα
k E
(x,y)∼N (0,∆)

[
xk+i

]
E

(x,y)∼N (0,∆)

[
(y − αx)j

]
(24)

(e): x, (y − αx) are independent then xa, (y − αx)b are also independent.
Now, we evalute (22) using (23) and (24) as follows.

(22)
(23),(24)

=
1

4
− 1

16

(
Σ2ii +Σ2jj

)
+

1

64

(
Σ2iiΣ2jj + 2Σ2

2ij

)
+

1

32

(
Σ2

2ii +Σ2
2jj

)
− 1

128

(
Σ2

2iiΣ2jj +Σ2iiΣ
2
2jj + 4Σ2

2ijΣ2ii + 4Σ2
2ijΣ2jj

)
+

1

768

(
3Σ2

2iiΣ
2
2jj + 8Σ4

2ij + 24Σ2
2ijΣ2iiΣ2jj

)
+ E

(x,y)∼∆

[
x6Φ̇6(ξ)

6!

(
1

2
− y2

8
+
y4

48
+
y6Φ̇6(ξ)

6!

)]

≤ 1

4
− 1

16

(
Σ2ii +Σ2jj

)
+

1

64

(
Σ2iiΣ2jj + 2Σ2

2ij

)
+

1

32

(
Σ2

2ii +Σ2
2jj

)
− 10

128
ε3 +

35

768
ε4 +

15

720
ε3 ; |ε| ≤ max {∆00, ∆11},E

[
x6
]
= 15∆00

≤ 1

4
− 1

16

(
Σ2ii +Σ2jj

)
+

1

64

(
Σ2iiΣ2jj + 2Σ2

2ij

)
+

1

32

(
Σ2

2ii +Σ2
2jj

)
+

1

16
ε3

(25)

where |ε| ≤ max {∆00, ∆11}.
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We get the NTK in Theorem 1 by putting together (25) and (20).

Corollary 1 (Linear GCN). In this case, σ(x) := x and so derivative
σ̇(x) = 1. Consequently, one can derive Ėi = cσ1n×n from its definition. There-
fore, we get NTK for linear GCN in Corollary 1 by substituting Ėi in general
NTK equation in (20).

Corollary 2 (ReLU GCN). NTK for ReLU GCN is derived by substituting
(7) in general NTK equation in (20) as discussed in the corollary.

A.2 Proof of NTK for GCN with Skip Connections (Corollary 3
and 4)

We derive the NTKs for GCNs with different skip connections, Skip-PC and Skip-
α in this section. We observe that the definitions of gi ∀i ∈ [1, d+1] are different
for GCN with skip connections from the vanilla GCN. Despite the difference,
the definition of gradient with respect to Wi in (4) does not change as gi in
the gradient accounts for the change and moreover, there is no new learnable
parameter since the input transformation H0 = XT where Tij is sampled from
N (0, 1) is not learnable in our setting. Given the fact that the gradient definition
holds for GCN with skip connection, the NTK will retain the form from NTK
for vanilla GCN as evident from the above derivation. The change in gi will
only affect the co-variance between nodes. Hence, we will derive the co-variance
matrix for the discussed skip connections, Skip-PC and Skip-α in the following
sections.

Skip-PC: Co-variance between nodes. The co-variance between nodes
p and q in f1 and fi are derived below.

E
[
(f1)pk (f1)qk

]
=
〈
(g1)p. , (g1)q.

〉
=
cσ
h

〈
(Sσs(H0))p. , (Sσs(H0))q.

〉
=
cσ
h

h∑
k=1

(Sσs(H0))pk (Sσs(H0))qk

h→∞
= cσE

[
(Sσs(H0))pk (Sσs(H0))qk

]
; law of large numbers

= Sp.Ẽ0S
T
.q ; Ẽ0 = cσ E

f∼N (0,XXT )

[
σs(f)σs(f)

T
]

= (Σ1)pq (26)
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E
[
(fi)pk (fi)qk

]
=
〈
(gi)p. , (gi)q.

〉
=
cσ
h

〈
(S (σ(fi−1) + σs(H0)))p. , (S (σ(fi−1) + σs(H0)))q.

〉
=
cσ
h

h∑
k=1

(Sσ(fi−1) + Sσs(H0))pk (Sσ(fi−1) + Sσs(H0))qk

h→∞
= cσE

[
(Sσ(fi−1) + Sσs(H0))pk (Sσ(fi−1) + Sσs(H0))qk

]
; law of large numbers

= cσ

[
E
[
(Sσ(fi−1))pk (Sσ(fi−1))qk

]
+ E

[
(Sσ(fi−1))pk (Sσs(H0))qk

]
+ E

[
(Sσs(H0))pk (Sσ(fi−1))qk

]
+ E

[
(Sσs(H0))pk (Sσs(H0))qk

] ]
= Sp.Ei−1S

T
.q + cσE

[
(Sσ(fi−1))pk (Sσs(XW0))qk

]
+ cσE

[
(Sσs(XW0))pk (Sσ(fi−1))qk

]
+ cσE

[
n∑
r=1

n∑
s=1

SprSqsσs (XW0)rk σs (XW0)sk

]
(f)
= Sp.Ei−1S

T
.q + cσSp.E [σs (XW0)rk σs (XW0)sk]S

T
.q

= Sp.Ei−1S
T
.q + Sp.Ẽ0S

T
.q

= Sp.Ei−1S
T
.q + (Σ1)pq

= (Σi)pq (27)

(f): E
[
(Sσ(fi−1))pk (Sσs(XW0))qk

]
and E

[
(Sσs(XW0))pk (Sσ(fi−1))qk

]
eval-

uate to 0 by conditioning onW0 first and rewriting the expectation based on this
conditioning. The terms within expectation are independent when conditioned

onW0, and hence it is E
W0

[
E

Σi−1|W0

[
(Sσ(fi−1))pk |W0

]
E

Σi−1|W0

[
(Sσs(XW0))qk |W0

]]
by taking h inW0 going to infinity first. Here, E

Σi−1|W0

[
(Sσs(XW0))qk |W0

]
= 0.

We get the co-variance matrix for all pairs of nodes Σ1 = SẼ0S
T and Σi =

SEi−1S
T +Σ1 from (26) and (27).

Skip-α: Co-variance between nodes. Let p and q be two nodes and the
co-variance between p and q in f1 and fi are derived below.
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E
[
(f1)pk (f1)qk

]
=
〈
(g1)p. , (g1)q.

〉
=
cσ
h

h∑
k=1

((1− α)Sσs(H0) + ασs(H0))pk ((1− α)Sσs(H0) + ασs(H0))qk

h→∞
= cσE

[
((1− α)Sσs(H0) + ασs(H0))pk ((1− α)Sσs(H0) + ασs(H0))qk

]
= cσ

[
(1− α)2E

[
(Sσs(H0))pk (Sσs(H0))qk

]
+ (1− α)α

(
E
[
(Sσs(H0))pk (σs(H0))qk

]
+ E

[
(Sσs(H0))qk (σs(H0))pk

])
+ α2E

[
(σs(H0))pk (σs(H0))qk

]
= (1− α)2Sp.Ẽ0S

T
.q + (1− α)α

(
Sp.

(
Ẽ0

)
.q
+
(
Ẽ0

)
p.
ST.q

)
+ α2

(
Ẽ0

)
pq

= (Σ1)pq (28)

E
[
(fi)pk (fi)qk

]
=
〈
(gi)p. , (gi)q.

〉
=
cσ
h

h∑
k=1

((1− α)Sσ(fi−1) + ασs(H0))pk ((1− α)Sσ(fi−1) + ασs(H0))qk

h→∞
= cσE

[
((1− α)Sσ(fi−1) + ασs(H0))pk ((1− α)Sσ(fi−1) + ασs(H0))qk

]
= cσ

[
(1− α)2E

[
(Sσ(fi−1))pk (Sσ(fi−1))qk

]
+ α2E

[
(σs(H0))pk (σs(H0))qk

]
+ (1− α)α

(
E
[
(Sσ(fi−1))pk (σs(H0))qk

]
+ E

[
(σs(H0))pk (Sσ(fi−1))qk

]) ]
(g)
= (1− α)2Sp.Ei−1ST.q + α2

(
Ẽ0

)
pq

= (Σi)pq (29)

(g): same argument as (f) in derivation of Σi in Skip-PC.
We get the co-variance matrix for all pairs of nodes Σ1 = (1− α)2SẼ0S

T +

α(1− α)
(
SẼ0 + Ẽ0S

T
)
+ α2Ẽ0 and Σi = (1− α)2SEi−1ST + α2Ẽ0 from (28)

and (29).

A.3 Normalisation constant cσ (Remark 1 and 2).

We derive the normalisation constant cσ loosely, as the purpose of cσ is to pre-
serve the input norm approximately. We focus on general form of a network with
skip connection (not GCN in particular), where the output vector of size h from
any hidden layer l with weight matrix W ∈ Rh×h and transformed input vector

X0 of size h can be written as gl :=
√
cσ
h

(σ(Wgl−1) +X0) ∈ Rh×1. The role of
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the normalisation constant cσ is to maintain ‖gl‖2 ' ‖X0‖2 and is derived as
follows.

‖X0‖22 = ‖gl‖22 =
cσ
h

h∑
k=1

(σ(Wgl−1) +X0)
2
k

‖X0‖22 = cσE
[
(σ(Wgl−1)k)

2
+ (X0)

2
k + 2σ(Wgl−1)k (X0)k

]
;h→∞

‖X0‖22 = cσ E
u∼N (0,‖X0‖2)

[
(σ(u))

2
]
+ ‖X0‖22 ;E [σ(Wgl−1)k (X0)k] = 0

cσ =

(
E

u∼N (0,1)

[
(σ(u))

2
]
+ 1

)−1
; normalised X0 (30)

We use this cσ for GCN with skip connection in our work and it evaluates to
2/3 for σ(x) := ReLU(x) in GCN as stated in Remark 2. The evident change

for a network without skip connection is to not add X0 in gl :=
√
cσ
h
σ(Wgl−1)

and consequently by following the proof, we get cσ =

(
E

u∼N (0,1)

[
(σ(u))

2
])−1

as

mentioned in Remark 1.

A.4 Formal details for convergence of NTK with depth analysis

Formally, let Θi and Θj be the NTK of depth i and j, respectively, and U
(k)
i

and U (k)
j be the matrix of k leading eigenvectors of Θi and Θj , respectively, then

the alignment between Θi and Θj is computed by a = 1
k

∥∥∥U (k)T

i U
(k)
j

∥∥∥2
F
, where

a ∈ [0, 1] with a = 1 indicating perfect alignment.

B Additional Experimental Results

B.1 Datasets for binary node classification

The additional experiments are performed by converting the datasets to have
binary class by grouping the classes into two sets. Table 1 shows the label group-
ing for all the considered datasets Cora, Citeseer and WebKB and total number
of nodes with the grouped labels respectively. The classes in all the datasets are
well balanced and sensible to learn for binary classification problem which is
proved from the performance of a simple graph neural network like linear vanilla
GCN. The train-test split for each dataset is 708 and 2000 nodes for Cora, 312
and 2000 for Citeseer, and 377 and 500 for WebKB for all the experiments.
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Cora Citeseer WebKB

Class Groups #nodes Class Groups #nodes Class Groups #nodes

Class 1
Neural_Networks

Theory
Probabilistic_Methods

1595
Agents
AI
ML

1435 student 415

Class 2

Case_Based
Rule_Learning
Reinforcement

Genetic_Algorithms

1103
DB
IR
HCI

1877

faculty
staff
course
project

462

Total 2708 3312 877
Table 1. Class grouping in datasets for binary node classification.

B.2 Vanilla GCN vs GCN with Skip Connections

We established ReLU GCN is preferred over linear in Section 2 and ReLU for
the input transformation in Section 3. Hence, we focus on σ(.) := ReLU and
σs(.) := ReLU with α = 0.2 for Skip-α to validate the performance of vanilla
GCN and GCN with skip connections, Skip-PC and Skip-α. We use the respec-
tive NTKs to validate the performance. Figure 4 shows that GCN with skip
connection outperforms vanilla GCN even in deeper depths, and Skip-α gives
better performance than Skip-PC with depth.

B.3 Convergence of NTK with depth - Cora, Citeseer, WebKB

We presented the convergence of NTK with depth for ReLU GCN with and
without skip connections evaluated on multiclass Cora dataset in Figure 3. Here,
we present the convergence plot for Linear GCN evaluated on binary class Cora
for larger depths d = {1, 2, 4, 8, 16, 32, 64, 128} and all discussed linear and ReLU
networks evaluated on Citeseer and WebKB whose classes are grouped as per
Table 1. The observation is similar to the discussion in Section 4. Figures 5,
6 and 7 show the convergence plots for linear GCN evaluated on Cora, ReLU
and linear GCNs with and without skip connections for Citeseer and WebKB,
respectively.
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Fig. 4. Performance validation of vanilla GCN, Skip-PC and Skip-α with σ(.) := ReLU,
σs(.) := ReLU and α = 0.2 using the respective NTKs.

Fig. 5. Convergence of NTK with depth for all the discussed linear architectures eval-
uated on Cora dataset.

Fig. 6. Convergence of NTK with depth for all the discussed linear and ReLU archi-
tectures evaluated on Citeseer dataset.
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Fig. 7. Convergence of NTK with depth for all the discussed linear and ReLU archi-
tectures evaluated on WebKB dataset.


