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Hierarchical Hashing Learning for Image Set
Classification

Yuan Sun, Xu Wang, Dezhong Peng, Zhenwen Ren, Xiaobo Shen

Abstract—With the development of video network, image set
classification (ISC) has received a lot of attention and can be
used for various practical applications, such as video based
recognition, action recognition, and so on. Although the existing
ISC methods have obtained promising performance, they often
have extreme high complexity. Due to the superiority in storage
space and complexity cost, learning to hash becomes a powerful
solution scheme. However, existing hashing methods often ignore
complex structural information and hierarchical semantics of
the original features. They usually adopt a single-layer hashing
strategy to transform high-dimensional data into short-length
binary codes in one step. This sudden drop of dimension could
result in the loss of advantageous discriminative information. In
addition, they do not take full advantage of intrinsic semantic
knowledge from whole gallery sets. To tackle these problems, in
this paper, we propose a novel Hierarchical Hashing Learning
(HHL) for ISC. Specifically, a coarse-to-fine hierarchical hashing
scheme is proposed that utilizes a two-layer hash function to
gradually refine the beneficial discriminative information in a
layer-wise fashion. Besides, to alleviate the effects of redundant
and corrupted features, we impose the ℓ2,1 norm on the layer-
wise hash function. Moreover, we adopt a bidirectional semantic
representation with the orthogonal constraint to keep intrinsic
semantic information of all samples in whole image sets ade-
quately. Comprehensive experiments demonstrate HHL acquires
significant improvements in accuracy and running time. We will
release the demo code on https://github.com/sunyuan-cs.

Index Terms—image set classification, hierarchical hashing,
bidirectional semantic representation.

I. INTRODUCTION

W ITH the rapid development of video equipment, a great
deal of video sequences are viewed as image set.

Thereinto, each sequence can be treated as a set of images.
Image set classification (ISC) [1–4] has received widespread
research due to its various fields applications in video-based
surveillance and action recognition. Different from one-shot
classification task, the main goal of ISC is to recognize
each probe set from the known classes in gallery sets. Since
multiple images from the same image set enjoy comprehensive
complementary information and more intra-class variations
of object, ISC has more promising performance in terms
of overcoming image appearance variations. The key steps
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of the ISC are: (1) to model image set efficiently and take
advantage of the comprehensive information of image set;
(2) to formulate a distance criterion and accurately calculate
the similarity. However, these large appearance variations also
raise some great challenges, for example, lighting conditions,
arbitrary poses, occlusion, and viewpoints).

For ISC tasks, theses existing methods obtain gratifying
classification performance. With the increase of data volume,
these ISC methods based on real-value representation can eas-
ily lead to extremely high running time and space complexity.
Consequently, it is urgent to design an effective ISC method
to achieve fast and accurate classification. Some studies [5–
7] indicate that the hashing technique is a powerful scheme
to support efficient storage and fast recognition for high-
dimensional image data. Recently, there has been growing
interest in learning to hash community [3]. The existing hash-
ing methods usually are designed for the image retrieval and
cross-modal retrieval tasks. Without loss of generality, hashing
methods often project the feature data into low-dimensional
binary hash codes, meanwhile preserving the feature similarity
and structural information in Hamming space. Since hashing
methods adopt binary codes to store high-dimensional data,
space cost can be greatly reduced. For out-of-samples, it can
generate new hash codes by the learned hash function, and
then compute Hamming distance to achieve similarity search.
Due to the XOR bit-wise operations, the retrieval process can
be further accelerated. Some promising representative hashing
methods include [8–10].

However, learning to hash usually is used for image retrieval
or multimodal retrieval. In the field of ISC, it is less touched.
Zhang et al [11] proposed to learn binary codes for each image
in image set by maximizing inter-class and minimizing intra-
class Hamming distances. Sun et al [12] proposed to learn
binary codes of image set by feature and semantic views
consensus. It is still an open question that how to reduce
the information loss of hashing projection and preserve the
similarity in whole image sets. Existing hashing methods
often ignore complex structural information and hierarchical
semantics of the original features, and adopt a single-layer
hashing strategy to transform high-dimensional images into
low-dimensional Hamming space in one step. To see the
insight deeply, we provide more descriptions at subsection
’Motivation’. Based on our analysis, the sudden one-step di-
mension reduction could result in the important discriminative
information loss. Moreover, they do not take full advantage of
intrinsic semantic knowledge from whole gallery sets.

To balance the discriminative information extracting and
preserving, we propose a Hierarchical Hashing Learning

https://github.com/sunyuan-cs
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Fig. 1: (a) and (b) are the frameworks of single-layer hashing and hierarchical hashing, respectively. The former adopts a
single-layer hash function to directly learn low-dimensional binary codes from high-dimensional kernel features, and then
utilizes unidirection regression to preserve label information. The latter adopts a coarse-to-fine hierarchical hashing scheme
that uses a two-layer hash function to refine beneficial discriminative information step by step. To be specific, the first layer
hash function is used to learn coarse representation to gather beneficial information, and the second layer hash function is used
to learn fine hash codes to enhance discrimination. Besides, bidirectional semantic representation is used to preserve similarity,
thereby reducing the distribution difference between the feature and Hamming spaces.

(HHL) method for ISC tasks. Specifically, as shown in Fig.
1, we propose a coarse-to-fine hierarchical hashing scheme
that uses two smaller hash mapping matrices with the ℓ2,1
norm constraint instead of a single-layer hashing to learn dis-
criminative hash codes gradually. Then we propose a bidirec-
tional semantic representation with the orthogonal constraint
to express semantic similarity, thereby reducing the distribu-
tion difference between the feature and Hamming spaces. To
summarize, this paper has the following main contributions:

• We propose an elegant HHL framework for fast ISC tasks.
To the best of our knowledge, this work is the first to
develop hierarchical hashing to boost the discrimination
power of the learned hash codes

• To mitigate the loss of important information caused by a
considerable drop in dimension, we propose a coarse-to-
fine hierarchical hashing scheme that uses the two-layer
hash function to gradually refine the relative important
discriminative information.

• To preserve intrinsic similarity of all images in whole
gallery sets as much as possible, we propose a bidirec-
tional semantic representation strategy, thereby reducing
the distribution difference between the feature and Ham-
ming spaces.

• To efficiently solve the binary hierarchical hashing prob-
lem, we develop an iterative optimization algorithm.
A plentiful experiments on three benchmark datasets
demonstrate that HHL outperforms some state-of-the-art
comparison methods.

II. RELATED WORK

In this section, we review some ISC methods and image
hashing methods.

A. Image set classification
Over the past few decades, the researchers proposes a mass

of real-valued representation methods to handle ISC. The
related traditional ISC methods mainly fall into the following
categories. (1) Manifold: discriminant analysis on riemannian
manifold of gaussian Distributions (DARG) [13], and multiple
riemannian manifold-valued descriptors (MRMD) [14]; (2)
Point-to-point: sparse approximated nearest points (SANP)
[15], regularized nearest points (RNP) [16], and sparse projec-
tion learning (SPL) [17]; (3) Regression: dual linear regression
classification (DLRC) [18], pairwise linear regression classi-
fication (PLRC) [19], and prototype discriminative learning
(PDL) [20]; (4) Multiple kernel: multiple kernel dimensional-
ity reduction (MKDR) [21]; (5) Binary representation: simul-
taneous feature and sample reduction (SFSR) [11]. Although
most researchers use mathematical models to model each
image set, deep learning also gradually apply to the ISC
task due to the strong non-linear representation ability. For
example, Huang et al proposed a deep network method on
grassmann manifolds [22]. Wang et al [1] proposed a deep
learning network on symmetric positive definite manifold.

B. Image hashing
Generally speaking, learning to hash is used for image re-

trieval task [23] or multi-modal retrieval [24, 25]. As shown in
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Fig. 1, the existing hashing methods usually use a single-layer
hash function to transform original high-dimensional data into
a set of compact binary hash codes, meanwhile preserving
the similarity of the original data in the Hamming space.
Representative discrete hashing methods include SDH [26],
COSDSH [27], FSDH [28], FSSH [29], SSLH [30], RSLH
[31], and SCDH [32]. SDH learns the hash codes directly
from the original image data via a hash function, and then
reconstructs the label matrix from the hash codes. COSDSH
tries to directly learn the hash codes under the supervision
of semantic information by the sample strategy. FSDH learns
hash codes via regressing the class label to preserve semantic
similarities. FSSH uses a pre-computed intermediate term to
avoid using the large similarity matrix in order to better learn
hash codes. SSLH utilizes mutual regression to reduce quanti-
tative loss, and then proposes a robust estimator to improve the
robustness. RSLH learns short-length hash codes and preserves
semantic information by mutual regression and asymmetric
pairwise similarity. SCDH directly learns hash codes from
the original samples via imposing strong constraints (i.e., the
bit balance and decorrelation). Recently, many advanced deep
image hashing methods are proposed, for example, weighted
generative adversarial networks (WeGAN) [33] utilizes the
uncertain relationships between images and labels to improve
the quality of binary codes.

More specifically, to achieve fast image retrieval, image
hashing encodes all samples into more compact binary codes
B in Hamming space. Without loss of generality, the hashing
prototype can be defined as follows:

min
B,W

∥B −XW ∥2F + α∥W ∥2F s.t. B ∈ {−1, 1}n×l
(1)

where α is the regularization parameter for preventing trivial
solution, X ∈ Rn×d is the original image feature, and
W ∈ Rd×l is a single-layer hash function. According to
relevant literatures [34], the quality of hash code can be im-
proved by integrating bit balance and decorrelation constraints.
Bit decorrelation BBT = nI requires the hash bits to be
uncorrelated, which encourages the generation of compact
hash codes. Bit balance B1 = 0 represents each bit has a
half chance of +1 or −1. On one hand, it can avoid trivial
solutions. On the other hand, according to hash theory [35],
when hash bit is balanced, the entropy and the amount of
information will reach a maximum, indicating the hash code
is high quality. Thus, image hashing usually uses these two
constraints to obtain more efficient hash codes.

min
B,W

∥B −XW ∥2F + α∥W ∥2F

s.t. B ∈ {−1, 1}n×l,B1 = 0,BBT = nI
(2)

Since the hashing methods can be executed offline, and the
kernel trick usually is used to capture non-linear structure
among image samples in advance. Concretely, a commonly
used RBF kernel strategy can be adopted to map original
features into kernel features. Mathematically, each image can
be denoted as follows

ϕ(Xij) = [exp(
∥Xij − a1∥22

−2σ2
), ..., exp(

∥Xij − ah∥22
−2σ2

)]⊤

(3)

where a is the anchor point, h is the number of anchors in
total, and σ = 1

nh

∑n
i=1

∑h
j=1 ∥xi−aj∥2 is the kernel width.

The d-dimension features can be mapped into h-dimension
kernel features.

III. PROPOSED METHOD

We describe the proposed HHL the proposed HHL. First, we
introduce the problem definition, notations and the motivation
in Sections III-A and III-C. Then, Sections III-D to III-I give
the framework, optimization, classification criterion, and some
other analysis.

A. Problem definition

For ISC task, we give some important terminologies. Image
set is collected from video frames or multiple unordered
images with a certain degree of correlation. Each image
usually appears with large intra-class variations. Gallery sets
are used for training, which contain one or more image sets
from each class. Probe set is used for testing, which contains
multiple images from the same class. ISC aims to compute
the similarities between probe set and gallery sets, thereby
predicting the class of the probe set.

B. Notations

Throughout this paper, we denote the uppercase bold
font characters as matrices and the lowercase bold font
characters as vectors. For image set setting, we denote
X = [X1,X2, · · · ,Xk]

⊤ ∈ Rn×d as whole gallery sets
consisted of k gallery sets from c classes, where Xi =
[xi1,xi2, · · · ,xiq]

⊤ ∈ Rq×d represents the i-th gallery set
and the dimension of each image sample is d. Xij represents
the j-th image from the i-th gallery set. The number of all
image samples in whole gallery sets is n = kq. In addition,
suppose probe set be Y = [y1,y2, · · · ,ym]⊤ ∈ Rm×d,
where the number of all samples is m. Let L ∈ {0, 1}n×c

is the ground-truth label of all image samples in whole
gallery sets. Similarly, we also use the RBF strategy to extract
nonlinear kernel features [36–38] in advance. For the sake of
convenience in writing, we use V to represent ϕ(X).

C. Motivation

As previously mentioned, the existing hashing methods
often learn a single-layer hash function to transform high-
dimensional data with size Rn×h into binary codes with size
Rn×l in one step. We notice that the dimension suddenly
drops from h to l, which could result in a large volume
of the kernel discriminative information loss and make the
error of binary representation magnified. Besides, the original
features usually include complex structural information and
hierarchical semantics. They are difficult to extract by only
adopting the single-layer hashing scheme.

We give a simple introduction on the discriminative infor-
mation loss of existing hashing methods in the progress of
learning to binary codes. Since the essence of learning to
hash is subspace learning and binary codes are orthogonal,
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Fig. 2: Eigenvalue distribution of the kernel matrix on YTC.
First, we sort the eigenvalues from large to small. Then, we
denote the blue curve as the ratio of each eigenvalue to the first
eigenvalue, and the purple curve as the ratio of the sum of the
ordered topN eigenvalues to the total eigenvalues. For the first-
layer, the hash matrix only keeps 51.8% kernel information
when setting dimension as 128 (i.e., l = 128). For the
second-layer, we first map kernel features into 400-dimension
representation and then map ones into 128-dimension binary
codes. The hash matrix can keep 78.93%×68.58% = 54.13%
kernel information. Compared with single-layer hash mapping,
two-layer hash mapping preserves more kernel information
(i.e., 54.13% > 51.8%).

we use singular value decomposition (SVD) to show eigen-
value distribution. According to the literature [39], the larger
the eigenvalue, the more discriminative information carried
by the eigenvector. We hope that l bits binary codes can
preserve most of the discriminative information by choosing
the eigenvectors corresponding to top-l eigenvalues. Ideally,
eigenvalues except the top-l ones are zeros. We thus roughly
estimate the total amount of discriminative information in the
corresponding eigenvector by the eigenvalue. Motivated by the
deep architecture [40, 41], to effectively avoid the abrupt drop
of dimension and alleviate the discriminative information loss,
we adopt a coarse-to-fine hierarchical hashing scheme that
utilizes a progressive way to learn a multi-level hash function.
That is, we employ multiple intermediary matrices to extract
the discriminative information from kernel features. In this
paper, we only focus on the two-layer hash function. We draw
a brief illustration on YTC dataset in Fig. 2, which shows
the eigenvalue distributions of the first-layer representation
and the second-layer ones. From the results, the sudden one-

step dimension reduction could result in the loss of impor-
tant discriminative information. Furthermore, such hierarchical
hashing scheme can preserve the main information of kernel
features and reduce the information loss.

D. Model framework

We propose a novel hierarchical hashing learning method,
including two components: the hierarchical hashing strategy
and the bidirectional semantic representation.

(1) Hierarchical hashing strategy
We propose a coarse-to-fine hierarchical hashing scheme to

learn discriminative hash codes. More precisely, we use two
smaller hash mapping matrix W = PQ, where P ∈ Rh×r,
Q ∈ Rr×l, l < r < h, and r is the dimension of discriminative
details. P is first-layer hash mapping matrix used to gather
important discriminant information. Q is viewed as second-
layer hash mapping matrix used to learn discrimination hash
codes. In the first-layer hash mapping stage, the redundant
features can be refined and squeezed out as much as possible,
thereby improving the quality of binary codes in the second-
layer hash mapping stage. Hence, PQ acts as a hierarchical
hash mapping matrix, which can promote the corresponding
hash representation error to be minimized. Note here, although
a new parameter r is introduced, r is easy to tune since r is a
positive integer greater than l, and has explicit meaning, i.e.,
r is the number of selected important features for extracting
recognition information. r can be varied from the range of
(l, h). Due to rank(P) ≤ r < h and rank(Q) ≤ l < r,
PQ also has latent low-rank property. Overall, the proposed
strategy iteratively extracts the beneficial feature information
into smaller matrices via two steps, and learns the final hash
codes B. The optimization problem can be written as follows:

min
B,P ,Q

∥B − V PQ∥2F + α∥PQ∥2F

s.t. B ∈ {−1, 1}n×l
(4)

Moreover, in a real world application, due to redundant
noisy and outliers, these troublesome features easily affect
binary codes in one-step process. Inspired by [42], to eliminate
the redundant and corrupted features, we consider that the two-
layer hash function PQ should be row-sparsity. Because ℓ2,1
norm [42] has the excellent row-sparsity property, we impose
the regularization term for PQ, that is, ∥PQ∥2,1. Compared
with the F-norm, the negative effects of noisy or corrupted
data can be alleviated. Besides, we impose bit balance and bit
decorrelatation constraints on hash codes. The problem can be
transformed as

min
B,P ,Q

∥B − V PQ∥2F + α∥PQ∥22,1

s.t. B ∈ {−1, 1}n×l,B1 = 0,BBT = nI
(5)

Because of the ℓ2,1 norm constraint, problem (5) has the ability
to adaptively assign large weights, such that the extractive im-
portant information can be mapped into hash codes. Moreover,
the ℓ2,1 norm constraint can avoid the trivial solution, that is,
preventing PQ = I . The hierarchical hash mapping function
involved ℓ2,1 norm assures the spareness.

(2) Bidirectional semantic representation
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Our goal is to keep the underlying geometrical structure
information from all images in Hamming space. Since both
hash codes and label are binary, we adopt the linear auto-
encoder scheme that converts the two to each other to preserve
the similarity information. Hence, the problem can be written
as follows:

min
B,R,H

∥L−BR∥2F + α∥B −LH∥2F

+ λ(∥R∥2F + ∥H∥2F ) s.t. B ∈ {−1, 1}n×l
(6)

where R and H are the regression matrices, and λ is the
regularization parameter. To preserve the semantic similarity
information well (we conduct some analysis in subsection
‘Similarity preserving analysis‘), we use the same regression
matrix (i.e., R = H⊤) between hash codes and semantic
label. Hence, the semantic representation error produced in the
bidirectional regression can be minimized. This bidirectional
regression strategy could make the model more stable and
precise, which can express as:

min
B,R

∥L−BR∥2F + λ∥B −LR⊤∥2F

s.t. B ∈ {−1, 1}n×l
(7)

The two processes are mutually promoted, which can generate
hash codes from class labels, as well as reconstruct the label
matrix. Therefore, the intrinsic semantic structure from origi-
nal data and discrimination property from the label information
can be better inherited. In order to simplify problem (7) and
avoid the introduction of a new balance parameter λ, we
further impose the orthogonal constraint to ensure bidirectional
transformation and reconstruction mechanism (satisfy both
∥L − BR∥2F and ∥B − LR⊤∥2F ). The problem can further
simplify as:

min
B,R

∥L−BR∥2F s.t. RR⊤ = I,B ∈ {−1, 1}n×l
(8)

(3) Overall HHL model
Utilizing the aforementioned insights into a unified objective

function, the proposed HHL can be written as:

min
B,P ,Q,R

∥B − V PQ∥2F + α∥PQ∥22,1 + β∥L−BR∥2F

s.t. RR⊤ = I,B ∈ {−1, 1}n×l

B1 = 0,BBT = nI
(9)

To summarize, problem (9) has the following properties:

• The first term iteratively extracts the beneficial feature
information via a two-layer mapping function to refine the
important discriminative information. More importantly,
the hash mapping matrix W = PQ has the hierarchy
and latent low-rank property, hence the beneficial feature
information can be extracted well.

• The second term encourages the hash mapping matrix
PQ to be row-sparsity, thereby filtering out or weakening
the redundant and corrupted features.

• The third term utilizes orthogonal constraint to build
linear bidirectional regression, which can promote hash
codes inheriting intrinsic semantic structure and discrim-
ination property from the label information.

E. Optimization

In this subsection, we efficiently use the iterative optimiza-
tion strategy to solve problem (9). To be specific, we fix other
variables, and then solve the variable to be solved and ensure
that it is globally optimal in each step.
▶ Update PQ-subproblem: Fixing the variables W and B,
PQ-subproblem of (9) can be depicted as

min
P ,Q

∥B − V PQ∥2F + α∥PQ∥22,1 (10)

With simple algebraic manipulations, problem (9) can be
transformed as

min
P ,Q

∥B − V PQ∥2F + αTr(Q⊤P⊤MPQ) (11)

where M is an auxiliary diagonal matrix, and mii is repre-
sented as

mii =
1

2∥(PQ)i∥2
, i = 1, · · · , h (12)

Then, we solve the P -subproblem and Q-subproblem from
problem (11).
(1) Update Q-subproblem: By fixing P in problem (11),

we take its derivative with respect to Q to zero. The Q can
be obtained via

Q = (P⊤StP )−1P⊤V ⊤B (13)

where St = V ⊤V + αM .
(2) Update P -subproblem: By fixing Q, problem (11) can

be transformed as

min
P

Tr(B⊤B −B⊤V PQ−QPV B

+Q⊤P⊤V ⊤V PQ) + αTr(Q⊤P⊤MPQ)
(14)

Mathematically, problem (14) is equivalent to

min
P

Tr(B⊤B −B⊤V PQ−QPV B)

+Tr(Q⊤P⊤(V ⊤V + αM)PQ)
(15)

By introducing St into problem (15), then it becomes

min
P

Tr(−2B⊤V PQ) + Tr(Q⊤P⊤StPQ) (16)

By substituting Q∗ into problem (16), we have

min
P

Tr(−2B⊤V PQ) + Tr(P⊤StPQQ⊤)

= max
P

Tr(P⊤StP )−1P⊤SbP
(17)

where Sb = V ⊤BB⊤V .
The two auxiliary variables (Sb and St) in problem (17)

can be equivalent to the between-class and within-class scatter
matrices, respectively, used in LDA method [7]. Therefore, the
optimal solution P contains the eigenvectors corresponding to
the top r eigenvalues of S−1

t Sb. Note here, we compute V ⊤V
in advance for St.
▶ Update R-subproblem: Fixing the variables P , Q and B,
R-subproblem of (9) can be reduced as

min
R

β∥L−BR∥2F s.t. RR⊤ = I (18)

We can compute the SVD of B⊤L (i.e., B⊤L = USD⊤),
and we can obtain R = UD⊤.
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▶ Update B-subproblem: Fixing the variables P , Q and
W , we can obtain

min
B

∥B − V PQ∥2F + β∥L−BR∥2F
s.t. B ∈ {−1, 1}n×l,B1 = 0,BBT = nI

(19)

Adopting matrix manipulation, problem (19) can further trans-
formed as

max
B

B⊤(V PQ+ βLR⊤)

s.t. B ∈ {−1, 1}n×l,B1 = 0,BBT = nI
(20)

Let E = V PQ+ βLR⊤, and we can rewritten into

max
B

B⊤E s.t. B ∈ {−1, 1}n×l,

B1 = 0,BBT = nI
(21)

Afterwards, we can update B through Theorem 1.
Theorem 1. [32] Given the optimization problem:

max
B

B⊤E s.t.B1n = 0l,BB⊤ = nIl (22)

B can be solved by

B =
√
n[U , Ũ ][D, D̃]T (23)

Here, U = [U1,U2, ...,Ul̂] and D = [D1,D2, ...,Dl̂] are
calculated by the SVD of JE, where J = In − 1

n1n1
⊤
n , i.e.,

JE = UΣU⊤ =
∑l̂

i=1
σiulv

T
l

(24)

where eigenvalues is ordered by 0 ≥ σl̂ ≥ · · · ≥ σ1. Ũ ∈
Rn×(l−l̂) and Ṽ ∈ Rl×(l−l̂) can be obtained by the Gram-
Schmidt process. Note that Ũ and D̃ will be empty if l̂ = l.
The proof process is shown in .

Algorithm 1 Hierarchical Hashing Learning (HHL)

Input: Gallery sets X with label matrix L, probe set Y , and
the number of anchors h.

1: Parameter: α, β, and l;
2: Initialize W , P , Q, and B;
3: Obtain kernel features V by kernel trick;
4: repeat
5: Calculate Q via performing Eq.(13);
6: Calculate P via performing Eq.(17);
7: Calculate R via performing Eq.(18);
8: Calculate B via performing Eq.(21);
9: until Satisfy the stop criteria ∥Bt+1−Bt∥2F /∥Bt∥2F ≤ ϵ

or reach the the number of maximum iteration;
10: Obtain hash codes BY of probe set Y k via Eq.(25);
Output: Perform image set classification.

F. Classification criterion

In classification phase, when the new probe set Y arrives,
we learn binary codes BY via the two-layer hash function
PQ as follows

BY = Y kPQ (25)

where Y k is kernel features. After the hash codes of gallery
sets and probe set (i.e., B and BY ) are learned, we compute

the Hamming distance between them, and assign label of
probe set as the class corresponding to the minimum Hamming
distance. Afterwards, each image for probe set casts one only
vote and the class corresponding to the gallery set with the
most votes is the label of the probe set. The progress of our
proposed HHL is summarized in Algorithm 1.

G. Similarity preserving analysis
To show the similarity preserving of our HHL, we conduct

conduct the theoretical analysis. The semantic similarity pre-
serving is usually written as follows

min
B

∥BB⊤ − S∥2 s.t.B ∈ {−1,+1}n×l (26)

Although the similarity preserving has achieved the promising
performance, the paired similarity matrix S with size n × n
may lead to expensive complexity cost in the training process,
and the asymmetric optimization scheme will lead to higher
quantitative loss. We thus use inner product of class labels to
replace S, and the problem (26) can be further transformed as

min
B

∥BB⊤ − S∥2 = ∥BB⊤ −LL⊤∥2 (27)

By simple matrix operations, we can obtain

L⊤BB⊤B = L⊤LL⊤B (28)

Whereupon, we can derive that

L⊤B(B⊤B + λI) = (L⊤L+ λI)L⊤B (29)

Then, we can further obtain

L⊤B(B⊤B + λI)−1 = (L⊤L+ λI)−1L⊤B (30)

Review the problem (6), we observe that the left and right
sides of the problem (30) are exactly the solutions of their
hash functions. We can obtain R = L⊤B(B⊤B + λI)−1

H⊤ = (L⊤L+ λI)−1L⊤B
R = H⊤

(31)

Hence, the similarity preserving implies that both ∥L−BR∥2
and ∥B − LR∥2 are satisfied. Obviously, if problem (8) can
be satisfied, we can easily get problem (26). In other words,
the proposed bidirectional semantic representation strategy can
preserve semantic similarity well, while both high complexity
and the asymmetric computation process are avoided.

H. Computational complexity analysis
The four constants of our HHL, n, h, r, and l, are the num-

ber of samples in whole gallery sets, the total of anchors, the
dimensionality of intermediate state, and the hash length. The
computational complexity in Algorithm 1 depends on four sub-
problems alternating minimization, including P -subproblem,
Q-subproblem, W -subproblem, and B-subproblem, which
are repeated until satisfying the convergence stop criterion.
Specifically, the updating of P , Q, W , and B have the com-
putational complexity of O(h3),O(r3), O(l2n) and O(l2n),
respectively. Since h < n and l < r << n, the final
computational complexity of Algorithm 1 approximates to
O(n). It indicates that HHL is scalable to larger datasets.
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I. Convergence analysis

The convergence analysis of the proposed HHL is given as
follows. For ease of expression, we formulate L(P ,Q,R,B)
as problem (9). According to the previous solution analysis, it
is obvious that

L(Qt+1,P t+1,Rt+1,Bt+1)

≤ L(Qt+1,P t+1,Rt+1,Bt)

· · ·
≤ L(Qt,P t,Rt,Bt)

(32)

where superscript t represents the t-th iteration optimization.
The objective value monotonically decreases progressively
at each iteration. Each subproblem is all convex and has
the closed-form solution. Based on the bounded monotone
convergence theorem, our HHL is convergent. In Section IV-F,
we experimentally demonstrate the convergence.

IV. EXPERIMENT

To evaluate the recognition performance of our proposed
HHL, we conduct enormous experiments for ISC tasks on
Mac with i7 and 16GB RAM. We record the best average
classification accuracies and standard deviation to evaluate
performance. The bold indicates the best result.

A. Image set datasets

For ISC tasks, we perform some experiments on three
benchmark image set datasets, including Honda, YTC, ETH-
80. These image sets contain high intra-class variations with
expression deformations, illumination variations, pose, etc. To
be fair, we take five-fold cross validation. The three datasets
are introduced in detail as follows:

Honda dataset is collected in a controlled indoor environ-
ment, which has 59 video sequences from 20 subjects. There
are about 12-645 images in each sequence, which have various
variations contained sport speeds, expressions and rotations.
Following [43], we resize each image as 20×20 and adopt to
histogram equalization. For experiment setting, we randomly
choose an image from each subject as a gallery set and the
remainder as probe sets. Since the size limitation of image sets
from each class, we do not perform muiti-fold cross validation,
but repeat the experiment five times.

YTC dataset is collected under unconstrained reality envi-
ronments, which has 81973 images from 1910 sequences of
47 subjects. Since each set enjoys large expression and pose
variations, it is very challenging to recognize the identity of
probe set. Following [2], we resize all images into 30×30 and
extract LBP features. We randomly select 3 sets from 9 sets
of each subject as gallery sets and the others as probe sets.

ETH-80 dataset has 3280 images consisted of 80 objects
from 8 classes and each set has 41 images from different
views. Each image is resized into 10×10, and is converted to
grayscale. Following [44], we resieze all images into 10× 10
and extract grayscale. We choose 5 classes of image sets as
gallery sets randomly, and the rest sets as probe sets.

B. Comparison methods

We compare our HHL with a large number of state-of-the-
art methods: some shallow ISC methods (SANP [15], RNP
[16], DLRC [18], PLRC [19], DARG [13], PDL [20], MKDR
[21], SPL [17], and MRMD [21]); and some hashing methods
(SDH [26], COSDSH [27], FSDH [28], FSSH [29], SSLH
[30], RSLH [31], SCDH [32], and POPSH [45]); and some
deep learning ISC methods (SPDNet [22], SPDNet [46],
GEMKML [47], and SymNet [1]). For a fair comparison, the
parameters involved in these comparison methods have been
carefully adjusted according to the recommendations of the
respective authors.

C. Comparison with shallow ISC methods

For fairness, we follow the shallow ISC common setup.
That is, we set 50, 100, and 200 frames on the Honda and
YTC datasets, respectively. And we set 15, 25, and 41 frames
on the ETH-80 dataset. To obtain the best result, we choose
128 bits codes. The average classification accuracies and the
standard deviations are given in Table I. Through analyzing
these tables, we can achieve some important conclusions:

• On the three image set datasets, we find that our proposed
HHL has no short board. Compared with traditional
shallow ISC methods, the performance improvements of
HHL are significant in all of the cases (three different
frames), which demonstrates its performance advantages.
As the number of frames increasing, the classification
performance of all methods improves greatly, which
shows large size image sets can provide complementary
discriminant information.

• On the Honda dataset collected in a controlled environ-
ment, the difficulty of ISC is relatively low. According
to the experiment results, all of the comparison methods
achieved satisfactory results, especially when the number
of frames is 200, several methods achieved 100% recog-
nition rate. It is worth mentioning that HHL achieves the
best performance (up to 100% recognition rate) in all of
the cases. Our HHL achieves such exciting performance
up to 100% recognition rate. This may be because that
Honda is the low difficulty dataset and the proposed can
improve the quality of hash codes.

• On the more challenging YTC dataset, collected in an
unconstrained real-world environment, HHL still outper-
forms these competitors. Experiment results indicate that
HHL can filter out or weaken redundant and corrupted
features. It is gratifying that HHL obtains the best perfor-
mance in different size. This shows that the hierarchical
hashing strategy can enhance discrimination of hash
codes, and effectively resist noise and even outliers

• Since the ETH-80 dataset has much few images in each
set, large appearance and view angle variations, the recog-
nition performance of all methods is not very satisfactory.
We observe that HHL gains best classification accuracies,
compared with all competitors in small size image sets
(frames [15, 25, 41]).
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TABLE I: Classification performance (%) compared with traditional ISC methods on the first three datasets.

Method Honda YTC ETH80
Frames 50 Frames 100 Frames 200 Frames 50 Frames 100 Frames 200 Frames 15 Frames 25 Frames 41

SANP [15] 84.6 ± 2.6 92.3 ± 1.2 94.9 ± 0.6 56.7 ± 5.5 61.9 ± 8.1 65.4 ± 6.8 62.5 ± 2.5 63.0 ± 4.1 65.0 ± 3.9
RNP [16] 87.2 ± 3.1 94.9 ± 1.1 97.4 ± 1.2 58.4 ± 6.9 63.2 ± 8.4 65.4 ± 7.2 64.5 ± 5.7 65.0 ± 8.2 69.5 ± 5.7
DLRC [18] 88.2 ± 2.7 90.5 ± 2.1 84.1 ± 1.5 58.9 ± 8.6 61.4 ± 7.1 67.3 ± 7.6 64.0 ± 6.1 66.5 ± 5.8 75.5 ± 6.8
PLRC [19] 87.2 ± 2.5 97.4 ± 1.7 100.0 ± 0.0 61.7 ± 8.2 65.6 ± 7.9 66.8 ± 7.5 73.5 ± 5.1 76.7 ± 4.6 79.7 ± 6.5
DARG [13] 94.9 ± 1.5 97.4 ± 1.6 100.0 ± 0.0 66.4 ± 6.4 66.6 ± 7.6 67.0 ± 7.1 70.0 ± 7.1 76.7 ± 6.8 79.4 ± 7.3
PDL [20] 87.2 ± 2.8 94.9 ± 1.1 97.4 ± 0.7 63.9 ± 6.8 65.7 ± 7.7 67.1 ± 7.6 65.0 ± 5.0 70.5 ± 4.8 74.5 ± 4.1
MKDR [21] 92.3 ± 1.2 94.9 ± 1.0 97.4 ± 0.7 68.7 ± 8.6 72.6 ± 7.8 78.2 ± 7.4 74.5 ± 5.1 81.2 ± 4.5 88.3 ± 6.2
SPL [17] 92.3 ± 1.3 94.9 ± 0.9 97.4 ± 1.0 67.8 ± 3.9 68.7 ± 3.4 69.5 ± 3.6 72.2 ± 3.2 78.4 ± 5.1 83.6 ± 2.6
MRMD [14] 94.9 ± 2.1 97.4 ± 1.2 100.0 ± 0.0 68.2 ± 4.1 74.8 ± 4.5 76.3 ± 5.2 75.3 ± 4.2 81.4 ± 3.7 88.4 ± 5.1
Our HHL 100.0 ± 0.0 100.0 ± 0.0 100.0 ± 0.0 68.9 ± 9.0 74.7 ± 10.1 79.7 ± 10.2 80.9 ± 3.1 82.2 ± 2.8 87.5 ± 3.8

TABLE II: Classification performance (%) compared with hashing methods on Honda.

Method Frames 50 Frames 100 Frames 200
32 bits 64 bits 128 bits 32 bits 64 bits 128 bits 32 bits 64 bits 128 bits

SDH [26] 90.7 ± 2.8 91.3 ± 2.1 92.1 ± 1.8 93.4 ± 2.1 94.3 ± 1.2 96.7 ± 2.4 96.2 ± 1.8 97.6 ± 1.4 99.1 ± 0.4
COSDSH [27] 83.2 ± 4.8 84.4 ± 4.2 87.5 ± 4.8 85.2 ± 4.3 86.3 ± 3.5 88.9 ± 3.6 86.9 ± 4.7 88.7 ± 3.8 90.3 ± 3.2
FSDH [28] 95.2 ± 1.3 97.4 ± 1.7 100.0 ± 0.0 96.3 ± 1.6 98.2 ± 0.7 100.0 ± 0.0 97.3 ± 1.6 99.1 ± 0.3 100.0 ± 0.0
FSSH [29] 95.2 ± 1.7 97.8 ± 1.1 99.3 ± 0.4 96.8 ± 0.9 98.7 ± 0.6 100.0 ± 0.0 95.8 ± 1.2 97.7 ± 1.2 100.0 ± 0.0
SSLH [30] 89.6 ± 3.1 92.3 ± 2.5 92.3 ± 0.9 93.2 ± 1.1 94.5 ± 2.1 97.4 ± 1.3 95.3 ± 2.1 97.2 ± 1.7 100.0 ± 0.0
RSLH [31] 90.3 ± 2.2 93.1 ± 1.4 94.1 ± 0.6 94.2 ± 2.1 95.7 ± 1.6 98.2 ± 0.8 95.8 ± 1.3 97.8 ± 0.7 100.0 ± 0.0
SCDH [32] 90.2 ± 2.4 91.2 ± 2.1 94.9 ± 1.3 94.2 ± 2.2 95.7 ± 1.3 97.4 ± 0.9 96.4 ± 1.4 98.5 ± 1.2 100.0 ± 0.0
POPSH [45] 88.2 ± 1.3 90.5 ± 1.8 92.3 ± 1.0 93.4 ± 1.7 94.2 ± 2.1 97.4 ± 1.1 94.2 ± 1.7 98.5 ± 0.8 100.0 ± 0.0
Our HHL 100.0 ± 0.0100.0 ± 0.0100.0 ± 0.0100.0 ± 0.0100.0 ± 0.0100.0 ± 0.0100.0 ± 0.0100.0 ± 0.0100.0 ± 0.0

TABLE III: Classification performance (%) compared with hashing methods on YTC.

Method Frames 50 Frames 100 Frames 200
32 bits 64 bits 128 bits 32 bits 64 bits 128 bits 32 bits 64 bits 128 bits

SDH [26] 58.5 ± 8.3 64.3 ± 8.9 67.2 ± 9.1 66.6 ± 9.3 72.0 ± 8.9 74.0 ± 9.3 72.4 ± 9.6 76.2 ± 9.1 78.0 ± 8.9
COSDSH [27] 20.6 ± 1.2 29.7 ± 6.7 30.7 ± 3.9 24.0 ± 2.1 32.2 ± 8.6 34.0 ± 4.5 25.8 ± 2.7 34.7 ± 8.0 57.2 ± 7.1
FSDH [28] 58.0 ± 8.6 64.6 ± 8.8 67.8 ± 10.5 66.2 ± 10.5 71.8 ± 9.6 74.2 ± 9.7 72.8 ± 8.3 76.7 ± 9.4 78.1 ± 10.1
FSSH [29] 57.9 ± 8.5 59.7 ± 8.6 58.4 ± 9.2 60.1 ± 10.5 64.0 ± 8.9 58.7 ± 8.0 62.5 ± 9.8 64.3 ± 9.1 67.1 ± 9.7
SSLH [30] 56.8 ± 7.4 59.4 ± 8.9 57.7 ± 7.2 61.4 ± 9.7 63.1 ± 10.4 60.4 ± 10.9 63.3 ± 10.2 66.4 ± 9.2 69.5 ± 4.6
RSLH [31] 57.5 ± 9.3 62.1 ± 9.3 62.9 ± 9.9 58.9 ± 9.9 63.6 ± 9.5 67.4 ± 9.3 63.1 ± 8.2 65.8 ± 9.4 69.3 ± 9.5
SCDH [32] 60.8 ± 9.1 65.6 ± 9.3 65.6 ± 8.8 66.8 ± 9.5 69.3 ± 9.8 69.4 ± 9.8 70.1 ± 9.9 72.3 ± 9.3 73.6 ± 9.3
POPSH [45] 61.2 ± 8.6 61.3 ± 9.4 61.8 ± 9.2 69.2 ± 8.9 69.4 ± 9.7 69.5 ± 9.0 74.7 ± 9.1 74.9 ± 9.3 74.1 ± 9.8
Our HHL 67.3 ± 8.6 68.3 ± 9.1 68.9 ± 9.0 73.3 ± 10.0 74.0 ± 10.9 74.7 ± 10.1 78.9 ± 10.2 79.3 ± 10.6 79.7 ± 10.2

D. Comparison with hashing methods

We compare our HHL with some hashing methods for the
sake of fairness. To gain insight into the effect of hash length
on classification performance, we set the hash length to 32,
64, and 128 bits, respectively. The experiments results on
three datasets are given in Table II, Table III, and Table IV.
Besides, we use some addition metrics (e.g., precision, recall,
and F1score) to show the effectiveness of our HHL in Table
V. According to all experiments results, we have the following
observations:

• Compared with all hashing methods, experiments results
show HHL consistently outperforms these competitors.
With the hash length increases, the classification accuracy
is significantly improved. Moreover, the larger the num-
ber of frames in image set, the better the classification

performance. For the metrics of precision, recall, and
F1score, our HHL still obtains the best results. Results
demonstrate that hierarchical hashing strategy and bidi-
rectional regression semantic representation can improve
the quality of hash codes and the discrimination ability.

• On Honda, competitors can achieve better classification
scores only with long length hash codes and high frames
in image set. Surprisingly, our HHL method achieves
100% classification accuracy in all cases. This shows our
methods has a strong discriminatory power.

• On YTC, HHL is still superior than state-of-the-art
methods, which shows that HHL can resist noise and
enhance discriminant ability under complex conditions.
We also find that classification accuracy of image set
with large frames and short hash length is higher than
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TABLE IV: Classification performance (%) compared with hashing methods on ETH-80.

Method Frames 15 Frames 25 Frames 41
32 bits 64 bits 128 bits 32 bits 64 bits 128 bits 32 bits 64 bits 128 bits

SDH [26] 61.5 ± 7.6 67.0 ± 5.7 69.5 ± 2.1 62.5 ± 6.4 66.0 ± 9.6 68.0 ± 3.7 66.5 ± 4.9 69.5 ± 6.2 72.5 ± 6.1
COSDSH [27] 53.0 ± 5.7 52.5 ± 6.4 59.5 ± 5.1 52.3 ± 4.2 59.5 ± 2.1 62.0 ± 10.5 62.3 ± 2.6 67.5 ± 3.6 69.7 ± 4.2
FSDH [28] 64.5 ± 6.9 67.5 ± 4.3 67.5 ± 9.2 66.0 ± 1.4 67.5 ± 4.0 69.0 ± 7.4 68.0 ± 6.9 69.5 ± 8.6 72.0 ± 8.7
FSSH [29] 65.5 ± 2.9 66.7 ± 2.9 69.2 ± 6.4 67.7 ± 1.8 67.5 ± 6.3 70.4 ± 5.5 71.6 ± 5.6 72.5 ± 5.2 75.4 ± 3.5
SSLH [30] 64.8 ± 1.9 70.4 ± 3.5 74.9 ± 3.1 65.0 ± 4.4 71.9 ± 4.1 75.5 ± 2.6 65.0 ± 4.9 74.0 ± 5.7 75.8 ± 4.7
RSLH [31] 64.1 ± 1.6 62.8 ± 2.2 62.5 ± 1.9 65.9 ± 4.9 68.1 ± 4.4 66.5 ± 5.4 67.4 ± 3.5 69.2 ± 5.3 72.3 ± 3.5
SCDH [32] 66.0 ± 3.8 67.5 ± 4.7 66.5 ± 5.2 68.0 ± 2.7 69.5 ± 4.8 68.5 ± 5.5 70.5 ± 8.9 71.5 ± 4.5 76.0 ± 6.8
POPSH [45] 65.6 ± 8.6 65.9 ± 5.4 66.0 ± 5.5 64.5 ± 5.3 67.7 ± 8.1 68.7 ± 5.9 69.1 ± 5.6 69.8 ± 5.0 70.1 ± 2.8
Our HHL 72.6 ± 2.8 77.1 ± 4.0 80.9 ± 3.1 76.3 ± 4.2 79.8 ± 4.4 82.2 ± 2.8 77.7 ± 6.0 82.6 ± 5.4 87.5 ± 3.8

TABLE V: The performance (%) of precision, recall, and F1-score compared with the frames 50 on the YTC dataset.

Method 32 bits 64 bits 128 bits
precision recall F1-socre precision recall F1-socre precision recall F1-socre

SDH [26] 59.3 ± 8.4 57.0 ± 8.5 58.1 ± 9.2 65.2 ± 7.8 63.4 ± 8.5 64.3 ± 7.9 69.7 ± 9.1 67.3 ± 6.5 68.5 ± 8.3
COSDSH [27] 22.9 ± 4.5 26.0 ± 5.2 24.3 ± 4.3 33.4 ± 5.4 33.3 ± 4.7 33.3 ± 4.5 36.7 ± 3.4 34.6 ± 4.2 35.5 ± 5.4
FSDH [28] 58.5 ± 7.5 57.5 ± 8.4 58.0 ± 7.1 66.4 ± 6.5 64.3 ± 7.1 65.3 ± 6.3 70.4 ± 9.4 67.2 ± 6.7 68.7 ± 8.4
FSSH [29] 59.2 ± 9.2 57.9 ± 9.6 58.3 ± 8.4 60.4 ± 7.5 59.7 ± 8.4 60.1 ± 7.8 60.0 ± 7.4 58.4 ± 9.3 59.4 ± 5.8
SSLH [30] 59.2 ± 9.2 57.2 ± 7.3 58.1 ± 8.7 62.3 ± 10.4 58.6 ± 7.8 60.4 ± 8.8 63.4 ± 9.4 60.0 ± 9.1 61.7 ± 7.7
RSLH [31] 59.5 ± 7.8 58.3 ± 9.4 58.9 ± 8.3 61.2 ± 7.2 59.9 ± 6.9 60.5 ± 9.5 63.2 ± 8.8 61.8 ± 8.1 62.5 ± 7.4
SCDH [32] 62.0 ± 9.4 60.8 ± 8.7 61.3 ± 9.7 66.2 ± 10.2 65.6 ± 9.5 65.9 ± 8.4 67.2 ± 7.8 65.6 ± 8.4 66.4 ± 9.6
POPSH [45] 64.6 ± 7.9 61.4 ± 8.3 63.0 ± 8.7 65.7 ± 8.5 61.6 ± 9.2 63.5 ± 9.7 66.4 ± 8.1 61.8 ± 9.9 64.0 ± 10.1
Our HHL 69.0 ± 9.8 66.3 ± 9.0 67.6 ± 9.4 69.8 ± 9.6 67.6 ± 8.8 68.7 ± 9.2 71.4 ± 9.3 68.9 ± 8.8 70.1 ± 9.0

TABLE VI: Classification performance (%) compared with deep ISC methods.

Method Honda YTC ETH80
Frames 50 Frames 100 Frames 200 Frames 50 Frames 100 Frames 200 Frames 15 Frames 25 Frames 41

SPDNet [22] 93.1 ± 2.1 97.4 ± 1.6 98.7 ± 1.1 65.3 ± 1.6 67.4 ± 2.0 70.4 ± 3.5 80.2 ± 1.6 81.2 ± 3.1 86.4 ± 3.7
DISH [46] 94.7 ± 0.9 97.8 ± 1.4 100.0 ± 0.0 68.4 ± 1.5 75.0 ± 2.1 76.2 ± 1.7 80.7 ± 1.7 81.2 ± 2.3 86.2 ± 2.7
GEMKML [47] 96.1 ± 1.1 98.5 ± 1.3 100.0 ± 0.0 68.1 ± 2.5 74.8 ± 3.2 76.1 ± 2.6 79.8 ± 3.2 80.4 ± 1.9 85.4 ± 2.1
SymNet [1] 96.9 ± 1.7 100.0 ± 0.0 100.0 ± 0.0 67.9 ± 1.2 74.5 ± 1.4 75.5 ± 8.9 80.7 ± 3.5 82.1 ± 2.1 90.2 ± 1.6
Our HHL 100.0 ± 0.0 100.0 ± 0.0 100.0 ± 0.0 68.9 ± 9.0 74.7 ± 10.1 79.7 ± 10.2 80.9 ± 3.1 82.2 ± 2.8 87.5 ± 3.8

that of the image set with small frames and long hash
length. It shows image set with large frames contains
rich complementary information, which can effectively
improve the discrimination.

• On ETH-80, HHL again outperformed all hashing learn-
ing methods. Since ETH-80 is also more challenging,
classification scores of all comparative methods are less
than 80%, and that of HHL is less than 90%.

E. Comparison with deep ISC methods

To further evaluate the effectiveness of our HHL, we per-
form some experiments compared with deep ISC methods on
three datasets. The average classification performance is shown
in Table VI. We can see that our HHL can be comparable
with or superior to these deep methods. It indicates that
the hierarchical hashing scheme and bidirectional semantic
representation scheme of our HHL can efficiently improve the
recognition performance.

F. Convergence analysis

Our HHL proposes an alternating iterative optimization
scheme to iteratively update all variables. In order to empiri-
cally demonstrate the convergence, we record the relative error
of two successive computed hash codes B by using the stop
criterion ∥Bt+1 − Bt∥2F /∥Bt∥2F ≤ ϵ in each iterator. The
experimental results are plotted in Fig. 3. We can see that the
relative error is fast decreasing close to a stable point on all
evaluated datasets.

G. Parameter sensitivity analysis

To verify the stability of the proposed HHL, we perform
experiments with two essential parameters (α and β) involved
in HHL to be tuned. To obtain the best classification perfor-
mance, both α and β are searched from 10−5 to 102 with a step
of 10 by leveraging a grid search strategy. As shown in Fig. 5
(zoom in for best view), it is easy to see HHL works well for
a wide range of values α and β on the three datasets, which
shows that HHL exhibits distinguished stability and sensitiv-
ity. Furthermore, to explore the impact of dimension values
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Fig. 3: Convergence properties on three datasets.
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Fig. 4: Parameter sensitivity analysis of our HHL w.r.t. α, β, and r on the three datasets.
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Fig. 5: Parameter sensitivity analysis of our HHL w.r.t. α, β,
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on performance, we draw the performance w.r.t. dimension
curve in Fig. 5 with 32 bits on YTC. From the results, our
proposed HHL consistently outperforms competitors. We can
see that the appropriate dimensions are beneficial to improve
classification performance, and are generally set between the
bit length and the feature dimension, i.e., l < r < h. This
could be because setting a larger value will destroy the original
structure information, and setting a smaller value is difficult
to alleviate the information loss.
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Fig. 6: Running time comparison of different methods on the
YTC dataset (in logarithm of second).

H. Time cost comparison

In Section III-G, we give the complexity analysis of our
HHL, which show HHL is linear to the size of whole gallery
sets. To further evaluate the computational efficiency of HHL,
we take the challenging YTC data set with frames 50 as
an example, and Fig. 6 reports the running time of all
compared methods with recognizing 282 probe sets. We take
the logarithm of the running time of all compared methods
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Fig. 7: The visualization of the hash function (i.e., PQ ). For vividly comparison, we choose colormap of ’Lines’.

(a) Original kernel (b) Coarse representation (c) Hash codes

Fig. 8: The t-SNE visualization of each layer data on Honda.

TABLE VII: Ablation study on the three datasets.

Method Honda: Frames 50 YTC: Frames 50 ETH-80: Frames 15
32 bits 64 bits 128 bits 32 bits 64 bits 128 bits 32 bits 64 bits 128 bits

HHL_LH 99.0 ± 0.8 99.8 ± 0.1 100.0 ± 0.0 66.6 ± 8.7 67.5 ± 8.0 68.2 ± 9.8 71.0 ± 3.8 73.4 ± 3.1 74.9 ± 1.2
HHL_HL 98.5 ± 1.4 99.0 ± 0.4 100.0 ± 0.0 66.1 ± 9.0 67.0 ± 8.6 67.7 ± 10.1 72.4 ± 1.7 74.4 ± 1.7 80.0 ± 3.7
NHHL 99.5 ± 0.2 99.5 ± 0.3 99.5 ± 0.4 59.3 ± 7.2 65.6 ± 8.9 66.2 ± 9.4 71.1 ± 1.4 76.4 ± 2.8 77.6 ± 3.5
HHL 100.0 ± 0.0 100.0 ± 0.0 100.0 ± 0.0 67.3 ± 8.6 68.3 ± 9.1 68.9 ± 9.0 72.6 ± 2.8 77.1 ± 4.0 80.9 ± 3.1

for better illustration. As can be seen, shallow ISC methods
often have a great high running time due to modeling an image
set based on real-value representation. And hashing methods
have the low running time cost since it is a powerful scheme
to reduce computational complexity by binary representation.
Since some hashing methods (such as SSLH, RSLH, and
SCDH) adopt the discrete cyclic coordinate descent (DCC)
strategy to optimize hash codes bit by bit, they have a
higher running time. Overall, the time advantage of our HHL
is very evident, which verifies its computational efficiency.
Consequently, it is well suited to handle large-scale ISC task
that exists extensively within real-life applications.

I. Visualization analysis

In this section, we visualize the learned hash function PQ
for the three datasets in Fig. 7. It is obvious that the two-

layer hash function has the row-sparsity property, since the
ℓ2,1 norm imposed on the hash mapping matrix (i.e., ∥PQ∥2,1
) has the row-sparsity property. The ℓ2,1 norm term has
the potential to adaptively select the important features and
remove the redundant features during learning. Hence, the
ℓ2,1 norm term makes the learned hash function have better
interpretability for features. To evaluate the strength of each
layer representation, we visualize the original kernel data (i.e.,
V ), the first-layer representation (i.e., V P ), and hash codes
(i.e., B) with 32 bits using t-SNE tool on Honda as shown in
Fig. 8. We can see that the first-layer representation is more
discriminative than the kernel features, which indicates that
the hierarchical representation can well reveal the underlying
structure information. Moreover, hash codes are more compact
and discrimination than others and have high the between-class
and high within-class scatters. Accordingly, the hierarchical
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hashing can help to distinguish different classes so as to greatly
improve the classification performance.

J. Ablation study

To investigate the contributions of the proposed components,
we further perform ablation study for the proposed HHL.
Specifically, we design three addition variants of our HHL: 1)
Removing orthogonal constraint and regressing labels to hash
codes (i.e., HHL_LH); 2) Removing orthogonal constraint and
regressing hash codes to labels (i.e., HHL_HL); and 3) Only
using the single-layer hash function, that is, non-hierarchical
hashing learning (i.e., NHHL). The experiment results with
short frames (50 or 15) are given in Table VII. Both the
hierarchical hashing scheme and the bidirectional semantic
representation can greatly improve classification performance
and validate the effectiveness of the proposed method.

V. CONCLUSION

In this paper, we propose a novel hierarchical hashing learn-
ing (HHL) method. To be specific, we propose a layer-by-layer
scheme to learn discriminative hash codes, thereby gradually
gathering and refining the relative important discriminative
information. To alleviate the effects of redundant and corrupted
features, we impose the ℓ2,1 norm on the two-layer hash
function. Moreover, we propose the bidirectional semantic
representation to fully extract the supervised knowledge and
preserve semantic similarity. Extensive experiments are con-
ducted to adequately prove the effectiveness of the proposed
HHL.
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