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Abstract

Transferring knowledge across modalities has garnered significant attention in
the field of machine learning as it enables the utilization of expert knowledge
from diverse domains. In particular, the representation of expert knowledge in
tabular form, commonly found in fields such as medicine, can greatly enhance the
comprehensiveness and accuracy of image-based learning. However, the transfer
of knowledge from tabular to image data presents unique challenges due to the
distinct characteristics of these data types, making it challenging to determine
“how to reuse” and “which subset to reuse”. To address this, we propose a novel
method called CHannel tAbulaR alignment with optiMal tranSport (CHARMS) that
automatically and effectively transfers relevant tabular knowledge. Specifically,
by maximizing the mutual information between a group of channels and tabular
features, our method modifies the visual embedding and captures the semantics of
tabular knowledge. The alignment between channels and attributes helps select the
subset of tabular data which contains knowledge to images. Experimental results
demonstrate that CHARMS effectively reuses tabular knowledge to improve the
performance and interpretability of visual classifiers.

1 Introduction

Data takes on various forms, such as images, text, video, and audio, providing rich and diverse
sources of information for a given task. In contrast to using a single modality, multimodal learning
aims to fuse information from different data modalities to create more comprehensive and accurate
models [3; 42; 48; 67]. This approach has demonstrated exceptional performance across many
domains, including recommender systems [50; 22; 2], healthcare [70; 15], and visual question
answering [34; 71; 26].

In practical applications, obtaining data from multiple modalities can be challenging [72], as expert
knowledge or specialized equipment may be required, such as medical images. The high acquisition
cost of such data makes the traditional multimodal fusion approach impractical. To address this, one
solution is to employ multiple modalities during training, enabling expert knowledge to transfer from
one modality to another and improving the performance of a single modality during testing. The
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current research on crossmodal transfer primarily focuses on images and text [27; 60; 47], but limited
exploration has been done with tabular data [14].

Tabular data is a common type of structured data, usually organized in a table format, where each
column represents an attribute or feature and each row represents a sample of data [41]. Tabular data
often involves some expert knowledge, for example, in the medical field, an attribute of tabular data
may represent position information in an MRI image that needs to be focused on, which requires
expert annotation. Therefore, transferring expert knowledge from tables to images will improve
detection efficiency and reduce the burden on doctors. However, tabular data’s structured format
distinguishes it from existing unstructured data such as text, making existing crossmodal transfer
methods unsuitable for tabular data [29; 52].

Specifically, we face two challenges in transferring tabular knowledge for images. Firstly, we must
address “how to reuse” the tabular data. As each column in tabular data has a unique semantic
meaning, relying on standard RNN [19; 69] or Transformer [59] methods to construct a coarse
feature space would result in a loss of interpretability of certain attributes. Moreover, categorical and
numerical variables in tabular data require different processing methods. Secondly, we must identify
“what subset to reuse” from the vast amount of information contained in tabular data since not all of
it is relevant to the corresponding image. For example, in a pet adoption scenario, the tabular data
contains not only the type of the pet but also information such as whether the pet is vaccinated or not.
Therefore it is crucial to identify the useful information that can be transferred to instruct the learning
of images. We expect that by transferring tabular knowledge to an image model, the model can learn
corresponding semantics more effectively and achieve better performance on correlation tasks.

To overcome the aforementioned challenges, we propose a novel method named CHannel tAbulaR
alignment with optiMal tranSport (CHARMS) that aligns tabular data attributes with image channels
which automatically transfers relevant expert knowledge in tabular data to images. Specifically,
we modify the visual embedding with the instruction of tabular data as auxiliary information and
learning tabular features with a group of channels, maximizing the mutual information between them.
Additionally, we utilize the optimal transport algorithm [7; 9] to match the representation of each
channel with the representation of each attribute, where a distinction is made between categorical
and numerical variables. We strengthen the corresponding channels to ensure a focused learning of
the tabular knowledge. In this way, our approach can automatically and effectively utilize expert
knowledge from tabular data in the learning process, outperforming previous methods. To summarize,
our contribution is three-fold:

• We emphasize the importance of knowledge transfer from tabular data to image data, as this can
lead to improved performance when tabular data is missing due to high costs.

• We propose CHARMS method to automatically transfers relevant tabular knowledge to images. It
aligns attributes and channels by leveraging optimal transport and utilizes tabular data as auxiliary
information during transfer.

• Experimental results demonstrate that CHARMS effectively reuses tabular knowledge to improve
the performance of visual classifiers. Moreover, our approach offers insightful explanations of the
learned visual embedding space with tabular instruction.

This paper is organized as follows: the related work is introduced in Section 2. Section 3 and Section 4
provide the setting formalization, discovery experiment and our method. In Section 5, we present
experiment results and discuss our findings. Finally, Section 6 concludes our study results.

2 Related Work

Multimodal Learning. Data of different modalities, such as image, video, audio, and text, usually
overlap in some content, while some information is complementary. Multimodal learning aims to
leverage the information in different modalities to learn a better representation and improve the
performance of the task for different scenarios. An important task in multimodal learning is the fusion
of modalities. Some previous work used BERT [30; 53] or co-attention [34; 54] to fuse different
modal information simply. Subsequently, some large models [32; 25; 31] were created to align the
information of different modalities in terms of their semantic relationships using contrastive learning
approach [55]. Different pre-training approaches have also been extensively studied [4; 23; 68; 36].
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Crossmodal Transfer. The modality fusion approach directly depends on the integrity of the data
from different modalities. However, the reality is often that we do not have access to the data of
all modalities. Therefore, another direction of multimodal learning is to construct robust models to
cope with missing modalities or crossmodal transfer. For example, knowledge in missing modalities
can be complemented using autoencoders or generative adversarial approaches [10; 43; 33]. Ma et
al. [39] improves the robustness of Transformer models by automatically searching for an optimal
fusion strategy regarding input data. Wang et al. [61] proposed a framework based on knowledge
distillation, utilizing the supplementary information from all modalities, and avoiding imputation
and noise associated with it. Hager et al. [14] proposes the first self-supervised contrastive learning
framework that takes advantage of images and tabular data to train unimodal encoders. But most
of these approaches consider Vision-Language scenarios, audio or video, which have been well
investigated and are not suitable for tabular data due to their structured character and the difference
between numerical and categorical variables. Our approach fills the gap of multimodal learning on
tabular modality by taking it into account.

Learning with Tabular Data. Traditional machine learning methods have been widely used on some
tabular data, such as decision trees [46], support vector machines [58], and random forests [8]. These
methods usually rely on pre-processing steps such as manual feature engineering and data cleaning,
followed by model training and prediction using supervised learning. With the development of deep
learning, tabular modeling approach using deep learning [62; 21; 13] is very appealing because
this allows tabular data to be used as input to a single modality and trained end-to-end by gradient
optimization, which is competitive with GDBT methods [12; 28; 45]. In recent years, more and
more approaches for tabular data have been proposed [1; 18; 65; 24]. However, tabular data usually
contains expert knowledge, such as medical diagnosis information of doctors and seismic waveform
information, making it costly to acquire. So we consider such a scenario. Expert knowledge from the
tabular data is used to guide the learning of the image data during training, with the expectation that
good performance can be efficiently obtained even when the tabular data is missing during testing.

3 Preliminaries

In this section, we first introduce the crossmodal transfer task, followed by some existing methods
and some analysis.

3.1 Transfer Knowledge from Tabular to Images

Formally, we define the crossmodal transfer training dataset Dtrain = {xT
i ,x

I
i , yi}Ni=1, where

xI ∈ RH0×W0×C0 represent image data, xT ∈ RD represent tabular data and y ∈ Y is the label
space of the task. The image data is represented as a three-dimensional tensor with height H0, width
W0, and RGB channels C0 = 3, while the tabular data is a vector of dimension D, where each
dimension corresponds to an attribute. We define the test dataset Dtest = {xI

i }Mi=1, where tabular
modality is missing due to high collection cost and the need for expert annotation. During training,
we aim to minimize the empirical risk of model f(x) over the training set:∑

(xI
i ,x

T
i ,yi)∈Dtrain

L(f(xI
i ), yi | xT

i ), (1)

where L is the loss function that measures the discrepancy between prediction and ground-truth
label such as cross-entropy loss and | indicates conditioning on the tabular data. The model can be
decomposed into embedding and linear classifier: f(x) = W⊤ϕ(x), where ϕ(·) : RD → Rd is the
feature extractor to extract the embedding of the images and W ∈ Rd×|Y |.

Our objective is to transfer relevant tabular information into the image model f . In situations where
expert knowledge is not available, we expect the model to provide better predictions when only given
the image data xI on the test set.

3.2 Methods for Crossmodal Transfer

One of the main challenges in this task is how to transfer the tabular knowledge to the image model.
It is feasible to align the two modality and then select the appropriate part for knowledge transfer.
So we explore methods with alignment from different perspectives, including output-based transfer,
parameter-based transfer, and embedding-based transfer.
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Output-based Transfer. To transfer knowledge from tabular data to image models, we aim to ensure
that the predictions of image model f and tabular model g are aligned. To achieve this, we first train a
classifier g on the tabular data such as LightGBM [28]. We then fit the prediction results of the image
model f to g during the training. Knowledge Distillation (KD) [17] is an output-based method:

L(xI ,xT , y) = (1− λ)L(xI , y) + λLKD(f(x
I), g(xT )). (2)

LKD measures the similarity between the prediction of two models with Kullback-Leibler (KL)
divergence g is called teacher network and f is student network. Aligning the output of the tabular
model and the current model helps to reuse the knowledge in tabular data.

So as Modality Focus Hypothesis (MFH) [64], the modality general decisive information is set
according to the feature importance [8; 63] in tabular data as the teacher network, selecting subset of
the tabular data. Then only use LKD for distillation to fully observe the tabular’s influence on image.

Parameter-based Transfer. The parameters of the model may contain part of the knowledge in the
data, so the knowledge can be transferred from the perspective of the parameters of the model as
well. For example, Fixed Model Reuse (FMR) [66] utilizes the learning power of deep models to
implicitly grab the useful discriminative information from fixed models/features. In our setting, the
fixed features referred to here are the tabular data:

L = y log h
(
f
(
xI

)
+ g

(
xT

))
+

1

2

∥∥xT − ϕ(xI)U
∥∥2
F
. (3)

h is a soft-max operator and U is the linear connections between the tabular features and embedding
of images. To transfer the influence of the fixed features xT to images during the training procedure,
FMR removes those connected parts corresponding to features xT gradually and finally vanish all
related components with the knockdown method.

Embedding-based Transfer. The method expects to find a subspace in which the embedding of
similar images and tabular data is as close as possible, while the embedding of dissimilar images
is as far as possible. For example, Multimodal Contrastive Learning (MMCL) [14] proposes the
self-supervised contrastive learning framework that takes advantage of images and tabular data to
train unimodal encoders:

L = λℓI,T + (1− λ)ℓT,I , zjI = fϕI

(
ϕ(xI)

)
,

ℓI,T = −
∑
j∈N

log
exp (cos (zjI , zjT ) /τ)∑

k∈N ,k ̸=j exp (cos (zjI , zkT
) /τ)

,
(4)

where embeddings are propagated through separate projection heads fϕI
and fϕT

and brought into a
shared latent space as projections xjI , zjT . ℓI,T is calculated analagously. N denotes all subjects in
a batch. Then MMCL uses linear probing of frozen networks to evaluate the quality of the learned
representations. By mapping tabular and image data to the same space and utilizing contrastive
learning methods, the knowledge in tabular data can be transferred into an image feature extractor.

While the output-based, parameter-based, and embedding-based methods offer perspectives on
transferring knowledge between modalities, each method has its own limitations. The output-based
approach offers a simple and straightforward alignment based on the output of the model, but it
may not capture detailed information for a certain attribute. The MFH method considers important
features, but it completely discards other information during knowledge distillation. Parameter-based
methods such as FMR cannot address the significant differences between tabular and image models,
and the information contained in the parameters may be limited. The embedding-based approach
attempts to find a common subspace for alignment but may lose some attribute information in the
tabular data when changing the space, potentially ignoring valuable expert knowledge during transfer.
By exploring these different transfer methods and their respective limitations, we can gain a deeper
understanding of the challenges and opportunities in multimodal learning and develop more effective
approaches for transferring knowledge from table to images.

4 Transferring Knowledge after Alignment

Motivated by the unique characteristics of tabular data, we leverage it as auxiliary information in
our approach to transfer knowledge to the image modality. Specifically, we minimize the mutual
information between the image and each attribute of the table data, effectively transferring the relevant
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Figure 1: Flow chart of CHARMS method. Our approach combines the learning of image and tabular
data, leveraging the specific characteristics of each modality to effectively transfer knowledge from
one to the other. We use Optimal Transport (OT) methods to match tabular attributes to image
channels, effectively learning the correlation attribute of the tabular data with the focused channels as
a means of transferring expert knowledge to the images and solving the crossmodal transfer problem.

table knowledge to the image modality. Additionally, we use Optimal Transport to match the expert
knowledge that can be expressed in the image data, allowing us to select a subset of the image features
and strengthen the learning of the corresponding channels. Our approach highlights the importance
of leveraging the specific characteristics of each modality to develop effective transfer. The flowchart
is shown in Figure 1.

4.1 Preliminary Experiments

We evaluate the quality of crossmodal transfer with MINE method, which uses mutual information, a
measure of information in information theory that quantifies the amount of information contained
in one variable about another [5]. In our setting, a good image model based on tabular knowledge
transfer should contain more tabular knowledge, resulting in higher mutual information both with the
image and tabular data. To evaluate our approach, we conduct experiments on MFEAT dataset [56],
using two types of tabular data: 76 Fourier coefficients of character shapes and 6 morphological
features. The image modality is reconstructed from 240 pixel averages of images from 2×3 windows.
The result is shown in Figure 2. The Tab-Only and Img-Only methods are the result of models trained
on a single modality.
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Figure 2: Mutual Information with Different
Modality in Multimodal Models. A good cross-
modal transfer model should be able to effectively
combine both image and tabular information, re-
sulting in higher mutual information between the
two modalities. Ideally, the model should be posi-
tioned in the upper right corner.

Our experiments indicate that existing meth-
ods for transferring tabular knowledge to im-
age models yield low mutual information be-
tween the representations and tabular data. This
suggests that these methods are not effective at
transferring all types of tabular knowledge to
the image modality and that feature selection is
crucial. To validate this hypothesis, we perform
knowledge distillation of the image model using
two models trained on different parts of the tab-
ular data. We find that morphological features
in the tabular data can effectively promote im-
age information, while other non-morphological
features can make the tabular information more
comprehensive.

These results highlight the importance of the
careful selection of different tabular attributes
and their relationship with the image modality.
Similarly, different channels exist for the im-
ages, and the choice of different channels can
also impact the final performance of the model.
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Since these methods do not transfer table infor-
mation well, it is important to know how to use tabular knowledge. Based on these findings, we
propose our method for transferring knowledge between modalities, which takes into account the
specific characteristics of each modality and transfers expert knowledge to guide the image model.

4.2 Channel Tabular Alignment

To extract the relevant information from the tabular data that is beneficial to the image model,
we also use alignment-based methods for feature selection. This task consists of two main parts:
first, obtaining the intermediate embedding of the image and tabular data; and second, performing
alignment-based feature selection.

To extract representations of the different channels, we use convolutional neural networks (CNNs).
CNNs leverage convolutional filters to scan over the input data and extract local features. By stacking
multiple convolutional layers, CNNs can learn increasingly complex and abstract features, allowing
us to obtain different channels that capture different aspects of the image. Specifically, the channels
of image data xI are defined as ϕ−1(x

I) ∈ RH×W×C , where C is the number of channels, and each
channel corresponds to a high-level feature such as edges, whose shape is H ×W .

Similarly, we use a neural network to obtain the representation of each attribute of the tabular data.
This involves transforming all features, including both categorical and numerical variables, into
embeddings. The resulting attributes are defined as ψ(xT ) ∈ RD×E , where D is the number of
attributes and E is the embedding dimension. We assume that the first p attributes are numerical
variables xT

num, and the remaining q attributes are categorical variables xT
cat.

Secondly, we use the optimal transport to align the channels of the image with the attributes of the
tabular data [6]. OT is a mathematical framework for measuring the similarity between probability
distributions and finding the optimal way to transport mass from one distribution to another. The
basic idea behind OT is to find a mapping between the elements of two distributions that minimizes
the cost of moving one distribution to the other. The cost is typically defined as a distance metric
between the elements. However, not all tabular attributes can be displayed on the image, and in some
cases, there may be missing or irrelevant attributes that cannot be aligned with the image data. For
example, on the PetFinder-adoption dataset, the photo of the pet can reflect the pet’s hair, body size,
and other attributes, but not the health condition or vaccination status. To address this issue, we use
the partial optimal transport (POT) algorithm [11].

Specifically, To address the issue that different channels of an image may have repeated semantics
with some redundancy, we use K-Means [38; 40] clustering to group similar channels together. This
allows us to obtain fewer distinct channels, each capturing a distinct aspect of the image data. Then we
compute the cosine similarity of the dataset on each channel, resulting in a matrix SI ∈ RC′×N×N ,
where C ′ is the number of clustered channels and N is the length of the dataset. In parallel, we
process the attributes of the tabular data similarly to obtain the attribute-wise similarity matrix
ST ∈ RD×N×N . Then the cost matrix is constructed from the channel-wise similarity between
attribute-wise similarity. Then the OT transfer matrix is calculated:

Cij =
∥∥STi − SIj

∥∥2
2
, T = argmin

T
⟨C,T ⟩F , (5)

where ⟨·⟩F denotes the Frobenius norm. After aligning the distributions of the image and tabular
data, we obtain the transfer matrix T ∈ RD×C′

. Based on the clustering results, we can restore the
corresponding relationship between the tabular attributes and the original channels of the image as
A ∈ RD×C . Then the channels and attributes are aligned and relevant features are selected.

4.3 Learning with Auxiliary Information

To leverage the knowledge of each attribute of the tabular data, we construct auxiliary tasks to
learn this information. Specifically, we use the matrix A to weigh the image channels, allowing us
to focus the attention of the relevant tabular attributes on the corresponding image channels. We
use the feature extractor of an existing image network ϕ(·) to learn a classifier that maps from an
attention image to the corresponding attributes of the tabular data. By doing so, we enhance the
image network’s understanding of the attributes of the tabular data and transfer this knowledge into
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the image modality. This allows the learned model to handle missing tabular modalities and improve
its overall performance on complex tasks.

In summary, the loss can be written in the following form

L = L(f(xI), y) + L(g(xT ), y) + Li2t,

Li2t =
∑
p

LMSE(Ap · ϕ(xI),xT
nump) +

∑
q

LCE(Aq · ϕ(xI),xT
catq).

(6)

Here, L is the label prediction loss function such as cross entropy loss for classification tasks or mean
square error loss for regression tasks. Since there may be numerical and categorical attributes for
tabular data, we model them separately when constructing the loss to guide the image model to learn
more information, expecting that the processing of different types is reasonable. LCE is cross entropy
loss for categorical attributes and LMSE is mean square error loss for numerical attributes. This style
of updating ensures that the model learns increasingly accurate channel-attribute correspondences,
allowing the tabular data to guide the image data with increasing precision. By leveraging this
approach, we can effectively transfer expert knowledge to images to develop more accurate and
comprehensive image models for complex tasks.

To sum up, our method leverages OT to align the distributions of different modalities and select
relevant tabular attributes that are closely related to the image data. We then use the alignment to
enhance the image learning of the relevant attributes, thus transferring expert knowledge from the
tabular data to the image model.

5 Experiments

In this section, we compare CHARMS with crossmodal transfer methods on several datasets. The
analysis experiment and ablations verify the effectiveness of our method. Moreover, we visualized
the result of the alignment of attributes and channels.

5.1 Experiments and Results

Dataset. Totally six datasets are used in the experiment: Data Visual Marketing (DVM) [20]
is created from 335,562 used car advertisements. The tabular data includes some car parameters
such as the number of doors and some advertising data such as the year. Different from [14], only
the new version DVM dataset is available. Car models with less than 700 samples were removed,
resulting in 129 target classes, a classification task. SUNAttribute [44]: We use the table modality
in this experiment to help images more accurately predict whether a scene is an open space, which
is a binary classification task. CelebA [37] is the abbreviation of CelebFaces Attribute, meaning
celebrity face attribute dataset. It’s a large-scale dataset with more than 200K celebrity images, each
with 40 attribute annotations. We use Attractive as the label, which is a binary classification task.
PetFinder-adoption dataset comes from a kaggle competition where the task is to predict the speed
at which a pet is adopted, which is a five-class classification task. Tabular data contains information
about the pet such as the type and vaccination status. PetFinder-pawpularity dataset also comes
from a kaggle competition where the task was to predict the popularity of a pet based on that pet’s
profile and photo. Avito is a challenge to predict demand for an online advertisement based on its
full description, its context and historical demand for similar ads in similar contexts. The target
deal_probability can be any float from zero to one. It’s also a regression task.

Evaluation metrics. For classification tasks, we compute accuracy to measure the performance. For
the regression task, we use root mean square error (RMSE) for performance evaluation.

Implementation Details. In the course of the experiment, we implement CHRAMS with PyTorch
and conduct experiments with a single GPU. Moreover, we utilize the grid search to find the hyper-
parameters and we choose the best models from the validation set by using early stopping. Specifically,
the batch size k is searched in {32, 64, 128} and the learning rate is searched in {1e-5, 5e-5, 1e-4,
5e-4, 1e-3, 5e-3}. More details can be seen in supplementary material.

Results. To demonstrate the superiority of CHARMS, we compare it with other popular methods on
six datasets as shown in Table 1. The result in the form of mean plus standard deviation are shown
in supplementary. Our results show that CHARMS consistently achieves the best performance on
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Table 1: Comparisons with baseline methods on DVM, SUN, CelebA, Adoption, Pawpularity, and
Avito datasets. The first four are classification tasks while the last two are regression tasks. RTDL
means the FT-transformer [13] model trained on the tabular modality.

DVM ↑ SUN ↑ CelebA ↑ Adoption ↑ Pawpularity ↓ Avito ↓
LGB 0.9748 0.8501 0.7963 0.4101 20.0720 0.2290
RTDL 0.9682 0.8563 0.7936 0.4107 20.0844 0.2317
Resnet 0.8743 0.8361 0.8146 0.3477 18.6150 0.2512

KD 0.8390 0.8382 0.8118 0.3532 19.0683 0.2499
MFH – 0.8312 0.7507 0.3041 43.1455 0.2873
FMR 0.8427 0.8347 0.8003 0.3526 19.3517 0.2937
MMCL 0.8203 0.8431 0.8041 0.2981 – –

CHARMS 0.9175 0.8661 0.8220 0.3603 18.4314 0.2495

Table 2: Visualization by GradCAM. We conducted experiments on CelebA dataset and PetFinder-
adoption. The results show that the OT algorithm can indeed align the tabular attributes with the
image channels automatically.

Tabular Attribute 5_o_Clock_Shadow Arched_Eyebrows Big_Nose Blond_Hair

Aligned Channel 65, 87, 119, 236. . . 33, 76, 78, 115, . . . 50, 224, 258, . . . 684

Visualization

Tabular Attribute Type Color

Aligned Channel 399, 413, 414, 521. . . 400, 412, 425, 448. . .

Visualization

all datasets. In contrast, the baseline methods we compared with do not significantly improve the
performance compared to direct training with images. In fact, some of them even decrease the results.
This is likely because these methods only use the tabular data to guide the image model at a coarse
level, without considering the complex relationships and interactions between the modalities. As a
result, the guidance provided by these methods is not sufficient for the image model to learn useful
information, which can lead to confusion and poor results.

The MFH approach only learns the KL divergence between the teacher and student networks, which
may not be sufficient for handling complex tasks, as evidenced by its poor performance on the DVM
129 classification task. The experiment on the regression task is one of MMCL’s limitations according
to [14].

What is particularly surprising about our approach is that it can outperform the tabular modality
on the SUNAttribute dataset. Similarly, on the CelebA and Pawpularity datasets, our approach can
improve the performance of the image modality, even though the tabular data is weaker than images.
It is possible that our approach can outperform the tabular modality even if it is a strong modality.
These findings suggest that we indeed transfer tabular knowledge to images.

Visualization. To verify the effectiveness of OT in matching tabular attributes and image channels,
we used GradCAM [51] to visualize the results of OT, as shown in Table 2. On the CelebA dataset, our
model can accurately capture various table attributes for the same image. On the PetFinder-adoption
dataset, we demonstrate our model’s ability to recognize the same attribute across different images.

Our results demonstrate that OT is able to accurately match the image channels with the relevant
tabular attributes, highlighting the validity of our approach in integrating tabular knowledge into
the image model. This supports the rationale behind our approach and highlights the importance of
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Table 3: Ablation study on Optimal Transport. CHARMS-reverse means that we reverse the transfer
matrix of OT and make channels and attributes misaligned. The performance degradation proves that
alignment is important.

DVM ↑ SUN ↑ CelebA ↑ Adoption ↑ Pawpularity ↓ Avito ↓
CHARMS 0.9175 0.8661 0.8220 0.3603 18.4314 0.2495

CHARMS-reverse 0.8865 0.8459 0.8165 0.3440 18.8068 0.2568

carefully aligning the distributions of different modalities to effectively transfer knowledge between
them.

5.2 Experiments Analysis

Comparison for CHARMS and other methods. During the training process, we visualize the mutual
information in order to understand how the mutual information changes during the training process.
Specifically, we take ten models from the beginning of training to convergence and calculated the
mutual information. The results are shown in Fig 3. Our results show that the mutual information in
CHARMS increases steadily during training, demonstrating the effectiveness in transferring knowledge
between modalities and improving the accuracy and interpretability of the model.
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Figure 3: Mutual Information During Training on
MVFEAT dataset. We calculate mutual informa-
tion from the beginning to the convergence process
in order to better understand the training process
of each method.

Comparing our approach with the MFH and
FMR methods, we found that the MFH method
initially selects important features using feature
importance, leading to higher mutual informa-
tion with the table, but as the model focuses
more on the image information, the mutual in-
formation with the table decreases. The FMR
method obtains a good initialization using the
tabular data, but as the table modality is down-
weighted, the mutual information with both the
table and image decreases.

Overall, visualizing the mutual information pro-
vides important insights into the learning pro-
cess of knowledge transfer models and can en-
hance the interpretability and effectiveness of
these models, highlighting the importance of
aligning the distributions of different modalities
and transferring knowledge between them.

The ablation study of components in
CHARMS. To investigate the effectiveness of the OT method in CHARMS, we conducted experiments
where we reversed the transfer matrix of OT, expecting the image channels to learn the unaligned
tabular attributes which is shown as CHARMS-reverse. The results are shown in Table 3, which
demonstrate that the performance of CHARMS-reverse is significantly lower than that of our original
method, CHARMS, highlighting the importance of OT in alignment.

ResNet DenseNet Inception MobileNet

34

35

T
es

t
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ur
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Differernt Networks

ORIGIN

CHARMS

Figure 4: Impact of different network structures on
the method on Adoption dataset.

To demonstrate the applicability and robustness
of our CHARMS method, we conducted experi-
ments using different network structures, includ-
ing Densenet-121, Inception-v1, and MobileNet-
v2, in addition to ResNet50. Our results, shown
in Fig 4, demonstrate that the performance im-
provements achieved by our method are consis-
tent across different network structures, high-
lighting the robustness of our approach.
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6 Conclusion

In this work, we propose the CHARMS, a novel method that automatically transfers relevant tabular
knowledge to images. Our method leverages tabular data as auxiliary information during transfer,
enabling the transfer of expert knowledge in tabular data to images. Since not all attributes contained
in tabular data are relevant to the corresponding image, we utilize optimal transport to align the
attributes with channels, strengthening the correlated channels during transfer. Experimental results
demonstrate that CHARMS outperforms previous methods in crossmodal transfer and our method
enables insightful explanations of the learned visual embedding space with tabular instruction. We
hope this work motivates future research on the challenges of multimodal encountered in real-world
problems, with a particular focus on tabular data and knowledge transfer.
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A Experiment Details

A.1 Dataset Details

The datasets used in our experiments are MFEAT [56], Data Visual Marketing (DVM) [20],
SUNAttribute [44], CelebA [37], PetFinder-adoption, PetFinder-pawpularity and Avito.

MFEAT. This dataset consists of features of handwritten numerals (‘0’–‘9’) extracted from a collec-
tion of Dutch utility maps. 200 patterns per class (for a total of 2, 000 patterns) have been digitized in
binary images. These digits are represented in terms of the following six feature sets. We use only 76
fourier coefficients of the character shapes and 6 morphological features for tabular data. The image
modality is reconstructed from 240 pixel averages of images from 2× 3 windows.

DVM. DVM dataset aims to facilitate business related research and applications in automotive
industry such as car appearance design, consumer analytics and sales modeling. The dataset contains
car images, model specifications and sales information about 899 car models that have been sold in
the UK market over the last 20 years. which comprises two data parts: the image data and the table
data. The former contains 1, 451,784 car images that have been deliberately cleaned and organized.
While the latter includes six CSV tables that cover the non-visual attributes such as brand, price,
sales, etc. Different from MMCL, only the new version DVM dataset is available [14]. We pair this
tabular data with a single random image from each advertisement, yielding a dataset of 70, 580 train
pairs, 17, 645 validation pairs, and 88, 226 test pairs. Car models with less than 700 samples were
removed, resulting in 129 target classes, classification task. There are total of 13 numerical variables
and 3 categorical variables in this dataset. We expect that under the guidance of tabular data, images
can learn more knowledge and make classification better.

The DVM dataset utilized in the original paper is an earlier version, and unfortunately, we don’t have
access to the dataset after the official update. This discrepancy in dataset versions may introduce
variations in the data distribution and characteristics. Specifically, all the images are resized to
300x300 resolutions; Segment results are no longer provided directly; Image data of 2019 registered
car models is added and the non-visual feature data is updated to 2020.

We follow the steps in [14] in Section 4.1 to preprocess the data. In detail, the car models with less
than 700 samples were removed, resulting in 129 target classes. This process ensures that the amount
of data remain largely consistent with [14].

Lastly, to maintain uniformity and facilitate fair comparisons, we employed a fixed batch size of 64
across all methods, whereas the original paper employed a larger 512. Additionally, we conducted
MMCL method on our dataset with a batch size of 512. The result was 0.8869/0.9070. This is still
somewhat different from the values reported in [14] and performs worse than our method 0.9207 with
a batch size of 512.

Furthermore, we conducted a comparison of GPU usage with batch size 64. Our method uses 8
GB of memory while theirs uses 20 GB. The results revealed that the MMCL method remains
resource-intensive. Conversely, our method achieves superior performance with lower computational
costs, further highlighting the efficiency of our approach.

SUNAttribute. SUNAttribute annotates 20 scenes from each of the 717 SUN categories. Each scene
has 102 attributes and each attribute will have multiple annotations. For simplicity, we divide each
attribute into zero and one and our goal is to predict whether a scene is an open space, which is a
binary classification task. The dataset contains 14, 340 images and the corresponding table feature,
each attribute of the table feature represents a scene and takes the value of 1 if the attribute is present
in the image. we use 8 : 1 : 1 to divide the training set, validation set, and testing set. There are total
of 101 categorical variables in this dataset.

CelebA. is the abbreviation of CelebFaces Attribute, meaning celebrity face attribute dataset, which
contains 202, 599 face images of 10, 177 celebrities, each image is well marked with features,
including 40 attribute markers such as Big_Nose. We use Attractive as the label, which is a binary
classification task. We use 8 : 1 : 1 to divide the training set, validation set, and testing set. There are
total of 39 categorical variables in this dataset. We expect to introduce more detailed face information
in the table, allowing the image to perform better on downstream tasks.

PetFinder-adoption. Animal adoption rates are strongly correlated to the metadata associated with
their online profiles, such as descriptive text and photo characteristics. This dataset comes from
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a kaggle competition where the task is to predict the speed at which a pet is adopted, which is a
five-class classification task. There are total of 10 numerical variables and 14 categorical variables in
this dataset. Tabular data contains information about the pet such as the type and vaccination status.
We also use the same division for the dataset.

PetFinder-pawpularity. This dataset also comes from a kaggle competition where the task was to
predict the popularity of a pet based on that pet’s profile and photo, which is a regression task. Each
pet photo is labeled with the value of 1 (Yes) or 0 (No) for each of features. For example, “Face”
represents whether the face of the pet in the picture is frontal. There are 12 categorical variables in
tabular data.

Avito. Avito, Russia’s largest classified advertisements website, is deeply familiar with this problem.
Sellers on their platform sometimes feel frustrated with both too little demand (indicating something
is wrong with the product or the product listing) or too much demand (indicating a hot item with a
good description was underpriced). This dataset is challenging you to predict demand for an online
advertisement based on its full description, its context and historical demand for similar ads in similar
contexts. The target deal_probability can be any float from zero to one. It’s also a regression task.
There are total of 2 numerical variables such as and 11 categorical variables such as in this dataset.

A.2 Training Details

We use ResNet50 with weight pretrained on ImageNet-1k [49] as image feature extractor for all
methods mentioned in this paper. The classifier is built from an MLP with one hidden layer of size
1024.

For baseline methods, the numerical tabular data fields are standardized using z-score normaliza-
tion with a mean value of 0 and standard deviation of 1. For our method CHARMS, we use FT-
Transformer [13] to get the embedding of tabular data, which can process continuous and categorical
variables separately.

• KD [17]: For KD method, we search the temperatures in {1.0, 2.0, 4.0, 6.0, 8.0} and λ in
{0.2, 0.4, 0.6, 0.8}.

• KD-Fou: This means that we use only 76 fourier coefficients of the character shapes features
when training the teacher network.

• KD-Mor: This means that we use only 6 morphological features when training the teacher
network, which can be revealed in images.

• FMR [66]: We set ten percent of the fixed features to be knockdown in each epoch in FMR
method. The fixed feature classifier is a linear connection between tabular data and the
corresponding image.

• MFH [64]: For MFH method, we set modality general decisive information according to the
feature ranking algorithm. The number of the features is fifty percent of that for all features.

• MMCL [14]: The same parameters are set for MMCL method according to [14]. We use
the frozen version after pretrain and only train the classifier for downstream task.

• CHARMS: For FT-Transformer, the number of Transformer blocks is set to 2. We use the
K-Means method to cluster the representations obtained by ResNet50 and n_cluster is 40.
Embedding dimension E is set according to the data distribution. Adam optimizer with
weight decay is used to train the models. We choose to update cost matrix every 5 epochs,
striking a balance between updating them without stable knowledge and minimizing the
computational burden. However, we continuously update ϕ throughout the training process
to enhance the representation.

We experiment on five random seeds and the results in the form of mean plus standard deviation are
shown in the Table 5.

A.3 Figure Details

We explain some figures in detail.
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Table 4: Introduction to the dataset. Here we introduce image data and tabular data in each dataset,
and numerical and categorical variables are introduced separately in the tabular data. An example is
given for each dataset.

Dataset Numerical Attribute Categorical Attribute Image

MFEAT Fourier coefficient_1
0.13839 -

DVM Length
4865.0

Fuel_type
9

SUNAttribute - Warm
1

CelebA - Big_Nose
0

PetFinder-adoption Fee
100

Type
0

PetFinder-pawpularity - Focus
0

Avito Price
1290

Category_name
4

• For Figure 5, we calculated the amount of information contained in different modality data
for different methods with the MINE method [5]. The image data are simple handwritten
digits, we process them simply using a two-layer convolutional neural network, followed
by a max pooling layer, and a Dropout layer to prevent overfitting. When calculating the
mutual information, we use the mine method as the loss function for approximating the
mutual information. The network we choose is a three layer MLP with two hidden layers of
size 100, the method we choose is concat, and the batch_size is 16.

• For Figure 6, we do not calculate the mutual information change process for the MMCL
method because the MMCL method already performs much less well in Figure 5 than the
other baseline models. We hypothesize that MMCL maps the tabular and image representa-
tions to another space and therefore the mutual information is lower.
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Table 5: Comparisons with baseline methods on DVM, SUN, CelebA, Adoption, Pawpularity, and
Avito datasets on five random seeds.

DVM ↑ SUN ↑ CelebA ↑ Adoption ↑ Pawpularity ↓ Avito ↓
LGB 0.9748±0.0014 0.8501±0.0003 0.7963±0.0005 0.4101±0.0053 20.0720±0.0072 0.2290±0.0011
RTDL 0.9682±0.0018 0.8563±0.0011 0.7936±0.0004 0.4107±0.0048 20.0844±0.0098 0.2317±0.0034
ResNet 0.8743±0.0183 0.8361±0.0144 0.8146±0.0092 0.3477±0.0048 18.6150±1.4559 0.2512±0.0034

KD 0.8390±0.0076 0.8382±0.0063 0.8118±0.0046 0.3532±0.0035 19.0683±1.7642 0.2499±0.0015
MFH – 0.8312±0.0022 0.7507±0.0034 0.3401±0.0027 43.1455±2.0843 0.2873±0.0047
FMR 0.8427±0.0151 0.8347±0.0119 0.8003±0.0143 0.3526±0.0088 19.3517±1.5837 0.2937±0.0084
MMCL 0.8203±0.0040 0.8431±0.0012 0.8041±0.0017 0.2981±0.0026 – –
CHARMS 0.9175±0.0052 0.8661±0.0032 0.8220±0.0022 0.3603±0.0037 18.4314±0.7427 0.2495±0.0025
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Figure 5: Mutual Information with Different
Modality in Multimodal Models. A good model
should be able to effectively combine both im-
age and tabular information, resulting in higher
mutual information between the two modalities.
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Figure 6: Mutual Information During Training
on MVFEAT dataset. We calculate mutual in-
formation from the beginning to the convergence
process in order to better understand the training
process of each method.

• In the ablation study for different nets, we experimentally validated the impact of different
neural network as backbone models on our approach. The accuracy in ORIGIN is {34.77,
34.05, 34.49, 33.98}. The accuracy in out CHARMS is {35.74, 35.52, 35.82, 35.45}.

A.4 Task Details

The usage of knowledge from table to images could be explained from three aspects:

In our setting, the goal is to transfer knowledge from the tabular data to the image model. Both
classification and regression tasks are vital and commonly encountered in our setting, where both
of them are investigated in our experiments. For instance, on the Adoption dataset, the pet type
and size attributes are crucial for the adoption time classification. Guidance on these features in an
image would lead to better learning of the image model. Similarly, on the Pawpularity dataset, the
eyes and face attributes have a positive assignment on the regression of the popularity of the pet.
Therefore, it makes sense to do knowledge transfer from tabular data to image for both classification
and regression tasks.

CHARMS is a general method for both classification and regression tasks, in detail, we use cross
entropy loss for classification task and mean square error loss for regression task. We achieved an
improved image representation by employing the CHARMS method, which leverages the guidance
of tabular data on the image data. Specifically, for the classification task, our approach facilitated
the representation with a more discerning distribution over the target categories. On the other hand,
the regression task enabled us to learn an image representation that better approximated the target
values during prediction. The fact that our method performs well on both tasks underscores its
generalizability and effectiveness.

Additionally, our visualization experiments provide further evidence of the effectiveness of our
method. These experiments reveal that the attributes and channels selected by our approach are
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appropriately matched, leading to an enhancement in the performance of the image model. This
alignment between the attributes and channels serves as strong evidence that we have successfully
transferred the relevant knowledge from the table to the image model.

In summary, our approach demonstrates its versatility by excelling in both classification and regression
tasks, showcasing its ability to enhance image representations using guidance from tabular data.

B Analysis on Our CHARMS Method

B.1 Comparison with attention method

Our method employs the transfer matrix obtained by OT to weigh the images, with the weights of the
corresponding channels raised to learn the tabular attributes. An alternative approach is to use the
attention method to weigh the image channels differently and learn each tabular attribute separately,
which is a more intuitive approach:

ϕ(xT )att = T (ϕ(xT )) · ϕ(xT ) (7)

where T is a two layer MLP that first downscales the image representation obtained by ϕ before
rescaling it to its original dimension, thereby weighting the different channels of the image.

In contrast to our method CHARMS, this method assigns a weight to each input element so that the
model can pay more attention to those input elements that are more important for the task at hand. The
attention method constructs a learnable mask for each attribute and learns each attribute separately
based on the backbone network. However, this approach may result in unequal impacts of different
masks on the main task. In contrast, our method weights the attention of different channels in the
representation obtained by the main task, which essentially corrects the main task while avoiding
potential inconsistency issues caused by the attention method.

We compare the performance of our method CHARMS with the attention method in all experiments
and summarized the results in Table 7. The table shows that the attention method did not perform
as well as our method on all datasets. Specifically, on the DVM dataset, which involves a complex
downstream task of 129 classification tasks, the attention method constructed different attentions
for different attributes, which confused the backbone network and led to a decrease in overall task
performance.

This finding highlights the impracticality of using the attention mechanism alone to integrate the
abundant information in tabular data into the image model. This further supports the effectiveness of
our proposed approach.

B.2 Comparison with CLIP method

CLIP is pre-trained on a large amount of text and image pairs, which makes it able to map from
text to images. Some previous studies have demonstrated that CLIP is able to transform tabular data
to text for classification given the column names [62; 16]. However, CLIP is heavily reliant on the
semantic information contained within the text, so that the semantics of attributes are inevitable.

Indeed, the setting of this paper is more general. We expect to transfer the tabular knowledge to the
image modality during training to cope with the absence of expert knowledge during testing. Our
method CHARMS aims to automatically extract the semantic information from the tabular and align it
with the corresponding image channels without requiring explicit knowledge of the attribute’s precise
meaning. Specifically, as we show in Section 4.2, based on measuring the similarity across attributes
and channels, OT discovers and aligns the attribute semantic automatically.

We conducted an experiment with CLIP. In this experiment, we converted the tabular data into text
format, such as "length: 16". To ensure a fair comparison, we utilized CLIP from ?? with the
ResNet50 backbone. The CLIP model consists of an image encoder and a textual encoder, and
we connected a one-layer linear head for classification or regression after the image encoder. Two
versions of CLIP were trained in our experiment. CLIP-LP means CLIP-LinearProb, which denotes
the scenario where the two encoders are fixed, and only the classification head is trained. CLIP-FT
means CLIP-FineTune, on the other hand, involves fine-tuning the entire CLIP network. With the
contrastive learning of the two modalities of the CLIP model, tabular knowledge is transferred to the
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Table 6: Comparison with CLIP method. Here CLIP-LP means two encoders are fixed, and only the
classification head is trained. CLIP-FT means fine-tuning the entire CLIP network.

DVM↑ SUN ↑ CelebA ↑ Adoption ↑ Pawpularity ↓ Avito ↓
CLIP-LP 0.7619 0.6918 0.7590 0.3047 20.1537 0.2972
CLIP-FT 0.8417 0.8333 0.8165 0.2935 42.9489 0.2940

CHARMS 0.9175 0.8661 0.8220 0.3603 18.4314 0.2495

Table 7: Comparison with Attention method. Here Attention means we directly conduct the attention
mechanism on the feature extracted by ϕ and learn an attention mask for all tabular attributes.

DVM ↑ SUN ↑ CelebA ↑ Adoption ↑ Pawpularity ↓ Avito ↓
Attention 0.4757 0.8550 0.8180 0.3454 18.7401 0.2544
CHARMS 0.9175 0.8661 0.8220 0.3603 18.4314 0.2495

image modality. By transforming the task into a language-to-vision knowledge transfer, the results
were obtained in Table 6.

From the experiments, we can see that the performance of CLIP is not ideal. This is probably due
to the fact that in tabular data, each column holds its own distinct meaning, and directly utilizing it
as input to CLIP can lead to the loss of certain information. For instance, on the CelebA dataset,
the attribute "wood (not part of a tree)" might not be a highly significant feature. However, when
this attribute is converted to text format, its character length tends to be relatively long, which can
introduce redundancy in the information.

From another perspective, previous work has pointed out that there is a modality gap in the CLIP’s
embedding space [35]. This gap is caused by a combination of model initialization and contrastive
learning optimization. In a multi-modal model with two encoders, the representations of the two
modalities are clearly apart when the model is initialized. During optimization, contrastive learning
keeps the different modalities separate by a certain distance. This gap makes the CLIP method fail in
our task.

In summary, the loss of information and the modality gap that arises when transferring tabular data
to images can hinder the performance of the CLIP method in our setting. However, our method
addresses these challenges by automatically discovering and establishing the matching relationship
between the two modalities, thereby facilitating effective knowledge transfer, which is a more general
method.

C More Experiments

C.1 More Visualization

We provide more visualizations in Table 8 to validate the ability of CHARMS to match the correspond-
ing attributes and channels. We apply GradCAM on various datasets, which show similar visualization
results, where the channels could be matched to a certain attribute with semantic meaning.

For the Adoption dataset, all tabular attributes are inherently more abstract in nature. However, for
the purpose of visualization, we have specifically selected features that are visually recognizable by
humans from images. For instance, attributes such as the type of pet and the color of the pet highlight
more general aspects that are of interest.

From the visualization, we can see that the judgment of the pet type focuses more on the pet’s head,
whereas the judgment of the color takes into account the whole body of the pet, and from this point
of view we believe that our approach does achieve knowledge transfer.
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Table 8: More Visualization by GradCAM.

Tabular Attribute 5_o_Clock_Shadow Arched_Eyebrows Big_Nose Blond_Hair

Aligned Channel 65, 87, 119, 236. . . 33, 76, 78, 115, . . . 50, 224, 258, . . . 684

Visualization

Tabular Attribute High_Cheekbones Smiling Oval_Face Rosy_Cheeks

Aligned Channel 2, 26, 41, 85,. . . 11, 12, 28, 57, . . . 52, 646, 924, . . . 4, 47, 88,...

Visualization

Tabular Attribute Type Color

Aligned Channel 399, 413, 414, 521. . . 400, 412, 425, 448. . .

Visualization

Aligned Channel 399, 413, 414, 521. . . 400, 412, 425, 448. . .

Visualization

C.2 Visualization with t-SNE

To visualize the impact of our method on the distribution of image features, we conducted experiments
using the t-SNE method [57]. t-SNE can map high-dimensional data to a two- or three-dimensional
space, enabling better visualization and interpretation of the data structure. The method employs a
nonlinear mapping approach that minimizes the difference between the distances of points in high-
dimensional space and those in low-dimensional space. Specifically, it represents high-dimensional
data points as probability distributions and generates corresponding probability distributions in the
low-dimensional space. Then, it uses KL divergence to measure the difference between the two
probability distributions and minimizes it to achieve the best mapping effect.

The experimental results are presented in Figure 7, where the ORIGIN method refers to training with
image modalities only. The figure shows that the ORIGIN method achieved good segmentation results
due to the task’s simplicity. However, due to the lack of expert knowledge, the intra-class distance is
still large, particularly for samples with label 7, while the inter-class distances remain small, such
as for samples with labels 2 and 9. In contrast, our method compensates for these deficiencies by
transferring expert knowledge.

C.3 More Mutual Information experiments

We chose the MFEAT dataset for the Mutual Information experiments since, in this dataset, the
formal features of each category are simple and easily distinguishable. For example, morphological
features and non-morphological features. And the images are all digital images, which are relatively
simple and easy to understand. The experiment mainly helps us understand. More mutual information
experiments can be obtained in Figure 8 9.

The experiments in PetFinder-adoption dataset also indicate that existing methods for transferring
tabular knowledge to image models yield low mutual information between the representations and
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Figure 7: Visualization of t-SNE on the MFEAT dataset. the ORIGIN method represents training on
image modalities only. As can be seen from the figure, our method makes the intra-class distance
smaller and the inter-class distance larger. Therefore the transfer of expert knowledge from tabular
data to the image model is effective. The red circles mean that our method makes the intra-class
distance smaller, and the green circles indicate that our method makes the inter-class distance larger.
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Figure 8: Mutual Information with Different
Modality on the Adoption Dataset.
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Figure 9: Mutual Information During Training on
the Adoption dataset.

tabular data. Our CHARMS method, on the other hand, maximises the mutual information of tabular
and images to achieve better results.

C.4 More Ablation Studies

In the CHARMS method, we use the K-Means [38; 40] method to cluster the 2048-dimensional
features extracted from ResNet. We discuss the number of clusters on the SUNAttribute dataset, and
the results in Table 9 show that the performance of CHARMS is not affected by the number of clusters
taken, demonstrating the robustness of the method to hyperparameter choices. This robustness
makes the method more flexible and reliable in practical applications, as it does not require excessive
hyperparameter tuning or fine-tuning, saving time and effort.

To further demonstrate the applicability and robustness of our proposed method, CHARMS, we
conducted experiments using different network structures on DVM dataset with results shown in
Table 10. The result also shows that the performance improvements achieved by our method are
consistent across different network structures.
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Table 9: Ablation study on cluster number on SUNAttribute dataset.
n_cluster 20 40 60 80 100

Accuracy 0.8494 0.8661 0.8494 0.8556 0.8522

Table 10: Impact of different network structures on the method on DVM dataset.
ResNet DenseNet Inception MobileNet

Model Size / M 25.8 8.2 6.8 3.7

ORIGIN 0.8743 0.8671 0.7492 0.8206

CHARMS 0.9175 0.9115 0.9012 0.8961

D Limitations and Future Works

Our approach relies on leveraging mutual information between the two modalities, which establishes
the feasibility of knowledge transfer. When there is a significant amount of mutual information
present between the tabular and image modalities, our approach can effectively transfer relevant
knowledge and insights between them. On the other hand, converting text into tables is indeed a
viable approach, but this approach results in the loss of some of the textual information and it is
challenging to handle such a conversion well. The problem of testing data drift also exists in real life.
We will consider this problem deeply in future work. In terms of social impact, we think that our
approach holds potential for application in the medical field, where it can assist doctors in making
rapid and accurate diagnoses. There should be no negative social impact of our method.

Our work demonstrates the effectiveness of our method in both classification and regression tasks. In
future work, it would be valuable to investigate the applicability of our method to other tasks, such
as semantic segmentation. These types of tasks may require additional domain-specific knowledge,
such as precise object localization within images, to achieve optimal performance. Nonetheless, we
believe that our approach is still applicable for such tasks.

On the other hand, the high cost of annotating expert data often leads to imbalanced datasets, which
pose a challenge for improving image model performance using a limited amount of tabular data.
Therefore, addressing this data imbalance is crucial for future work.
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