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ABSTRACT
While notable progress has been made in specifying and learning ob-
jectives for general cyber-physical systems, applying these methods
to distributed multi-agent systems still pose significant challenges.
Among these are the need to (a) craft specification primitives that
allow expression and interplay of both local and global objectives,
(b) tame explosion in the state and action spaces to enable effective
learning, and (c) minimize coordination frequency and the set of en-
gaged participants for global objectives. To address these challenges,
we propose a novel specification framework that allows natural com-
position of local and global objectives used to guide training of a
multi-agent system. Our technique enables learning expressive poli-
cies that allow agents to operate in a coordination-free manner for
local objectives, while using a decentralized communication pro-
tocol for enforcing global ones. Experimental results support our
claim that sophisticated multi-agent distributed planning problems
can be effectively realized using specification-guided learning.

KEYWORDS
Multi-Agent Reinforcement Learning, Specification-Guided Learn-
ing, Reward Shaping

1 INTRODUCTION
Reinforcement Learning (RL) can be used to learn complex behav-
iors in many different problem settings. A main component of RL
is providing feedback to an agent via a reward signal. This signal
should encourage desired behaviors, and penalize undesirable ones,
enabling the agent to eventually proceed through a sequence of tasks
and is designed by the programmer beforehand. A commonly used
technique to encode tasks in a reward signal is the sparse method
of providing zero reward until a task is completed upon which a
non-zero reward is given to the agent. Because this procedure has the
significant shortcoming of delaying generating a useful feedback sig-
nal for a large portion of the agent-environment interaction process,
a number of alternative techniques have been proposed [1, 17].

Formulating a reward signal that reduces the sparsity of this
feedback is known as reward shaping. Often, this is done manually
but a more general, robust method would be to automatically shape
a reward given a specification of desired behavior. SPECTRL [7]
proposes a reward shaping mechanism for a set of temporal logic
specifications on a single-agent task that uses a compiled a finite-
state automaton called a task monitor. Reward machines [2, 21, 22]
are another objective-specifying method for RL problems that also
define a finite automaton akin to the ones used in SPECTRL, with
some subtle differences such as the lack of registers (used by the
task monitor for memory).
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Distributed multi-agent applications however, introduce new chal-
lenges in automating this reward shaping process. Agents have their
own respective goals to fulfill as well as coordinated goals that must
be performed in cooperation with other agents. While the expressive-
ness of the language in SPECTRL lends itself, with minor extensions,
to specifying these kinds of goals, we require new compilation and
execution algorithms to tackle inherent difficulties in multi-agent
reinforcement learning (MARL); these include credit assignment of
global objectives and the presence of large state and action spaces
that grow as the number of agents increases.

Learning algorithms for multi-agent problems have often encour-
aged distribution as a means of scaling in the presence of state and ac-
tion space explosion. This is because purely centralized approaches
have the disadvantages of not only requiring global knowledge of the
system at all times but also induce frequent and costly synchronized
agent control.

To address these issues, we develop a new specification-guided
distributed multi-agent reinforcement learning framework. Our ap-
proach has four main features. First, we introduce two classes of
predicates (viz. local and global) to capture tasks in a multi-agent
world (Sec. 4). Second, we develop a new procedure for generat-
ing composite task monitors using these predicates and devise new
techniques to distribute these monitors over all agents to address
scalability and decentralization concerns (Sec. 5). Third, we effi-
ciently solve the introduced problem of subtask synchronization
(Sec. 6) among agents via synchronization states in the task moni-
tors. Lastly, we describe a wide class of specification structures (Sec.
7) amenable to scaling in the number of agents and provide a means
to perform such a scaling (Sec. 8).

By using these components in tandem, we provide the first so-
lution to composing specifications and distributing them among
agents in a scalable fashion within a multi-agent learning scenario
over continuous state and action spaces. Before presenting details
of our approach, we first provide necessary background information
(Sec. 2) and formalize the problem (Sec. 3).

2 BACKGROUND
Markov Decision Processes. Reinforcement learning is used to
solve Markov Decision Processes (MDPs) that are tuples ⟨S, 𝐷,𝐴, 𝑃, 𝑅,𝑇 ⟩
where S ∈ R𝑛 is the state space, 𝐷 is the initial state distribution,
𝐴 ∈ R𝑚 is the action space, 𝑃 : S ×𝐴 × S → [0, 1] is the transition
function, and 𝑇 is the time horizon. A rollout 𝜁 ∈ 𝑍 of length 𝑇 is
a sequence of state and action pairs 𝜁 = (𝑠0, 𝑎0, ..., 𝑎𝑇−1, 𝑠𝑇 ) where
𝑠𝑖 ∈ S and 𝑎𝑖 ∈ 𝐴 are such that 𝑠𝑖+1 ∼ 𝑃 (𝑠𝑖 , 𝑎𝑖 ). 𝑅 : 𝑍 → R here is a
reward function used to score a rollout 𝜁 .

Multi-Agent Reinforcement Learning. A Markov game is a
tuple M𝑔 = ⟨N , {S𝑖 }𝑖∈N , 𝐷, {𝐴𝑖 }𝑖∈N , 𝑃, {𝑅𝑖 }𝑖∈N ,𝑇 ⟩ where N =
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{1, · · · , 𝑁 } denotes the set of 𝑁 agents and 𝐴𝑖 , 𝑅𝑖 define their agent-
specific action spaces and reward functions. They are a direct gener-
alization of MDPs to the multi-agent scenario. Let S𝑚 = {S𝑖 }𝑖∈N
and 𝐴𝑚 = {𝐴𝑖 }𝑖∈N , then 𝑃 : S𝑚 × 𝐴𝑚 × S𝑚 → [0, 1] is the
transition function. A rollout 𝜁𝑚 ∈ 𝑍𝑚 here corresponds to 𝜁𝑚 =

(𝑠0, 𝑎0, ..., 𝑎𝑇−1, 𝑠𝑇 ) where 𝑠 ∈ S𝑚 and 𝑎 ∈ 𝐴𝑚 . We also define an
agent specific rollout 𝜁 𝑖𝑚 ∈ 𝑍 𝑖𝑚, 𝜁 𝑖𝑚 = (𝑠𝑖0, 𝑎

𝑖
0, ..., 𝑎

𝑖
𝑇−1, 𝑠

𝑖
𝑇
) where

𝑠𝑖 ∈ S𝑖 and 𝑎𝑖 ∈ 𝐴𝑖 . 𝐷 is the initial state distribution over S𝑚 .
Agents attempt to learn a policy 𝜋𝑖 : S𝑖 → Δ(𝐴𝑖 ) such that

E
[∑

𝑡 𝑅
𝑖
𝑡 |𝜋𝑖 , 𝜋−𝑖

]
is maximized, where Δ(𝐴𝑖 ) is a probability distri-

bution over 𝐴𝑖 and 𝜋−𝑖 is the set of all policies apart from 𝜋𝑖 . We
use Π = {𝜋𝑖 }𝑖∈N to denote the set of all agent policies.

For simplicity, we restrict our formulation to a homogeneous set
of agents which operate over the same state (S𝑖 = S𝐴) and action
space (𝐴𝑖 = 𝐴𝐴).

SPECTRL. Jothimurugan et. al [7] introduce a specification lan-
guage for reinforcement learning problems built using temporal
logic constraints and predicates. It is shown to be adept at handling
complex compositions of task specifications through the use of a
task monitor and well-defined monitor transition rules. Notably, one
can encode Non-Markovian tasks into the MDP using the additional
states of the automaton (task monitor) compiled from the given
specification.

The atomic elements of this language are Boolean predicates 𝑏
defined as functions of a state S with output J𝑏K : S → B. These
elements have quantitative semantics J𝑏K𝑞 with the relation being
J𝑏K(𝑠) = True ⇐⇒ J𝑏K𝑞 (𝑠) > 0. Specifications 𝜙 are Boolean
functions of the state trajectory 𝜁 = (𝑠1, 𝑠2, ..., 𝑠𝑇 ). The specification
language also includes composition functions for a specification 𝜙
and Boolean predicate 𝑏, with the language defined as

𝜙 ::= achieve 𝑏 | 𝜙 ensuring 𝑏 | 𝜙1; 𝜙2 | 𝜙1 or 𝜙2

The description of these functions is as follows. achieve 𝑏 is true
when the trajectory satisfies 𝑏 at least once. 𝜙 ensuring 𝑏 is true
when 𝑏 is satisfied at all timesteps in the trajectory.𝜙1; 𝜙2 is a sequen-
tial operator that is true when, in a given trajectory 𝜁 = (𝑠1, 𝑠2, ..., 𝑠𝑇 ),
∃ 𝑘 > 1 such that 𝜙1 (𝑠1, ..., 𝑠𝑘 ) is true and 𝜙2 (𝑠𝑘+1, ..., 𝑠𝑇 ) is true. In
other words, 𝜙1; 𝜙2 represents an ordered sequential completion
of specification 𝜙1 followed by 𝜙2. Lastly, 𝜙1 or 𝜙2 is true when a
trajectory satisfies either 𝜙1 or 𝜙2.

Given a specification𝜙 on a Markov Decision Process ⟨𝑆, 𝐷,𝐴, 𝑃,𝑇 ⟩
(MDP) defined using SPECTRL, the pipeline first compiles a task
monitor ⟨𝑄,𝑋, Σ,𝑈 ,Δ, 𝑞0, 𝑣0, 𝐹 , 𝜌⟩ (a finite state automaton [24]) to
record the completion status of tasks with monitor states 𝑄; final
monitor states 𝐹 denote a satisfied trajectory. This is used to create an
augmented version of the MDP ⟨𝑆, 𝑠0, �̃�, 𝑃, �̃�,𝑇 ⟩ with an expanded
state, action space and modified reward function . The task monitor
provides a scoring function for trajectories in the augmented MDP
to guide policy behavior.

While SPECTRL has been shown to work with trajectory-based
algorithms for reinforcement learning [15], it is not immediately
evident how to translate it to common RL algorithms such as DDPG
[12] and PPO [19]. A simple solution would be to keep the episodic
format with a trajectory 𝜁 = (𝑠0, · · · , 𝑠𝑇 ) and assign the trajectory
value of SPECTRL (a function of 𝜁 ) to the final state transition in the
trajectory 𝑠𝑇−1 → 𝑠𝑇 and zero for all other states. This would yield a

relatively sparse reward signal that could be hard for algorithms that
use the rewards 𝑟𝑡 at time step 𝑡 to quickly learn. More importantly ,
this maintains the trajectory ordering properties of SPECTRL in the
episodic return (∑𝑇

𝑡=0 𝑟𝑡 ).

3 PROBLEM STATEMENT
Directly appropriating SPECTRL for our use case of imposing speci-
fications on multi-agent problems poses significant scalability issues.
Consider the cases

𝜙𝑎 = achieve(reach(𝑃)); achieve(reach(𝑄))
where Jreach(𝑃)K = True when an agent reaches state 𝑃 . To ease
the illustration of our framework, we assume that all agents are
homogeneous, i.e. S𝑖 = S𝐴,∀𝑖 ∈ N . Now, the state space of the
entire multi-agent system is S = (S𝐴)𝑁 for 𝑁 agents (we omit𝑚
for perspicuity).

If the predicate reach was defined on the entire state S, it would
yield a specification forcing synchronization between agents. On
the other hand, if reach was defined on the agent state S𝐴, then it
would create a localized specification where synchronization is not
required. This would be akin to allowing individual agents to act
independently of other agent behaviors.

However, using a centralized task monitor for the localized pred-
icate would cause the number of monitor states to exponentially
increase with the number of agents 𝑁 and subtasks 𝐾 since the
possible stages of task completion would be O(𝐾𝑁 ).

To address this scalability issue, the benefits of task monitor
distribution are apparent. In the case of 𝜙𝑎 above, assume reach is
defined on the local state space S𝐴. If each agent had a separate task
monitor stored locally to keep track of the task completion stages,
the new number of monitor states is now reduced to O(𝑁𝐾).

Consider an example of robots in a warehouse. A few times a day,
all robots must gather at a common point for damage inspection at
the same time (akin to a global reach) to minimize the frequency of
inspection (an associated cost). To ensure satisfaction of the entire
specification, the reward given to an RL agent learning this objective
should capture both the global and local tasks. For example, if the
global reach task for the routine inspection is made local instead,
the cost incurred may be larger than if it was a synchronized global
objective.

Main Objective. Given a specification 𝜙 on a system of 𝑁 agents,
we wish to find policies Π = {𝜋1, · · · , 𝜋𝑁 } to maximize the proba-
bility of satisfying 𝜙 for all agents. Formally, we seek

Π∗ ∈ arg max
𝜋1, · · · ,𝜋𝑁

Pr
𝜁𝑚∼𝐷Π

[𝜙 (𝜁𝑚) == True]

where 𝐷Π is the distribution of all system rollouts when all agents
collectively follow policy set Π. We emphasize that 𝜙 acts on the
entire rollout, 𝜙 : 𝑍𝑚 → {0, 1} and not in an agent-specific manner,
𝜙 ′ : 𝑍 𝑖𝑚 → {0, 1}. This discourages agents from attempting to
simply satisfy their local objectives while preventing the system
from achieving necessary global ones.

4 SPECTRL IN A MULTI-AGENT WORLD
Unlike the single agent case, multi-agent problems have two major
classes of objectives. Agents have individual goals to fulfill as well
as collective goals that require coordination and/or global system
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Figure 1: Example Composite Task Monitor for specification
𝜙𝑒𝑥 (Sec. 4) with 4 task goals denoted by Q,P,P’ and R where
the agent starts at 𝑞0. Double circles represent final states while
green circles represent global states. The diagram removes a
state between 𝑞1 and (𝑞3, 𝑞4) as well as self-loops for ease of
explanation.

knowledge. These individual goals are often only dependent on
the agent-specific state 𝑠𝑖 while collective goals require full system
knowledge 𝑠.

Consequently, for a multi-agent problem, we see the need for
two types of predicates viz. local and global. Local predicates are
of the form 𝑝𝑙𝑜 : S𝐴 → B whereas global predicates have the form
𝑝𝑔𝑙 : S → B where B is the Boolean space. We introduce two
simple extensions of reach [7] to demonstrate the capabilities of
this distinction.

Local predicates are defined with respect to each agent and rep-
resent our individual goals. As an example, closely related to the
problems observed in SPECTRL, we introduce the following local
predicates for a state 𝑠𝑎 ∈ S𝐴,

Jreach𝑙𝑜𝑥K(𝑠𝑎) = ( | |𝑠𝑎 − 𝑥 | |∞ < 1)

which represents reaching near location 𝑥 in terms of the 𝐿∞ norm.
Now to enforce global restrictions, we introduce counterparts to
these predicates that act on a global state 𝑠 ∈ S.

Jreach𝑔𝑙𝑥K(𝑠) = ( | |𝑠 − 𝑥 | |∞ < 1)

where we now have a set of locations 𝑥 ∈ S.
As in SPECTRL, each of these predicates 𝑏 require quantitative

semantics J𝑏K𝑞 to facilitate our reward shaping procedure. We define
these semantics as follows:

• reach𝑙𝑜 has the same semantics as reach in [7] yet is defined
on space S𝐴.

Jreach𝑙𝑜𝑥K𝑞 (𝑠𝑎) = 1 − 𝑑∞ (𝑠𝑎, 𝑥)

where 𝑑∞ (𝑎, 𝑏) represents the 𝐿∞ distance between 𝑎 and 𝑏
with the usual extension to the case where 𝑏 is a set.
• reach𝑔𝑙 is defined on the state space S as

Jreach𝑔𝑙𝑥K𝑞 (𝑠) = 1 − 𝑑∞ (𝑠, 𝑥)

We observe that the same composition rules can apply to these
predicates and we thus attempt to solve RL systems described with
these compositions. As shown in Sec. 3, using a centralized SPECTRL

compilation algorithm on the entire state space, even for simple
sequences of tasks, leads to an explosion in monitor states. We,
therefore, distribute task monitors over agents to handle scalability.

Furthermore, we also need to change SPECTRL’s compilation rules
to handle mixed objective compositions such as1

𝜙 = reach𝑙𝑜 (𝑃); reach𝑔𝑙 (𝑄); reach𝑔𝑙 (𝑅)
To compile these specifications into a usable format, we utilize

a composite task monitor as described in Sec. 5 and develop a new
algorithm to achieve our goal. As an example, see Fig. 1 depicting a
task monitor whose specification is:

𝜙𝑒𝑥 =reach𝑔𝑙 (𝑃 ′) or reach𝑙𝑜 (𝑄);
[
reach𝑙𝑜 (𝑃) or reach𝑔𝑙 (𝑅)

]
Here, we have 4 task goals denoted by 𝑃,𝑄, 𝑅 and 𝑃 ′. The agents
all start at the root node 𝑞0. States 𝑞2, 𝑞3 and 𝑞4 are all final states
in the task monitor while 𝑞2 and 𝑞4 are global monitor states. As
shown in Sec. 6, 𝑞0 and 𝑞1 are a synchronization states. While it
may seem that agents only require coordination at global states, it
is also necessary for the agents to have the same task transition at
these synchronization states as well.

5 COMPILATION STEPS
Given a specification 𝜙 and the Markov gameM𝑔, we create a task
monitor𝑀 that is distributed among agents by making agent-specific
copies. This is used to create an augmented Markov gameM ′𝑔 =

⟨N , {S̃𝐴}𝑖∈N , �̃�, {�̃�𝐴}𝑖∈N , 𝑃, {�̃�𝑖 }𝑖∈N ,𝑇 ⟩ on which the individual
agent policies are trained.

Create Composite Task Monitor
When the types of specifications are divided into two based on the
domain, the solution can be modeled with a composite task monitor
𝑀𝜙 = ⟨𝑄, �̃� , Σ̃, �̃� , Δ̃, 𝑞0, 𝑣0, 𝐹 , 𝜌⟩. As in SPECTRL, 𝑄 is a finite set
of monitor states. �̃� = 𝑋𝑙 ∪ 𝑋𝑔 is a finite set of registers that are
partitioned into 𝑋𝑙 for local predicates and 𝑋𝑔 for global predicates.
These registers are used to keep track of the degree of completion
of the task at the current monitor state for local and global tasks
respectively.

We describe below how to use the compiled composite task mon-
itor to create an augmented Markov gameM ′𝑔. Each S̃𝐴 inM ′𝑔 is
an augmented state space with an augmented state being a tuple
(𝑠𝐴, 𝑞, 𝑣) ∈ S𝐴 × 𝑄 × 𝑉 where 𝑉 ∈ R𝑋 and 𝑣 ∈ 𝑉 is a vector
describing the register values.

Δ̃ = Δ𝑙 ∪ Δ𝑔 houses the transitions of our task monitor. We re-
quire that: i) different transitions are allowed only under certain
conditions defined by our states and register values; and, ii) further-
more, they must also provide rules on how to update the register
values during each transition. To define these conditions for transi-
tion availability, we use Σ̃ = Σ𝑙 ∪ Σ𝑔 where Σ𝑙 is a set of predicates
over S𝐴 × 𝑉 and Σ𝑔 is a set of predicates over S × 𝑉 . Similarly,
�̃� = 𝑈𝑙 ∪ 𝑈𝑔 where 𝑈𝑙 is a set of functions 𝑢𝑙 : S𝐴 × 𝑉 → 𝑉

and 𝑈𝑔 is a set of functions 𝑢𝑔 : S × 𝑉 → 𝑉 . Now, we can define
Δ̃ ⊆ 𝑄 × Σ̃ × �̃� × 𝑄 to be a finite set of transitions that are non-
deterministic. Transition (𝑞, 𝜎,𝑢, 𝑞′) ∈ Δ̃ is an augmented transition

either representing (𝑠𝑖 , 𝑞, 𝑣)
𝑎𝑖 |Π−𝑖−−−−−→ ((𝑠𝑖 )′, 𝑞′, 𝑢𝑙 (𝑠𝑖 , 𝑣)) or the form

(𝑠, 𝑞, 𝑣)
𝑎𝑖 |Π−𝑖−−−−−→ (𝑠 ′, 𝑞′, 𝑢𝑔 (𝑠, 𝑣)) depending on whether 𝜎 ∈ Σ𝑙 or

1We omit achieve in achieve(reach𝑙𝑜 (𝑃 )) and achieve(reach𝑔𝑙 (𝑃 )) from here
on to reduce clutter; this specification is implied when we compose reach(𝑃 ) with ;
and or.
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𝜎 ∈ Σ𝑔 respectively. Let 𝛿𝑙 ∈ Δ𝑙 represent the former (localized) and
𝛿𝑔 ∈ Δ𝑔 the latter (global) transition types. Here Π−𝑖 denotes the
policy set of all agents except agent 𝑖. Lastly, 𝑞0 is the initial monitor
state and 𝑣0 is the initial register value (for all agents), 𝐹 ⊆ 𝑄 is the
set of final monitor states, and 𝜌 : S × 𝐹 × 𝑉 → R is the reward
function.

Copies of these composite task monitors 𝑀 are distributed over
agents N to form the set {𝑀𝑖 }𝑖∈N . These individually stored task
monitors are used to let each agent 𝑖 ∈ N keep track of its subtasks
and the degree of completion of those subtasks by means of monitor
state 𝑞𝑖 and register value 𝑣𝑖 .

Create Augmented Markov Game
From our specification 𝜙 we create the augmented Markov game
M ′𝑔 = ⟨N , {S̃𝐴}𝑖∈N , �̃�, {�̃�𝐴}𝑖∈N , 𝑃, {�̃�𝑖 }𝑖∈N ,𝑇 ⟩ by using the com-
piled composite task monitor𝑀 . A set of policies Π̃∗ that maximizes
rewards inM ′𝑔 should maximize the chance of the specification 𝜙
being satisfied.

Each S̃𝐴 = S𝐴 ×𝑄 ×𝑉 and �̃� = ({𝑠0}𝑖∈N , 𝑞0, 𝑣0). We use Δ to
augment the transitions of 𝑃 with monitor transition information.
Since Δ may contain non-deterministic transitions, we require the
policies Π̃ to decide which transition to choose. Thus �̃�𝐴 = 𝐴𝐴 ×𝐴𝜙
where 𝐴𝜙 = Δ chooses among the set of available transitions at a
monitor state 𝑞. Since monitors are distributed among all agents in
N , we denote the set of current monitor states as 𝑞 = {𝑞𝑖 }𝑖∈N and
the set of register values as 𝑣 = {𝑣𝑖 }𝑖∈N . Now, each agent policy
must output an augmented action (𝑎, 𝛿) ∈ �̃�𝐴 with the condition
that 𝛿𝑙 = (𝑞, 𝜎𝑙 , 𝑢𝑙 , 𝑞′) is possible in local augmented state 𝑠𝑎 =

(𝑠𝑎, 𝑞, 𝑣) if 𝜎𝑙 (𝑠𝑎, 𝑣) is True and 𝛿𝑔 = (𝑞, 𝜎𝑔, 𝑢𝑔, 𝑞′) is possible in
global augmented state 𝑠 = (𝑠, 𝑞, 𝑣) if 𝜎𝑔 (𝑠, 𝑣) is True. We can now
write the augmented transition probability 𝑃 as,

𝑃 ((𝑠, 𝑞, 𝑣), (𝑎, (𝑞, 𝜎,𝑢, 𝑞′)), (𝑠 ′, 𝑞′, 𝑢 (𝑠, 𝑣)))) = 𝑃 (𝑠, 𝑎, 𝑠 ′)
for transitions 𝛿𝑔 ∈ Δ𝑔 with (𝜎,𝑢) = (𝜎𝑔, 𝑢𝑔) and transitions 𝛿𝑙 ∈ Δ𝑙
with (𝜎,𝑢) = (𝜎𝑙 , 𝑢𝑙 ). Here, we let 𝑢𝑙 (𝑠, 𝑣) = 𝑢𝑙 (𝑠𝑖 , 𝑣) for agent 𝑖
since 𝑠𝑖 is included in 𝑠. An augmented rollout 𝜁𝑚 where

𝜁𝑚 = ((𝑠0, 𝑞0, 𝑣0), 𝑎0, ..., 𝑎𝑇−1, (𝑠𝑇 , 𝑞𝑇 , 𝑣𝑇 ))
is formed by these augmented transitions. To translate this trajec-
tory back into the Markov game M𝑔 we can perform projection
proj(𝜁𝑚) = (𝑠0, 𝑎0, ..., 𝑎𝑇−1, 𝑠𝑇 , ).

Determine Shaped Rewards
Now that we have the augmented Markov gameM ′𝑔 and compiled
our composite task monitor, we proceed to form our reward function
that encourages the set of policies Π to satisfy our specification 𝜙 . We
can perform shaping in a manner similar to SPECTRL’s single-agent
case on our distributed task monitor. Crucially, since reward shaping
is done during the centralized training phase, we can assume we
have access to the entire augmented rollout namely 𝑠𝑡 = (𝑠𝑡 , 𝑞𝑡 , 𝑣𝑡 )
at any given 𝑡 ∈ [0,𝑇 ]. From the monitor reward function 𝜌 , we can
determine the weighting for a complete augmented rollout as

�̃�𝑖 (𝜁𝑚) =
{
𝜌 (𝑠𝑇 , 𝑞𝑖𝑇 , 𝑣

𝑖
𝑇
), if 𝑞𝑖

𝑇
∈ 𝐹

−∞ otherwise

This reward satisfies the following property,

THEOREM 1. For any Markov gameM𝑔, specification 𝜙 and roll-
out 𝜁𝑚 ofM𝑔, 𝜁𝑚 satisfies 𝜙 if and only if there exists an augmented
rollout 𝜁𝑚 such that i) �̃�𝑖 (𝜁𝑚) > 0 ∀ 𝑖 ∈ N and ii) proj(𝜁𝑚) = 𝜁𝑚 .

The �̃�𝑖 specified is −∞ unless a trajectory reached a final state
of the composite task monitor. To reduce the sparsity of this reward
signal, we transform this into a shaped reward �̃�𝑖𝑠 that gives partial
credit to completing subtasks in the composite task monitor.

Define for a non-final monitor state 𝑞 ∈ 𝑄 \ 𝐹 , function 𝛼 :
S ×𝑄 ×𝑉 → R.

𝛼 (𝑠, 𝑞, 𝑣) = max
(𝑞,𝜎,𝑢,𝑞′) ∈Δ,𝑞≠𝑞′

J𝜎K𝑞 (𝑠, 𝑣)

This represents how close an augmented state 𝑠 = (𝑠, 𝑞, 𝑣) is to
transition to another state 𝑠 ′ with a different monitor state. Intuitively,
the larger 𝛼 is, the higher the chance of moving deeper into the task
monitor. In order to use this definition on all 𝜎 , we overload 𝜎𝑙 to
also act on elements 𝑠 = {𝑠𝑖 }𝑖∈N ∈ S by yielding for agent 𝑖, the
value 𝜎𝑙 (𝑠) = 𝜎𝑙 (𝑠𝑖 ).

Let 𝐶𝑙 be a lower bound on the final reward at a final monitor
state, and 𝐶𝑢 being an upper bound on the absolute value of 𝛼 over
non-final monitor states.

Also for 𝑞 ∈ 𝑄 , let 𝑑𝑞 be length of the longest path from 𝑞0 to 𝑞 in
the graph𝑀𝜙 (ignoring the self-loops in Δ) and 𝐷 = max𝑞∈𝑄 𝑑𝑞 . For
an augmented rollout 𝜁𝑚 let 𝑠𝑘 = (𝑠𝑘 , 𝑞𝑖𝑘 , 𝑣) be the first augmented

state in ˜𝜁𝑚 such that 𝑞𝑖
𝑘
= 𝑞𝑖

𝑘+1 = · · · = 𝑞𝑖
𝑇

. Then we have the shaped
reward,

�̃�𝑖𝑠 (𝜁𝑚) =


max

𝑘≤ 𝑗<𝑇
𝛼 (𝑠 𝑗 , 𝑞𝑖𝑇 , 𝑣 𝑗 )

+ 2𝐶𝑢 · (𝑑𝑞𝑖
𝑇
− 𝐷) +𝐶𝑙

if 𝑞𝑖
𝑇
∉ 𝐹

�̃�𝑖 (𝜁𝑚) otherwise

(1)

THEOREM 2. For two augmented rollouts 𝜁𝑚, 𝜁 ′𝑚 , (i) if �̃�𝑖 (𝜁𝑚) >
�̃�𝑖 (𝜁 ′𝑚), then �̃�𝑖𝑠 (𝜁𝑚) > �̃�𝑖𝑠 (𝜁 ′𝑚), and (ii) if 𝜁𝑚 and 𝜁 ′𝑚 end in distinct
non-final monitor states 𝑞𝑖

𝑇
and (𝑞𝑖

𝑇
)′ such that 𝑑𝑞𝑖

𝑇
> 𝑑 (𝑞𝑖

𝑇
)′ , then

�̃�𝑖𝑠 (𝜁𝑚) ≥ �̃�𝑖𝑠 (𝜁 ′𝑚).

Figure 2: Overview of the DistSPECTRL process for task syn-
chronization. Branching in the task monitor diagram denotes
potential non-deterministic choices between future tasks (such
as in 𝜙ex). Left to right represents the order of policy actions
over a trajectory. Green states represent the current monitor
state of that agent.
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6 SUB-TASK SYNCHRONIZATION
Importance of Task Synchronization. Consider the following
example specification:

𝜙 ′1𝑎 = reach𝑙𝑜 (𝑃) or reach𝑔𝑙 (𝑄)

where 𝑃,𝑄 are some goals. To ensure flexibility with respect to the
possible acceptable rollouts within 𝜙 ′1𝑎 , the individual agent policies
𝜋𝑖 are learnable and the task transition chosen is dependent on the
agent-specific observations. This flexibility between agents however,
adds an additional possible failure method in achieving a global
specification - if even a single agent attempts to fulfill the global
objective while the others decide to follow their local objectives, the
specification would never be satisfied.

Another example to further strengthen this notion of task synchro-
nization is

𝜙 ′2𝑎 =
[
reach𝑙𝑜 (𝑃); reach𝑔𝑙 (𝑄)

]
or

[
reach𝑙𝑜 (𝑃 ′); reach𝑔𝑙 (𝑄 ′)

]
Here, if an agent assumed that it only needed to choose between the
two local objectives reach𝑙𝑜 (𝑃) and reach𝑙𝑜 (𝑃 ′) and not look fur-
ther into the future for the presence of global objectives, a task mis-
match would occur between agents who are in different branches of
the task monitor i.e. the sub-specification

[
reach𝑙𝑜 (𝑃); reach𝑔𝑙 (𝑄)

]
vs.

[
reach𝑙𝑜 (𝑃 ′); reach𝑔𝑙 (𝑄 ′)

]
. We see that global objectives deeper

in the sequence of specifications require prior synchronization to
reaching the stage just before task completion. Thus, we see there is a
marked need for task synchronization among agents as specifications
become increasingly complex.

Identifying Synchronization States. As emphasized above,
task synchronization is an important aspect of deploying these com-
posite task monitors in the Markov gameM𝑔 with specification 𝜙 .
We show the existence of a subset of monitor states Sync ∈ 𝑄 where
in order to maintain task synchronization, agents simply require a
consensus on which monitor transition 𝛿 = (𝑞, 𝜎,𝑢, 𝑞′) to take. If we
use 𝑄𝑔 to symbolize the set of global monitor states, viz. all 𝑞 ∈ 𝑄
such that ∃(𝑞, 𝜎𝑔, 𝑢𝑔, 𝑞′) ∈ Δ𝑔, then we see that 𝑄𝑔 ⊆ Sync. A valid
choice for 𝑞 ∈ Sync with 𝑞 ∉ 𝑄𝑔 is all branching states in the graph
of 𝑀𝜙 with a set refinement presented in the Appendix (Sec. D).

During training, we enforce the condition that when an agent 𝑖
has monitor state 𝑞𝑖𝑡 ∈ Sync, it must wait for time 𝑡1 > 𝑡 such that
𝑞
𝑗
𝑡1
= 𝑞𝑖𝑡 ∀𝑗 ∈ N and then choose a common transition as the other

agents. This is done during the centralized training phase by sharing
the same transition between agents based on a majority vote.

7 MULTI-AGENT SPECIFICATION
PROPERTIES

Consider a specification 𝜙 and let N = {1, . . . , 𝑁 } be the set of all
agents with 𝜁𝑚 being a trajectory sampled from the environment.
𝜙 (𝜁𝑚, 𝑛) is used to denote that the specification is satisfied on 𝜁𝑚 for
the set of agents 𝑛 ⊆ N (i.e. J𝜙 (𝜁𝑚, 𝑛)K == True).

MA-Distributive. Many specifications pertaining to MA problems
can be satisfied independent of the number of agents. At its crux, we
have the condition that a specification being satisfied with respect to
a union of two disjoint sets of agents implies that it can be satisfied on

both sets independently. Namely if 𝑛1, 𝑛2 ⊂ N with 𝑛1∩𝑛2 = ∅ then
an MA-Distributive specification satisifies the following condition:

𝜙 (𝜁𝑚, 𝑛1 ∪ 𝑛2) =⇒ 𝜙 (𝜁𝑚, 𝑛1) ∧ 𝜙 (𝜁𝑚, 𝑛2)

MA-Decomposable. Certain specifications satisfy a decomposi-
bility property particular to multi-agent problems that can help in
scaling with respect to the number of agents.

Say ∃ 𝑘 ∈ {1, . . . , 𝑁 − 1} such that

𝜙 (𝜁𝑚,N) =⇒ 𝜙𝑘 (𝜁𝑚,N) =
∧

𝑗 ∈{1,...,𝐽 }
𝜙 (𝜁𝑚, 𝑛 𝑗 )

where

𝑛 𝑗 ⊂ N , 𝑘 ≤ |𝑛 𝑗 | < 𝑁 , 𝐽 = ⌊𝑁
𝑘
⌋

⋂
𝑗

𝑛 𝑗 = ∅ ,
⋃
𝑗

𝑛 𝑗 = N

with ⌊⌋ representing the floor function. In other words, each 𝑛 𝑗 is a
set of at least 𝑘 unique agents and {𝑛 𝑗 } 𝑗 forms a partition over N .

We then call the specification 𝜙 MA-Decomposable with decom-
posibility factor 𝑘 . Here 𝜙𝑘 can be thought of as a means to approxi-
mate the specification 𝜙 to smaller groups of agents within the set
of agents N . Provided we find a value of 𝑘 , we can then use this as
the basis of our MA-Dec scaling method to significantly improve
training times for larger numbers of agents.

THEOREM 3. All MA-Distributive specifications are also MA-
Decomposable with decomposability factors 𝑘 ∈ Z+, 1 ≤ 𝑘 < 𝑁 .

Notably all compositions of reach𝑔𝑙 and reach𝑙𝑜 within our
language are MA-Distributive and are thus MA-Decomposable with
factor 𝑘 = 2. 2 This is far from a general property however, as one
can define specifications on 𝑁 robots such as achieve("collect 𝑥
fruits") where each robot can carry at most 𝑥/𝑁 fruits . In this case,
no single subset of agents can satisfy the specification as the total
capacity of fruits would be less than 𝑥 and the specification is neither
MA-Distributive nor MA-Decomposable.

8 ALGORITHM
Training
Agents learn 𝜋𝑖 (𝑠𝑖 , 𝑣𝑖 , 𝑞𝑖 ) = (𝑎𝑖 , 𝛿𝑖 ) on the augmented Markov game
M ′𝑔 where 𝑠𝑖 , 𝑣𝑖 , 𝑞𝑖 are agent-specific state, register value and task
monitor state respectively. Since training is centralized, all agent
task monitors receive the same global state. Based on our discussion
in Sec. 6, if an agent is in any given global monitor state, we wait
for other agents to enter the same state, then do the arg max task
transition for all agents in the same state. In addition, at the synchro-
nization states (Sec. 6), we perform a similar process to select the
task transition. These trained augmented policies are then projected
into policies that can act in the originalM𝑔.

2It is satisfied with 𝑘 = 1 as well but this is the trivial case where reach𝑔𝑙 and reach𝑙𝑜
are equivalent.
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Figure 3: Example MA-Dec Scaling Process with 𝑁 = 10, 𝑘 =

2, 𝑓 = 2 on an MA-Decomposable spec 𝜙 with decomposability
factor 2. At Stage 1, 𝑔1 = 2 to start with 5 groups. Next 𝑔2 =

𝑓 𝑔1 = 4 which forms 2 groups. Finally at Stage 3, 𝑔3 = 𝑓 𝑔2 = 8
which forms one group (N ).

Algorithm 1: MA-Dec Scaling
Given Specification 𝜙 that is MA-Decomposable with factor
𝑘 and agent set N of 𝑁 agents.

Given a function train(𝜙, 𝑛 𝑗 ) that trains a policy satisfying
𝜙 (up to a performance metric) from a previous set of policy
parameters for the group of agents 𝑛 𝑗 .

Function set_groups(𝑔, N):
// 𝑔 ∈ Z+ i.e. an integer 𝑔 ≥ 1
// Makes partition of N with minimum group size 𝑔
if 𝑔 > |N | then

return {N}
else

Initialize 𝑗 = 1, 𝐽 = ⌊𝑁𝑔 ⌋
foreach 𝑎 ∈ N do

if |𝑛 𝑗 | < 𝑔 or 𝑗 == 𝐽 then
𝑛 𝑗 ← 𝑛 𝑗 ∪ 𝑎

else
𝑗 ← 𝑗 + 1
𝑛 𝑗 = {}

end
return {𝑛 𝑗 } 𝑗

Initialize Agent Policies Π, 𝑖 = 1, 𝑔1 = 𝑘

Initialize {𝑛 𝑗 } 𝑗 =set_groups(𝑔1, N)
while |𝑛1 | ≤ |N | do

foreach 𝑛 𝑗 ∈ {𝑛 𝑗 } 𝑗 do
Run Π ← train(𝜙, 𝑛 𝑗 ) independently of agents
N \ 𝑛 𝑗 updating the policies of 𝑛 𝑗 .

end
𝑔𝑖+1 = 𝑓 𝑔𝑖 .
if 𝑔𝑖+1 > |N | then

// Already reached Final Stage with 𝑛1 == N
return

{𝑛 𝑗 } 𝑗 ← set_groups(𝑔𝑖+1, N)
𝑖 ← 𝑖 + 1

end

Scaling MA-Decomposable Specifications
Our algorithm for scaling based off the MA-Decomposable property
is shown in Alg. 1 and we name it MA-Dec scaling. At its core, we
approximate the spec. 𝜙 by first independently considering smaller
groups within the larger set of agents N and try to obtain a policy
satisfying 𝜙 on these smaller groups. By progressively making the

group sizes larger over stages and repeating the policy training
process while continuing from the previous training stage’s policy
parameters , we form a curriculum that eases solving the original
problem 𝜙 on all agents N .

In Fig. 3 we demonstrate MA-Dec scaling for 𝑁 = 10 agents on
a spec. 𝜙 which is MA-Decomposable with decomposability factor
2. For this example we set the scaling parameters 𝑘 = 2 and 𝑓 = 2.
Initially we have a min. group size 𝑔1 = 2 and this is changed to
𝑔2 = 4 and 𝑔3 = 8 from setting the scaling factor. We increment the
stage number every time all the groups of a stage have satisfied the
entire specification 𝜙 w.r.t. their group. While separating training
into stages, agents must be encouraged to move from stage 𝑖 to stage
𝑖 + 1. To ensure this, we need to scale rewards based on the stage. We
chose a simple linear scaling where for stage number 𝑖 and time step
𝑡 , each agent receives reward 𝑟𝑖,𝑡 = 𝑖𝑐𝑘 + 𝐶𝑇𝑀𝑖,𝑡 where 𝐶𝑇𝑀𝑖,𝑡 is
the original composite task monitor reward at stage 𝑖 and 𝑐𝑘 ∈ R is
a constant. By bounding the reward terms such that rewards across
stages are monotonically increasing (𝑟𝑖,𝑡 < 𝑟𝑖+1,𝑡 ′) we can find a
suitable 𝑐𝑘 to be (2𝐷 +1)𝐶𝑢 (refer Appendix Sec. B) where the terms
are the same as in Eq. 1.

From setting the initial min. group size 𝑔1 and scaling factor 𝑓 ,
we get the total number of learning stages (𝑇𝑠 ) as 𝑇𝑠 = ⌊log𝑓 (𝑁 ) −
log𝑓 (𝑘)⌋ = O(log𝑓 (𝑁 )). We build the intuition behind why MA-
Dec scaling is effective in the Appendix (Sec. B), by describing it as
a form of curriculum learning.

Deployment
Policies are constructed to proceed with only local information
(𝑠𝑖 , 𝑣𝑖 , 𝑞𝑖 ). Since we cannot share the whole system state with the
agent policies during deployment yet our composite task monitor
requires access to this state at all times, we allow the following
relaxations: 1) Global predicates 𝜎𝑔 (𝑠, 𝑣) enabling task monitor tran-
sitions need global state and access it during deployment. 2) Global
register updates 𝑢𝑔 (𝑠, 𝑣) are also a function of global state and access
it during deployment.

In order to maintain task synchronization, agents use on a consen-
sus based communication method to decide task monitor transitions
at global and synchronization states. If agents choose different task
transitions at these monitor states, the majority vote is used as done
during training.

9 EXPERIMENT SETUP
Our experiments aim to validate that the use of a distributed task
monitor can achieve synchronization during the deployment of mul-
tiple agents on a range of specifications.

In addition, to emphasize the need for distribution of task monitors
to alleviate the state space explosion caused by mixing local and
global specifications, we include experiments with SPECTRL applied
to a centralized controller.

Lastly, we provide results showing the efficacy of the MA-Dec
scaling approach for larger numbers of agents when presented with
a specification satisfying the MA-Decomposability property (Sec.
7).

As a baseline comparison, we also choose to run our algorithm
without giving policies access to the monitor state (no_mon). These
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Figure 4: Satisfaction percentages on specifications 𝜙1,𝜙2,𝜙3 and 𝜙4 with 𝑁 = 3 agents. The shaded regions show the maximum and
minimum achieved over 5 separate evaluation runs

Figure 5: Specification satisfaction percentages (left) for the
StarCraft 2 specification 𝜙𝑠𝑐 with 𝑁 = 8 agents and (right) for
the 3D Navigation experiments on specification 𝜙𝑎 .

Figure 6: Specification satisfaction percentages for 𝑁 = 10 agents
on 𝜙1 (left) and 𝑁 = 6 agents on 𝜙3 (right) comparing the MA-
Dec scaling (red) to centralized SPECTRL (blue) and vanilla
DistSPECTRL (green) i.e. without scaling enhancements.

are trained with the same shaped reward as DistSPECTRL and moni-
tor transitions are set to cycle between all transitions until an avail-
able one is found. We also provide a Reward Machine baseline
(RM) for 𝜙1 with continuous rewards since 𝜙1 is similar to the
’Rendezvous’ specification in [16].

Environment. Our first set of experiments are done on a 2D Navi-
gation problem with 𝑁 = 3 agents. The observations (S ∈ R2) used
are coordinates within the space with the action space (A ∈ R2)
providing the velocity of the agent.

The second set of experiments towards higher dimension 3D
benchmarks, represent particle motion in a 3D space. We train multi-
ple agents (𝑁 = 3) in the 3D space (S ∈ R3) with a 3D action space
(A ∈ R3) to show the scaling potential of our framework.

The final set of experiments were on a modern discrete-action
MARL benchmark built in Starcraft 2 [18] with 𝑁 = 8 agents (the
"8m" map). Each agent has 14 discrete actions with a state space
S ∈ R80 representing a partial view of allies and enemies.

Algorithm Choices. For the scaling experiments (Fig. 6) we used
the 2D Navigation problem with horizon 𝑇 = 500 and the scaling
parameters3 𝑘 = 2 and 𝑓 = 2. We also choose a version of PPO with
a centralized Critic to train the augmented Markov Game noting that
our framework is agnostic to the choice of training algorithm. The
current stage is passed to the agents as an extra integer dimension.
For other experiments we chose PPO with independent critics as our
learning algorithm. Experiments were implemented using the RLLib
toolkit [11].

Specifications
2D Navigation: The evaluated specifications are a mix of local
and global objectives. The reach predicates have an error tolerance
of 1 (the 𝐿∞ distance from the goal).

𝜙1 = reachgl (5, 0); reachgl (0, 0)
𝜙2 = 𝜙1; reachgl (3, 0)

𝜙3 = reachlo (5, 0); reachgl (0, 0); reachgl (3, 0)
𝜙4 = [reachlo (3, 0) or reachlo (5, 10)] ;𝜙3

SC2: 𝜙𝑠𝑐 represents ’kiting’ behaviour and is explained further in
the Appendix (Sec. E).

𝜙𝑠𝑐 = 𝜙𝑠𝑐𝑎 ;𝜙𝑠𝑐𝑎 ;𝜙𝑠𝑐𝑎
where 𝜙𝑠𝑐𝑎 = away_from_enemy𝑔𝑙 ; shooting_range𝑙𝑜 ;

3D Environment: The following specification is considered for
X-Y-Z coordinates:

𝜙𝑎 = reachlo (5, 0, 0); reachgl (0, 0, 0); reachgl (3, 0, 0)

10 RESULTS
Handling Expressive Specifications. The experiments in Fig.
4 demonstrate execution when the task monitor predicates have
access to the the entire system state. This provides agents with
information sufficient to calculate global predicates for task monitor
transitions. The overall satisfaction percentage is reported with the
value 0 being an incomplete task to 1.0 being the entire specification
satisfied.

While SPECTRL has often been shown to be more effective [7, 8]
than many existing methods (e.g. RM case) for task specification,
the further utility of the monitor state in enhancing coordination
between agents is clearly evident in a distributed setting. The task
monitor state is essential for coordination as our baseline no_mon is
3While we could start with 𝑘 = 1, we set 𝑘 = 2 to reduce the number of learning stages.
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Table 1: Specification satisfaction percentages on convergence
for Fig.4,5

Spec. DistSPECTRL no_mon SPECTRL

𝜙1 99.62 00.00 100.00
𝜙2 99.05 00.00 97.38
𝜙3 97.59 71.94 96.81
𝜙4 97.31 00.00 90.78

𝜙𝑎 98.49 00.00 99.60

𝜙𝑠𝑐 86.79 00.00 00.00

often unable to complete the entire task (even by exhaustively going
through possible transitions) and global task completion requires
enhanced levels of synchronization between agents.

From Table 1 we see that upon convergence of the learning algo-
rithm, the agent is able to maintain a nearly 100% task completion
rate for our tested specifications, a significant improvement in com-
parison to the no_mon case, showing the importance of the task
monitor as part of a multi-agent policy.

Benefits of Distribution Over Centralization. The centralized
SPECTRL graphs (blue curves in Figs. 4, 5, 6) show that while
distribution may not be necessary for certain specifications with
few local portions (e.g. 𝜙2), concatenating them will quickly lead to
learning difficulties with larger number of agents (Fig. 5, 𝜙𝑠𝑐 and Fig.
6, 𝜙3). This difficulty is due in large part to state space explosion
of the task monitor in these cases as is apparent by the significantly
better performance of our distributed algorithm. We also remind
the reader that a centralized algorithm is further disadvantageous
in MARL settings due to the added synchronization cost between
agents during deployment.

Scaling to Larger State Spaces. The results in Fig. 5 show
promise that the DistSPECTRL framework can be scaled up to larger
dimension tasks as well. The 3D environment results exhibits similar
behavior to the 2D case with the no_mon showing difficulty in
progressing beyond the local tasks in the larger state space with
sparser predicates. The 𝜙𝑠𝑐 results also show promise in defining
relevant predicates and achieving general specifications for modern
MARL benchmarks.

Scaling to More Agents. Fig. 6 demonstrate the benefits of MA-
Dec scaling for larger 𝑁 when presented with an MA-Decomposable
specification. At smaller ranges of 𝑁 as well as less complex com-
binations of mixed and global objectives, the effect of MA-Dec
scaling is less pronounced. We observe that the stage based learning
is crucial for a even simple mixed specification like 𝜙3 with as little
as 𝑁 = 6 agents.

11 RELATED WORK
Multi-agent imitation learning [9, 20, 29] uses demonstrations of a
task to specify desired behavior. However in many cases, directly
being able to encode a specification by means of our framework is
more straightforward and removes the need to have demonstrations
beforehand. Given demonstrations, one may be able to infer the

specification [25] and make refinements or compositions for use in
our framework.

Prior work on balancing objectives between multiple agents [3]
was explored for discrete action spaces and mixing two specified
sets of reward functions (individual and environment). In contrast,
our work is done in continuous action spaces and focuses on auto-
matically specifying rewards for multiple local and global objectives.
Other work on balancing these objectives [28] do not explicitly deal
with non-Markovian tasks.

TLTL[10] is another scheme to incorporate temporal logic con-
straints into learning enabled controllers, although its insufficiency
in handling non-Markovian specifications led us to choose SPECTRL

as the basis for our methodology.
Reward Machines (RMs) [2, 21, 22] are an automaton-based

framework to encode different tasks into an MDP. While RMs can
handle many non-Markovian reward structures, a major difference
is that SPECTRL starts with a logical temporal logic specification
and includes with the automaton the presence of memory (in the
form of registers capable of storing real-valued information). Recent
work [8] shows the relative advantages SPECTRL-based solutions
may have over a range of continuous benchmarks.

Concurrent work has introduced the benefits of a temporal logic
based approach to reward specification [5]. While experimental
results are not yet displayed, the convergence guarantees of the given
algorithm are promising. Since we use complex non-linear function
approximators (neural networks) in our work, such guarantees are
harder to provide. Reward Machines have also been explored as a
means of specifying behavior in multi-agent systems [16] albeit in
discrete state-action systems that lend themselves to applying tabular
RL methods such as Q-learning. One may extend this framework to
continuous systems by means of function approximation but to the
best of our knowledge, this has not been attempted yet. Similar to
our synchronization state, the authors use a defined local event set
to sync tasks between multiple agents and requires being aware of
shared events visible to the other agents.

While we chose PPO to train the individual agents for its simplic-
ity, our framework is agnostic to the RL algorithm used and can be
made to work with other modern multi-agent RL setups [4, 13, 14]
for greater coordination capabilities.

Similar to our stage-based approach, transferring learning from
smaller groups of agents to larger ones has also been explored [26].

12 CONCLUSION
We have introduced a new specification language to help detail
MARL tasks and describe how it can be used to compile a desired
description of a distributed execution in order to achieve specified
objectives. Our framework makes task synchronization realizable
among agents through the use of: 1) Global predicates providing
checks for task completion that are easily computed, well-defined
and tractable; 2) A monitor state to keep track of task completion;
and 3) Synchronization states to prevent objectives from diverging
among agents.
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Table 2: Specification satisfaction percentages on convergence
for Fig.6, (Scaling to more Agents)

Spec. / # Agents MA-Dec DistSPECTRL SPECTRL

𝜙3/𝑁 =6 94.09 0.00 0.00

𝜙1/𝑁 =6 97.83 80.67 98.96
𝜙1/𝑁 =10 97.03 72.30 99.28

A GLOBAL TASK MONITOR CONSTRUCTION
We refer readers to the local specification compilation rules of SPEC-
TRL (defined in their Appendix). We highlight the main differences
with mixed objectives here.

For a specification 𝜙 let𝑄𝑔 the set of states with global predicates
in 𝜙 . Note that 𝑄𝑔 ⊆ Sync as mentioned in Sec 6. Here we consider
a 𝜙 to be global if it contains any global predicates.

achieve 𝑏 when 𝑏 is a global predicate
Add both states to global states 𝑄𝑔.

𝜙1; 𝜙2 when 𝜙2 is global
If 𝜙2 has an initial global state or (𝑞0)𝜙2 ∈ (Sync)𝜙2 then the transi-
tion from the final state of 𝜙1 to 𝜙2 is also global. If 𝑞𝑎 ∈ 𝐹𝜙1 then
𝑞𝑎 ∈ 𝑄𝑔.

𝜙1; 𝜙2 when 𝜙1 is global
It is the same as the local case with 𝑄𝑔 = (𝑄𝑔)𝜙1

𝜙1; 𝜙2 when both 𝜙1, 𝜙2 are global
It is the same as the local case with 𝑄𝑔 = (𝑄𝑔)𝜙1 ∪ (𝑄𝑔)𝜙2

𝜙1or 𝜙2 when 𝜙2 is global
Without loss of generality, if 𝜙2 contains global states then the com-
mon start state (as part of the compilation rules of or) is a synchro-
nization state. 𝑄𝑔 = (𝑄𝑔)𝜙1 ∪ (𝑄𝑔)𝜙2 .

B SCALING MA SPECIFICATIONS
MA-Dec Scaling can be thought of as a form of curriculum learning
for MA-Distributive specifications. We progressively narrow down
the valid space of parameters that satisfy the specification 𝜙𝑘 by
increasing the value of 𝑘 by a positive integer factor 𝑓 > 1. Consider
a set of 𝑁 = 10 agents and an MA-Distributive specification 𝜙 . 𝜙 is
also MA-Decomposable with factor 8 by Thm. 3. Since the spec. is
MA-Distributive as well 𝜙8 (𝜂,N) =⇒ 𝜙4 (𝜂,N) =⇒ 𝜙2 (𝜂,N).

Intuitively, as shown in Fig. 7, the policy parameter Π𝜃 satisfying
𝜙8 will also satisfy 𝜙4 and 𝜙2 as groups of 8 agents can either be
considered two groups of 4 agents or four groups of 2 agents.

Thus we position the parameter spaces as shown, and in the first
stage attempt to find a parameter within the largest region satisfying
𝜙2 (N). As the learning progresses, the curriculum narrows down
the desired search space until we obtain the parameters satisfying
the specification 𝜙 (N).

Figure 7: Scaling intuition for 𝑁 = 10, 𝑘 = 2, 𝑓 = 2. We repre-
sent the policy parameter space and the respective placement of
parameters that satisfy 𝜙𝑘 for various values of 𝑘. The arrows
show the direction we proceed searching for parameters in our
scaling process.

Figure 8: Specification satisfaction percentages for 𝑁 = 6 agents
on 𝜙1 comparing the MA-Dec scaling method (red) to centralized
SPECTRL (blue) and vanilla DistSPECTRL (green).

Calculating Scaling constant ck
We want all rewards at stage 𝑖 to be less than the rewards at stage
𝑖 + 1 to prevent local optima from arising where an agent is not
incentivized to progress to the next stage. Assuming that the final
reward at all stages is also upper bounded by 𝐶𝑢 (as is 𝛼).

𝑟𝑖,𝑡 ≤𝑟𝑖+1,𝑡 ′ ∀𝑡, 𝑡 ′

=⇒ 𝑖𝑐𝑘 +𝐶𝑇𝑀𝑖,𝑡 ≤(𝑖 + 1)𝑐𝑘 +𝐶𝑇𝑀𝑖+1,𝑡 ′

=⇒ max(𝑖𝑐𝑘 +𝐶𝑇𝑀𝑖,𝑡 ) ≤min((𝑖 + 1)𝑐𝑘 +𝐶𝑇𝑀𝑖+1,𝑡 ′)

Since 𝑐𝑘 ∈ R is a constant we get

max(𝐶𝑇𝑀𝑖,𝑡 ) −min(𝐶𝑇𝑀𝑖+1,𝑡 ′) ≤𝑐𝑘
=⇒ 𝐶𝑢 − (−2𝐷𝐶𝑢 ) ≤𝑐𝑘

Thus a suitable 𝑐𝑘 is (2𝐷 + 1)𝐶𝑢 .
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C IMPLEMENTATION
Computational resources
All experiments were run on a Intel Xeon Gold 2.10 Ghz 64-core
machine with 252 GB of RAM. Individual experiments used no more
than 16 cores at a time with experiments involving a hyperparameter
search taking 2 cores each.

Hyperparameters
A single 2 layer neural network with 256 nodes each and a tanh
activation function was used. The learning rate was varied from
1 × 10−3 to 1 × 10−5 over 2 × 107 iterations.

We used a grid search on hyperparameters for all experiments.

Table 3: Hyperparameters used for grid search

Hyperparameter Ranges

Batch Size [10000, 20000]
Initial Learning Rate [10−3, 10−4, 10−5]
Entropy Coefficient [0, 0.00176]

Metrics
The specification satisfaction is reported with value from 0 being no
sub-task completed to 1.0 being the entire specification satisfied. For
more details on the compilation rules we refer readers to Sec. A.

Figure 9: Specification satisfaction percentages for
the task monitor shown in Fig. 1 with 𝜙𝑒𝑥 =

reach𝑔𝑙 (10, 10); or
[
reach𝑙𝑜 (3, 0);

[
reach𝑙𝑜 (10, 10) or reach𝑔𝑙 (5, 0)

] ]
D SUBTASK SYNCHRONIZATION
The identification of local synchronization states 𝑞 ∈ Sync , where
𝑞 ∉ 𝑄𝑔 is as follows:

(1) Select all branching states in the graph of 𝑀𝜙 .
(2) Remove those with all branches local and disconnected.

That is, all monitor states in these branches that only have
local transitions 𝛿𝑙 .

(3) Remove all those whose branches rejoin at some state (the
rejoin point) and have all paths from branching state to the
rejoin point not include any global monitor states.
That is, if we consider only the subgraph of 𝑀𝜙 starting from
the branching state, the rejoin point should have no ancestors
which are global monitor states.

E ENVIRONMENTS
2D Environment
The environment follows first order dynamics in a 2D space (S ∈
R2). The action space (A ∈ R2) provides the velocity of the agent in
the space. Agents are initialized in a line below their reference goals
at a Y-coordinate uniformly sampled between (2, 3).

3D Environment
The environment follows first order dynamics in a 3D space (S ∈
R3). The action space (A ∈ R3) provides the velocity of the agent in
the space. Agents are initialized below the goal in the X-Y plane and
with a random Y,Z coordinate uniformly sampled between (2, 3).

StarCraft 2
Starcraft 2 [18] experiments used the "8m" map with 8 controllable
marines and 8 enemy AI-controlled marines. Each agent had state
space S ∈ R80 and 14 discrete actions. away_from_enemy defines a
predicate that is true when the agent cannot be shot by the enemy.
shooting_range defines a predicate that is true when the agent can
shoot the enemy (but can also be shot as well). away_from_enemy𝑔𝑙
being true implies that all the agents are together away from the
enemy at once (in a synchronized manner).

To define these predicates we make use of two indicators provided
by the Starcraft 2 environment. The first being shooting_range_ind ∈
{0, 1} which is 1 when the enemy within shooting range and 0 oth-
erwise. The other is dist_to_enemy ∈ [0, 1] being the normalized
distance to an enemy which is 0 when the enemy is not visible (the
observation radius is larger than the shooting range) .

The quantitative semantics of these new predicates are then

Jaway_from_enemyK𝑞 =(1 − shooting_range_ind) ∗ (𝜖)+
shooting_range_ind ∗ (dist_to_enemy − 𝜖)

Jshooting_rangeK𝑞 =(1 − shooting_range_ind) ∗ (−𝜖)+
shooting_range_ind ∗ (dist_to_enemy − 𝜖/10)

where 𝜖 ∈ [0, 1] is a real-value representing the error tolerance set
to 0.5 in the Starcraft experiments.

To augment our discrete action space Markov Game for the cen-
tralized SPECTRL comparison, we included an additional agent
with access to the full system state. This centralized controller was
used to choose between the available task monitor transitions.

F PROOFS
Proof of Theorem 1
The proof follows the exact outline as in SPECTRL since the language
composition and compilation rules are equivalent in the necessary
steps. We repeat their arguments here for clarity. First, the following
lemma follows by structural induction:

LEMMA 4. For 𝜎 ∈ Σ, J𝜎K(𝑠, 𝑣) = True ⇐⇒ J𝜎K𝑞 (𝑠, 𝑣) > 0.

Next, let𝐺𝑀 denote the underlying state transition graph of a task
monitor 𝑀 . Then,

LEMMA 5. The task monitors constructed by our algorithm sat-
isfy the following properties:

(1) The only cycles in 𝐺𝑀 are self loops.
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(2) The finals states are precisely those states from which there
are no outgoing edges except for self loops in 𝐺𝑀 .

(3) In 𝐺𝑀 , every state is reachable from the initial state and for
every state there is a final state that is reachable from it.

(4) For any pair of states 𝑞 and 𝑞′, there is at most one transition
from 𝑞 to 𝑞′.

(5) There is a self loop on every state 𝑞 given by a transition
(𝑞,⊤, 𝑢, 𝑞) for some update function 𝑢 where ⊤ denotes the
true predicate.

The first three properties ensure progress when switching from
one monitor state to another. The last two properties enable simpler
composition of task monitors. The proof follows by structural in-
duction. Theorem 1 now follows by structural induction on 𝜙 and
Lemmas 4 and 5.

Proof of Theorem 2
i) Let 𝜁𝑚, 𝜁 ′𝑚 be two augmented rollouts such that �̃�𝑖 (𝜁𝑚) > �̃�𝑖 (𝜁 ′𝑚).

• Case A. Both 𝜁𝑚, 𝜁 ′𝑚 end in final monitor states. Here �̃�𝑖𝑠 (𝜁𝑚) =
�̃�𝑖 (𝜁𝑚) > �̃�𝑖 (𝜁 ′𝑚) = �̃�𝑖𝑠 (𝜁 ′𝑚).
• Case B. 𝜁𝑚 ends in a final monitor state but 𝜁 ′𝑚 does not. Here

�̃�𝑖𝑠 (𝜁𝑚) = max
𝑘≤ 𝑗<𝑇

𝛼 (𝑠 𝑗 , 𝑞𝑖𝑇 , 𝑣 𝑗 )

+ 2𝐶𝑢 (𝑑𝑞𝑖
𝑇
− 𝐷) +𝐶𝑙

≤ max
𝑘≤ 𝑗<𝑇

𝛼 (𝑠 𝑗 , 𝑞𝑖𝑇 , 𝑣 𝑗 ) − 2𝐶𝑢 +𝐶𝑙 (𝑑𝑞𝑖
𝑇
− 𝐷 ≤ −1)

≤𝐶𝑙 (𝐶𝑢 ≥ 𝛼,𝐶𝑢 ≥ 0)

≤�̃�𝑖 (𝜁𝑚) (𝐶𝑙 ≤ �̃�𝑖 ∀ 𝑖 ∈ N)

=�̃�𝑖𝑠 (𝜁𝑚) (𝑞𝑖𝑇 ∈ 𝐹 )

• Case C. 𝜁𝑚 ends in a non-final monitor state. Here �̃�𝑖 (𝜁𝑚) =
−∞ and �̃�𝑖 (𝜁 ′𝑚) = −∞ as well.

(ii) if 𝜁𝑚 and 𝜁 ′𝑚 end in distinct non-final monitor states 𝑞𝑖
𝑇

and
(𝑞𝑖
𝑇
)′ such that 𝑑𝑞𝑖

𝑇
> 𝑑 (𝑞𝑖

𝑇
)′ , then �̃�𝑖𝑠 (𝜁𝑚) ≥ �̃�𝑖𝑠 (𝜁 ′𝑚).

Here the trajectories vary in only one agent’s monitor state.

�̃�𝑖𝑠 (𝜁𝑚) = max
𝑘≤ 𝑗<𝑇

𝛼 (𝑠 𝑗 , 𝑞𝑖𝑇 , 𝑣 𝑗 ) +𝐶𝑙

+ 2𝐶𝑢 (𝑑𝑞𝑖
𝑇
− 𝐷)

≥ max
𝑘≤ 𝑗<𝑇

𝛼 (𝑠 𝑗 , 𝑞𝑖𝑇 , 𝑣 𝑗 ) +𝐶𝑙 (𝑑𝑞𝑖
𝑇
≥ 𝑑 ′

𝑞𝑖
𝑇

+ 1)

+ 2𝐶𝑢 (𝑑 ′𝑞𝑖
𝑇

− 𝐷) + 2𝐶𝑢

≥𝐶𝑢 +𝐶𝑙 (𝐶𝑢 > |𝛼 | =⇒ 𝐶𝑢 > −𝛼)
+ 2𝐶𝑢 (𝑑 ′𝑞𝑖

𝑇

− 𝐷)

≥ max
𝑘≤ 𝑗<𝑇

𝛼 (𝑠 ′𝑗 , (𝑞
𝑖
𝑇 )
′, 𝑣 ′𝑗 ) +𝐶𝑙 (𝐶𝑢 > 𝛼)

+ 2𝐶𝑢 (𝑑 ′𝑞𝑖
𝑇

− 𝐷)

=�̃�𝑖𝑠 (𝜁 ′𝑚)

Proof of Theorem 3
Given 𝜙 being MA-Distributive, then for two disjoint sets of agents
𝑛1, 𝑛2 ⊂ N

𝜙 (𝜁𝑚, 𝑛1 ∪ 𝑛2) =⇒ 𝜙 (𝜁𝑚, 𝑛1) ∧ 𝜙 (𝜁𝑚, 𝑛2)
Given a value 𝑘 ∈ Z+, 1 ≤ 𝑘 < 𝑁 we can create a group of agent
sets {𝑛 𝑗 } 𝑗 ∈1,...,𝐽 forming a partition of N with minimum group size
𝑘 using the set_groups(𝑘,N) function in Alg.1. Now

𝜙 (𝜁𝑚,
⋃

𝑗 ∈1,...,𝐽
𝑛 𝑗 ) =⇒ 𝜙 (𝜁𝑚, 𝑛1) ∧ 𝜙 (𝜁𝑚,

⋃
𝑗 ∈2,...,𝐽

𝑛 𝑗 )

=⇒ 𝜙 (𝜁𝑚, 𝑛1) ∧ 𝜙 (𝜁𝑚, 𝑛2) ∧ 𝜙 (𝜁𝑚,
⋃

𝑗 ∈3,...,𝐽
𝑛 𝑗 )

=⇒
∧

𝑗 ∈{1,...,𝐽 }
𝜙 (𝜁𝑚, 𝑛 𝑗 )

Thus 𝜙 is also MA-Decomposable with factors 𝑘 ∈ Z+, 1 ≤ 𝑘 < 𝑁 .

https://ala2022.github.io/
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