
BaSeOpt: Bayesian Image Sensor Layout
Optimization for Efficient Vision Systems

Anonymous Author(s)
Affiliation
Address
email

Abstract

Conventional camera sensors capture images on a uniform pixel grid, producing1

redundant data, high memory usage, and costly transmission regardless of the2

downstream task. We present BaSeOpt, a task-aware sensing framework that3

jointly optimizes sensor layouts and vision models for applications such as semantic4

segmentation. Instead of uniformly sampling every pixel, BaSeOpt allocates higher5

resolution to task-critical regions while sparsely sampling less informative areas,6

reducing acquisition overhead. To search the vast space of possible layouts, we7

formulate the problem as Bayesian Optimization in the latent space of a Variational8

Autoencoder trained on candidate layouts, enabling efficient discovery of promising9

configurations. Experiments demonstrate that BaSeOpt automatically identifies10

sensor layouts that accelerate data acquisition at the camera level, highlighting the11

benefits of co-optimizing sensing and inference for efficient vision systems.12

1 Introduction13

Designing efficient imaging sensors remains a critical challenge in computer vision and robotics.14

Modern neural networks achieve strong performance on tasks like classification and segmentation, but15

typically assume access to fully sampled, high-resolution images, an assumption that is costly in terms16

of memory, bandwidth, and computation, especially for real-world applications such as autonomous17

vehicles, drones, and edge devices with limited hardware. Traditional sensor designs sample uniformly18

across the image, even though background regions often provide redundant information while object19

regions are most important for prediction. This motivates adaptive approaches that allocate resolution20

selectively: recent work explores compressive sensing strategies that prioritize informative regions21

[Liu et al., 2024] and differentiable frameworks that jointly optimize sensor layouts and neural22

network parameters [Sommerhoff et al., 2024].23

Optimizing such layouts is a high-dimensional problem, particularly when sensors must adapt to task24

and environment-specific constraints. Bayesian Optimization (BO) has shown promise in addressing25

similar challenges in domains ranging from hyperparameter tuning [Snoek et al., 2012] to aerospace26

[Perlini et al., 2024, Priem et al., 2020] and renewable energy design [Sheikh et al., 2022]. To27

efficiently explore the combinatorial layout space, candidate sensor configurations can be encoded28

into a continuous latent space using a Variational Autoencoder (VAE) [Kingma and Welling, 2014].29

This representation enables BO to operate in a lower-dimensional, smooth space, allowing for faster30

convergence and better generalization across environments. By conditioning this optimization on31

environment-specific priors, the framework identifies layouts that focus resolution on the most32

informative regions while minimizing unnecessary data acquisition elsewhere.33

Overall, our approach offers a practical way to design task and environment-aware sensors, efficiently34

combining data acquisition and model computation to build high-performance vision systems for35

resource-limited settings.36
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Figure 1: Proposed Method: we first train a Variational Autoencoder (VAE) on layout data to learn a
compact latent representation. Afterwards, Bayesian Optimization (BO) samples a latent vector from
the trained VAE’s latent space, which is decoded to generate a candidate layout. Next, we apply this
layout to the data and evaluate the target network with pretrained weights, obtaining a performance
metric. Finally, Bayesian Optimization (BO) iteratively refines the latent vector sampling based on
the observed performance, repeating the process to optimize the layout generation.

2 Method37

We consider a sensor layout comprising H rows and W columns of pixels arranged in a regular38

rectangular grid. The pixel grid is partitioned into N non-overlapping sub-regions, or patches, each39

of size h× w pixels, such that40

H = h ·Hp, W = w ·Wp, N = Hp ·Wp,

where Hp and Wp denote the number of patches along the vertical and horizontal directions, respec-41

tively. Each patch Pk, for k ∈ {1, . . . , N}, is assigned a resolution mode:42

• High-resolution mode: all h× w pixels within Pk are sampled.43

• Low-resolution mode: only a reduced subset Sk ⊂ {1, . . . , h} × {1, . . . , w} of pixels is44

sampled, with |Sk| < h× w.45

In our setting, the resolution mode assignment is fixed and does not change over time. This arises from46

the characteristics of the deployed imaging system, where the sensor is embedded in an environment-47

specific camera. Thus, the selection of low- and high-resolution patches must be determined prior to48

deployment and remains constant. The central challenge is to design this fixed spatial allocation to49

balance spatial coverage and pixel density, ensuring optimal downstream performance under a strict50

sampling budget.51

2.1 Variational Autoencoder for Layout Encoding52

To efficiently represent possible sensor layouts and capture dependencies among patches, we employ53

a Variational Autoencoder (VAE) [Kingma and Welling, 2014]. Let M ∈ {0, 1}H×W denote a binary54

layout of the sensor. The VAE introduces a latent variable z ∈ RD and models the joint distribution:55

pθ(M, z) = pθ(M | z) p(z),
where p(z) = N (0, I) is a standard Gaussian prior, and pθ(M | z) is the decoder parameterized by56

θ.57

Since the true posterior pθ(z | M) is intractable, Kingma and Welling [2014] introduced a variational58

approximation qϕ(z | M) (encoder) with parameters ϕ:59

qϕ(z | M) = N
(
z | µϕ(M),diag(σ2

ϕ(M))
)
,
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where µϕ(M) and σ2
ϕ(M) are outputs of the encoder network.60

The VAE is trained by maximizing the evidence lower bound (ELBO):61

L(θ, ϕ;M) = Ez∼qϕ(z|M)

[
log pθ(M | z)

]
−DKL

(
qϕ(z | M) || p(z)

)
,

where DKL denotes the Kullback–Leibler divergence.62

In our setup, the decoder produces logits that are passed through a sigmoid to generate a probability63

map. To satisfy the budget constraint, we derive a binary layout: the top-k lowest-probability patches64

are assigned as low-resolution (value 0), while the remaining patches are high-resolution (value 1).65

This procedure enforces a clear separation between regions and maintains consistency with the binary66

layout design.67

2.2 Bayesian Optimization in Latent Space with TPE68

Bayesian Optimization (BO) is a probabilistic framework for optimizing expensive black-box func-69

tions, particularly suitable when evaluations are costly, non-differentiable, or involve complex70

interactions. In our work, we use the Tree-structured Parzen Estimator [Bergstra et al., 2011] (TPE)71

sampler in Optuna Akiba et al. [2019], which approximates the objective function using a non-72

parametric surrogate based on probability densities over the latent vectors. Specifically, TPE models73

two densities:74

l(z) = P (z | good trials), g(z) = P (z | bad trials),
and selects the next candidate zt+1 by maximizing the ratio l(z)/g(z). Here, good trials correspond75

to latent vectors whose decoded layouts achieve high downstream performance, while bad trials76

correspond to vectors with low performance. TPE determines these dynamically based on a chosen77

quantile of previously observed objective values.78

In our approach, each latent vector z ∈ RD encodes a candidate sensor layout through a VAE, and79

the decoder ϕ maps z to a binary mask (including the deterministic post-processing):80

ϕ :Rd → {0, 1}H×M

z 7→ M.

The objective function can then be expressed as81

J (z) = J (ϕ(z)),

representing the downstream performance of the layout defined by ϕ(z). For example, in case of82

segmentation tasks, J (z) corresponds to the mean Intersection over Union (mIoU) on the validation83

set, computed between the ground-truth segmentation masks and the masks predicted by the neural84

network. TPE iteratively samples latent vectors z, evaluates J (z), updates the density estimates l85

and g, and selects subsequent candidates. The optimal layout is finally given by86

z∗ = arg max
z∈RD

J (z).

By performing optimization in the continuous latent space defined by the VAE, BO can efficiently87

explore the space of feasible layouts while inherently capturing dependencies among patches via the88

decoder ϕ.89

3 Experiments90

3.1 Binary Layout Generation and VAE Setup91

We define a binary layout as an image composed of patches containing uniform values: 1s (high92

resolution) and 0s (low resolution). The budget is defined as the number of low-resolution patches93

in a layout. We experiment with budgets of 60, and 80. Cityscapes dataset [Cordts et al., 2016]94

is a large-scale benchmark for urban scene understanding containing high-resolution images of95

street scenes from 50 cities, annotated for tasks such as semantic segmentation and having original96

resolution 1024× 2048. We construct layouts of size 128× 256, where each patch has dimensions97

16× 16. This choice ensures that the layouts can later be upsampled by a factor of 8 to match the98

original Cityscapes resolution. To train the VAE, we generate a search space of 50,000 layouts, using99
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Figure 2: Top row: Results when 32×32 pixels are sampled from each 128×128 low-res patch, shown
for budgets of 80 and 60. Bottom row: Results when 16×16 pixels are sampled from each 128×128
low-res patch, for the same budgets. Across all random seeds, most high-resolution patches are
learned to lie near the center of the image, consistent with the typical structure of Cityscapes scenes.
The model used is Segformer.

90% for training and the remaining 10% for visualization. The VAE uses a latent dimension of 64100

and is trained for 250 epochs. To enhance the learning process, we apply a Gaussian blur to both the101

layouts and their ground truths. The loss function combines mean squared error, KL divergence, and102

an additional regularization term that enforces the budget constraint. Specifically, this term computes103

the difference between the predicted and actual number of zero-valued pixels in the layout, ensuring104

that the learned layouts adhere to the specified budget.105

3.2 Layout Optimization with Pretrained Segmentation Models106

After training the VAE, we leverage pretrained segmentation model, SegFormer [Xie et al., 2021],107

trained on the full-resolution Cityscapes dataset, to optimize layout design. Specifically, we sample a108

latent vector of length 64 from the VAE’s latent space and decode it into a layout of size 128× 256.109

The decoded layout is converted to a binary mask by selecting the top-k lowest-probability patches as110

low-resolution, with the remaining patches treated as high-resolution. The layout is then upsampled111

by a factor of 8 to match the original Cityscapes resolution, resulting in patches of size 128× 128.112

Next, within each low rsolution 128 × 128 patch, we sample a subset of pixels in a regular grid113

pattern and use nearest-neighbor interpolation to upsample them back to the original patch size. The114

reconstructed RGB images are then passed to the pretrained segmentation model, and the resulting115

mIoU is used as the optimization objective for Bayesian Optimization. For this purpose, we employ116

the TPE sampler from Optuna to efficiently explore the latent space.117

In Figure 2, we present results for budgets of 60 and 80 (number of low resolution patches in the118

layout), varying the number of pixels sampled in low-resolution regions. In both cases, a smaller119

budget yields higher mIoU, while fewer sampled pixels per patch reduce performance. The resulting120

layouts are intuitive, with higher-resolution patches concentrated in central regions of greatest activity.121

In future work, we aim to fine-tune the model during each trial to further improve performance on122

mixed-resolution data while optimizing the layout.123

4 Conclusion124

In this paper, we have presented a new framework that combines generative modeling with layout125

optimization to guide resource allocation in complex vision tasks. By leveraging a Variational126

Autoencoder to explore the latent space of layouts and applying Bayesian Optimization to refine127

sampling, our approach efficiently identifies configurations that maximize task performance. Our128

experiments demonstrate that our proposed method consistently discovers meaningful patterns in129

layout allocation, highlighting its potential to adapt to different problem settings. This work opens130

avenues for further exploration of generative-optimization strategies in vision and beyond, including131

extensions to different data modalities and more sophisticated objective criteria.132
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