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Abstract
We provide an efficient O(n2) implementation
for solving the all pairs minimax path problem
or widest path problem in an undirected dense
graph. The distance matrix is also called the all
points path distance (APPD). We conducted ex-
periments to test the implementation and algo-
rithm, compared it with several other algorithms
for solving the APPD matrix. Result shows Al-
gorithm 4 works good for solving the widest path
or minimax path APPD matrix. It can drastically
improve the efficiency for computing the APPD
matrix. There are several theoretical outcomes
which claim the APPD matrix can be solved ac-
curately in O(n2) . However, they are imprac-
tical because there is no code implementation
of these algorithms. Algorithm 4 is the first al-
gorithm that has an actual code implementation
for solving the APPD matrix of minimax path or
widest path problem in O(n2), in an undirected
dense graph.

1. Introduction
The minimax path problem is a classic problem in graph
theory and optimization. It involves finding a path between
two nodes in a weighted graph such that the maximum
weight of the edges in the path is minimized. 1

Given a graph G = (V,E) where V is the set of vertices
and E is the set of edges, each edge e ∈ E has a weight
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1https://en.wikipedia.org/wiki/Widest_
path_problem

ew. For an undirected graph with n vertices, the maximum
number of edges is n(n−1)

2 . A dense graph has close to
n(n−1)

2 edges. We can say a dense graph has O(n2) edges.
In an undirected graph, each edge is bidirectional, meaning
it connects two vertices in both directions.

The objective of the minimax path problem is to find a path
P from a starting node i to a destination node j such that
the maximum weight of the edges in the path P is mini-
mized. A minimax path distance between a pair of points is
the maximum weight in a minimax path between the points
(Equation 2).

Φ = {max weight(p) | p ∈ Θ(i,j,G)} (1)

M(i, j | G) = min(Φ) (2)

where G is the undirected dense graph. Θ(i,j,G) is the set
of all paths from node i to node j. p is a path from node i
to node j, max weight(p) is the maximum weight in path
p. Φ is the set of all maximum weights. min(Φ) is the
minimum of Set Φ (Liu, 2023).

The distance can also be called the longest-leg path dis-
tance (LLPD) (Little et al., 2020) or Min-Max-Jump dis-
tance (MMJ distance) (Liu, 2023). The all pairs minimax
path distances calculate the distance between each pair of
points in a dataset X or graph G . It is also called all points
path distance (APPD) (Little et al., 2020). It is a matrix of
shape n × n. A dataset X can be straightforwardly con-
verted to a complete graph.

We can use a modified version of the Floyd–Warshall algo-
rithm to solve the APPD in both directed and undirected
dense graphs (Weisstein, 2008), or use the Algorithm 1
(MMJ distance by recursion) in (Liu, 2023), both of them
take O(n3) time. However, in an undirected dense graph,
we have a better choice. We may use an O(n2) algorithm
to calculate the APPD matrix. There are several theoreti-
cal outcomes which claim the APPD matrix can be solved
accurately in O(n2) (Sibson, 1973; Demaine et al., 2009;
2014; Alon & Schieber, 2024). However, there is no code
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implementation of these algorithms, which implies they are
impractical.

Code implementation is the process of translating a design
or algorithm into a programming language. It is critical
in algorithm design where ideas are turned into practical,
executable code that performs specific tasks.

In section 4.3 (MMJ distance by calculation and copy) of
(Liu, 2023), Liu proposes an algorithm which also claims
to solve the APPD matrix accurately in O(n2), in an undi-
rected dense graph. The algorithm is referred to as Algo-
rithm 4 (MMJ distance by Calculation and Copy). In the
paper, the algorithm is left unimplemented and untested. In
this paper, we introduce a code implementation of Algo-
rithm 4, and test it.

The widest path problem is a closely related topic to mini-
max path problem. In contrary, The objective of the widest
path problem is to find a path P from a starting node s
to a destination node t such that the minimum weight of
the edges in the path P is maximized. Any algorithm for
the widest path problem can be easily transformed into an
algorithm for solving the minimax path problem, or vice
versa, by reversing the sense of all the weight comparisons
performed by the algorithm. Therefore, we can roughly say
that the widest path problem and the minimax path problem
are equivalent.

2. RELATED WORK
Numerous distance measures have been proposed in the lit-
erature, including Euclidean distance, Manhattan Distance,
Chebyshev Distance, Minkowski Distance, Hamming Dis-
tance, and cosine similarity. These measures are frequently
used in algorithms like k-NN, UMAP, and HDBSCAN. Eu-
clidean distance is the most commonly used metric, while
cosine similarity is often employed to address Euclidean
distance’s issues in high-dimensional spaces. Although Eu-
clidean distance is widely used and universal, it does not
adapt to the geometry of the data, as it is data-independent.
Consequently, various data-dependent metrics have been
developed, such as diffusion distances (Coifman & Lafon,
2006; Coifman et al., 2005), which arise from diffusion
processes within a dataset, and path-based distances (Fis-
cher & Buhmann, 2003; Chang & Yeung, 2008).

Minimax path distance has been used in various machine
learning models, such as unsupervised clustering analy-
sis (Little et al., 2020; Fischer et al., 2001; 2003; Fis-
cher & Buhmann, 2003), and supervised classification
(Chehreghani, 2017; Liu, 2023). The distance typically
performs well with non-convex and highly elongated clus-
ters, even when noise is present (Little et al., 2020).

2.1. Calculation of minimax path distance

The challenge of computing the minimax path distance is
known by several names in the literature, such as the max-
imum capacity path problem, the widest path problem, the
bottleneck edge query problem (Pollack, 1960; Hu, 1961;
Camerini, 1978; Gabow & Tarjan, 1988), the longest-leg
path distance (LLPD) (Little et al., 2020), and the Min-
Max-Jump distance (MMJ distance) (Liu, 2023).

A straightforward computation of minimax path distance
is computationally expensive due to the large search space
(Little et al., 2020). However, for a fixed pair of points x
and y connected in a graph G = G(V,E), the distance can
be calculated in O(|E|) time (Punnen, 1991).

A well-known fact about minimax path distance is: “the
path between any two nodes in a minimum spanning tree
(MST) is a minimax path.”(Hu, 1961) With this conclusion,
we can simplify an undirected dense graph into a minimum
spanning tree, when calculating the minimax path distance.

2.2. Computing the all points path distance

Computing minimax path distance for all points is known
as the all points path distance (APPD) problem. Ap-
plying the bottleneck spanning tree construction to each
point results in an APPD runtime of O(min{n2 log(n) +
n|E|, n|E| log(n)}) (Little et al., 2020; Camerini, 1978;
Gabow & Tarjan, 1988). The resulting APPD may not be
accurate when calculating with bottleneck spanning tree,
because a MST (minimum spanning tree) is necessarily a
MBST (minimum bottleneck spanning tree), but a MBST is
not necessarily a MST. A variant of the Floyd-Warshall al-
gorithm can calculate the APPD accurately in O(n3) (Aho
& Hopcroft, 1974). Several theoretical results suggest
that the APPD matrix can be accurately solved in O(n2)
time (Sibson, 1973; Demaine et al., 2009; 2014; Alon &
Schieber, 2024). However, the absence of code implemen-
tations for these algorithms indicates their impracticality.

3. Implementation of the algorithm
As described in Section 1, the Algorithm 4 (MMJ distance
by Calculation and Copy) in (Liu, 2023) also claims to
solve the APPD matrix accurately in O(n2), in an undi-
rected dense graph. But it is left unimplemented and
untested. Figure 1a is Algorithm 4 (MMJ distance by Cal-
culation and Copy) in (Liu, 2023), for convenience of read-
ing, we re-post it here. Figure 1b is its python implementa-
tion.

Note the three embedded for-loops make it look like an
O(n3) algorithm, but it is actually an O(n2) algorithm. Be-
cause when the variable i in Line 21 is small, both tree1
and tree2 are of size O(n); but when the variable i is large,
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(a) Algorithm 4 (b) Python implementation of Algorithm 4

Figure 1: Algorithm 4 and its Python implementation. The three embedded for-loops make it look like an O(n3) algorithm,
but it is actually an O(n2) algorithm.

Implementation ID Implementation name Complexity Coding language Notes
0 Algo 1 Python O(n3) Python Algorithm 1 (MMJ distance by recursion)
1 Algo 1 C++ O(n3) C++ Algorithm 1 (MMJ distance by recursion)
2 Floyd Warshall Python O(n3) Python A variant of Floyd-Warshall Algorithm
3 Floyd Warshall C++ O(n3) C++ A variant of Floyd-Warshall Algorithm
4 MST shortest path O(n3log(n)) Python Calculate the shortest path in a MST
5 Algo 4 O(n2) Python Algorithm 4 (MMJ distance by Calculation and Copy )

Table 1: Profiles of the four algorithms. Two of them are implemented with different programming languages, Python and
C++

data 139 (N = 120) data 109 (N = 300) data 18 (N = 500) data 19 (N = 850) data 16 (N = 2500) data 35 (N = 5000) data 136 (N = 10000)
Algo 1 Python 13.451s 208.363s 990.308s 4681.911s >7200s >7200s >7200s
Algo 1 C++ 0.033s 0.414s 1.794s 9.032s 237.961s 1986.928s >7200s
Floyd Warshall Python 1.489s 23.353s 106.745s 534.683s >7200s >7200s >7200s
Floyd Warshall C++ 0.033s 0.436s 2.324s 10.035s 253.909s 2162.514s >7200s
MST shortest path 0.399s 4.229s 24.926s 110.449s 2503.483s >7200s >7200s
Algo 4 0.02s 0.073s 0.191s 0.511s 4.311s 17.015s 67.048s

Table 2: Performance of the four algorithms. N is the number of points in the datasets.
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Figure 2: A variant of the Floyd-Warshall algorithm for
solving the minimax path problem

Figure 3: Python implementation of MST shortest path,
see Table 1
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Figure 4: Performance of the algorithms (implementations)

both tree1 and tree2 are of size O(1). The final net effect
is that the three embedded for-loops only access each cell
of the APPD matrix only once. Therefore, it is an O(n2)
algorithm.

In the implementation, we first construct a minimum span-
ning tree (MST) of the undirected dense graph. The com-
plexity of constructing a MST with prim’s algorithm is
O(n2). Then, we sort the edges of the MST in descending
order. It is critical to remove the edges from the MST one-
by-one, from large to small. Only by this we can get the
two sub-trees, tree1 and tree2. By traversing each sub-tree,
nodes of the two sub-trees can be obtained, respectively.

4. Testing of the algorithm
In an experiment, we tested the Algorithm 4 (MMJ distance
by Calculation and Copy) on seven datasets with different
number of data points, note a dataset can be easily con-
verted to a complete graph. The performance of Algorithm
4 is compared with three other algorithms that can calculate
the APPD matrix.

Table 1 lists the profiles of the four algorithms. Algo 1
is the Algorithm 1 (MMJ distance by recursion) in (Liu,
2023), it has complexity of O(n3); Floyd Warshall is
a variant of the Floyd-Warshall algorithm. Figure 2 is
its python implementation. It has complexity of O(n3);
MST shortest path firstly construct a minimum spanning
tree (MST) of the undirected dense graph, then calculate
the shortest path between each pair of nodes, then compute
the maximum weight on the shortest path. Its complexity is
O(n3log(n)). Figure 3 is its python implementation. The
implementation is based on Madhav-99’s code 2; Algo 4 is
Algorithm 4 (MMJ distance by Calculation and Copy) in
(Liu, 2023), it has complexity of O(n2). Both Algo 1 and
Floyd Warshall are implemented with C++ and python, re-
spectively, to test the difference between different program-
ming languages.

4.1. Performance

Table 2 is performance of the algorithms (implementa-
tions). We test each algorithm with seven datasets which
have different number of data points. The data sources cor-
responding to the data IDs can be found at this URL. 3 The
values are the time of calculating the minimax path APPD
by each algorithm, on a desktop computer with “3.3 GHz
Quad-Core Intel Core i5” CPU and 16 GB RAM.

To save time, we stop the execution of an algorithm if it

2https://github.com/Madhav-99/
Minimax-Distance

3https://github.com/mike-liuliu/
Min-Max-Jump-distance
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cannot obtain the APPD matrix in 7200s (two hours). The
computing time is recorded only once for each dataset and
algorithm. Figure 4 converts the values in Table 2 into a
figure. It can be seen that Algorithm 4 has achieved a good
performance than other algorithms. It can calculate the
APPD matrix of 10,000 points in about 67 seconds, while
other algorithms cannot finish it in two hours.

Reasonably, the C++ implementations of Algo 1 and
Floyd Warshall are much faster than their python edi-
tion. Interestingly, when implemented in python, Algo 1
is much slower than Floyd Warshall, but a little faster than
Floyd Warshall in C++.

4.2. Solving the widest path problem

As stated in Section 7 (Solving the widest path problem)
of (Liu, 2023), Algorithm 4 (MMJ distance by Calculation
and Copy) can be revised to solve the widest path problem
APPD in undirected graphs, by constructing a maximum
spanning tree and sort the edges in ascending order. In an-
other experiment, we tested using Algorithm 4 to compute
the widest path APPD. Result shows Algorithm 4 works
good for solving the widest path problem.

5. Proof of the algorithm
A good question is why Algorithm 4 (MMJ distance by
Calculation and Copy) works. Here is a theoretical proof
of the correctness of the algorithm.

Whenever we are about to remove an edge e from the MST,
e must belong to a connected sub-tree of MST T . The sub-
tree is noted St. A sub-tree is a tree wholly contained in
another. Note the MST T can be considered as a sub-tree
of itself. We can conclude edge e is the largest edge in sub-
tree St. Since the edges have been sorted in descending
order, and edges larger than e have been removed in previ-
ous steps. It does not matter if there are other edges in St

which are as large as e.

After removing edge e from St, we get two smaller con-
nected sub-trees, tree1 and tree2. For any pair of nodes
(p, q), where p ∈ tree1, q ∈ tree2, the minimax path
distance between p and q must be the weight of edge e.
Because “the path between any two nodes in a minimum
spanning tree (MST) is a minimax path” (Hu, 1961), and
edge e is the largest edge in sub-tree St. A path between p
and q must pass through edge e, and edge e is the largest
edge in the path. It does not matter if there are other edges
in the path which are as large as e. Note a sub-tree that has
only one node is considered as a valid sub-tree.

Therefore, the minimax path distance between p and q must
be the weight of edge e. The correctness of Algorithm 4
(MMJ distance by Calculation and Copy) is proved.

6. Discussion
6.1. Merit of Algorithm 1

Algorithm 1 (MMJ distance by recursion) has a merit of
warm-start. Suppose we have calculated the APPD matrix
MG of a large graph G, then we got a new point (or node)
p, where p /∈ G. The new graph is noted G + p. To cal-
culate the APPD matrix of graph G + p, if we use other
algorithms, we may need to start from zero. Algorithm 1
has the merit of utilizing the calculated MG for computing
the new APPD matrix, with the conclusions of Theorem
3.3., 3.5., 6.1., and Corollary 3.4. in (Liu, 2023). This is
especially useful when the graph is a directed dense graph,
where starting from zero needs O(n3) complexity, but a
warm-start of Algorithm 1 (MMJ distance by recursion)
only needs O(n2) complexity. We can say Algorithm 1
supports online machine learning4, in which data becomes
available in a sequential order.

6.2. Using parallel programming

If speed is the main concern of calculating the APPD ma-
trix, we can use parallel programming to accelerate Algo-
rithm 4. Firstly, we can use different processors for travers-
ing the tree1 and tree2 in Line 25 and 26 of Figure 1b.
Secondly, we can copy the minimum spanning tree (MST)
to many processors. For the nth processor, we just re-
move the n largest edges, obtaining the nth tree1 and tree2,
traversing them, then fill in the corresponding positions of
the APPD matrix that are decided by the nth tree1 and
tree2.

7. Conclusion
We implemented the Algorithm 4 (MMJ distance by Cal-
culation and Copy), then tested the implementation and
compared it with several other algorithms that can calcu-
late the all pairs minimax path distances, or also called the
all points path distance (APPD). Experiment shows Algo-
rithm 4 works good for solving the widest path or minimax
path APPD matrix. As an algorithm of O(n2) complexity,
it can drastically improve the efficiency of calculating the
APPD matrix. Note algorithms for solving the APPD ma-
trix are at least in O(n2) complexity, because the matrix is
an n× n matrix.

In Section 2.3.3. of the paper “Path-Based Spectral Clus-
tering: Guarantees, Robustness to Outliers, and Fast Algo-
rithms,” (Little et al., 2020) Dr. Murphy and his collabora-
tors write:

“Naively applying the bottleneck spanning tree con-
struction to each point gives an APPD runtime of

4https://en.wikipedia.org/wiki/Online_
machine_learning
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O(min{n2log(n) + n|E|, n|E|log(n)}). However the
APPD distance matrix can be computed in O(n2), for ex-
ample with a modified SLINK algorithm (Sibson, 1973), or
with Cartesian trees (Alon and Schieber, 1987; Demaine et
al., 2009, 2014). ”

The author sent an email for further clarity about this state-
ment.

The author:

“You indicated the APPD distance matrix can be computed
in O(n2). However, I searched the Internet and github,
I have not found any code implementation that can accu-
rately calculate the APPD distance matrix in O(n2). Do
you know any code implementation of that? Please indi-
cate it to me. ”

Dr. Murphy:

“If you can find an implementation of SLINK to do sin-
gle linkage clustering in O(n2), then you can do APPD by
reading off the distances from the resulting dendrogram. I
don’t know any implementations of SLINK, and it may be
easier to prove things about than to implement practically.
”

“Regarding tree structures, these are certainly more of the-
oretical interest, and I would not be surprised if there were
no practical implementations of them at all. So, achieving
O(n2) via those methods may be impractical. ”

It is worth noting that although Dr. Murphy indicated the
SLINK algorithm can be revised to solve the APPD matrix
in O(n2) time, there is no code implementation showing
how the SLINK algorithm can be revised to do so.

The contributions of the paper can be summarized as fol-
lowing:

• It provides the first code implementation for solving
the all pairs minimax path problem or widest path
problem in an undirected dense graph, in O(n2) time.

• It provides the fastest code implementation for solv-
ing the all pairs minimax path problem or widest path
problem in an undirected dense graph.

• We provide a theoretical proof of the correctness of
Algorithm 4 (MMJ distance by Calculation and Copy)
.
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