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ABSTRACT
The data stream generated by users on web applications is often

collected using a local differential privacy (LDP) approach to ensure

privacy. This approach offers rigorous theoretical guarantees and

low computational overhead, albeit at the expense of data utility.

Data utility encompasses both the value of individual data points

and the temporal relevance that exists between them, but existing

studies primarily focus on enhancing the former utility while ne-

glecting the latter. Furthermore, the collected data often requires

cleaning, and we have demonstrated through a case study that data

stream lacking time relevance poses a significant risk to users’ pri-

vacy during the cleaning process. In this paper, for the first time we

present an online LDP publishing mechanism while preserving the

inherent temporal relevance for the infinite stream, called the Sam-

pling Period Perturbation Algorithm (SPPA). Specifically, we model

the temporal relevance between data points as the Fourier interpo-

lation function, resulting in a computational complexity reduction

from O(𝑛2) to O(𝑛 log𝑛) when compared with the conventional

Markov approach in the offline setting. To strike a better balance

between privacy and utility, we add noise to the sampling period

due to its minimal impact on sensitivity, which is analyzed by our

novel concepts of (𝜖, 𝜏)-temporal indistinguishability and (𝜖,𝑤, 𝜏)-
event LDP. Through extensive experiments, SPPA exhibits superior

performance in terms of both data utility and privacy preservation

compared to the state-of-the-art baselines. In particular, when 𝜖 = 1,

compared with the state-of-the-art baseline, SPPA diminishes the

MSE by up to 64.2%, and raises the event monitoring efficiency by

up to 21.4%.
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1 INTRODUCTION
In the realm of Web services, real-time data streams play a crucial

role in delivering personalized experiences, targeted advertising,

and other features such as real-time analytics, recommendation sys-

tems, and search engine optimization. However, with the increasing

collection and analysis of vast amounts of personal data comes an

elevated risk of privacy breaches. To address this concern, industry

giants like Google and Apple commonly employ local differential

privacy (LDP) techniques [5, 11, 15] to safeguard user data locally

before uploading. Generally, a differentially private mechanism

employs randomized algorithms, such as noise injection, to achieve

data indistinguishability and thus provide privacy protection but

reduce data utility. For example, noisy GPS trajectories can heav-

ily affect downstream applications like classification [24] or traffic

prediction [36]. Therefore, it is crucial to strike a moderate balance

between privacy and utility [8, 22, 26, 28].

The utility of data streams lies not only in their value magnitude,

but also in their implicit temporal relevance. For example, tempera-

ture changes throughout the day tend to rise and fall periodically

over time, rather than occurring randomly. On one hand, temporal

relevance is a key part of data dependencies, which are essential

for identifying potentially faulty or inaccurate information within

a given context [37]. Discovering these dependencies is a funda-

mental challenge in the data quality management pipeline, aiming

to assist users to better profile the data and improve the data qual-

ity [9]. On the other hand, temporal relevance holds significant

importance in data mining as well. For instance, analyzing user

eye movements while browsing an e-commerce website can reveal

implicit shopping behavioral patterns that, when better understood,

can enable more precise targeted advertising [31].

However, current research predominantly focuses on enhancing

the utility of statistics by changing the value of datapoints without

considering their dependency [8, 19, 29, 35], resulting in a lack

of temporal relevance in uploaded data streams. The drawback of

these approaches is two-fold: For consumers relying on accurate

information, preserving these dependencies is imperative; mean-

while for potential attackers who possess knowledge about such

dependencies, there exists a possibility to compromise carefully

designed privacy protection mechanisms. For example, with the

primary intention of minimizing aggregation errors and enhancing

utility, Ye et al. [35] propose an algorithm that shuffles datapoints in

the stream in an LDP-compliant manner without changing actual

values. However, in numerous scenarios (e.g., taxi trajectory), the
temporal relevance can be discovered similarly [9], making the

reconstruction of the actual stream possible and thus resulting in a

privacy catastrophe (see Section 2.4).
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In this paper, we propose a novel real-time LDP algorithm for

processing infinite streams without disturbing temporal relevance

for the first time, called the Sampling Period Perturbation Algorithm

(SPPA). Intuitively, time series data exhibiting temporal relevance

can be viewed as a periodic sampling of a certain function 𝑓 with

time serving as an independent variable. To publish an infinite

stream satisfying LDP, the user can add noises to timestamps and

resample the function 𝑓 using the perturbed timestamps before

publishing them alongside the original real timestamps. In consid-

eration of temporal relevance, SPPA introduces noises to the actual

sampling period to ensure that all timestamps within a sliding win-

dow possess a uniform timestamp offset trend (either advance or

lag), which guarantees that both the noisy timestamps and the

resampled datapoints will not become disordered. To capture the

differentially private characteristics of SPPA, we propose the novel

notion of (𝜖, 𝜏)-temporal indistinguishability, which measures the

difficulty of locating the moment of an event. Furthermore, we in-

troduce the notion of (𝜖,𝑤, 𝜏)-event LDP to quantify the capability

of protecting any event sequence occurring within any window of

𝑤 timestamps in streaming settings.

In summary, we make contributions in this paper as follows:

• We shed light on the significance of preservation of temporal

relevance in the LDP publishing mechanism for data streams,

and demonstrate by a case study that these mechanisms are

likely to pose a significant risk of privacy breach, which

results from the data cleaning process using the additional

knowledge of data dependencies.

• We are the first to propose an online LDP publishing mecha-

nism while preserving the inherent temporal relevance for

the infinite stream, which has been analyzed using Markov

approach in the offline scenarios [7, 13, 38], but never in

the online setting. We utilize the Fourier transform and in-

terpolation techniques to preserve the sequential order of

datapoints, reducing the computational complexity from

O(𝑛2) to O(𝑛 log𝑛).
• To alleviate the impact of noise on data utility, we introduce

novel concepts of (𝜖, 𝜏)-temporal indistinguishability and

(𝜖,𝑤, 𝜏)-event LDP, which offers a more precise description

of privacy guarantee and helps to design LDP mechanisms

with a better balance between privacy and utility.

2 BACKGROUND
We begin with a brief background on (local) differential privacy

(DP/LDP) and their applications on infinite streams. Thenwe present

a case study demonstrating that the LDP mechanism, when not

preserving temporal relevance, poses potential privacy risks.

2.1 DP and LDP
The concept of differential privacy is initially proposed in the con-

text of database query by Dwork [11], providing a rigorous guaran-

tee that even for an adversary with sufficient prior knowledge, the

original data cannot be inferred with high confidence from observ-

ing the output results. Under the LDP setting, an individual user

needs to employ a randomized mechanismM to perturb the local

data 𝑣 before publishing it to an untrusted server for downstream

task. An LDP mechanismM must satisfy the following definition.

Definition 1 (LocalDifferential Privacy, LDP [10]). Amech-
anismM : D ↦→ R, where D is the domain of all input 𝑣 , satisfies
𝜖-local differential privacy (𝜖-LDP), if and only if, for any pairs of
𝑣, 𝑣 ′ ∈ D, and any O ⊂ R, it holds that

Pr(M(𝑣) ∈ O) ⩽ 𝑒𝜖 Pr(M(𝑣 ′) ∈ O).

For any knowledgeable adversary, LDP guarantees that the user’s

original data cannot be inferred from the output ofM with high

confidence. Given any pair of inputs 𝑣, 𝑣 ′ ∈ D, the probability

of “𝑣 outputs O" is no more than 𝑒𝜖 times that of “𝑣 ′ outputs O".
The exponent 𝜖 is called privacy budget, and the smaller the 𝜖 ,

the stronger the degree of privacy-preservation guaranteed byM.

The properties of DP are also inherited by LDP, with the two most

commonly used ones being provided as follows.

Theorem 1 (Composition [12]). IfM𝑖 : D ↦→ R𝑖 satisfies 𝜖𝑖 -DP
for any 𝑖 ∈ {1, 2, · · · , 𝑛}, thenM = (M1,M2, · · · ,M𝑛) : D ↦→
𝑛∏
𝑖=1
R𝑖 satisfies

𝑛∑
𝑖=1

𝜖𝑖 -DP.

Theorem 2 (Post-processing [12]). LetM : D ↦→ R satisfy
𝜖-DP. Let 𝑓 : R ↦→ R′ be an arbitrary randomized mapping. Then
𝑓 ◦M : D ↦→ R′ satisfies 𝜖-DP.

Theorem 1 shows the additivity of privacy budgets, allowing us

to combine multiple DP mechanisms, and Theorem 2 allows us to

arbitrarily process data perturbed by LDP mechanisms without risk

of increased privacy loss.

2.2 LDP on Infinite Streams
Originally, research on DP protects the presence or absence of an

individual user (his/her entire data stream) for infinite streams,

which is called user-level privacy [6, 14, 16, 17]. In contrast, the

event-level privacy for finite streams protects the presence or ab-

sence of a single event in one user’s data stream [12, 19, 20, 29].

Kellaris et al. [21] introduce a new notion of𝑤-event DP for infinite

event streams, to protect any𝑤-neighboring prefixes over an infi-

nite stream of “events” (i.e., data items generated by the users), and

published periodically. These two privacy notions are extended to

the local setting by Ren et al., which strikes a good balance between

user-level and event-level DP. Suppose a data owner has an infinite

stream of time series 𝑑 = {𝑑1, 𝑑2, · · · , 𝑑𝑛, · · · }, with timestamps

𝑡 = {𝑡1, 𝑡2, · · · , 𝑡𝑛, · · · }. Let 𝑆𝑛 denote a stream prefix of 𝑑 up till

time stamp 𝑡𝑛 , 𝑆𝑛 = {𝑑1, 𝑑2, · · · , 𝑑𝑛}. 𝑆𝑛,𝑖 refers to the 𝑖-th element

of 𝑆𝑛 , i.e., 𝑆𝑛,𝑖 = 𝑑𝑖 .

Definition 2 (𝑤-Neighboring StreamPrefixes[26]). Two stream
prefixes 𝑆𝑛 , 𝑆 ′𝑛 are defined to be𝑤-neighboring, if for each 𝑆𝑛,𝑖 , 𝑆𝑛,𝑗 ,
𝑆 ′
𝑛,𝑖
, 𝑆 ′

𝑛,𝑗
with 𝑖 < 𝑗 , 𝑆𝑛,𝑖 ≠ 𝑆 ′

𝑛,𝑖
and 𝑆𝑛,𝑗 ≠ 𝑆 ′

𝑛,𝑗
, it holds that

𝑗 − 𝑖 + 1 ⩽ 𝑤 .

The meaning of 𝑤 is twofold. First, 𝑤 is a sharp upper bound

on the interval between the occurrence of two distinct elements;

second,𝑤 is also an upper bound on the count of distinct elements.

Based on Definition 2,𝑤-event LDP is defined as follows:

Definition 3 (𝑤-Event LDP [26]). A mechanismM : S ↦→ R,
where S is the domain of all stream prefixes, satisfies 𝑤-event 𝜖-
LDP ( i.e., 𝑤-event LDP), if and only if, for any 𝑛, any pairs of 𝑤-
neighboring stream prefixes 𝑆𝑛, 𝑆′𝑛 ∈ S, and any O ⊂ R, it holds
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that
Pr(M(𝑆𝑛) ∈ O) ⩽ 𝑒𝜖 Pr(M(𝑆 ′𝑛) ∈ O).

The definition of𝑤-event LDP ensures that the adversary can not

distinguish with high confidence between any two𝑤-neighboring

stream prefixes based on the output of mechanismM. In practi-

cal implementation, the sliding window technique is commonly

employed for achieving 𝑤-event LDP. This implies that even if

a knowledgeable adversary possesses all the data in the stream

except for a window of length 𝑤 , after observing the perturbed

window sequence satisfying𝑤-event LDP, it would still not be able

to reconstruct the original data with high confidence. Based on

this concept, Kellaris et al. [21] design privacy budget allocation

algorithms that have been always effectively applied in various

DP circumstances [23]. Due to the good balance between privacy-

preservation and application utility, numerous research follow the

paradigm of𝑤-event DP over infinite streams [8, 22, 26, 28, 30].

2.3 Time Series with Temporal Relevance
Time series data often have temporal relevance that can be exploited

by adversaries, so that the privacy loss, i.e., 𝜖 , claimed by a DP

algorithm is actually underestimated compared to the reality. Wu

et al. [32] propose a privacy-preserving mechanism for trajectory

correlation, which focuses on correlations between multiple users’

trajectories. In contrast, our work investigates the correlations

within an individual user’s own data. Cao et al. [7] quantitatively
characterize the privacy loss of temporal correlated time series in

an offline setting, which cannot be applied directly in the online

LDP scenarios. Zhang et al. [38] and Erdemir et al. [13] employ

Markov models to formulate time series with temporal relevance.

However, the strong temporal dependence among datapoints leads

to significant growth in computational complexity, rendering it

unsuitable for real-time publication.

Another approach to address the temporal relevance of the data

involves utilizing the Fourier transform to convert the time do-

main relationship between datapoints into a frequency domain

relationship, which can then be perturbed for privacy-preserving

publication. Rastogi et al. [25] perturb the Discrete Fourier Trans-
form of the query response. Ács et al. further improve this scheme

by selecting the Fourier coefficients more effectively [2], and give

an instantiation to publish the spatiotemporal density of the popula-

tion of 989 different districts in Paris [1]. However, the approaches

proposed in [1, 2, 25] rely on static data and are not well-suited for

handling online infinite data streams.

2.4 A Case Study
The temporal correlation typically serves as public knowledge,

which can lead to significant privacy breaches if exploited by adver-

saries. We will illustrate this argument with the following example.

Taxi trajectories
1
often exhibit a pronounced temporal correla-

tion. We implement TSDDiscover [9] and find the following data de-

pendency: ∀𝑡,
(
Δ𝑥𝑡 →𝑓

(0,+∞) Δ𝑥𝑡+1, 𝑓 (Δ𝑥𝑡 ) = Δ𝑥𝑡+1
)
, where Δ𝑥𝑡

represents the displacement between the vehicle and its starting

point. Intuitively, temporal relevance here equals to an order de-

pendency that is a gradual increase in the displacement over time.

1
https://www.kaggle.com/datasets/crailtap/taxi-trajectory

With the primary intention of minimizing aggregation errors

and enhancing utility, Ye et al. [34] propose an algorithm that shuf-

fles datapoints in the stream in an LDP-compliant manner without

altering actual values. However, their approach, called ETM, ne-

glects temporal correlations, resulting in a significant privacy loss

when facing a knowledgeable adversary. To mimic the data clean-

ing process, we leverage the data dependency aforementioned and

arrange the published data in an ascending order based on their

distance from the starting point to the farthest, thereby significantly

enhancing the resemblance to the true time series. This result is

illustrated in Fig 1, which depicts the disparity between a perturbed

(orange), cleaned (green), and the original (blue) sequence of a taxi

trajectory. Hence, it is imperative to preserve temporal correlation

rather than disrupting it when publishing perturbed sequences

satisfying LDP.
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Figure 1: The original sequence perturbed by ETM [35] can be
readily inferred using temporal relevance. Due to the consis-
tently increasing displacement over time, the data cleaning
procedure can easily reconstruct the genuine user data.

3 MODELS AND PROBLEM DEFINITION
In this section, we describe our datamodel and present our proposed

notions of 𝜖-temporal indistinguishability and (𝜖,𝑤, 𝜏)-event DP.
Then we formulate our problem definition.

3.1 Data Model
Consider a system consisting of distributed users and a central

server. Every fixed period𝑇𝑠 , these users need to publish some data

𝑑 to the server for some kind of data mining task. As time evolves,

each user produces an infinite stream of data 𝑆 = {𝑑1, 𝑑2, · · · , 𝑑𝑛, · · · },
with corresponding timestamps 𝑡 = {𝑡1, 𝑡2, · · · , 𝑡𝑛, · · · }. Note that
the timestamps may not actually exist in reality or be uploaded to

the server, but the server can still mark the data 𝑑 with its times-

tamp on receipt. Users consider these implicit time series to be

sensitive and therefore prohibit the direct sharing of raw data with

the server to preserve temporal privacy. For instance, a GPS service

provider collects the location of individual users at each timestamp.

Users aim to safeguard their location information, which can be

accomplished through perturbing coordinates or timestamps, corre-

sponding to the concepts of Value LDP (VLDP) and Temporal LDP

(TLDP) as mentioned in [35].
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3.2 Privacy Model
The goal of our privacy model is to protect the implicit timestamps

corresponding to the data values. Let us begin with the simplest

situation. Considering the perturbation of a single timestamp 𝑡 ,

intuitively we want the probability distribution function of the

perturbed version 𝑡 ′ to satisfy the following two properties:

(1) The expectation of 𝑡 ′ is equal to 𝑡 : E𝑡 ′ = 𝑡 ;

(2) The probability of 𝑡 ′ occurring decreases as the time interval

from 𝑡 increases.

Following the Definition 1 of LDP, we define the notion of 𝜖-

temporal indistinguishability.

Definition 4 (𝜖-Temporal Indistinguishability). A mecha-
nismM : T ↦→ R satisfies 𝜖-temporal indistinguishability, if and
only if, for any O ⊂ R and any pairs of inputs 𝑡, 𝑡 ′ ∈ T , it holds that

Pr(M(𝑡) ∈ O) ⩽ 𝑒𝜖 |𝑡−𝑡
′ |
Pr(M(𝑡 ′) ∈ O).

The notion of 𝜖-temporal indistinguishability satisfies the two

properties intuitively summarized before. Note that the parameter

𝜖 here corresponds to the level of privacy at one unit of time, i.e.,
it is the entire exponent 𝜖 |𝑡 − 𝑡 ′ | that corresponds to the privacy

budget. When |𝑡 − 𝑡 ′ | grows, the DP guarantee of the mechanism

M degrades gracefully, akin to the concept of group privacy [12].

If we introduce the definition to call a pair of 𝑡, 𝑡 ′ ∈ T such that

|𝑡 − 𝑡 ′ | ⩽ 𝜏 as 𝜏-neighbor, then 𝜖-temporal indistinguishability has

the equivalent definition as follows.

Definition 5 ((𝜖, 𝜏)-Temporal Indistinguishability). Amech-
anismM : T ↦→ R satisfies (𝜖, 𝜏)-temporal indistinguishability, if
and only if, for any O ⊂ R and any pairs of 𝜏-neighbors inputs
𝑡, 𝑡 ′ ∈ T such that |𝑡 − 𝑡 ′ | ⩽ 𝜏 , it holds that

Pr(M(𝑡) ∈ O) ⩽ 𝑒𝜖 Pr(M(𝑡 ′) ∈ O) .

The notion of (𝜖, 𝜏)-temporal indistinguishability gives the DP

guarantee for all pairs of 𝜏-neighbors, which is similar to privacy

definitions in [3, 23]. 𝜏 is the scope we provide privacy preservation,

i.e., data amongst𝜏-neighbors are indistinguishable. 𝜖 in Definition 5

is numerically equivalent to 𝜖𝜏 from the Definition 4.

We also require new notions of neighboring stream prefixes

and event LDP, defined below by extending from Definition 2 and

Definition 3.

Definition 6 ((𝑤, 𝜏 )-Neighboring StreamPrefixes). Two stream
prefixes 𝑆𝑛 = {(𝑑1, 𝑡1) , · · · , (𝑑𝑛, 𝑡𝑛)}, 𝑆 ′𝑛 = {

(
𝑑′
1
, 𝑡 ′
1

)
, · · · ,

(
𝑑′𝑛, 𝑡

′
𝑛

)
}

are defined as (𝑤, 𝜏)-neighboring, if
(1) the data of their elements are pairwise identical: for each 𝑖 ∈
[𝑛], we have 𝑑𝑖 = 𝑑′

𝑖
;

(2) the timestamps of their elements are 𝜏-neighboring: for each
𝑖 ∈ [𝑛], we have |𝑡𝑖 − 𝑡 ′𝑖 | ⩽ 𝜏 and

(3) all of the neighboring timestamps can fit in a window of time
duration at most 𝑤 : for every 𝑖 < 𝑗 with 𝑡𝑖 ≠ 𝑡 ′

𝑖
and 𝑡 𝑗 ≠ 𝑡 ′

𝑗
,

it holds that 𝑗 − 𝑖 + 1 ⩽ 𝑤 .

Definition 7 ((𝜖,𝑤, 𝜏 )-Event LDP). A mechanismM : S ↦→ R,
where S is the domain of all stream prefixes, satisfies (𝜖,𝑤, 𝜏)-LDP, if
and only if, for any 𝑛, any pairs of (𝑤, 𝜏)-neighboring stream prefixes
𝑆𝑛, 𝑆

′
𝑛 ∈ S, and any O ⊂ R, it holds that

Pr(M(𝑆𝑛) ∈ O) ⩽ 𝑒𝜖 Pr(M(𝑆 ′𝑛) ∈ O).

3.3 Problem Definition
Our goal is to design an (𝜖,𝑤, 𝜏)-event LDP solution that helps

individual users to publish infinite data streams in real time. Simul-

taneously, we aim to minimize the mean error between the original

and published data. In other words, the proposed algorithm should

strike a good balance in the privacy-utility trade-off. To this end, we

next present a framework satisfying (𝜖,𝑤, 𝜏)-event LDP achieving

excellent utility.

4 PROPOSED TLDP MODEL
In this section, we elaborate on our proposed algorithm satisfying

(𝜖,𝑤, 𝜏)-event DP and provide theoretical analyses on both privacy

and utility.

4.1 Implementing TLDP via Laplace Mechanism
The Laplace mechanism is a classic technique for achieving 𝜖-DP by

adding noise drawn from the Laplace distribution to the data before

publication. Using the Laplace mechanism, we give the following

theorem to achieve (𝜖, 𝜏)-temporal indistinguishability.

Theorem 3. Given a timestamp 𝑡 , the Laplace mechanism of out-
putting a perturbed timestamp 𝑡 ′ drawn from the Laplace distribution

Lap

(
𝑥 ; 𝑡,

𝜏

𝜖

)
=

𝜖

2𝜏
exp

(
−𝜖 |𝑥 − 𝑡 |

𝜏

)
,

satisfies (𝜖, 𝜏)-temporal indistinguishability.

The proof is presented in Appendix B. The noise variance of

the Laplace distribution is determined by the privacy budget 𝜖 and

the parameter of 𝜏-neighbors. The latter is close to the concept of

sensitivity in the centralized DP setting [12], gauging the extent to

which the data of a single entry can change the exposed information

in the worst case. From this perspective, we can also refer to the

parameter of 𝜏-neighbors as time sensitivity.

4.2 Single Window Perturbator
We start by designing an algorithm over a time series with 𝑛 times-

tamps to achieve (𝜖, 𝜏)-temporal indistinguishability, called Single

Window Perturbator (SWP). The time series data with temporal

relevance can be perceived as periodic samples of a function, where

time serves as the independent variable, i.e., 𝑑 = 𝑓 (𝑡). The main

idea of SPPA is to publish a new time series by resampling the

function using the perturbed timestamps, i.e., 𝑑′ = 𝑓 (𝑡 ′). Since 𝑡
and 𝑡 ′ are 𝜖-temporal indistinguishable, from Theorem 2 of post-

processing it is guaranteed that (𝑑, 𝑡) and (𝑑′, 𝑡) are also 𝜖-temporal

indistinguishable.

Motivated by this insight, the technological process of SWP is

illustrated in Algorithm 1 and Fig. 2. First, rather than perturb-

ing each timestamp with an evenly allocated privacy budget, we

choose to perturb the sampling period 𝑇𝑠 of the time series 𝑆𝑛 =

{𝑑0, 𝑑1, · · · , 𝑑𝑛−1} (line 1). Thus, the timestamp sequence changes

from 𝑡 = {0𝑇𝑠 , 1𝑇𝑠 , · · · , (𝑛 − 1)𝑇𝑠 } to 𝑡 ′ = 0𝑇 ′𝑠 , 1𝑇
′
𝑠 , · · · , (𝑛 − 1)𝑇 ′𝑠 .

This operation ensures a consistent temporal delay or advancement

in the sampling process, corresponding to backward and forward

releases as illustrated in Fig. 2(a) and Fig. 2(b). The order of the

datapoints remains unchanged, but only undergoes shifts, thereby

preserving the temporal relevance among the data. The privacy loss
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Algorithm 1: SWP: Single Window Perturbator.

Input :True time series 𝑆𝑛 = {𝑑0, 𝑑1, · · · , 𝑑𝑛−1}; True
sampling period 𝑇𝑠 ; Time sensitivity 𝜏 ; Privacy

budget 𝜖 .

Output :Perturbed time series 𝑆 ′𝑛 = {𝑑′
1
, · · · , 𝑑′

𝑛−2}.

Perturb the sampling period: 𝑇 ′𝑠 ∼ Lap

(
𝑥 ;𝑇𝑠 ,

𝜏

𝜖

)
;

Compute the Fourier coefficients vector:

𝑓 ← DFT(𝑑0, 𝑑1, · · · , 𝑑𝑛−1) ;
Compute the Fourier base frequency vector:

𝜔 ← 2𝜋

𝑛𝑇𝑠
(0, 1, · · · , 𝑛 − 1)⊤ ;

for 𝑖 = 1 to 𝑛 − 1 do

Compute the perturbed data: 𝑑′
𝑖
=

1

𝑛

𝑛−1∑
𝑘=0

𝑓𝑘𝑒
j𝜔𝑘𝑖𝑇

′
𝑠 ;

end
Return the perturbed time series: 𝑆 ′𝑛 = {𝑑′

1
, · · · , 𝑑′

𝑛−2}.

will be analyzed later. Second, we use the discrete Fourier trans-

form (DFT) to build the interpolation function 𝑓 (𝑡 ;𝑇𝑠 ) from time

series data 𝑆 (lines 2 and 3). Finally, SWP resamples the Fourier

interpolation function 𝑓 (𝑡 ′;𝑇𝑠 ) based on the perturbed sampling

period 𝑇 ′𝑠 (line 4 and 5) and publishes the perturbed time series

data 𝑆 ′𝑛 = {𝑑′
1
, · · · , 𝑑′

𝑛−2} (line 7). For each 𝑆 ′𝑛 , we only publish the

middle part of (𝑛 − 2) length, which is a combination of privacy

and utility considerations. Specifically, the first datapoint is not

protected due to 𝑑′
0
= 𝑑0, while the periodic continuation nature of

the DFT may lead to a significant deviation in 𝑑′
𝑛−1 from its true

value (as can be seen in Fig. 2), resulting in a reduction in utility.

Therefore, we drop 𝑑′
0
and 𝑑′

𝑛−1 from released stream. Again, we do

not manipulate the timestamps in the published sequence explicitly.

0 1 2 3 4 5
Time

0
1
2
3
4
5

Va
lu

e

True time series
Interpolation function
Released data
Dropped data

(a) Backward release

0 1 2 3 4 5
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0
1
2
3
4
5

Va
lu

e

True time series
Interpolation function
Released data
Dropped data

(b) Forward release

Figure 2: SWP diagram. The SWP algorithm primarily com-
prises the following steps: (1) Perturbing the sampling period;
(2) Calculating the Fourier interpolation function based on
real datapoints (blue); (3) Determining the released sequence
(orange) based on step (1) and step (2). Note that the first and
last datapoints were dropped (grey) due to privacy and utility
concerns, respectively.

The reason why we choose DFT here to build the interpolation

function is two-fold: Firstly, DFT can extrapolate function values

beyond the time window through periodic extension when the

number of datapoints is limited. Secondly, the utilization of fast

Fourier transform algorithms enables efficient implementation of

DFT, rendering SWP suitable for the real-time release of LDP data.

4.3 Privacy Analysis
Theorem 4. Algorithm 1 satisfies (𝜖, 𝜏)-temporal indistinguisha-

bility.

The proof of Theorem 4 is presented in Appendix C. The role

of 𝜏 is to quantitatively express the time extent guaranteed by the

temporal DP, which was not previously included in the definition of

TLDP[35], rendering their privacy guarantee vague. We will further

discuss the significance and impact of 𝜏 in Sec. 5.2.

4.4 Utility Analysis
To assess the effectiveness of SWP, we quantify data value utility

using the mean squared error (MSE) between real data value 𝑑𝑖
and published data value 𝑑′

𝑖
as a conventional measure[25, 35]. The

MSE is defined as follows: MSE(𝑑,𝑑′
𝑖
) = 1

𝑛

∑𝑛−1
𝑖=0 (𝑑𝑖 − 𝑑′𝑖 )

2 . The

data value utility decreases as the MSE increases. Here we give the

following result of utility analysis.

Theorem 5. The MSE of Algorithm 1 is

1

𝑛𝑤

𝑛−1∑︁
𝑚=0

𝑑2𝑚

𝑛−2∑︁
𝑖=1

𝑛−1∑︁
𝑘=0

2

1 +
(
𝜖𝑛𝑇𝑠

2𝑖𝑘𝜋𝜏

)
2
.

The proof is presented in Appendix D. It is evident from Theo-

rem 5 that the utility of SWP improves with an increase in privacy

budget 𝜖 and a decrease in time sensitivity 𝜏 . The ratio 𝜏/𝜖 charac-
terizes the variance of the Laplacian noise, thus a higher variance

leads to a reduction in MSE.

The influence of window size 𝑤 = 𝑛 − 2 is not readily appar-

ent. The factor
1

𝑛

∑𝑛−1
𝑚=0 𝑑

2

𝑚 can be rewritten as the sum of mean

and deviation of {𝑑0, 𝑑1, · · · , 𝑑𝑛−1}, so it can be regarded as in-

dependent with 𝑤 . The remaining part can be approximated as

1

𝑤

∑𝑤
𝑖=1

∑𝑤+1
𝑘=1

2

1+( 𝑤+2𝑖𝑘 )
2
, which increases with the window length

𝑤 . We will validate this trend in our subsequent experiments.

4.5 Complexity Analysis
The computational complexity of the SWP in a single window is

determined as follows. Let us consider having 𝑛 datapoints. In Al-

gorithm 1, line 1 has a constant time complexity of O(1). Lines 2
and 3 involve steps of the Discrete Fourier Transform, which have

a time complexity of O(𝑛 log𝑛). The inverse transformation from

lines 4 to 6 also has a time complexity not exceeding O(𝑛 log𝑛).
Consequently, the overall computational complexity of SWP can be

expressed as O(𝑛 log𝑛). For comparison, the complexity of train-

ing the Hidden Markov Model (HMM) to characterize temporal

relevance [33] is O(𝑛2).

4.6 Sampling Period Perturbation Algorithm
Using a sliding window methodology, we deploy the SWP in the

online setting to publish users’ perturbed data satisfying (𝜖,𝑤, 𝜏)-

event LDP over the infinite stream in real-time, called Sampling

Period Perturbation Algorithm (SPPA). The pseudocode is presented

in Appendix A.



WWW ’25, April 28 - May 2, 2025, Sydney, Australia Anonymous

𝑑1 𝑑2 𝑑3 𝑑4 𝑑5 𝑑6 𝑑7… …
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Stream

Released
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Figure 3: SPPA diagram. SPPA employs sliding window tech-
nology to implement the SWP algorithmwithin eachwindow
independently. Despite the overlap between windows (𝑑3, 𝑑4),
the output sequence remains non-overlapping.

The sliding window strategy of SPPA is illustrated in Fig. 3. In

this example, the parameters 𝑛perseg = 5 and 𝑤 = 3 are used.

Initially, the first window (in blue) consists of {𝑑0, 𝑑1, 𝑑2, 𝑑3, 𝑑4}
from the true stream. After applying SWP, only the perturbed data

{𝑑′
1
, 𝑑′

2
, 𝑑′

3
} with indices in the middle are published. Subsequently,

the window moves forward by a step size of𝑤 , forming a second

window (in green) containing {𝑑3, 𝑑4, 𝑑5, 𝑑6, 𝑑7}. Applying SWP to

this second window results in publishing {𝑑′
4
, 𝑑′

5
, 𝑑′

6
}. The decision

not to publish the first perturbed data generated within each win-

dow is based on its lack of privacy protection; specifically, it can

be observed that 𝑑0 = 𝑑′
0
in the first window and 𝑑3 = 𝑑′

3
in the

second window (note that 𝑑′
3
in the released stream originates from

the first window). Additionally, for utility reasons, we choose not

to publish the last perturbed data generated within each window

due to its tendency to introduce large errors (see Fig. 2). It should

be noted that there are overlaps with a fixed number of 2 between

consecutive sliding windows on the true stream ({𝑑3, 𝑑4} in this

example), which is a distinguishing feature compared to previous

sliding windows strategies.

It is straightforward to show Algorithm 2 satisfies (𝜖,𝑤, 𝜏 )-event

LDP. By Theorem 4, the released sequence within each window sat-

isfies (𝜖, 𝜏)-temporal indistinguishability as defined in Definition 5.

Moreover, the sliding window technique ensures that each released

sequence is (𝑤, 𝜏)-neighboring stream prefixes as defined in Defini-

tion 6. Combining these two properties leads to the conclusion that

Algorithm 2 satisfies (𝜖,𝑤, 𝜏)-event LDP as defined in Definition 7.

5 PERFORMANCE EVALUATION
5.1 Experiment Settings
5.1.1 Datasets. To measure the actual performance of the SPPA,

we conducted experiments on the following three real-world time

series datasets: Taxi2, Eye[27], and Smartphone[4].
Taxi dataset contains 1,710,670 different tracks generated by

442 taxis, publishing real-time GPS data at 15-second intervals.

Eye dataset describes the eye movement data of 20 participants

while reading different types of documents using VR headsets at

a frequency of 30Hz. We utilize these two datasets to evaluate the

data utility and event monitoring efficiency of different algorithms.

Smartphone dataset records six activity tags (walking, sitting, etc.)

2
https://www.kaggle.com/datasets/crailtap/taxi-trajectory

performed by 30 participants, as well as inertial sensor data from

the smartphones they carried. The sensor data is published at a

constant frequency of 50Hz in the form of 3-axis acceleration and

3-axis angular velocity. We utilize Smartphone dataset to evaluate
the data utility and privacy-preserving capabilities of different al-

gorithms, with the latter assessed through conducting subsequence

clustering task [18] on the dataset.

5.1.2 Baselines. Following [35]’s naming of LDP mechanisms for

different protection domains, we choose the following two algo-

rithms to compare with SPPA.

• The Extended Threshold Mechanism (ETM) [35]. To the best

of our knowledge, ETM is the only existing TLDP scheme

that is directly applicable to our targeted setting.

• The Perturb-Group-Smooth algorithm (PeGaSus) [8]. It is a

classic data-adaptive algorithm offering VLDP while main-

taining improved accuracy for streams. We modified PeGa-

Sus to make it suitable for local infinite streams.

5.2 Influence of 𝜏
One of the key parameters in our proposed SPPA algorithm, de-

noted as 𝜏 , characterizes the level of privacy protection it offers

by quantifying an adversary’s ability to distinguish between noisy

and real data. The theoretical analysis presented in Sec. 4.3 and

Sec. 4.4 establishes that an increase in 𝜏 results in stronger privacy

and lower utility (higher MSE). In this section, we will empirically

verify this conclusion. The impact of window length 𝑤 and pri-

vacy budget 𝜖 on utility is deferred to the next section, as these

parameters are also included in the other algorithms.

We conducted experiments on three datasets under 4 different set-

tings: (𝜖,𝑤) = (1, 4), (1, 8), (3, 4), (3, 8). Since the sampling frequen-

cies of these datasets differ, we considered each sampling period as

a benchmark and set different proportions:
𝜏
𝑇𝑠

= 0.2, 0.4, 0.6, 0.8, 1.0,

1.2, 1.4, 1.6, 1.8, 2.0. The experimental results are depicted in Fig. 4.

Generally speaking, MSE exhibits an increasing trend with the

increase in 𝜏 , which validates our theoretical analysis.

5.3 Experimental Results
While smaller values of 𝜏 yield better utility, it also compromises

the level of privacy protection. To strike a balance between the two

factors, in subsequent experiments, we uniformly set 𝜏 = 𝑇𝑠 , where

the sampling period 𝑇𝑠 is determined by each dataset.

5.3.1 Data value utility. We measure the data value utility by the

MSE between real data stream 𝑆 and published data stream 𝑆 ′. A
smaller MSE indicates better data value utility. Fig. 5 shows the

performance of different algorithms in each dataset with different

privacy budgets 𝜖 . We fixed the window length to 𝑤 = 8 and set

𝜖 = 0.5, 1, 1.5, 2, 2.5, 3. The performance of different algorithms

on all datasets exhibits a consistent trend, namely, an increase in

errors with the rise of 𝜖 , which reflects the trade-off between privacy

and utility. A smaller privacy budget 𝜖 provides stronger privacy

protection but leads to a larger MSE, indicating a reduction in data

value utility. Moreover, both ETM and SPPA outperform PeGaSus in

terms of data value utility due to their provision of TLDP which has

less impact on the value of data than VLDP provided by PeGaSus.

Furthermore, SPPA surpasses ETM with lower MSE across various



Local Differentially Private Release of Infinite Streams With Temporal Relevance WWW ’25, April 28 - May 2, 2025, Sydney, Australia

0.25 0.50 0.75 1.00 1.25 1.50 1.75 2.00
τ/Ts

0.0

0.2

0.4

0.6

0.8

1.0

1.2

M
SE

1e−5 Taxi
ε=1,w=4
ε=1,w=8
ε=3,w=4
ε=3,w=8

0.25 0.50 0.75 1.00 1.25 1.50 1.75 2.00
τ/Ts

0.00000

0.00005

0.00010

0.00015

0.00020

0.00025

M
SE

Eye
ε=1,w=4
ε=1,w=8
ε=3,w=4
ε=3,w=8

0.25 0.50 0.75 1.00 1.25 1.50 1.75 2.00
τ/Ts

0.0

0.2

0.4

0.6

0.8

1.0

1.2

M
SE

Smartphone
ε=1,w=4
ε=1,w=8
ε=3,w=4
ε=3,w=8

Figure 4: Data utility with different 𝜏 . Higher 𝜏 means a stronger promise of privacy, but also leads to lower utility.
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Figure 5: Data utility with different 𝜖 (𝑤 = 8)
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Figure 6: Data utility with different𝑤 (𝜖 = 1)

privacy budgets and datasets because ETM tends to suffer from

swapping distant data while SPPA smooths published data through

Fourier interpolation of noisy time series, thereby reducing errors

and improving utility.

Fig. 6 shows the performance of different algorithms measured

byMSE in each dataset with fixed privacy budget 𝜖 = 1 and different

window length 𝑤 . The value of 𝑤 should be carefully chosen to

avoid excessive time delay. Specifically, the server needs to wait for

𝑤 time steps to fill a sliding window before implementing the LDP

algorithm. Even without considering the computational cost and

communication overhead of LDP, releasing data is still delayed by

(𝑤 − 1) time steps for the first data in the window. Therefore, we

set𝑤 = 4, 8, 12, 16, and 20. Generally speaking, as𝑤 increases, the

MSE of different algorithms also increases. This is because VLDP

allocates less privacy budget per timestamp within each window

while TLDP suffers from increased temporal sensitivity 𝜏 , resulting

in higher indistinguishability between distant timestamps. This

trend reflects a trade-off between privacy preservation and utility

enhancement since stronger indistinguishability leads to better

privacy protection but worse utility performance. Notably, SPPA

consistently outperforms ETM across all values of𝑤 , demonstrating

its superior performance.

5.3.2 Event monitoring efficiency. In this part, we fix 𝜖 = 1 and

𝑤 = 8. We implement the event monitoring to illustrate the algo-

rithm’s ability to preserve the temporal relevance of data stream.

For Taxi dataset and Eye dataset, a common sense is that the ve-

locity of the taxi or eye movement should not be excessively rapid.

The data at the timestamp corresponds to the coordinate points

in geography, so we first calculate the velocity between adjacent

coordinate points, i.e., 𝑣𝑖 = |𝑑𝑖+1 − 𝑑𝑖 |/𝑇𝑠 . Velocity above a given

threshold 𝛿 is recognized as an anomalous event, which has differ-

ent practical meanings in different situations, e.g., speeding offense

in Taxi dataset or saccading mode in Eye dataset. Fig. 7 provides
an intuitional representation of utility by computing the relative

velocity between each pair of coordinate points, arranged from left

to right in order of original data, SPPA, ETM, and PeGaSus. The

color blocks distributed along the diagonal approximately indicate

the instantaneous speed of the vehicle per timestamp. It can be

observed from Fig. 7(a) that the speed values for actual data were

relatively low; however, after being subjected to ETM interference,

a significant number of outliers emerged and instantaneous speeds

reached a maximum of 500 km/h, which originates from exchanges

of data order without considering temporal relevance. The PeGa-

Sus algorithm and our SPPA algorithm lie somewhere in between,

keeping the instantaneous speed within reasonable levels except

for a few points. In Fig. 7(b) we also present the results from the

Eye dataset. Although its temporal relevance may not be immedi-

ately apparent compared to the Taxi dataset, it still demonstrates

a similar conclusion. Specifically, among the three algorithms, the

SPPA noised sequence exhibits a location and number of dark areas

that closely resemble those observed in real data.

We then quantitatively illustrate the event monitoring efficiency

by plotting the receiver operating characteristic (ROC) curve. The

area under the ROC curve (AUC), which is bounded by the diagonal

line and the ROC curve, represents the algorithm’s performance.

A larger AUC indicates a better performance. We select different

percentile velocities as the threshold 𝛿 , which is calculated as 𝛿𝑝 ×
(max(𝑣) −min(𝑣)) +min(𝑣) where 𝛿𝑝 ranges from 0 to 100%. Fig. 8

shows the ROC curve measured by the false positive rate (FPR)

and true positive rate (TPR). In the Taxi dataset, SPPA achieves

the highest AUC of 0.85, while ETM and PeGaSus obtain AUC of



WWW ’25, April 28 - May 2, 2025, Sydney, Australia Anonymous

0 5 10 15 20 25 30
Timestamps

0

5

10

15

20

25

30

Ti
m
es
ta
m
ps

Original

0 5 10 15 20 25 30
Timestamps

0

5

10

15

20

25

30

Ti
m
es
ta
m
ps

SPPA

0 5 10 15 20 25 30
Timestamps

0

5

10

15

20

25

30

Ti
m
es
ta
m
ps

ETM

0 5 10 15 20 25 30
Timestamps

0

5

10

15

20

25

30

Ti
m
es
ta
m
ps

PeGaSus

0

50

100

150

0

50

100

150

0

50

100

150

0

50

100

150

(a) Taxi

0 10 20 30 40 50 60 70 80 90 10
0

Timestamps

0
10
20
30
40
50
60
70
80
90

100

Ti
m

es
ta

m
ps

Original
0 10 20 30 40 50 60 70 80 90 10
0

Timestamps

0
10
20
30
40
50
60
70
80
90

100

Ti
m

es
ta

m
ps

SPPA

0 10 20 30 40 50 60 70 80 90 10
0

Timestamps

0
10
20
30
40
50
60
70
80
90

100

Ti
m

es
ta

m
ps

ETM

0 10 20 30 40 50 60 70 80 90 10
0

Timestamps

0
10
20
30
40
50
60
70
80
90

100

Ti
m

es
ta

m
ps

PeGaSus

0.0

2.5

5.0

7.5

10.0

0.0

2.5

5.0

7.5

10.0

0.0

2.5

5.0

7.5

10.0

0.0

2.5

5.0

7.5

10.0

(b) Eye

Figure 7: Heatmap for velocity between coordinates pairs in Taxi dataset and Eye dataset. In comparison to the original heatmap,
a substantial disparity in speed at corresponding coordinates indicates a significant deviation in the published data. Each color
block represents the average speed between the two timestamps, with darker colors indicating higher speeds.
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Figure 8: ROC Curve for Event Monitoring (𝜖 = 1,𝑤 = 8)

0.70 and 0.51, respectively. Similarly, in the Eye dataset, SPPA has

an AUC of 0.74 compared to ETM’s 0.65 and PeGaSus’s 0.52. SPPA

consistently demonstrates superior performance over both ETM

and PeGaSus as evidenced by its larger AUC.

5.3.3 Privacy preservation. We adopt the TICC algorithm [18] to

perform subsequence clustering task to examine the algorithm’s

ability of privacy preservation. With a focus on ensuring high levels

of privacy protection, we set 𝜖 = 0.25, 0.5, 0.75, 1, and 𝑤 = 8. We

use the F1 score to report the adversary’s success in clustering of

activity, as shown in Table 1. The lower the F1 score, the poorer the

classification accuracy, indicating a weaker prediction of activity

change and stronger privacy guarantee. When 𝜖 is fixed, the F1

score of true data is the highest, followed by data perturbed by

PeGaSus and ETM, and SPPA has the lowest F1 score. Because TICC

segments time series by identifying the time when the activity state

changes, the lower the classification accuracy, the stronger the

protection of temporal privacy. As the privacy budget decreases,

the privacy-preservation performance of all algorithms improves,

with SPPA being the strongest.

Table 1: F1 scores of predicting change point by TICC. A
lower F1 score indicates a decreased classification accuracy
and thus signifies the safeguarding of data.

𝜖 = 0.25 𝜖 = 0.5 𝜖 = 0.75 𝜖 = 1

Original 0.813

PeGaSus 0.740 0.744 0.764 0.810

ETM 0.674 0.723 0.725 0.744

SPPA 0.582 0.634 0.640 0.706

6 CONCLUSION
Temporal relevance are frequently implied in infinite data streams,

and the LDP framework, which disregards temporal relevance, ex-

hibits significant security vulnerabilities. In this paper, we introduce

the novel concept of 𝜖-temporal indistinguishability to quantify

the differential privacy properties of a mechanism that protects

temporal information. Additionally, we propose (𝜖,𝑤, 𝜏)-event LDP
as a means to safeguard infinite streams and present the Sampling

Period Perturbation Algorithm (SPPA) utilizing the sliding window

technique, which achieves real-time (𝜖,𝑤, 𝜏)-event LDP for infinite

streams with temporal relevance. We analyze SPPA’s theoretical

trade-off between privacy preservation and data utility and conduct

numerous experiments to validate its performance. The experimen-

tal results demonstrate that our proposed algorithm effectively

balances data utility and privacy preservation in the time domain.
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A PSEUDOCODE OF SPPA
As shown in Algorithm 2, SPPA takes as input the true data stream

𝑆 = {𝑑0, 𝑑1, · · · }, number of released datapoints per window𝑤 , true

sampling period 𝑇𝑠 , time sensitivity 𝜏 , and privacy budget 𝜖 . The

length of a single sliding window is set to be 𝑛perseg = 𝑤 + 2 (line
1). Within each sliding window, SPPA executes the SWP algorithm

to publish the perturbed time series data.

Algorithm 2: SPPA: Sampling Period Perturbation Algo-

rithm.

Input :True data stream 𝑆 = {𝑑0, 𝑑1, · · · }; Number of

released datapoints per window𝑤 ; True

sampling period 𝑇𝑠 ; Time sensitivity 𝜏 ; Privacy

budget 𝜖 ;

Output :Perturbed data stream 𝑆 ′ = {𝑑′
0
, 𝑑′

1
, · · · }.

Initialize :Length of a single sliding window:

𝑛perseg = 𝑤 + 2; Window start position:

start = 0; Window end position: end = 0;

Window count: 𝑖 = 0; Current window: 𝑆𝑖 = {}.
while end < len(𝑆) do

add the next datapoint to the window:

𝑆𝑖 .append((𝑑end, 𝑡end)) ;
end = end + 1;
if end − start == 𝑛perseg then

Execute perturbation algorithm:

𝑆 ′
𝑖
= SWP(𝑆𝑖 ,𝑇𝑠 , 𝜏, 𝜖,𝑤);

Release 𝑆 ′
𝑖
;

Remove the first𝑤 datapoints in 𝑆𝑖 : 𝑆𝑖 = 𝑆𝑖 [𝑤 :] ;
start = start +𝑤 ;

𝑖 = 𝑖 + 1 ;
end

end

B PROOF OF THEOREM 3
Proof. Let 𝑡1 and 𝑡2 are 𝜏-neighboring, i.e., |𝑡1 − 𝑡2 | ⩽ 𝜏 . For

arbitrary timestamp 𝑜 drawn from the Laplace distribution defined

in Theorem 3, we compare the probability density ratio

Pr(𝑜 |𝑡1)
Pr(𝑜 |𝑡2)

=

exp

(
−𝜖 |𝑡1 − 𝑜 |

𝜏

)
exp

(
−𝜖 |𝑡2 − 𝑜 |

𝜏

)
= exp

(
𝜖 |𝑡2 − 𝑜 |

𝜏
− 𝜖 |𝑡1 − 𝑜 |

𝜏

)
⩽ exp

(
𝜖 |𝑡2 − 𝑡1 |

𝜏

)
⩽ exp (𝜖) ,

which satisfies (𝜖, 𝜏)-temporal indistinguishability in Definition 5.

The first inequality results from the triangle inequality, and the

second inequality from the definition of 𝜏-neighbors. □

C PROOF OF THEOREM 4
Proof. Given 𝜏 and 𝜖 , we can achieve (𝜖, 𝜏)-temporal indistin-

guishability for 𝑇𝑠 via line 1. For each periodic sampling point 𝑑𝑖 ,

𝑖 ∈ {1, 2, · · · , 𝑛 − 1}, its corresponding timestamp is 𝑡𝑖 = 𝑡0 + 𝑖𝑇𝑠 .
Since 𝑇 ′𝑠 obeys the Laplace distribution

Lap (𝑥 ;𝑇𝑠 , 𝜏/𝜖) = 𝜖/(2𝜏) exp (−𝜖 |𝑇𝑠 − 𝑥 | /𝜏) ,
then 𝑡 ′

𝑖
= 𝑡0 + 𝑖𝑇 ′𝑠 obeys the distribution as follows:

Lap

(
𝑥 ; 𝑡𝑖 ,

𝑖𝜏

𝜖

)
=

𝜖

2𝑖𝜏
exp

(
−𝜖 |𝑡𝑖 − 𝑥 |

𝑖𝜏

)
,

which means Algorithm 1 satisfies (𝜖/𝑖, 𝜏)-temporal indistinguisha-

bility for 𝑡𝑖 .

Note that the perturbation of timestamps is not independent, so

the simultaneous release of {𝑑′
1
, · · · , 𝑑′

𝑛−2} applies the Theorem 2

of post-processing, but not the Theorem 1 of composition. And

since Algorithm 1 satisfies (𝜖/𝑖, 𝜏)-temporal indistinguishability

for any 𝑑′
𝑖
in published streams, it also satisfies (𝜖, 𝜏)-temporal

indistinguishability for all 𝑑′
𝑖
in published streams by Definition 1.

□

D PROOF OF THEOREM 5
Proof. Using DFT we have

𝑑𝑖 =
1

𝑛

𝑛−1∑︁
𝑘=0

𝑓𝑘𝑒
j𝜔𝑘𝑡𝑖

and

𝑑′𝑖 =
1

𝑛

𝑛−1∑︁
𝑘=0

𝑓𝑘𝑒
j𝜔𝑘𝑡

′
𝑖 ,

where 𝑓𝑘 is the 𝑘-th Fourier coefficients, j is the imaginary unit ,

𝜔𝑘 =
2𝑘𝜋

𝑛𝑇𝑠
is the 𝑘-th circular frequency of DFT. So we have

E{MSE(𝑆𝑛, 𝑆′𝑛)}

= E


1

𝑤

𝑛−1∑︁
𝑖=1

����� 1𝑛 𝑛−1∑︁
𝑘=0

𝑓𝑘𝑒
j𝜔𝑘𝑡𝑖 − 1

𝑛

𝑛−1∑︁
𝑘=0

𝑓𝑘𝑒
j𝜔𝑘𝑡

′
𝑖

�����2
=

1

𝑛2𝑤

𝑛−1∑︁
𝑖=1

E

�����𝑛−1∑︁
𝑘=0

𝑓𝑘𝑒
j𝜔𝑘𝑡𝑖

(
1 − 𝑒 j𝜔𝑘 (𝑡 ′𝑖 −𝑡𝑖 )

)�����2
(𝑎)
⩽

1

𝑛2𝑤

𝑛−1∑︁
𝑖=1

𝑛−1∑︁
𝑘=0

���𝑓𝑘𝑒 j𝜔𝑘𝑡𝑖
���2 E𝑛−1∑︁

𝑘=0

���1 − 𝑒 j𝜔𝑘 (𝑡 ′𝑖 −𝑡𝑖 )
���2

=
1

𝑛2𝑤

𝑛−1∑︁
𝑖=1

𝑛−1∑︁
𝑘=0

𝑓 2
𝑘

𝑛−1∑︁
𝑘=0

E
���1 − 𝑒 j𝜔𝑘 (𝑡 ′𝑖 −𝑡𝑖 )

���2
(𝑏 )
=

1

𝑛𝑤

𝑛−1∑︁
𝑖=1

𝑛−1∑︁
𝑚=0

𝑑2𝑚

𝑛−1∑︁
𝑘=0

E
���1 − 𝑒 j𝜔𝑘 (𝑡 ′𝑖 −𝑡𝑖 )

���2 ,
where inequality (a) is from the Cauchy-Schwartz inequality and

equality (b) is from Parseval’s theorem of DFT. Now we calculate

the expectation in the last line.
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E
���1 − 𝑒 j𝜔𝑘 (𝑡 ′𝑖 −𝑡𝑖 )

���2
=E

{
2 − 2 cos(𝜔𝑘 (𝑡 ′𝑖 − 𝑡𝑖 ))

}
=

∫ ∞

−∞

(
2 − 2 cos(𝜔𝑘 (𝑡 ′𝑖 − 𝑡𝑖 ))

) 𝜖

2𝜏
exp

(
−
𝜖
��𝑇 ′𝑠 −𝑇𝑠 ��

𝜏

)
d𝑇 ′𝑠

=2 − 𝜖

𝜏

∫ ∞

−∞
cos(𝑖𝜔𝑘 (𝑇 ′𝑠 −𝑇𝑠 )) exp

(
−
𝜖
��𝑇𝑠 −𝑇 ′𝑠 ��

𝜏

)
d𝑇 ′𝑠

=2 − 2𝜖

𝜏

∫ ∞

0

cos(𝑖𝜔𝑘𝑥) exp
(
−𝜖𝑥
𝜏

)
d𝑥

=
2

1 +
(
𝜖𝑛𝑇𝑠

2𝑖𝑘𝜋𝜏

)
2
.

By wrapping up, the MSE can be bounded as in Theorem 5. □
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