
Unveiling the Latent Space Geometry of Push-Forward Generative Models

Thibaut Issenhuth 1 2 Ugo Tanielian 1 Jérémie Mary 1 David Picard 2

Abstract
Many deep generative models are defined as a
push-forward of a Gaussian measure by a contin-
uous generator, such as Generative Adversarial
Networks (GANs) or Variational Auto-Encoders
(VAEs). This work explores the latent space of
such deep generative models. A key issue with
these models is their tendency to output samples
outside of the support of the target distribution
when learning disconnected distributions. We
investigate the relationship between the perfor-
mance of these models and the geometry of their
latent space. Building on recent developments
in geometric measure theory, we prove a suffi-
cient condition for optimality in the case where
the dimension of the latent space is larger than
the number of modes. Through experiments on
GANs, we demonstrate the validity of our theoret-
ical results and gain new insights into the latent
space geometry of these models. Additionally,
we propose a truncation method that enforces a
simplicial cluster structure in the latent space and
improves the performance of GANs.

1. Introduction
GANs (Goodfellow et al., 2014) and VAEs (Kingma and
Welling, 2014) have shown great capacities to generate pho-
torealistic images (Karras et al., 2021; Vahdat and Kautz,
2020). These two models are also helpful for diverse tasks
such as image editing (Shen et al., 2020; Wu et al., 2021) or
unsupervised image segmentation (Abdal et al., 2021; Zoran
et al., 2021). GANs and VAEs rely on learning a Lipschitz-
continuous transformation from a low dimensional Gaussian
space. As such, they have been described as push-forward
generative models (Salmona et al., 2022). According to
the same taxonomy, score-based models can be defined as
indirect push-forward generative models since they result

1Criteo AI Lab, Paris, France 2LIGM, Ecole des Ponts, Univ
Gustave Eiffel, CNRS, Marne-la-Vallée, France. Correspondence
to: Thibaut Issenhuth <thibaut.issenhuth@live.fr>.

Proceedings of the 40 th International Conference on Machine
Learning, Honolulu, Hawaii, USA. PMLR 202, 2023. Copyright
2023 by the author(s).

from the composition of a large number of transformations
and are trained with an auxiliary denoising objective.

The present paper aims at making a step towards a better
understanding of push-forward generative models such as
GANs. In particular, the goal is to shed light on the latent
space of these architectures, and to stress how it impacts the
performance of both GANs and VAEs. If empirical stud-
ies such as Donahue and Simonyan (2019) have suggested
the emergence of simple geometrical structure in the latent
space of GANs, there is still a poor theoretical understand-
ing of how generators organize their latent space. We would
like to highlight that although our theoretical results apply
to all pushforward generative models, our primary emphasis
in the experiment section is on GANs.

To better understand the latent space of generative models,
the setting of disconnected distributions learning is enlight-
ening. Experimental and theoretical works (Khayatkhoei
et al., 2018; Tanielian et al., 2020; Salmona et al., 2022) have
shown a fundamental limitation of push-forward generative
models. Since the modeled distribution is connected, some
areas of its support are necessarily mapped outside the true
data distribution. However, when covering several modes of
a disconnected distribution, generators still try to minimize
the numbers of samples lying outside the true modes (e.g.
the purple area on the right of Figure 1). In other words,
generators aim at minimizing the measure of the existing
borders between the modes in the latent space. Considering
a Gaussian latent space, finding such minimizers is closely
linked to Gaussian isoperimetric inequalities (Ledoux, 1996)
where the goal is to derive the partitions that split a Gaussian
space with minimal Gaussian-weighted perimeters. Most
notably, a recent result (Milman and Neeman, 2022) shows
that, as long as the number of components m in the partition
and the number of dimensions d of the Gaussian space are
such that m ≤ d+ 1, the optimal partition is a ‘simplicial
cluster’: a Voronoi diagram with equidistant seeds, see left
of Figure 1 for m = 3 and d = 3.

In this paper, we demonstrate the effectiveness of applying
simplicial clusters to the latent space of push-forward gen-
erative models. We show both experimentally and theoreti-
cally that generators with a latent space structured as a sim-
plicial cluster minimize the occurrence of out-of-distribution
generated samples. Using the precision metric (Sajjadi et al.,

1

Unveiling the Latent Space Geometry of Push-Forward Generative Models

Figure 1. Illustration of the capability of GANs to discover an
optimal geometry of the latent space. On the left, the propeller
shape represents a partition of 3D Gaussian space with the smallest
Gaussian-weighted perimeter (Figure from (Heilman et al., 2013)).
On the right, we show the 3D Gaussian latent space of a GAN
trained on three classes of MNIST. Each area colored in blue,
green, or red corresponds to samples in one of the three classes.
Using a pre-trained classifier, we highlight in purple the samples
with low-confidence, and observe that the partition reached by
the GAN (right) is close to optimality (left), as the latent space
partition is similar to the intersection of the propeller on a sphere.

2018; Kynkäänniemi et al., 2019), we show that generators
with a simplicial cluster latent space achieve optimal pre-
cision levels and provide both an upper and a lower bound
on their precision. Our experiments reveal that GANs with
higher performances tend to organize their latent space as
simplicial clusters. More importantly, we illustrate that en-
forcing this ‘simplicial structure’ with a truncation method
can boost GANs’ performance. Interestingly, simplicial
clusters are highly similar to the ‘simplex Equiangular Tight
Frames’ observed in the last-layer features of deep classifica-
tion networks (Papyan et al., 2020). This study stresses that
they also naturally emerge in deep push-forward generative
models. Our contributions are the following:

• We are the first to build on the latest results from Gaus-
sian isoperimetric inequalities by Milman and Neeman
(2022) in the study and understanding of push-forward
generative models.

• We present a new theoretical analysis, providing both
an upper bound on the precision of push-forward gen-
erative models. We demonstrate that generators with a
latent space organized as a simplicial cluster have an
optimal precision, with lower bounds that decrease in√
m logm, where m is the number of modes.

• Experimentally, we verify that GANs tend to structure
their latent space as simplicial clusters’ by exploring
two properties of the latent space: linear separability
and convexity of classes. Also, we analyse the im-
pact of latent space dimension on GANs, and reveal a
positive correlation between GANs’ performance and
latent space geometry.

• Finally, we show that enforcing a simplicial structure
into GANs’ latent space can boost their performance

and outperforms other boosting methods.

2. Related Work
2.1. Notation

Data. We consider a target distribution µ? defined on a
Euclidean space RD, which may be a high-dimensional
space, and equipped with the Euclidean norm ‖ · ‖. We use
Sµ to represent the support of any distribution µ.

Push-forward generative models. We consider the set
of L-Lipschitz continuous functions, denoted as GL, from
the latent space Rd to the high-dimensional space RD. The
primary goal of each generator in this set is to produce real-
istic samples. The distribution in the latent space, defined
on Rd, is assumed to be Gaussian and is represented as γ.
For each generator G ∈ GL, we associate the push-forward
distribution (or image distribution) of γ by G, and denote
it G]γ, where] denotes the push-forward operator. In the
context of generative models, each distribution G]γ is now
a candidate distribution to represent µ?.

The Lipschitzness assumption on GL is reasonnable: Vir-
maux and Scaman (2018) have shown the lipschitzness of
deep neural networks, and have developed an algorithm that
can upper-bound their Lipschitz constant. While deep neu-
ral networks can have high Lipschitz constants, it is possible
to constrain this in practice by techniques such as clipping
the neural network’s parameters (Arjovsky et al., 2017), pe-
nalizing the discriminative functions’ gradient (Gulrajani
et al., 2017; Kodali et al., 2017; Wei et al., 2018; Zhou et al.,
2019), or penalizing the spectral norms (Miyato et al., 2018).
Large-scale generators such as SAGAN (Zhang et al., 2019)
and BigGAN (Brock et al., 2019) also make use of spectral
normalization for the generator.

2.2. Generative models and disconnected distributions

The phenomenon of misspecification in continuous genera-
tive models, while primarily studied in the context of GANs,
is also relevant to other families such as VAEs or normal-
izing flows (Salmona et al., 2022). This issue has been
investigated both experimentally (Khayatkhoei et al., 2018)
and theoretically (Tanielian et al., 2020; Salmona et al.,
2022). The problem stems from a fundamental trade-off:
continuous generators can either cover all modes, resulting
in out-of-manifold samples, or generate only high-quality
samples, neglecting some modes. To address this, various
methods have been proposed, such as training disconnected
distributions (Gurumurthy et al., 2017; Khayatkhoei et al.,
2018) or deriving rejection mechanisms from pre-trained
generators (Azadi et al., 2018; Tanielian et al., 2020; Hu-
mayun et al., 2022).

Empirical studies have provided valuable insights into the

2

Unveiling the Latent Space Geometry of Push-Forward Generative Models

structure of the latent space of generative models. For exam-
ple, Karras et al. (2019) demonstrate that binary attributes
are linearly separable in the Gaussian latent space and even
more separable in an intermediate latent space. Similarly,
Shen et al. (2020) find that face attributes are separated
by hyperplanes in the latent space.Arvanitidis et al. (2018)
and Chen et al. (2018a) view the latent space of generative
models with a Riemannian perspective.

While these findings provide valuable insights into the la-
tent space structure of generative models, they may not be
sufficient for a comprehensive understanding of the latent
space geometry. For instance, Tanielian et al. (2020) stress
the relevance of this problem by showing that the precision
of GANs can converge to 0 when the number of modes or
the distance between them increases. In this paper, we take
a step towards a deeper understanding of the behavior of
push-forward generative models and reveal an optimal latent
space configuration when the number of modes m and the
dimension of the latent space d are such that m ≤ d+ 1.

2.3. Evaluating generative models

When learning disconnected manifolds, Sajjadi et al. (2018)
illustrated the need for measures that simultaneously evalu-
ate both the quality (Precision), and the diversity (Recall)
of the generated samples. However, Kynkäänniemi et al.
(2019) pointed out an important limitation of the PR metric:
it cannot accurately interpret situations when large numbers
of samples are packed together. They propose an Improved
PR metric based on the non-parametric estimation of mani-
folds to correct this.

Improved PR metric. Informally, for a generator G, pre-
cision (αG) quantifies the proportion of generated samples
that can be approximated with true samples, while recall
(βG) measures the proportion of true samples that can be
approximated with generated ones. Applying this to GANs,
using the target distribution µ? and modeled distribution
G]γ, the Improved PR metric was shown, by Tanielian et al.
(2020, Theorem 1), to be asymptotically equivalent to:

αnG →
n→∞

αG = G]γ
(
Sµ?

)
and βnG →

n→∞
βG = µ?

(
SG]γ

)
,

where Sµ? denotes the support of µ? and n is the number
of samples. However, Naeem et al. (2020) have shown that
the Improved PR metric (Kynkäänniemi et al., 2019) is sen-
sitive to outlier samples of both the target and the generated
distribution. To correct this and fix the overestimation of the
manifold around real outliers, Naeem et al. (2020) propose
the Density/Coverage metric.

Density/Coverage. Instead of counting how many fake
samples belong to a real sample neighborhood, density
counts how many real sample neighborhoods contain a gen-
erated sample. On the other hand, coverage counts the

number of real sample neighborhoods that contain at least
one fake sample.

In the next analysis both theoretical and experimental, we
use both notions of precision and density defined above.

3. Simplicial Structure in Push-Forward
Generative Models

The goal is to gain a deeper understanding of the latent space
of push-forward generative models and identify which ones
possess the highest precision under certain conditions. As
previously mentioned, push-forward generative models map
a unimodal Gaussian distribution γ through a Lipschitz-
continuous function, represented by a generator G. As a
result, the modeled generative distribution G]γ necessarily
has a connected support.

In cases where the target distribution µ? contains discon-
nected manifolds, generators have to generate fake data
points that fall outside of the true manifold. This prompts
the question: given that a generator samples data points
from each of the distinct modes, what is the maximum pre-
cision that it can achieve? To begin with, let’s consider a
target distribution µ? composed of m disconnected modes.

Assumption 3.1 (Disconnected manifolds). The target dis-
tribution µ? consists of m disconnected spheres Si, i ∈
[1,m] of equal measure (with centers Xi and radius ri). Ad-
ditionally, the spheres satisfy the two following properties:

• Small individual radius: each radius ri satisfies

ri < min
j

‖Xi −Xj‖
2

. (1)

• Each distance ‖Xi −Xj‖ satisfies:

min
k∈[1,m],k 6=i,j

‖(Xi +Xj)/2−Xk‖ >
‖Xi −Xj‖

2
.

(2)

We believe that the assumption of disconnectedness is a
reasonable one, particularly for multi-class datasets such as
MNIST (LeCun et al., 1998), CIFAR10 (Krizhevsky, 2009),
or STL10 (Coates et al., 2011). To validate this property,
we run a pre-trained CLIP (Radford et al., 2021) on the
dataset, identify a certain number of clusters using a K-
means algorithm, and further test the disconnectedness of
these modes by training a linear classifier. The accuracy on
these datasets is 98.1% on MNIST, 93.9% on CIFAR10, and
92.7% on STL10.

The second point in (2) has a direct impact on the location
of the data points X1, . . . , Xm. Specifically, it implies that
each cell in the Voronoi diagram with seeds X1, . . . , Xm

shares a side with all the other cells. In other words, the dual

3

Unveiling the Latent Space Geometry of Push-Forward Generative Models

graph of this Voronoi diagram is complete. This assump-
tion, which is further discussed with specific examples in
Figure 2, can be justified by the concentration of distances
in high-dimensional spaces: all the modes are roughly at
equal distance (Beyer et al., 1999; Aggarwal et al., 2001).
Furthermore, a recent work by Papyan et al. (2020) has
shown that embeddings of deep neural networks trained for
classification tend to collapse around means that are equidis-
tant and maximally equiangular to one another. By using
these embedded representations to measure distance, the
target distribution would thus easily satisfy Assumption 3.1.
Projected GANs (Sauer et al., 2021) is really close to this
idea as the authors show the effectiveness of leveraging a
pre-trained classifier when training GANs: instead of di-
rectly discriminating images, the discriminator is trained on
features extracted from the classifier.

Throughout the rest of the paper, we define the set of well-
balanced generators as those mapping an equal number of
data points to each mode of the data distribution:

Definition 3.2. A generator G is well-balanced if for all
spheres, we have G]γ(S1) = . . . = G]γ(Sm).

Considering well-balanced generators is reasonable as many
empirical improvements such as WGAN-GP (Gulrajani
et al., 2017) or BigBiGAN (Donahue and Simonyan, 2019)
have significantly reduced mode collapse. GANs generate
diverse output distributions on datasets such as CIFAR10,
CIFAR100, and ImageNet. To validate the use of well-
balanced generators, we conducted a small experiment and
evaluated the proportion of each class generated by GANs
on MNIST and CIFAR10. On MNIST, the minimum pro-
portion of a class is 9.2 and the maximum 10.9, while on
CIFAR10 it is 8.3 and 11.9 (in %). The variance-to-mean
ratio is equal to 0.03 for MNIST and 0.22 for CIFAR10.

3.1. Precision and the associated partition

Now that we have defined the prerequisites for both the
data and the model, we propose to establish a connection
between the latent space partition and the precision of a
generator. We create a link between the set of generators
from Rd to RD and the set of partitions in the latent space.
Specifically, for each given partition in Rd, there exists a
set of associated generators defined as follows:

Definition 3.3. For a given partition A = A1, . . . , Am
on Rd, we say that G is associated to A if: for all i ∈
[1,m], for all z ∈ Ai, i = argmin

j∈[1,m]

‖G(z)−Xj‖.

Each given generator G is associated with a unique partition
A in Rd. The geometry of the associated partition A plays
a key role in explaining the behavior and performance of the
generator G. We are interested in maximizing the precision
of generative models. Points in the intersection of two cells

Ai ∩ Aj , (i, j) ∈ [1,m]2 are equidistant from Xi and Xj

and thus do not belong to any of these modes (since bot
ri and rj < ‖Xi − Xj‖/2 according to Assumption 3.1).
Additionally, due to the generator’s Lipschitzness, there is
a small neighborhood around the boundary such that any
points in this neighborhood are mapped out of the target
manifold. This region in the latent space thus reduces the
precision. For a given ε > 0, we now define the epsilon-
boundary of the partition A as follows.

Definition 3.4. For a given partition A = {A1, . . . , Am}
of Rd and a given ε ∈ R?+, we denote ∂εA the ε-boundary
of A, defined as follows.

∂εA =

m⋃
i=1

(
∪j 6=i Aj

)ε\(∪j 6=i Aj),
where Aε corresponds to the ε-extension of set A. The fol-
lowing lemma makes the connection between the precision
of a generator αG and its associated partition A.

Lemma 3.5. Assume that Assumption 3.1 is satisfied and
A be a partition in Rd. Then, any generator G ∈ GL
associated with A verifies:

αG 6 1− γ(∂εminA). (3)

where εmin = mini,j ‖Xi −Xj‖/L.

Interestingly, this result holds independently of the partition
A. It highlights that the geometry of the partition gives
an upper-bound on the precision of the generator. Conse-
quently, to properly determine this bound on the precision
levels of generative models, one might be interested in deter-
mining the measure of this epsilon-boundary ∂εA. By using
the result from Lemma 3.5, we can derive an upper-bound
on the precision that depends on D,L and m:

Corollary 3.6. Assume that Assumption 3.1 is satisfied,
m 6 d + 1. Then, there exists L with L > D

√
log(m),

such that for any well-balanced generator G ∈ GL:

αG 6 1− εmin

√
logm e−3/2 (4)

where εmin = mini,j ‖Xi −Xj‖/L. In particular, the result
in (4) gives an interesting insight when training GANs on
a finite number of modes. Tanielian et al. (2020, Theorem
3) showed a similar result but for the asymptotic case when
the number of modes increases:

αG
m→∞
6 e−

1
8 ε

2
mine−εmin

√
log(m)/2. (5)

3.2. Optimality for push-forward generative models

To exhibit generative models with optimal precision lev-
els, one must look at partitions with the smallest epsilon-
boundary measures γ(∂εA). We argue that this is tightly

4

Unveiling the Latent Space Geometry of Push-Forward Generative Models

connected to the theoretical field of Gaussian isoperimet-
ric inequalities. Isoperimetric inequalities link the measure
of sets with their perimeters. More specifically, these in-
equalities highlight minimizers of the perimeter for a fixed
measure, e.g. the sphere in an euclidean space with a given
Lebesgue measure. In the Gaussian space, Borell (1975)
and Sudakov and Tsirel’son (1978) show that in a finite-
dimensional case, among all sets of a given measure, half-
spaces have a minimum Gaussian perimeter. More formally,
for any Borel set A in Rd and a half-space H , if we have
γ(A) > γ(H), then γ(Aε) > γ(Hε) for any ε > 0, where
Aε denotes the ε-extension of A.

The Gaussian multi-bubble conjecture was formulated when
looking for a way to partition the Gaussian space in m parts,
with the least-weighted boundary. It was recently proved by
Milman and Neeman (2022) who showed that the best way
to split a Gaussian spaceRd in m clusters of equal measure,
with 2 6 m 6 d + 1, is by using ‘simplicial clusters’
obtained as the Voronoi cells of m equidistant points in
Rd. Convex geometry theory tells us that each cell is a
convex cone, whose borders are hyperplanes going through
the origin of Rd. We note A? any partition corresponding
to this optimal configuration, see Figure 1 for m = 3.

In the following theorem, we apply this result to the un-
derstanding of GANs. We make the connection between
optimal generators (when m 6 d+ 1) in levels of precision
and the partition A? derived in Milman and Neeman (2022).
Theorem 3.7 (Optimality of generators with simplicial
cluster latent space.). Assume that Assumption 3.1 is sat-
isfied and m 6 d+ 1. For any δ > 0, there exists C large
enough (independent of δ) and L > D

√
m
√
π log(Cm),

and a well-balanced generator G? ∈ GL associated with
A? such that for any other well-balanced generatorG ∈ GL,
we have:

αG? > αG − δ (6)

Moreover, if m 6 d, noting εmax = maxi,j ‖Xi−Xj‖/L:

αG? > 1− εmax

√
m log(Cm), (7)

Theorem 3.7 shows that when L is large enough, the bound
in (4) is almost tight, and thus that the given generator based
on the simplicial partition A? is almost optimal. However,
it is not clear whether those are the only generators with
optimal precision. The proof is delayed in Appendix A.

What if Assumption 3.1 is not verified? This assump-
tion is needed for the definition of a well-balanced generator
associated with A? as in Theorem 3.7. As shown in Figure
2, the latent space configuration obtained by the GANs for 3
almost equidistant points (1st row) and 3 almost aligned data
points (2nd row). We see that in the later case, the Voronoi
partition of the target data points does not verify Assump-
tion 3.1, and the optimal latent structure is not known. We

observe in this specific case that it is made of two parallel
hyperplanes, much different from A? defined by Milman
and Neeman (2022) (1st row).

Figure 2. Illustration of the impact of the geometry of data modes
on the latent space of GANs. The left column shows the modes
(X1, X2, X3) from the target distribution and the generated points
(small blue dots). In the middle, we plot the Voronoi diagram
generated from (X1, X2, X3). On the right column, we show the
boundaries in the GANs latent space with heatmaps of the norm
of the gradient of the generator. In the first row, when the data
satisfies Assumption 3.1, GANs achieve the optimal configuration.
However, when the data modes do not satisfy this assumption, as
seen in the second row, this is no longer the case.

What if the dimension m > d+ 1? The position of the
different spheres could be such that Assumption 3.1 is no
longer valid. Second, since the result from Milman and
Neeman (2022) does not hold, the optimal partition of the
Gaussian space in m equal cells is unknown. In this gen-
eralized context, GANs could hint at the optimal partition
geometry. Figure 3 stresses examples when training GANs
from R2 to Rm with m equidistant modes. This gives some
insights on how to divide the Gaussian space into m equi-
table areas with least Gaussian-weighted perimeter.

Figure 3. Extension of the multi-bubble conjecture when m >
d + 1. We depict the partition of the R2 latent space of a GAN
that maps tom equidistant points inRm, with m = 4, 6, 12. Each
colored cell maps to a distinct data point inRm.

What if the modes do not have equal measure? The
fact that each mode has equal measure in the target dis-
tribution might not be verified for unbalanced datasets.
First, the optimality of simplicial clusters holds because
the multi-bubble theorem is still valid. However, the

5

Unveiling the Latent Space Geometry of Push-Forward Generative Models

lower-bound (Equation 7) does not hold. Additionally, the
upper-bound from Corollary 3.6 can be relaxed. Consider
w1, . . . , wm ∈ Rm the weights of the different modes, and
wmin = min

i
wi, the upper-bound becomes:

αG 6 1−mεminwmin

√
log(1/wmin) e

−3/2.

We observe that this upper-bound might not be tight any-
more since it depends on the minimum of the weights wmin.

3.3. Improving generative models

Our proposed theoretical analysis offers valuable insights
into the optimal structure of the latent space for push-
forward generative models. We demonstrate that by lever-
aging this structure, it is possible to design GANs with
improved performance. To achieve this, we enforce a sim-
plicial cluster structure in the latent space of GANs during
training using a novel rejection sampling procedure called
simplicial cluster truncation that can be combined with a
mutual-information loss. Note that modifying the latent
space distribution of other generative models, such as VAEs
or score-based models, is a more complex task.

Simplicial cluster truncation. Let us denote a
simplicial cluster (Milman and Neeman, 2022) as
(u1, . . . , um) | ui ∈ Rd. The rejection sampling procedure,
based on Theorem 3.7, involves sampling a latent vector z
from γ and accepting it if max

i∈[1,...,m]
(z · ui) > τ , where both

τ and m are considered as hyper-parameters. This defines a
new latent space distribution where the density is high near
the unit vectors ui, i ∈ [1,m]. As a result, the boundaries of
the simplicial cluster, which are points with high distances
to the centers of Voronoi cells, are rejected. The threshold
parameter τ determines the ε value. With this method, the
boundaries between different modes are never sampled,
leading to a disconnected latent space. This approach
can improve the learning of disconnected manifolds by
injecting disconnectedness into the modeled generative
distribution. Additionally, the use of a geometrical structure
that is particularly well suited to separate several modes
(Papyan et al., 2020) enhances the performance.

Mutual-information loss. The rejection sampling proce-
dure might not be sufficient for the generator to properly
use the different clusters of its latent space. To encourage
the simplicial cluster structure, we also optimize the mutual
information between generated samples and the correspond-
ing cluster (Khayatkhoei et al., 2018). The loss is applied at
the beginning of the training and is then dropped.

4. Experiments
In the following experiments1, we validate our theoretical
analysis and derive insights for GANs trained on toy and
image datasets. We also run a small experiment on VAEs.
We verify: 1) that the latent space geometry of GANs has
similar properties than simplicial clusters; 2) that increasing
the latent space dimension (d+ 1 > m) can help improve
GANs, as highlighted in the theoretical section; 3) that
GANs’ performance is correlated with their latent space
geometry; 4) that the proposed simplicial cluster truncation
method is effective and boost GANs’ performance.

In the following experiments, we train WGANs with gradi-
ent penalty (Arjovsky et al., 2017; Gulrajani et al., 2017).
For mixture of Gaussians, generator and discriminator are
MLP networks. For MNIST, the generator and discrimina-
tor are standard convolutional architectures. On CIFAR-
10, CIFAR-100 , and STL-10, we use either a Resnet-
based (He et al., 2016) convolutional architecture with self-
modulation in the generator (Chen et al., 2018b), either
the transformer-based architecture from Jiang et al. (2021).
To evaluate the performance of GANs, we use both the
precision (Kynkäänniemi et al., 2019), the FID (Heusel
et al., 2017), and the density/coverage (Naeem et al., 2020).
We use a dataset-specific classifier to extract image fea-
tures on MNIST, and InceptionNet pre-trained on ImageNet
for CIFAR-10, CIFAR-100 and STL-10. Implementation
details are given in Appendix B and code is provided in
Supplementary Material.

4.1. Linear separability and convexity

According to Milman and Neeman (2022), the optimal con-
figuration in the latent space is obtained as the Voronoi cells
ofm equidistant points inRd, ifm ≤ d+1. This means that
if GANs reach this optimal configuration, each of the cells
must be convex polytopes and have the following properties:
1) the boundaries of a cell are flat; 2) each cell is convex. To
investigate this, we use a labeled dataset and assess whether
a simple linear model (e.g., multinomial logistic regression)
can map latents to labels. If the cells in the latent space are
bounded by hyperplanes, then, using the hyperplane sepa-
ration theorem, the linear model is expected to be a good
predictor of a generated sample’s label.

We use a standard multi-class labeled dataset. Gθ is a pre-
trained generator and Cφ is a pre-trained classifier con-
sidered as an oracle. Using Gθ and Cφ, we construct a
dataset of latent vectors z ∈ Rd and their associated labels
y = Cφ(Gθ(z)). On CIFAR-10/100, similarly to Razavi
et al. (2019), only data points with a confidence threshold
of 0.7 or higher are accepted. This dataset is later split into

1Our code is open-source and can be found there:
https://github.com/thibautissenhuth/unveiling latent geometry.

6

https://github.com/thibautissenhuth/unveiling_latent_geometry

Unveiling the Latent Space Geometry of Push-Forward Generative Models

Dataset Architecture Latent dim Precision (↑) LogReg Acc. (↑) Convex Acc. (↑)
100 Gauss. MLP 100 75.5 78.5 87.2
MNIST CNN 64 93.2 90.4 98.7
CIFAR-10 ResNet 64 66.8 65.3 75.2
CIFAR-10 Transformer 256 72.8 70.7 84.3
CIFAR-100 ResNet 64 64.3 30.5 42.1
CIFAR-100 Transformer 64 64.2 26.5 39.2

Table 1. Validation of linear separability (LogReg Acc.) and convexity (Convex Acc.) in GAN latent spaces. The results align with the
predictions of Corollary 3.6, where a linearly separable and convex structure of the latent space indicates a high precision. The architecture
Transformer refers to the TransGAN model from Jiang et al. (2021). The supervised classifiers used as oracles haves test-accuracies of
80.2% on CIFAR-10 and 61.8% on CIFAR-100.

Dataset LogReg Acc. (↑) Convex Acc. (↑)
MNIST 92.5 95.1
CIFAR-10 53.1 59.4

Table 2. Validation of linear separability (LogReg Acc.) and con-
vexity (Convex Acc.) in VAE latent spaces. The supervised classi-
fiers used as oracles haves test-accuracies of 80.2% on CIFAR-10.

100k training points and 10k test points. We use multino-
mial logistic regression to learn the mapping from latent
vectors z to their labels y. We can see in Table 1, that the
LogReg Accuracy reaches high levels: 90% on MNIST and
70% on CIFAR-10. For the Convex accuracy, we draw two
random latent vectors z0 and z1 that belong to the same
class, and check whether linear interpolations in the latent
space also belong to the same class, that is Cφ(Gθ(z0)) =
Cφ(Gθ(z0)) = λ× Cφ(Gθ(z0)) + (1− λ)× Cφ(Gθ(z1))
for λ ∈ [0, 1]. Interestingly, we see in Table 1 a correlation
between the Logreg and Convex accuracy and the precision
metric: the more the latent space behaves like a simplicial
cluster, the higher the precision. For a qualitative evaluation,
we show this phenomenon in Figure 4 and stress that linear
interpolations conserve the image class.

In Table 2, we demonstrate that VAEs also tend to struc-
ture their latent space in linear regions. In this experiment,
we use a slightly different setting: instead of drawing ran-
dom latent vectors, we directly use the dataset samples and
encode them with the VAE’s encoder to test LogReg and
Convex accuracies.

4.2. Impact of the latent space dimension

To evaluate the impact of the latent space dimension, we
train GANs with latent space dimension ranging from 2 to
128 on several datasets. In Figure 5, we exhibit two phases
in the performance of GANs when changing the number
of latent dimensions. For a fixed architecture, and a given
dataset, we observe the existence of an optimal latent space
dimension d?. When d < d? the precision or density of the

Figure 4. Visualization of the convexity of classes in the latent
space of GANs trained on CIFAR-10. The plot shows that latent
linear interpolations within a class preserve the class label.

model falls significantly. Interestingly, when d > d?, the
precision becomes constant: overparameterizing the model
does not bring a significant improvement. As expected, we
observe in Figure 5 that the maximum precision/density
depends on the complexity of the dataset and its number
of modes: the more complex the dataset, the lower the
precision. This is also coherent with our theoretical results
from both Corollary 3.6 and Theorem 3.7.

Figure 5. Performance of GANs with regard to the number of
modes and latent space dimensions. As the number of modes
and latent space dimension increases, we observe an improve-
ment in Precision (left) and Density (right), with a saturation point
beyond a certain threshold.

An interesting problem was also brought to the fore by Roth
et al. (2017). When training GANs two different issues
can arise: 1) dimensional misspecification where the true
and modeled distributions do not have density functions

7

Unveiling the Latent Space Geometry of Push-Forward Generative Models

Figure 6. Study of the correlation between GANs’ performance and their latent space geometry. This is done by increasing the width of
the generator (w ∈ {32, 64, 128, 256, 512}) in a fixed training setting on the CIFAR-10 and CIFAR-100 datasets. The results reveal a
positive correlation between GANs’ performance (measured by Precision and Density) and the linear separability and convexity of their
latent space (measured by LogReg and Convex Accuracy). Confidence intervals are computed on 10 checkpoints of a training.

w.r.t. the same base measure, and 2) density misspecifica-
tion, where GANs try to fit a disconnected manifold with a
unimodal distribution. To isolate the density misspecifica-
tion studied in this paper, we train a conditional GAN with
a low-dimensional latent space Rd (e.g. R5 in our setting),
so that the dimension of the generated manifold is at most
5. We later collect a dataset of synthetic generated samples
Synthetic CIFAR-10, and train unconditional GANs with
varying latent space dimensions. Figure 5 shows that GANs
converge to the same limits for Precision and Density on
Synthetic CIFAR-10 and CIFAR-10. This shows that the
performance is more impacted by the density misspecifica-
tion (trying to fit a disconnected target distribution with a
connected one) rather than the dimensional misspecification.

4.3. The latent geometry and GANs’ performance

We investigate the relationship between the performance of
GANs and their latent space geometry. To do so, we train
many generators with different capacities (increasing width),
and study how it impacts both the latent geometry and the
performance. The results in Figure 6 reveal a strong posi-
tive correlation between the performance of GANs and the
linearity/convexity of the latent space: the better the GANs
perform, the more linearly separable and convex the latent
space is. Indeed, the Pearson correlation between Precision
and LogReg Accuracy is 0.98 on CIFAR-10, and 0.94 on
CIFAR-100. Interestingly, overparametrization was known
to help push-forward generative models in their optimiza-
tion procedure (Balaji et al., 2020) and in increasing their
Lipschitz constant (Salmona et al., 2022). We demonstrate
here that it can help GANs in reaching an optimal latent
space structure, resulting in improved performance.

4.4. Impact of the simplicial truncation method

Finally, we aim to improve GANs performance by using our
theoretical results (Theorem 3.7). This is done by truncating
the latent Gaussian distribution, as discussed in Section 3.3,
so that the generator structures its latent space with a sim-
plicial cluster geometry. Note that the rejection threshold

used at inference time can be higher than the one used at
training time, since we have observed that higher rejection
thresholds can help us increase both the precision and den-
sity of the models. The results in Table 3 demonstrate that
the use of this truncation method can improve the density
and precision of GANs, without lowering the coverage nor
the FID. This simplicial-based truncation has thus proved to
be effective at removing off-manifold samples and can help
improve push-forward generative models.

Dataset/Model FID
↓

Prec.
↑

Rec.
↑

Dens.
↑

Cov.
↑

CIFAR-10
TransGAN 8.9 72.8 62.6 79.3 79.3
TransGAN + JBT 8.8 73.3 61.2 85.7 81.1
TransGAN + DeliG. 9.8 74.6 58.6 93.2 80.0
TransGAN + simp. 9.2 74.9 59.2 96.4 82.6

CIFAR-100
TransGAN 15.2 64.2 63.1 53.4 66.0
TransGAN + JBT 15.0 64.8 62.9 53.6 66.2
TransGAN + DeliG. 15.9 63.5 62.2 52.6 64.4
TransGAN + simp. 15.1 65.6 61.5 56.3 66.4

STL-10 (32x32)
TransGAN 10.5 75.7 60.1 87.5 83.0
TransGAN + JBT 11.0 78.1 57.6 99.3 83.8
TransGAN + DeliG. 10.5 76.0 60.2 85.5 81.5
TransGAN + simp. 10.0 77.8 60.1 94.1 83.5

Table 3. Improving GANs with simplicial cluster latent space. JBT
stands for the Jacobian-based truncation (Tanielian et al., 2020);
DeliG. for latent space with mixture of Gaussians (Gurumurthy
et al., 2017); simp. for our proposed truncation method with
simplicial cluster. These results demonstrate that generators with a
simplicial cluster latent space consistently outperform the baseline
generator in Precision/Density, and most of the times outperforms
other boosting methods (DeliGAN and JBT).

5. Conclusion
In conclusion, this paper takes a step towards a better un-
derstanding of push-forward generative models. When the
latent space dimension is large enough, we prove the exis-

8

Unveiling the Latent Space Geometry of Push-Forward Generative Models

tence of an optimal latent space geometry, called ‘simplicial
clusters’. Through experiments, we demonstrate that gen-
erative models with sufficient capacity tend to conform to
this optimal geometry and also that enforcing this latent
structure can improve GANs’ performance. Our analysis
has potential to drive further research on generative mod-
els with both theoretical and practical implications, such as
developing new models that favor the emergence of such
clusters in both latent and feature spaces. Similarly to what
has been done in classification (Papyan et al., 2020), study-
ing thorougly the feature space of deep generative models
is also an open question.

Limitations. While our theoretical analysis demonstrates
the existence of optimal generators, we were unable to prove
their uniqueness. This limitation is associated with iden-
tifying partitions with the lowest ε-boundary measures in
the Gaussian space, which is a challenging and unresolved
problem in geometric measure theory.

Potential negative societal impacts. This work may in-
crease potential negative impacts of deep generative models,
such as deepfakes (Fallis, 2020).

Acknowledgements
We would like to thank Jean-Yves Franceschi for helpful
discussions and a thorough review of the paper.

9

Unveiling the Latent Space Geometry of Push-Forward Generative Models

References
Rameen Abdal, Peihao Zhu, Niloy J Mitra, and Peter Wonka.

Labels4free: Unsupervised segmentation using stylegan.
In Proceedings of the IEEE/CVF International Confer-
ence on Computer Vision, pages 13970–13979, 2021.

Charu C Aggarwal, Alexander Hinneburg, and Daniel A
Keim. On the surprising behavior of distance metrics in
high dimensional space. In International conference on
database theory, pages 420–434. Springer, 2001.

M. Arjovsky, S. Chintala, and L. Bottou. Wasserstein gener-
ative adversarial networks. In D. Precup and Y.W. Teh,
editors, Proceedings of the 34th International Confer-
ence on Machine Learning, volume 70, pages 214–223.
PMLR, 2017.

Georgios Arvanitidis, Lars Kai Hansen, and Søren Hauberg.
Latent space oddity: on the curvature of deep genera-
tive models. In International Conference on Learning
Representations, 2018.

Samaneh Azadi, Catherine Olsson, Trevor Darrell, Ian
Goodfellow, and Augustus Odena. Discriminator rejec-
tion sampling. In International Conference on Learning
Representations, 2018.

Yogesh Balaji, Mohammadmahdi Sajedi, Neha Mukund
Kalibhat, Mucong Ding, Dominik Stöger, Mahdi
Soltanolkotabi, and Soheil Feizi. Understanding over-
parameterization in generative adversarial networks. In
International Conference on Learning Representations,
2020.

Kevin Beyer, Jonathan Goldstein, Raghu Ramakrishnan,
and Uri Shaft. When is “nearest neighbor” meaningful?
In International conference on database theory, pages
217–235. Springer, 1999.

Christer Borell. The brunn-minkowski inequality in gauss
space. Inventiones mathematicae, 30(2):207–216, 1975.

A. Brock, J. Donahue, and K. Simonyan. Large scale GAN
training for high fidelity natural image synthesis. In Inter-
national Conference on Learning Representations, 2019.

Nutan Chen, Alexej Klushyn, Richard Kurle, Xueyan Jiang,
Justin Bayer, and Patrick Smagt. Metrics for deep gen-
erative models. In International Conference on Artifi-
cial Intelligence and Statistics, pages 1540–1550. PMLR,
2018a.

Ting Chen, Mario Lucic, Neil Houlsby, and Sylvain Gelly.
On self modulation for generative adversarial networks.
In International Conference on Learning Representations,
2018b.

Adam Coates, Andrew Ng, and Honglak Lee. An analysis
of single-layer networks in unsupervised feature learning.
In Proceedings of the fourteenth international conference
on artificial intelligence and statistics, pages 215–223.
JMLR Workshop and Conference Proceedings, 2011.

Jeff Donahue and Karen Simonyan. Large scale adversarial
representation learning. Advances in neural information
processing systems, 32, 2019.

Don Fallis. The epistemic threat of deepfakes. Philosophy
& Technology, pages 1–21, 2020.

Herbert Federer. Geometric measure theory. Springer, 1969.

I. Goodfellow, J. Pouget-Abadie, M. Mirza, B. Xu,
D. Warde-Farley, S. Ozair, A. Courville, and J. Ben-
gio. Generative adversarial nets. In Z. Ghahramani,
M. Welling, C. Cortes, N.D. Lawrence, and K.Q. Wein-
berger, editors, Advances in Neural Information Process-
ing Systems 27, pages 2672–2680. Curran Associates,
Inc., 2014.

I. Gulrajani, F. Ahmed, M. Arjovsky, V. Dumoulin, and
A.C. Courville. Improved training of Wasserstein GANs.
In I. Guyon, U. von Luxburg, S. Bengio, H. Wallach,
R. Fergus, S. Vishwanathan, and R. Garnett, editors, Ad-
vances in Neural Information Processing Systems 30,
pages 5767–5777. Curran Associates, Inc., 2017.

Swaminathan Gurumurthy, Ravi Kiran Sarvadevabhatla, and
R Venkatesh Babu. Deligan: Generative adversarial net-
works for diverse and limited data. In Proceedings of the
IEEE conference on computer vision and pattern recogni-
tion, pages 166–174, 2017.

Kaiming He, Xiangyu Zhang, Shaoqing Ren, and Jian Sun.
Deep residual learning for image recognition. In Pro-
ceedings of the IEEE conference on computer vision and
pattern recognition, pages 770–778, 2016.

Steven Heilman, Aukosh Jagannath, and Assaf Naor. Solu-
tion of the propeller conjecture in R3. Discrete & Com-
putational Geometry, 50(2):263–305, 2013.

M. Heusel, H. Ramsauer, T. Unterthiner, B. Nessler, and
S. Hochreiter. Gans trained by a two time-scale update
rule converge to a local nash equilibrium. In Advances
in Neural Information Processing Systems, pages 6626–
6637, 2017.

Ahmed Imtiaz Humayun, Randall Balestriero, and Richard
Baraniuk. Polarity sampling: Quality and diversity con-
trol of pre-trained generative networks via singular val-
ues. In Proceedings of the IEEE/CVF Conference on
Computer Vision and Pattern Recognition, pages 10641–
10650, 2022.

10

Unveiling the Latent Space Geometry of Push-Forward Generative Models

Yifan Jiang, Shiyu Chang, and Zhangyang Wang. Transgan:
Two pure transformers can make one strong gan, and that
can scale up. Advances in Neural Information Processing
Systems, 34, 2021.

T. Karras, S. Laine, and T. Aila. A style-based generator
architecture for generative adversarial networks. In Pro-
ceedings of the IEEE Conference on Computer Vision
and Pattern Recognition, pages 4401–4410, 2019.

Tero Karras, Miika Aittala, Samuli Laine, Erik Härkönen,
Janne Hellsten, Jaakko Lehtinen, and Timo Aila. Alias-
free generative adversarial networks. Advances in Neural
Information Processing Systems, 34:852–863, 2021.

Mahyar Khayatkhoei, Maneesh K Singh, and Ahmed El-
gammal. Disconnected manifold learning for generative
adversarial networks. In Advances in Neural Information
Processing Systems, pages 7343–7353, 2018.

Diederik P Kingma and Max Welling. Auto-encoding varia-
tional {Bayes}. In International Conference on Learning
Representations, 2014.

N. Kodali, J. Abernethy, J. Hays, and Z. Kira. On conver-
gence and stability of GANs. arXiv.1705.07215, 2017.

Alex Krizhevsky. Learning multiple layers of features from
tiny images. 2009.

T. Kynkäänniemi, T. Karras, S. Laine, J. Lehtinen, and
T. Aila. Improved precision and recall metric for assess-
ing generative models. In H. Wallach, H. Larochelle,
A. Beygelzimer, F. d’Alché Buc, E. Fox, and R. Gar-
nett, editors, Advances in Neural Information Processing
Systems 32, pages 3927–3936. Curran Associates, Inc.,
2019.

Y. LeCun, L. Bottou, Y. Bengio, and P. Haffner. Gradient-
based learning applied to document recognition. In Pro-
ceedings of the IEEE, pages 2278–2324, 1998.

Michel Ledoux. Isoperimetry and gaussian analysis. In
Lectures on probability theory and statistics, pages 165–
294. Springer, 1996.

Emanuel Milman and Joe Neeman. The gaussian double-
bubble and multi-bubble conjectures. Annals of Mathe-
matics, 195(1):89–206, 2022.

T. Miyato, T. Kataoka, M. Koyama, and Y. Yoshida. Spectral
normalization for generative adversarial networks. In
International Conference on Learning Representations,
2018.

Muhammad Ferjad Naeem, Seong Joon Oh, Youngjung Uh,
Yunjey Choi, and Jaejun Yoo. Reliable fidelity and diver-
sity metrics for generative models. International Confer-
ence on Machine Learning, pages 7176–7185, 2020.

Vardan Papyan, XY Han, and David L Donoho. Preva-
lence of neural collapse during the terminal phase of deep
learning training. Proceedings of the National Academy
of Sciences, 117(40):24652–24663, 2020.

Alec Radford, Jong Wook Kim, Chris Hallacy, Aditya
Ramesh, Gabriel Goh, Sandhini Agarwal, Girish Sas-
try, Amanda Askell, Pamela Mishkin, Jack Clark, et al.
Learning transferable visual models from natural lan-
guage supervision. In International Conference on Ma-
chine Learning, pages 8748–8763. PMLR, 2021.

Ali Razavi, Aaron Van den Oord, and Oriol Vinyals. Gener-
ating diverse high-fidelity images with vq-vae-2. Ad-
vances in neural information processing systems, 32,
2019.

K. Roth, A. Lucchi, S. Nowozin, and T. Hofmann. Stabiliz-
ing training of generative adversarial networks through
regularization. In I. Guyon, U. von Luxburg, S. Bengio,
H. Wallach, R. Fergus, S. Vishwanathan, and R. Gar-
nett, editors, Advances in Neural Information Processing
Systems 30, pages 2018–2028. Curran Associates, Inc.,
2017.

M.S.M. Sajjadi, O. Bachem, M. Lucic, O. Bousquet, and
S. Gelly. Assessing generative models via precision
and recall. In S. Bengio, H. Wallach, H. Larochelle,
K. Grauman, N. Cesa-Bianchi, and R. Garnett, editors,
Advances in Neural Information Processing Systems 31,
pages 5228–5237. Curran Associates, Inc., 2018.

Antoine Salmona, Valentin De Bortoli, Julie Delon, and
Agnès Desolneux. Can push-forward generative models
fit multimodal distributions? In Advances in Neural
Information Processing Systems, 2022.

Axel Sauer, Kashyap Chitta, Jens Müller, and Andreas
Geiger. Projected gans converge faster. Advances in Neu-
ral Information Processing Systems, 34:17480–17492,
2021.

Gideon Schechtman. Approximate gaussian isoperimetry
for k sets. In Geometric Aspects of Functional Analysis,
pages 373–379. Springer, 2012.

Yujun Shen, Jinjin Gu, Xiaoou Tang, and Bolei Zhou. Inter-
preting the latent space of gans for semantic face editing.
In Proceedings of the IEEE/CVF Conference on Com-
puter Vision and Pattern Recognition, pages 9243–9252,
2020.

Vladimir N Sudakov and Boris S Tsirel’son. Extremal prop-
erties of half-spaces for spherically invariant measures.
Journal of Soviet Mathematics, 9(1):9–18, 1978.

11

Unveiling the Latent Space Geometry of Push-Forward Generative Models

Ugo Tanielian, Thibaut Issenhuth, Elvis Dohmatob, and
Jeremie Mary. Learning disconnected manifolds: a no
gan’s land. In International Conference on Machine
Learning, pages 9418–9427. PMLR, 2020.

Arash Vahdat and Jan Kautz. Nvae: A deep hierarchical
variational autoencoder. Advances in Neural Information
Processing Systems, 33:19667–19679, 2020.

Aladin Virmaux and Kevin Scaman. Lipschitz regularity of
deep neural networks: analysis and efficient estimation.
In Advances in Neural Information Processing Systems,
pages 3835–3844, 2018.

X. Wei, B. Gong, Z. Liu, W. Lu, and L. Wang. Improving the
improved training of Wasserstein GANs: A consistency
term and its dual effect. In International Conference on
Learning Representations, 2018.

Zongze Wu, Dani Lischinski, and Eli Shechtman.
Stylespace analysis: Disentangled controls for stylegan
image generation. In Proceedings of the IEEE/CVF Con-
ference on Computer Vision and Pattern Recognition,
pages 12863–12872, 2021.

Han Zhang, Ian Goodfellow, Dimitris Metaxas, and Augus-
tus Odena. Self-attention generative adversarial networks.
In Kamalika Chaudhuri and Ruslan Salakhutdinov, edi-
tors, Proceedings of the 36th International Conference on
Machine Learning, volume 97 of Proceedings of Machine
Learning Research, pages 7354–7363, 2019.

Z. Zhou, J. Liang, Y. Song, L. Yu, H. Wang, W. Zhang,
Y. Yu, and Z. Zhang. Lipschitz generative adversarial
nets. In K. Chaudhuri and R. Salakhutdinov, editors,
Proceedings of the 36th International Conference on Ma-
chine Learning, volume 97, pages 7584–7593. PMLR,
2019.

Daniel Zoran, Rishabh Kabra, Alexander Lerchner, and
Danilo J Rezende. Parts: Unsupervised segmentation
with slots, attention and independence maximization. In
Proceedings of the IEEE/CVF International Conference
on Computer Vision, pages 10439–10447, 2021.

12

Unveiling the Latent Space Geometry of Push-Forward Generative Models

A. Technical results: proofs
A.1. Proof of Lemma 3.5

We want to show that generator G ∈ GAL is such that αG 6 1− γ(∂εminA), where

∂εminA =

m⋃
i=1

(
∪j 6=i Aj

)εmin\
(
∪j 6=i Aj

)
.

Proof by contradiction.

Assume a generator G such that there exists z ∈ ∂εminA and i ∈ [1,m] such that G(z) ∈ Mi. Since G is associated
with A, we have using Definition 3.3, that there exists z′ and j ∈ [1,m], j 6= i such that ‖z − z′‖ < εmin/2 and
j = argmin

k∈[1,m]

‖G(z′)−Mk‖. Thus, we have:

‖G(z)−G(z′)‖ > d(G(z′),Mi),

> d(Mi,Mi)/2,

> Dmin/2.

And,
‖G(z)−G(z′)‖
‖z − z′‖

> Dmin/εmin,

> L.

This contradicts G being in GAL .

A.2. Proof of Corollary 3.6.

Let L,D be such that L > D
√
log(m). Let’s prove that for any well-balanced generator G ∈ GL, we have:

αG 6 1− εmin
√
logm e−3/2.

Using the method from Schechtman (2012), we have the measure of the border of cell i:

γ
((
∪j 6=i Aj

)ε\(∪j 6=i Aj)) >
1√
2π

∫ t+ε

t

e−s
2/2ds, where t is such that

1√
2π

∫ ∞
t

e−s
2/2ds = 1/m,

>
ε√
2π
e−(t+ε)

2/2,

>
ε
√
logm

m
e−εt−ε

2/2 (using
√
logm ≤ t ≤

√
2 logm),

>
ε
√
logm

m
e−ε
√
logm−ε2/2.

Thus:

γ(∂εminA) =
m∑
i=1

γ
((
∪j 6=i Aj

)ε\(∪j 6=i Aj)) > εmin
√

logm e−εmin
√
logm−ε2min/2.

Thus, we have

αG 6 1− γ(∂εminA),

6 1− εmin
√
logm e−εmin

√
logm−ε2min/2.

Moreover, using εmin = D
L and L > D

√
logm, so we get εmin

√
logm 6 1:

αG 6 1− εmin
√

logm e−3/2.

13

Unveiling the Latent Space Geometry of Push-Forward Generative Models

Proof of Corollary 3.6 with wi (non-equal measure of modes). Let L,D be such that L > D
√

log(m). Let’s prove
that for any well-balanced generator G ∈ GL, we have:

αG 6 1−mwminεmin
√
log 1/wmin e

−3/2.

Using the method from Schechtman (2012), we have the measure of the border of cell i:

γ
((
∪j 6=i Aj

)ε\(∪j 6=i Aj)) >
1√
2π

∫ t+ε

t

e−s
2/2ds, where t is such that

1√
2π

∫ ∞
t

e−s
2/2ds = wmin,

>
ε√
2π
e−(t+ε)

2/2,

> wminε
√
log 1/wmine

−εt−ε2/2 (using
√

log 1/wmin ≤ t ≤
√

2 log 1/wmin),

> wminε
√
log 1/wmine

−ε
√

log 1/wmin−ε2/2.

Thus:

γ(∂εminA) =
m∑
i=1

γ
((
∪j 6=i Aj

)ε\(∪j 6=i Aj)) > mwminεmin
√
log 1/wmin e

−εmin

√
log 1/wmin−ε2min/2.

Thus, we have

αG 6 1− γ(∂εminA),

6 1−mwminεmin
√

log 1/wmin e
−εmin

√
log 1/wmin−ε2min/2.

Moreover, using εmin = D
L and L > D

√
log 1/wmin, so we get εmin

√
log 1/wmin 6 1:

αG 6 1−mεminwmin
√
log 1/wmin e

−3/2.

A.3. Proof of Theorem 3.7

Let µ? be the target distribution. We know that µ? lays on m disconnected components contained in spheres Si, i ∈ [1,m].
We note Mi, i ∈ [1,m] the centers, and ri the radius of each sphere. We also assume that the spheres verify Assumption 3.1.
For each pair (i, j) ∈ [1,m]2, we define Xij ∈ Si and Xji ∈ Sj the points verifying

Xij = argmin
x∈Si

d(x, Sj) and Xji = argmin
x∈Sj

d(x, Si).

We consider the optimal partition A? in the Gaussian latent space. For each given latent point z ∈ Rd, we define:

Nz = {j ∈ [1,m], z ∈ Aεj}.

We then distinguish two different cases:

1. |Nz| = 1: the point z belongs to the interior of a single cell, z ∈ A−εi .

2. |Nz| > 2: the point z is in the neighborhood of at least two different cells.

Interestingly, a point can only belong at most to the interior of one cell, but it can be at the intersection of several boundaries.
We are now ready to define the optimal generator.

First, we set
G(z) = Xi,j for all z ∈ {z ∈ Rd, |Nz| = 2, z ∈ A−εi ∩A

ε
i ∩Aεj where Nz = {i, j}}.

14

Unveiling the Latent Space Geometry of Push-Forward Generative Models

A2 A3

A1

∂εA3

Latent space Output space

M2 M3

M1

Figure 7. An optimal generator maps a 2D latent space to a 2D output space with three modes (M1,M2,M3). The latent space has an
optimal ‘simplicial cluster’ geometry. In the latent space, all the ε-boundaries intersect each other in the gray circle, which is mapped in
the output space in the convex hull of the three modes.

Second, we define the generator in the interior of the cells, i.e. Nz = {i}. For each z ∈ A−εi and for a given unit vector
u ∈ Rd, we assume that the generator is constant along the parametric line z = k × u, k ∈ R.

Finally, we define the generator when z does not belong to the interior of any cell, i.e. |Nz| > 2:

G?ε(z) =
∑

i∈[1,m]

∑
j 6=i

wi,j(z) Xi,j 1j∈Nz 1i∈Nz where wi,j(z) =
d(z, (Aεi)

{)∑
i∈[1,m]

∑
j 6=i d(z, (A

ε
j)

{) 1j∈Nz
1i∈Nz

(8)

where d(z,A) = mina∈A ‖z − a‖. An illustration of the optimal generator is given in Figure 7. When z belongs to the
intersection of two ε-boundaries, Gε(z) is a simple linear combination of 2 points. It is only when |Nz| > 3 that more
complex samples are generated. A simple illustration of G?ε for d = 2 and m = 3 is given in Figure 7. Interestingly, one
can also show that the image of G?ε is equal to the convex hull of the Diracs Xi, i ∈ [1,m]. In particular, there exists a
particularly interesting neighborhood ν of 0 where G?ε(ν) is equal to the whole convex hull of the points Xi, i ∈ [1,m].

Proof that G?ε is well-balanced. We recall that a generator is well-balanced if we have G]γ(M1) = . . . = G]γ(Mm).
By construction (8), we have that for any i ∈ [1,m]

‖G?ε(z)−Xi‖ = ‖
∑
k 6=i

wk(Xk −Xi)‖,

= D × (1− wi).

So, for any z ∈ Ai, we have that

i = argmin
j∈[1,m] wj

= argmin
j∈[1,m] ‖G(z)−Xj‖

Thus G?ε is associated with the optimal partition A?, .

Besides, for a given radius r of the different modes, since everything is symmetrical, we have that γ({z ∈ Rd, ‖G(z)−X1‖ 6
r} = . . . = γ({z ∈ Rd, ‖G(z)−Xm‖ 6 r}. Thus, the generator is well-balanced.

Showing that G?ε? is in GL. It is clear that when |Nz| = 1, we have that G?ε(z) is a L-Lipshitz continuous function.

Now, assume that |Nz| > 2. Consider z, z′ such that Nz = N ′z . Let α = (α1, . . . , αm) and β = (β1, . . . , βm) be two
vectors, both in Rm, such that for all i ∈ [1,m]:

αi =
d(z, (Aεi)

{)∑
j∈Az

d(z, (Aεj)
{)

and βi =
d(z′, (Aεi)

{)∑
j∈Az

d(z′, (Aεj)
{)

15

Unveiling the Latent Space Geometry of Push-Forward Generative Models

We have that

‖G(z)−G(z′)‖ = ‖(1−
∑
i 6=1

αi)X1 − (1−
∑
i 6=1

βi)X1 +
∑
i 6=1

αiXi −
∑
i 6=1

βiXi‖

= ‖
∑
i 6=1

(αi − βi)(X1 −Xi)‖

6 max
(i,j)∈[1,m]2

‖Xi −Xj‖ ‖α− β‖,

6 max
(i,j)∈[1,m]2

‖Xi −Xj‖ ‖h(z)− h(z′)‖,

where h is the function from Rd → Rm defined as:

h(z) = (
d(z, (Aε1)

{)∑
i∈Az

d(z, (Aεi)
{)
, . . . ,

d(z, (Aεm){)∑
i∈Az

d(z, (Aεi)
{)
).

We can write h = f ◦ g with f the function defined from Rd → Rm by

f(z) =
(
d(z, (Aε1)

{), . . . , d(z, (Aεk)
{)
)
,

and g the function defined on Rm \ {0} by
g(z) =

z

‖z‖1

We have that f is a
√
m-Lipschitz functions (given that z 7→ d(z, (Aεm){) is 1-Lipschitz). Besides, we know that outside

the ball Bε/2(0), the function g is (2/ε)-Lipschitz. Since it is clear that for every point z such that |Nz| > 2, we have that
|f(z)| > ε/2. Finally, the function h is 2

√
m
ε -Lipschitz. Thus, we have that:

‖G?ε(z)−G?ε(z′)‖ 6
2D
√
m

ε
‖z − z′‖,

with D = maxi,j ‖Xi −Xj‖, (i, j) ∈ [1,m]2, i 6= j.

Now, by noting εmax = D
L , and considering ε? = 2

√
m εmax, we have:

‖G?ε?(z)−G?ε?(z′)‖ 6 L‖z − z′‖.

Now, consider two latent vectors z, z′ in the same cell A−εi . There exists i ∈ [1,m], and a pairs (j, j′) ∈ [1,m]2 (note that j
could be equal to j′) such that G(z) = Xi,j and G(z′) = Xi,j′ . Using a similar reasoning as before, we can show that:

‖G?ε?(z)−G?ε?(z′)‖ 6 L‖z − z′‖,

with D = 2maxi∈[1,m] ri.

We can now conclude on the Lipschitzness of G? on Rd.

Proving that: for m 6 d + 1, for any δ > 0, if L is large enough, then, for any well-balanced G ∈ GL, we have
αG?

εmax
> αG − δ. Let G be a well-balanced generator and A the partition associated with G. Let us first define the

gaussian boundary measure Pγ of a partition A of Rd. For partitions with smooth boundaries, it coincides with the
(d− 1)-dimensional gaussian measure of the boundary, defined as follows:

Pγ(A) = lim infε→0
γ(∂εA)− γ(A)√

2/πε

Moreover, for sets with smooth boundaries, we have from Federer (1969, Theorem 3.2.29):

lim infε→0
γ(∂εA)− γ(A)√

2/πε
= limε→0

γ(∂εA)− γ(A)√
2/πε

16

Unveiling the Latent Space Geometry of Push-Forward Generative Models

Let us denoteA?, the optimal partition defined in Milman and Neeman (2022), based on simplicial clusters. A? is a standard
partition where γ(A?1) = . . . = γ(A?m) for all i, and

∑
i γ(Ai) = 1. By the multi-bubble theorem (Milman and Neeman,

2022), simplicial clusters (such as A?) are the unique minimizers of the gaussian isoperimetric problem, thus:

Pγ(A?) 6 Pγ(A)

limε→0
γ(∂εA?)

ε
6 limε→0

γ(∂εA)
ε

LA 6 LA?

where LA = limε→0
γ(∂εA?)

ε and LA? = limε→0
γ(∂εA?)

ε .

Then, for any δ > 0, there exists ε′ > 0 such that, for any ε < ε′,

|γ(∂
εA?)
ε

− LA? | < δ , |γ(∂
εA)
ε

− LA| < δ and LA? 6 LA

Thus, for any δ > 0, there exists ε′ > 0 such that, for any ε < ε′,

γ(∂εA?) 6 γ(∂εA) + 2δε (9)

Besides, we know that
αG 6 1− γ(∂εminA)

Consequently, we have that:

αG 6 1− γ(∂εminA)
6 1− γ(∂εminA?) + 2δεmin using (9).

Now, by construction of G?εmax
, we have that

αG?
εmax

> 1− γ(∂εmaxA?).

Consequently,

αG 6 1− γ(∂εminA?) + 2δεmax + γ(∂εmaxA?)− γ(∂εmaxA?)
6 αG?

ε
+ 2δεmax + γ(∂εmaxA?)− γ(∂εminA?)

6 αG?
ε
+ 2δεmax + γ(∂εmaxA?)− 2LA?εmax − γ(∂εminA?) + 2LA?εmin + 2LA?(εmax − εmin)

6 αG?
ε
+ 4δεmax + 2LA?εmax,

6 αG?
ε
+ εmax(4δ + 2LA?).

We conclude by choosing L big enough such that εmax is strictly smaller than δ
4δ+2LA?

.

Proving the lower-bound 7 of Theorem 3.7. Let’s consider Gε? defined using (8) and ε? = 2
√
mεmax. The precision of

G?ε? is thus such that:
αG?

ε?
> 1− γ(∂ε

?

A).

However, since ∂εA ⊂
⋃n
i=1A

ε
i , we have that for any ε:

γ(∂εA) 6
n∑
i=1

γ(Aεi).

Using results from Schechtman (2012, Proposition 1), when m ≤ d, there exists C large enough, such that

γ(Aε
?

i) 6
ε?

m

(√
π log(Cm)

)
.

17

Unveiling the Latent Space Geometry of Push-Forward Generative Models

Thus, we have

αG?
ε?

> 1− ε?
√
π log(Cm),

To have αG?
εmax

> 0, we must have ? 6 1/
√
π log(Cm). This is the case since we have

? = 2D
√
m/L and L > D

√
m
√
π log(Cm),

where D = maxi,j ‖Xi −Xj‖.

B. Experiments
B.1. Implementation details

Table 4. GANs training details on MNIST
Operation Kernel Strides Feature Maps Activation

Generator G(z)
z ∼ N(0, I) dim(z)
Fully Connected 7× 7× 128
Convolution 3× 3 1× 1 7× 7× 64 LReLU
Convolution 3× 3 1× 1 7× 7× 64 LReLU
Nearest Up Sample 14× 14× 64
Convolution 3× 3 1× 1 14× 14× 32 LReLU
Convolution 3× 3 1× 1 14× 14× 32 LReLU
Nearest Up Sample 14× 14× 32
Convolution 3× 3 1× 1 28× 28× 16 LReLU
Convolution 3× 3 1× 1 28× 28× 1 Tanh

D(x) 28× 28× 1
Convolution 4× 4 2× 2 14× 14× 512 LReLU
Convolution 3× 3 1× 1 14× 14× 512 LReLU
Convolution 4× 4 2× 2 7× 7× 512 LReLU
Convolution 3× 3 1× 1 7× 7× 512 LReLU
Fully Connected 1 -

Batch size 256
Leaky ReLU slope 0.2
Gradient Penalty weight 10
Learning Rate Discriminator 1× 10−4

Learning Rate Generator 5× 10−5

Disciminator steps 2
Optimizer Adam β1 : 0.5 β2 : 0.5

First, let us note that we share our code in Supplementary Material for reproducibility.

Training. We use the Wasserstein loss with gradient-penalty on interpolations of fake and real data. At each iteration,
the discriminator is trained 2 steps and the generator 1 step with Adam optimizer. The batch size is 256. The learning
rate of the discriminator is two times larger (Heusel et al., 2017), i.e. 5 × 10−5 for the generator and 1 × 10−4 for the
discriminator. GANs are trained for 80k steps on MNIST and for 100k steps on CIFAR datasets. Architectures of generator
and discriminator are described in Table 4 and Table 5.

For TransGAN (Jiang et al., 2021), we follow the implementation from the authors available at https://github.com/VITA-
Group/TransGAN. TransGAN is trained with a WGAN-GP loss, 4 discriminator steps for 1 generator step, and Adam
optimizer with a learning rate of 10−4.

Evaluation. For evaluation metrics, we follow the setting proposed by the authors. For FID (Heusel et al., 2017), we use
50k real images and 50k fake images. For precision, recall, density and coverage (Kynkäänniemi et al., 2019; Naeem et al.,
2020), we use 10k real images and 10k fake images with nearest-k= 5.

18

https://github.com/VITA-Group/TransGAN
https://github.com/VITA-Group/TransGAN

Unveiling the Latent Space Geometry of Push-Forward Generative Models

Table 5. GANs training details on CIFAR datasets. BN stands for batch-normalization.
Conditional

Operation Kernel Strides Feature Maps BN (Chen et al., 2018b) Activation

Generator G(z)
z ∼ N(0, Id) 128
Fully Connected 4× 4× 128 -
ResBlock [3× 3]× 2 1× 1 4× 4× 128 Y ReLU
Nearest Up Sample 8× 8× 128 -
ResBlock [3× 3]× 2 1× 1 8× 8× 128 Y ReLU
Nearest Up Sample 16× 16× 128 -
ResBlock [3× 3]× 2 1× 1 16× 16× 128 Y ReLU
Nearest Up Sample 32× 32× 128 -
Convolution 3× 3 1× 1 32× 32× 3 - Tanh

Discriminator D(x) 32× 32× 3
ResBlock [3× 3]× 2 1× 1 32× 32× 256 - ReLU
AvgPool 2× 2 1× 1 16× 16× 256 -
ResBlock [3× 3]× 2 1× 1 16× 16× 256 - ReLU
AvgPool 2× 2 1× 1 8× 8× 256 -
ResBlock [3× 3]× 2 1× 1 8× 8× 256 - ReLU
ResBlock [3× 3]× 2 1× 1 8× 8× 256 - ReLU
Mean spatial pooling - - 256 -
Fully Connected 1 - -

Batch size 256
Gradient Penalty weight 10
Learning Rate Discriminator 1× 10−4

Learning Rate Generator 5× 10−5

Discriminator steps 2
Optimizer Adam β1 = 0. β2 = 0.999

GPUs. For all datasets, the training of GANs was run on NVIDIA Tesla V100 GPUs (16 GB). The training of ResNet
GANs for 100k steps on CIFAR takes around 30 hours. For TransGAN models, the training is done for 250k steps on two
NVIDIA Tesla V100 GPUs, which takes around 35× 2 = 70 GPU hours.

19

Unveiling the Latent Space Geometry of Push-Forward Generative Models

B.2. Correlation between latent space geometry and GANs’ performance (Details for Section 4.3)

We present the full results of this study in Table 6.

Dataset Width
LogReg
Acc. ↑

Convex
Acc. ↑ FID ↓ Prec. ↑ Rec. ↑ Dens. ↑ Cov. ↑

CIFAR-10
(Resnet)

32 53.4 ± 0.5 61.1 ± 0.3 28.3 ± 0.6 63.2 ± 0.6 58.6 ± 0.9 66.3 ± 1.5 61.3 ± 1.1
64 60.7 ± 0.5 72.1 ± 0.6 20.6 ± 0.3 65.7 ± 0.5 62.0 ± 0.6 71.4 ± 1.7 71.5 ± 1.0
128 63.4 ± 0.4 73.1 ± 0.6 17.0 ± 0.3 65.9 ± 0.4 64.5 ± 0.9 71.2 ± 1.5 74.6 ± 0.9
256 65.0 ± 0.4 75.4 ± 0.4 16.1 ± 0.3 66.4 ± 0.5 66.2 ± 1.0 72.3 ± 1.5 75.6 ± 1.0
512 65.3 ± 0.6 75.2 ± 0.7 16.1 ± 0.3 66.8 ± 1.0 66.1 ± 1.3 72.8 ± 2.9 76.1 ± 1.4

CIFAR-100
(Resnet)

32 20.3 ± 0.1 28.1 ± 0.5 28.3 ± 0.3 53.4 ± 0.7 63.5 ± 0.8 44.5 ± 1.3 56.1 ± 1.2
64 23.7 ± 0.9 33.4 ± 0.5 23.4 ± 0.3 59.9 ± 0.5 64.6 ± 0.7 57.6 ± 1.7 67.6 ± 0.5
128 28.4 ± 0.3 39.1 ± 0.7 21.1 ± 0.4 61.6 ± 0.4 63.8 ± 0.5 62.2 ± 1.0 70.2 ± 0.5
256 29.9 ± 0.5 41.8 ± 0.6 21.0 ± 0.4 62.3 ± 0.6 65.6 ± 0.6 62.7 ± 2.0 70.1 ± 0.9
512 30.5 ± 0.5 42.1 ± 0.5 19.7 ± 0.4 64.3 ± 0.8 64.8 ± 0.8 66.8 ± 1.9 72.2 ± 0.6

Table 6. Correlation between GANs’ performance and their latent space geometry. Increasing the capacity of GANs tend to structure their
latent space in simplicial clusters (better LogReg accuracy) and improve their performance on precision, density and coverage. Confidence
intervals are computed on several sets of generated/training points from a given generator.

20

Unveiling the Latent Space Geometry of Push-Forward Generative Models

B.3. Details on simplicial truncation method (Details for Section 4.4)

We provide here more details about our truncation method. First, the rejection sampling in the latent space Rd of GANs
procedure is the following:

• Define hyper-parameters threshold τ , number of clusters N , latent space dimension d.

• Initialize N equidistant points in {(u0, . . . , uN) | ui ∈ Rd}. This can be done easily when N ≤ d.

• When sampling latent vectors z ∈ Rd, compute a softmax over the negative distances between z and ui: pi(z) =
e−d(z,ui)∑
j e
−d(z,uj)

. Then, z is selected if max
i

(
pi(z)

)
> τ .

Second, we add a classification loss to encourage the generator to use this latent structure. This loss is motivated by the need
to maximize mutual information between the latent cluster and the modes of the generator (Khayatkhoei et al., 2018), and
can be written as:

Lc = −Ez∼γ [ln qφ
(
i(z)|Gθ(z)

)
]

where qφ is parametrized by a second classification head added to the discriminator; i(z) = argmax
i

(
pi(z)

)
is the index of

the latent cluster of the sample. This loss is added during training, at each step of generator’s and discriminator’s training,
during the first 20 epochs. It is then dropped, since we noticed that it harms the GANs performance if it is kept until the end
of the training.

Training hyper-parameters: for N = 10, we use a latent dimension of d = 64 and training threshold of τ = 0.135; for
N = 100, we use d = 128 and τ = 0.08.

During inference, if the generator has properly learned to use the different clusters of the latent space, we observe that
augmenting the threshold τ leads to an increased density and precision.

We present full results in Table 7 and Figure 8.

Figure 8. Density/Coverage curves comparing TransGAN and boosting methods for multi-modal datasets and different threshold ratios.
Our simplicial truncation method (TransGAN + simp.) consistently outperforms the TransGAN and TransGAN + DeliGAN baselines.

21

Unveiling the Latent Space Geometry of Push-Forward Generative Models

Dataset Model FID Prec Rec Dens. Cov.

CIFAR-10

TransGAN 8.9 ± 0.1 72.8 ± 0.8 62.6 ± 0.7 79.3 ± 0.9 79.3 ± 1.2

TransGAN + 90% JBT 8.7 ± 0.1 73.0 ± 0.6 61.9 ± 0.8 83.5 ± 1.7 80.0 ± 1.6
TransGAN + 80% JBT 8.8 ± 0.1 73.3 ± 0.8 61.2 ± 1.0 85.7 ± 2.8 81.1 ± 0.6

TransGAN + DeliGAN N=10 9.8 ± 0.1 74.6 ± 0.8 58.6 ± 0.9 93.2 ± 2.8 80.0 ± 0.6

TransGAN + lin. N=10 (0.23,0.23) 9.2 ± 0.1 73.1 ± 1.1 61.9 ± 1.2 78.1 ± 2.7 79.4 ± 0.9
(0.23,0.29) 9.2 ± 0.1 73.7 ± 0.8 61.5 ± 1.2 83.4 ± 3.3 79.8 ± 0.5
(0.23,0.31) 9.3 ± 0.1 74.0 ± 0.5 61.0 ± 0.7 86.1 ± 1.8 81.3 ± 0.7
(0.23,0.4) 9.8 ± 0.1 75.1 ± 0.8 59.8 ± 1.2 89.5 ± 1.6 80.5 ± 1.2

TransGAN + simp. N=10, (0.135,0.135) 9.0 ± 0.1 72.9 ± 0.5 61.8 ± 0.9 82.7 ± 1.9 80.4 ± 0.7
(0.135,0.14) 9.0 ± 0.1 74.2 ± 1.5 60.7 ± 1.0 88.5 ± 3.1 81.3 ± 1.4

(0.135,0.1445) 9.3 ± 0.1 75.3 ± 0.6 58.8 ± 0.8 98.6 ± 1.3 82.9 ± 0.5

CIFAR-100

TransGAN 15.2 ± 0.1 64.2 ± 0.5 63.1 ± 0.9 53.4 ± 1.3 66.0 ± 1.1

TransGAN + 90% JBT 15.1 ± 0.2 64.8 ± 1.0 62.9 ± 1.3 53.6 ± 2.4 66.2 ± 1.4
TransGAN + 80% JBT 14.8 ± 0.2 65.4 ± 1.7 61.7 ± 1.2 55.0 ± 4.0 65.6 ± 2.3

TransGAN Deligan 10 15.9 ± 0.2 63.5 ± 0.8 62.2 ± 0.7 52.6 ± 1.3 64.4 ± 0.6
TransGAN DeliGAN 100 15.3 ± 0.1 64.2 ± 0.5 61.9 ± 0.9 52.6 ± 0.6 65.9 ± 0.8

TransGAN + simp. N=10, (0.135,0.135) 15.1 ± 0.1 65.1 ± 0.6 62.3 ± 0.5 55.6 ± 0.6 67.1 ± 0.5
(0.135, 0.14) 15.1 ± 0.1 64.8 ± 0.2 61.1 ± 0.5 55.3 ± 1.3 66.8 ± 1.1

(0.135,0.1445) 15.1 ± 0.1 65.6 ± 1.3 61.5 ± 0.8 56.3 ± 1.5 66.4 ± 1.4

STL-10 (32x32)

TransGAN 10.5 ± 0.1 75.7 ± 0.6 60.1 ± 0.8 87.5 ± 1.9 83.0 ± 0.2

TransGAN + 90% JBT 10.5 ± 0.1 76.9 ± 0.7 58.8 ± 0.5 91.9 ± 1.9 82.1 ± 0.8
TransGAN + 80% JBT 11.0 ± 0.1 78.1 ± 0.3 57.6 ± 1.3 99.3 ± 2.8 83.8 ± 0.7

TransGAN DeliGAN 10 12.1 ± 0.1 74.2 ± 1.2 60.2 ± 0.5 81.5 ± 1.5 79.6 ± 0.8
TransGAN DeliGAN 100 10.5 ± 0.2 76.0 ± 0.5 60.2 ± 1.6 85.5 ± 2.8 81.5 ± 1.4

TransGAN + simp. N=100, (0.08,0.08) 10.1 ± 0.1 76.5 ± 0.9 60.2 ± 0.8 90.0 ± 1.7 83.0 ± 0.5
(0.08,0.15) 10.0 ± 0.1 76.9 ± 0.8 59.9 ± 0.6 91.4 ± 1.1 83.8 ± 0.3
(0.08,0.20) 10.0 ± 0.1 77.8 ± 0.6 59.8 ± 0.8 94.1 ± 0.9 83.5 ± 0.8

Table 7. Density/Coverage curves comparing TransGAN and boosting methods for multi-modal datasets and different threshold ratios.
Our simplicial truncation method (TransGAN + simp.) consistently outperforms the TransGAN and TransGAN + DeliGAN baselines.

22

Unveiling the Latent Space Geometry of Push-Forward Generative Models

B.4. Impact of the number of modes: a synthetic example (Details for Section 4.2)

To illustrate our theoretical results, we propose to vary the number of modes of the data distribution. On real-world data,
the number of modes is set but usually unknown, and removing/adding classes as a proxy for modes usually does not give
insightful results since some classes can be much more complex than others. We thus use a synthetic setting, where we
can easily control both the number of modes and their complexity. Figure 9 stresses that as the number of modes increase,
the precision decrease. Interestingly, using large latent space dimension can relieve the problem, even if the latent space
dimension is clearly below that of the target. Recall the two problems that arise when training GANs: i) dimensional
misspecification where the true and modeled distributions do not have density functions w.r.t. the same base measure, and ii)
density misspecification, where GANs try to fit a disconnected manifold with a unimodal disitribution. From the results we
conclude that:

• With very low latent space dimensions, both problems i) and ii) have to be addressed and this leads to poor precision as
the number of modes increases.

• With larger latent space dimensions, the problem i) is less of a burden even when there is a clear dimensional
misspecification and thus the GANs’ performance is more tied to problem ii).

Figure 9. Training on a mixture of Gausians inR100 with varying number of modes and varying latent space dimension. The bigger the
number of modes, the lower the precision. Increasing the latent space dimension helps up to a limit depending on the number of modes.

23

