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Abstract

Data imbalance across clients in federated learning often
leads to different local feature space partitions, harming the
global model’s generalization ability. Existing methods ei-
ther employ knowledge distillation to guide consistent local
training or performs procedures to calibrate local models be-
fore aggregation. However, they overlook the ill-posed model
aggregation caused by imbalanced representation learning.
To address this issue, this paper presents a cross-silo fea-
ture space alignment method (FedFSA), which learns a uni-
fied feature space for clients to bridge inconsistency. Specif-
ically, FedFSA consists of two modules, where the in-silo
prototypical space learning (ISPSL) module uses predefined
text embeddings to regularize representation learning, which
can improve the distinguishability of representations on im-
balanced data. Subsequently, it introduces a variance trans-
fer approach to construct the prototypical space, which aids
in calibrating minority classes feature distribution and pro-
vides necessary information for the cross-silo feature space
alignment (CSFSA) module. Moreover, the CSFSA module
utilizes augmented features learned from the ISPSL mod-
ule to learn a generalized mapping and align these features
from different sources into a common space, which miti-
gates the negative impact caused by imbalanced factors. Ex-
perimental results from three datasets verified that FedFSA
improves the consistency between diverse spaces on imbal-
anced data, which results in superior performance compared
to existing methods. The source codes have been released at
https://github.com/qizhuang-qz/FedFSA.

Introduction
Federated learning enables collaborative modeling with im-
balanced data from various sources, which shares model pa-
rameters instead of raw data between data sources and the
server (Hu et al. 2024b; Liu et al. 2023; Cai et al. 2024b; Qi
et al. 2022; Kairouz et al. 2021). This significantly improves
the effective utilization of isolated data, enabling them to
contribute to cooperative decision-making and learn a gen-
eralized model (Cai et al. 2024a; Wang et al. 2023a; Meng
et al. 2024; Wang et al. 2024a). However, existing studies
show that the data heterogeneity between clients could lead
to a decrease in the effectiveness of collaborative modeling
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Figure 1: FedFSA leverages the variance transfer approach
at the client side to learn the prototypical space, which cali-
brates the feature distribution of minority classes. Moreover,
FedFSA aligns feature spaces from different sources at the
server side to learn shared decision boundaries.

(Qi et al. 2024a; Shi et al. 2023; Wen et al. 2023; Qi et al.
2024b). This is mainly because learning a consistent feature
space becomes challenging when dealing with data that is
imbalanced within clients and has inconsistent distribution
across clients, which makes it difficult to integrate learners
with inconsistent objectives into a remarkable model.

To alleviate issues of class imbalance, existing methods
can roughly be categorized into two types. The former ap-
proach typically employs knowledge distillation to guide lo-
cal model learning on the client-side, which aims to transfer
global knowledge to client models and leverage regulariza-
tion techniques to guide them in learning consistent repre-
sentations of data (MOON (Li, He, and Song 2021), Fedproc
(Mu et al. 2023), FedNTD (Lee et al. 2022) and FPL (Huang
et al. 2023)). For instance, Fedproc and FPL construct proto-
typical representation for each class of samples and employ
it to facilitate the feature space alignment across clients. The
latter method usually involves model calibration, including
global classifier fine-tuning and projection head retraining,
which is aimed at mitigating bias issues introduced by the
weighted averaging of local models (CReFF (Shang et al.
2022), CLIP2FL (Shi et al. 2024) and FedCSPC (Qi et al.
2023)), where CReFF and CLIP2FL focus on refining the
global classifier to enhance its robustness with varied feature
environments. Notably, these strategies have shown promis-
ing results in classes with a majority of samples. However,
data imbalance typically results in poor representation learn-
ing for minority classes in clients. Additionally, they directly



use the intermediate features output by clients to retrain the
model, but the inherent differences between features from
different sources limit their effectiveness.

To address this problem, this paper presents a cross-silo
feature space alignment method, termed FedFSA, which
constructs a unified space to align features from diverse
sources to mitigate the negative impact of data imbal-
ance. As depicted in Figure 1, FedFSA includes two main
modules, including the in-silo prototypical space learning
(ISPSL) module and the cross-silo feature space alignment
(CSFSA) module. Specifically, the ISPSL module leverages
pre-defined feature sapce learned from pretrained CLIP to
guide the local representation learning, which is conducive
to enhance the discriminability of the minority class repre-
sentation in imbalanced data. Moreover, the ISPSL module
introduces the variance transfer technique that leverage the
diversity of samples in majority classes to expand and con-
struct the prototypical space of minority classes. This pro-
vides meaningful and privacy-preserving information for the
cross-silo feature space alignment (CSFSA) module. Sub-
sequently, the CSFSA module maps features from diverse
spaces into a unified space to further reduce feature distribu-
tion discrepancies between data sources caused by class im-
balanced and emphasizes the contribution of each feature by
weighting them based on their attention scores, effectively
mitigating the interference of outliers.

Experiments were conducted on three datasets, including
performance comparison, ablation study, in-depth analysis,
case study and error analysis of FedFSA. The results validate
that FedFSA can promote precise cross-silo feature align-
ment on imbalanced data. Furthermore, the error analysis
can offer valuable insights to guide future refinements. In
summary, the main contributions of this paper include:

• To alleviate the negative impact of data imbalance in fed-
erated learning, this study proposes a cross-silo feature
space alignment method (FedFSA). To the best of our
knowledge, FedFSA is the first method to align feature
spaces from different sources on imbalanced data.

• This study proposes a model-agnostic framework, which
can integrate various client-based methods. It mitigates
the impact of imbalanced data by learning a shared fea-
ture space for different clients.

• Experimental findings have revealed that aligning the fea-
ture spaces of different clients can benefit the retrained
model, which avoids the impact of inherent differences
between client feature spaces. This provides a feasible ap-
proach for future research.

Related Work
Methods based on knowledge distillation
Knowledge distillation methods aim to guide clients to learn
consistent knowledge, which mitigates data imbalance in
federated learning. Typically, they entail the use of extra in-
formation as a regularizer to regulate updates locally (Li, He,
and Song 2021; Tan et al. 2022; Huang et al. 2023; Yu et al.
2021; Ye et al. 2023; Li et al. 2024b; Ren et al. 2024). Within
the context, regularization have played a significant role (Wu

et al. 2023). For example, MOON employs contrastive reg-
ularization to penalize inconsistencies between local and
global feature spaces (Li, He, and Song 2021). FedProc (Mu
et al. 2023), FedProto (Tan et al. 2022) and FPL (Huang et al.
2023) construct prototypes for each class based on data rep-
resentations to represent the center of within-class represen-
tations. It guides the local training process by constraining
the representations of all clients to converge towards these
prototypes. Moreover, guiding the calibration of the feature
space with a classifier is also an effective strategy, such as
FedETF employs a fixed simplex equiangular tight frame
classifier to encourage all clients in learning a unified and
optimal feature representation (Li et al. 2023). AdressIM in-
fers the global data distribution and mitigates global imbal-
ance by using a ratio-weighted approach (Wang et al. 2021).
Despite the positive outcomes of these methods, further ex-
ploration is needed for imbalanced data, as imbalances typ-
ically accumulate errors across training iterations.

Methods based on model calibration
Different from knowledge distillation, model calibration
methods concentrate on making improvements on the server
side, which re-trains global model to alleviate class imbal-
ance issues. These methods along this line including global
classifier calibration (Luo et al. 2021; Shang et al. 2022;
Zeng et al. 2023; Shi et al. 2024), projection head retrain-
ing (Qi et al. 2023), and global model fine-tuning (Zhang
et al. 2022; Hu et al. 2024a,c). They both hope to obtain a
generalized model to fit all data from various sources. For
instance, CCVR fuses the mean and variance of sample fea-
tures obtained from client and employs a gaussian model to
generate virtual features for retraining the global classifier
(Luo et al. 2021). CReFF (Shang et al. 2022) and CLIP2FL
(Shi et al. 2024) generate a series of federated features with
gradients consistent with real data to fine-tune the classifier.
FedFTG transfers knowledge from local to global models
by exploring input spaces with a generator to fine-tune the
entire global model (Zhang et al. 2022). From these analy-
sis, their performance is closely tied to the quality of local
feature information. However, both of them overlook the in-
terference of local imbalance.

Problem Formulation
Federated learning systems typically utilize multiple data
sources to collaboratively build the global model. It contains
K data sources, S = {S1, ..., SK}, and a central sever S.
The source Sk utilizes its private data Dk = {(Xk, Y k)}
to optimize the model Mk with the objective ℓk(θk;D

k),
where θk is the parameter of the model Mk. And the server
S aggregates the parameters of all locally learned models
{θk|k = 1, ...,K} to obtain global parameters, i.e., θg =∑K

k=1αkθk, where where αk = |Dk|/
⋃K

k=1 |Dk|.
By comparison, FedFSA introduces the in-silo feature

space reconstruction (ISPSL) module and the cross-silo fea-
ture space alignment (CSFSA) module, where the ISPSL
module improves representation learning by aligning im-
age representations fi with label text embeddings U =
{u1, ..., uC} (where C is the number of classes) learned
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Figure 2: The in-silo prototypical space learning module utilizes label textual embeddings learned from pretrained CLIP to reg-
ularize the feature learning. Moreover, it transfers variance from the majority to the minority class to construct the prototypical
space. Finally, the cross-silo feature space alignment module aligns feature spaces from different data sources.

from the pre-trained CLIP model, i.e., fi 7→ ui. Meanwhile,
the ISPSL module uses clustering to learn the cluster pro-
totype µi

k, cluster variance Σi
k, and attention score sik. Fur-

thermore, the ISPSL module generates augmented features
fa based on the variance Σ (µi

k ⊕ N (0,Σ) 7→ fa), where
N (·) is a Gaussian model. Subsequently, the CSFSA mod-
ule leverages these augmented features to relearn the gen-
eralized projection Hg(·) and classifier Cg(·) on the server,
i.e., Hg(µ

i
k) ≈ Hg(µ

i
K). And, FedFSA optimizes Hg(·) and

Cg(·) based on alignment and classification status.

Approach
This study proposes a cross-silo feature space alignment
method (FedFSA) in federated learning, which alleviates the
issue of ill-posed aggregation caused by imbalanced data
across clients. As shown in Figure 2, FedFSA includes two
modules: the in-silo prototypical space learning (ISPSL)
module and the cross-silo feature space alignment (CSFSA)
module. Specifically, the ISPSL module transfers variance
knowledge from majority to minority class to calibrate fea-
ture distribution and provides feature information to the CS-
FSA module while preserving privacy. The CSFSA module
aligns feature spaces from different sources to bridge feature
gaps between clients, which forms a generalized model.

In-Silo Prototypical Space Learning (ISPSL)
The ISPSL module aims to enhance representation learning
and construct prototypical spaces on imbalanced data, which
mitigates the impact of imbalances and provides image fea-
tures for the CSFSA module, while preserving data privacy.
However, data imbalance leads to a decline in the discrim-
inability of minority class features, which compromises the
effectiveness of cross-silo feature space alignment. To ad-
dress this issue, the ISPSL module designs two processes:
text-enhanced representation learning and variance transfer
based space construction.

Text-Enhanced Representation Learning (TERL). To
enhance the discriminability of minority class features, the

TERL module uses a predefined space from pre-trained
CLIP (Radford et al. 2021) to regularize representation
learning. Specifically, it employs supervised prototypical
contrastive learning to align image feature f c

k with textual
embedding uc in client k. The loss LDC is defined as:

LDC = − 1

Nk

Nk∑
i=1

log

∑C
c=1 1yc

k=c exp(f
c
k · uc/τ)∑C

c=1 exp(f
c
k · uc/τ)

, (1)

where uc = CLIPtext(’a photo of [the name of class c]’),
CLIPtext(·) is the text encoder. C denotes the quantity of
classes. yck is the label of f c

k , 1True = 1 and 1False = 0, Nk

is the number of training data of client k. Meanwhile, the
TERL module uses an empirical loss to ensure the discrimi-
native capability of the model, i.e.,

LEM = − 1
Nk

∑Nk

i=1

(∑C
c=1 yczc +

∑C
c=1 yc log

(∑C
j=1 e

zj
))
, (2)

where zc represents the c-th element in the model output
vector. yc is the ground-truth of image.

Variance Transfer based Space Construction (VTSC).
To provide features for the CSFSA module in a privacy-
preserving manner, the VTSC module constructs the proto-
typical space. It sends augmented features to the server in-
stead of the original features, which distinguishes it from ex-
isting methods (Chen et al. 2024; Yang et al. 2024b). Despite
efforts to improve feature learning, intra-class variations and
inter-class overlap create noise that disrupts prototype mod-
eling. Therefore, the VTSC module first employs clustering
(Meng, Tan, and Miao 2019; Meng, Tan, and Wunsch 2015;
Qi et al. 2023) to mine patterns in the latent space within
each class and evaluates the importance of each prototype,

υ1
j , ..., υ

Nυ
j = clustering(Mk(D

k
j ), Nυ), (3)

where Mk(·) is local model with frozen parameters and Dk
j

denotes data of class j in client k. Nυ is the number of clus-
ters. Subsequently, the VSTR module calculates the mean
µNυ
j and variance ΣNυ

j of features within clusters υNυ
j , i.e.,

µNυ
j =

1

N

∑|υNv
j |

i=1 fi ∈ υNυ
j , (4)



ΣNυ
j = 1

|υNv
j |−1

∑|υNv
j |

i=1

(
fi − µNυ

j

)(
fi − µNυ

j

)T

, (5)

where | · | denotes the size of cluster. To reduce interference
of outlier in model calibration, the VSTR module evaluates
cluster significance using three factors: cluster size (ρ), com-
pactness (σ), and minimum distance to other cluster centers

(ξ). For cluster υt
j , ρtj = |υt

j |, σt
j = 1

n

∑|υt
j |

i=1

∥∥fi − µt
j

∥∥
2
,

ξtj = min{
∥∥µ− µt

j

∥∥
2
}, where µ is the cluster center of a

different class than υt
j , fi is a feature of cluster υt

j . Inher-
ently, the larger, more compact clusters farther from others
are more important. Therefore, the importance score of clus-

ter υt
j is stj =

ρt
j×ξtj
σt
j

.

Moreover, data imbalance prevents minority class sam-
ples from adequately covering the underlying distribution,
which is shown in long-tailed learning (Li et al. 2024a,
2021). Consequently, the VTSC module transfer variance
from majority to minority classes, which calibrates the fea-
ture distribution on imbalanced data. Specifically, the VTSC
module uses a Gaussian model N (·) to generate augmented
features based on variance (Lindsay 1995; Nie et al. 2016).
It fuses the variance Σmaj of a randomly selected majority
class and other variances to transfer distribution knowledge
to other features µ in a client, i.e.,{

f j
a

}
= {µ+∆j | ∆j ∈ N (0,Σfuse) , j = 1, ..., J}, (6)

where µ is a local prototype. J is the number of augmented
features {f j

a}, Σfuse = (1−κ)∗Σ+κ∗Σmaj denotes fused
variance. These augmented features share the same scores
as their corresponding prototypes. And the VTSC module
transmits all augmented features, their corresponding scores,
and the local model from the client to the CSFSA module.

Cross-Silo Feature Space Alignment (CSFSA)
The CSFSA module aims to learn a generalized model that
fits the data from all clients. However, the inherent feature
differences between different sources severely limit the per-
formance of the retrained model. To address this problem,
the CSFSA module employs cross-silo feature space align-
ment to map features from different sources into a unified
space, which is used to bridge inconsistency between clients
caused by data imbalance.

Specifically, the CSFSA module uses features recon-
structed from the VTSC module to learn a generalized pro-
jection Hg(·) and classifier Cg(·), which enables global
model to realize the unified feature learning for samples
with the same label across data sources. Specifically, it em-
ploys a dual-tiered regularization to refine the representation
learning, including the Local Consistency Matching and the
Complementary Consistency Matching.

For the Local Consistency Matching, it applies consis-
tency in relationships between representations across differ-
ent clients to guide learning process, which is expressed by

LA(h
c1
k , hc2

k , hc3
k ) = ∥∡(hc1

k , hc2
k , hc3

k )− ∡(uc1 , uc2 , uc3)∥
2
, (7)

where hci
k = Hg(µ

ci
k + △), if µci

k is a local prototype
of class ci in the client k, △ = 0; if µci

k is an aug-

Table 1: Statistics of CIFAR10, CIFAR100 and TinyIma-
genet datasets used in the experiment.

Datasets #Class #Training #Testing #Image Size
CIFAR10 10 50000 10000 32 * 32

CIFAR100 100 50000 10000 32 * 32
TinyImagenet 200 100000 10000 64 * 64

mented feature, △ = N (0,Σfuse). ∡(hc1
k , hc2

k , hc3
k ) =〈

h
c1
k −h

c2
k

∥hc1
k −h

c2
k ∥

2

,
h
c3
k −h

c2
k

∥hc3
k −h

c2
k ∥

2

〉
. ⟨·⟩ denotes dot product.

Meanwhile, to achieve rapid alignment within limited
training epochs, distance-based consistency constraints are
also applied, i.e.,
LE(h

c1
k , hc2

k ) = ∥dist(hc1
k , hc2

k )− dist(uc1 , uc2))∥
2
, (8)

where dist(·) is an Euclidean distance. Overall, the local
matching loss is defined by
LLCM =

∑
ci∈∪K

c=1,k∈∪K
k=1

(LA(h
c1
k , hc1

k , hc1
k ) + LE(h

c1
k , hc2

k )). (9)

For Complementary Consistency Matching, it uses com-
plementary features from diverse sources to help the model
learn consistent attributes across clients, which enables the
model to transcend the limitations of a single perspective,

LCCM =
∑k1 ̸=k2 ̸=k3

ci∈∪K
c=1,ki∈∪K

k=1
(LA(h

c1
k1
, hc2

k2
, hc3

k3
) + LE(h

c1
k1
, hc2

k2
)). (10)

Moreover, to enhance robustness and maintain decision
boundaries, the CSFSA module uses importance scores si
learned from clients to downweight lower-quality features,
leading to a weighted supervised classification loss, i.e.,

LWCE = −
∑N

i=1si (yi log(pi) + (1− yi) log(1− pi)). (11)

Training Strategies
FedFSA obtains the final model through the training of lo-
cal client models and the calibration of the global model. It
has following training strategies. First, FedFSA aims to cal-
ibrate local distributions on the client side, its optimization
objective loss is defined as

LClient = LEM + αLDC . (12)
Furthermore, FedFSA further minimizes distribution dis-

crepancies across different spaces on the server side, the loss
for optimization is characterized as

LServer = LWCE + η(LLCM + LCCM ), (13)
where α and η are weighted parameters.

Experiments
Experiment Settings
Datasets. Following existing studies (Li, He, and Song
2021; Luo et al. 2021; Mu et al. 2023), experiments
were conducted on three datasets, including CIFAR10
(Krizhevsky, Hinton et al. 2009), CIFAR100 (Krizhevsky,
Hinton et al. 2009) and TinyImageNet (Le and Yang 2015)
to validate the effectiveness of the FedFSA. The statistical
details are presented in the Table 1. And the dataset is parti-
tioned using the Dirichlet distribution with β = 0.5.



Table 2: Performance comparison between FedFSA with existing methods on CIFAR10, CIFAR100 and TinyImagenet datasets.

Methods CIFAR10 CIFAR100 TinyImagenet
K=5 K=10 K=5 K=10 K=5 K=10

Base FedAvg (AISTATS’17) 70.85 68.24 60.67 57.58 49.58 46.12

Methods based on
Knowledge Distillation

MOON (CVPR’21) 71.43 69.44 61.54 58.82 50.12 47.38
FedProc (FGCS’23) 72.64 69.85 62.04 59.32 50.23 47.79

FedDeccor (ICLR’23) 72.11 70.21 61.59 59.24 49.75 47.63
FedETF (ICCV’23) 73.03 70.79 62.36 60.45 50.46 48.25
FedRCL (CVPR’24) 71.54 69.25 61.48 58.67 50.45 47.46

Methods based on
Model Calibration

CCVR (NeurIPS’21) 71.25 69.67 60.67 58.59 49.67 46.23
FedCSPC (MM’23) 73.24 70.85 62.87 60.88 50.31 48.12

CLIP2FL (AAAI’24) 72.89 70.49 63.27 61.05 50.74 48.26
FedFSAFedAvg (Ours) 74.45 72.35 64.48 62.41 51.05 48.73
FedFSAFedETF (Ours) 75.15 72.53 64.23 62.58 51.42 49.16

Evaluation Measures. Following existing studies (Li, He,
and Song 2021; Mu et al. 2023), this study employs the Top-
1 Accuracy to evaluate the performance of methods, i.e.,

Accuracy = Ncorrect/Ntotal (14)

where Ncorrect, Ntotal are the number of correct predictions
and total samples, respectively.

Network Architecture. Following existing studies (Li,
He, and Song 2021; Mu et al. 2023), the network setup in-
cludes an image encoder, a projection head with a 2-layer
MLP, and a classifier with a single-layer fully-connected net-
work. We use a CNN with two 5x5 convolutional layers, 2x2
max pooling, and two ReLU-activated fully-connected lay-
ers as the encoder on CIFAR10 and use a ResNet18 encoder
on other datasets, omitting its last fully-connected layer.

Implementation Details. Following existing studies (Li,
He, and Song 2021; Mu et al. 2023), we set clients size K =
5 and K = 10 in cross-silo settings, the local training epochs
E = 10, the batch size B = 64, the communication round
T = 100 for CIFAR10 and CIFAR100 datasets, T = 50
for TinyImagenet dataset, the learning rate lr = 0.01 and
the weight decay wd = 1e − 05 in the SGD optimizer.
The weighted parameter α = {0.1, 0.5, 1, 5}, the temper-
ature τ = 0.5, the number of clusters Nυ = {1, 2, 3}. The
weighted parameter η = {0.01, 0.1, 1}, κ = {0.3, 0.5, 0.7},
the number of augmented features J = {1, 2, 4, 8}. For
other methods, we tuned their hyper-parameters by referring
to corresponding papers for fair comparison.

Performance Comparison
We compare FedFSA with nine state-of-the-art methods, in-
cluding FedAvg (McMahan et al. 2017), MOON (Li, He,
and Song 2021), CCVR (Luo et al. 2021), FedProc (Mu et al.
2023), FedDecorr (Shi et al. 2023), FedETF (Li et al. 2023),
FedRCL (Seo et al. 2024), FedCSPC (Qi et al. 2023) and
CLIP2FL (Shi et al. 2024). The following results can be ob-
served from Table 2.
• FedFSA is a general framework that can combine var-

ious knowledge distillation based approaches, such as
FedAvg and FedETF, to bring them performance gains,
which showcases its model-agnostic capability.

• Model calibration-based methods typically outper-
form knowledge distillation-based methods, as demon-
strated by FedCSPC, CLIP2FL and FedFSA. This is
because they all endeavor to utilize information from mul-
tiple sources to train a generalized model.

• FedETF employs a unified simplex equiangular tight
frame classifier often results in better outcomes than
methods based on data-driven knowledge (FedProc,
FedNTD, MOON). This may be due to they avoid issues
of poor knowledge quality caused by data disparities and
inherent limitations of the models themselves.

• With an increase in the number of data sources,
there is often a decline in the performance. This re-
sults from the amplified disparities across data distribu-
tions. FedFSA retains its superiority in performance, fully
demonstrating the efficacy of its calibration mechanism.

Ablation Study
This section explores the effectiveness of FedFSA’s compo-
nents with K = 5 and K = 10 clients, and a Dirichlet
parameter β = 0.5. The results are shown in Table 3.

• The Text-Enhanced Representation Learning (TERL)
module plays a crucial role, contributing an average
performance gain of 1.2% to the baseline method,
which verifies that providing unified guidance to different
clients aids in enhancing their collaborative outcomes.

• The collaboration between the Cross-Silo Feature Space
Alignment (CSFSA) and TERL modules has resulted in
a significant improvement in accuracy. This enhance-
ment has provided an approximate 3% increase for
the baseline methods across all cases.

• The CSFSA module alone can also produce good re-
sults, as it mitigates the impact of outliers in a weighted
manner compared to existing methods.

In-depth Analysis
Robustness of FedFSA on Hyperparameters. This sec-
tion evaluates the robustness of FedFSA in different hy-
perparameters. We select the Nυ , weight parameters α,
η and κ from {1, 2, 3}, {0.1, 0.5, 1, 5}, {0.01, 0.1, 1} and
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Figure 3: The impact of hyperparameters on performance.

Table 3: Ablation study on the effectiveness of main mod-
ules of FedFSA on the CIFAR10 and CIFAR100 datasets.

CIFAR10 CIFAR100
K=5 K=10 K=5 K=10

Base 70.85 68.24 60.67 57.58
+TERL 72.06 70.01 62.53 59.46

+TERL+CSFSA 73.21 71.02 63.26 61.03
+VTSC+CSFSA 73.63 71.21 63.55 61.14

+TERL+VTSC+CSFSA 74.45 72.35 64.48 62.41

{0, 0.3, 0.5, 0.7}. As shown in Figure 3, FedFSA consis-
tently outperforms FedAvg across various scenarios and
demonstrates insensitivity to hyperparameter variations
over a wide range, indicating its strong robustness in hyper-
parameter selection. Additionally, the model performs best
with 2 clusters, as a single cluster may miss intra-class vari-
ability, while too many clusters could dilute key features and
focus on noise. For α and η, the model performs best when
α = 2 and η = 0.1. This is because lower values of α or
η might result in the model assigning too little weight to
key features, while higher values could lead to over-reliance
on certain specific features, ignoring other valuable infor-
mation. Notably, fusing an appropriate level of variance
knowledge is beneficial, but excessive fusion may lead to
inter-class feature overlap, introducing noise and result-
ing in degraded performance.

The Effect of the Number of Augmented Features on Per-
formance. This section discusses the effect of augmented
feature numbers on calibration results. We adjust Naug from
{0, 1, 2, 4, 8} with Nυ = 2. Naug = 0 means training with
only local prototypes. Figure 4 shows the results. Increasing
the number of augmented features generally improves
performance by enriching the feature space and simu-
lating real distributions, which helps prevent overfitting.
Even a few augmented samples can boost performance by
about 3%. However, performance on CIFAR100 declines
when Nυ = 8 due to fewer samples per class and overlap-
ping distributions, highlighting the importance of effective
feature learning in complex tasks.

Case Study
The Impact of Text-Enhanced Representation Learning
on Feature Learning. This section evaluates the impact of
Text-Enhanced Representation Learning on feature learning,
prototype modeling, and test performance. We selected two
clients with different data distributions and used t-SNE to
visualize feature distribution for two classes in both training
and testing sets. As shown in Figure 5, FedProc and FedFSA
learned more discriminative representations compared to Fe-

CIFAR10 CIFAR100

K=5
K=10

K=5
K=10

Figure 4: The effect of the number of augmented features
Nf = {0, 1, 2, 4, 8} on performance of FedFSA on CI-
FAR10 with different number of clients K = {5, 10}.
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Figure 5: Local feature distributions learned by FedAvg,
FedProc and FedFSA on CIFAR10 training and testing set.

dAvg, especially for majority classes (e.g., the sandy brown
class). However, FedProc struggled with classes with few
samples due to error accumulation across training rounds.
FedFSA uses consistent features to guide local training,
ensuring similar representations for shared classes, which
helps it outperform other methods. Additionally, FedFSA
evaluates prototype significance, assigning low weights to
prototypes in overlapping regions of different classes, aid-
ing the CSFSA module in reducing outlier interference.

Visualization Analysis of Cross-Silo Feature Space
Alignment. In this section, we randomly selected two
clients and two shared categories (birds with fewer samples
and airplanes with more). Figure 6 shows the representation
distributions, the CKA similarity (Kornblith et al. 2019; Gao
et al. 2024; Liu et al. 2022), and model performance learned
from FedCSPC and FedFSA methods. Results indicate that
FedFSA learns more compact and discriminative represen-
tations within and between classes than FedCSPC. Addi-
tionally, FedFSA reduces feature space heterogeneity across
clients even before calibration, aiding cross-source feature
alignment. This improvement is also reflected in CKA sim-
ilarity. Conversely, FedCSPC aligns the airplane class bet-
ter than the bird class due to limited representation quality
from minority samples. This is due to poor representation
quality from minority samples hindering feature alignment.
Furthermore, feature heterogeneity may decrease collabora-
tive performance (see Figure 6(a)). And model calibration
typically enhances the local models’ personalized capabil-
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Figure 6: Comparison of representation learning across clients between FedCSPC and FedFSA. FedFSA improves the effec-
tiveness of cross-silo feature alignment for classes with minority samples, and enhances the performance of the global model.
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Figure 7: Error analysis. (a) FedFSA improves the local feature learning and the generalization of global model. (b) FedFSA
can calibrate attention towards minority class sample, improving the performance of aggregation. (c) FedFSA failed due to
unreliable local learning. (d) FedFSA narrows the gap between actual outcomes and top-1 predictions.

ity, which leverages other clients’ knowledge to compensate
for shortcomings.

Error analysis. This section uses GradCAM (Selvaraju,
Cogswell, and et al 2017; Meng et al. 2019) visualizations
to examine FedFSA. Figure 7(a) shows that incorporating
TERL and CSFSA modules can improve the base method by
using a large number of samples for better feature learning.
Figure 7(b) indicates that limited samples may cause base
model failure, reducing collaboration effectiveness. Notably,
the TERL module can enhance the feature learning, which
helps the CSFSA module correct prediction errors. How-
ever, model calibration may fail, as shown in Figure 7(c).
Despite accurate predictions by the client models, they fail to
reliably focus on target regions, resulting in poor representa-
tion learning that hinder effective calibration. Finally, Figure
7(d) shows these methods often mispredict classes with few
samples. The CSFSA module helps the model focus better,
reducing prediction errors. These findings highlight the neg-
ative impact of imbalanced data on federated learning and
confirm the proposed framework’s effectiveness.

Conclusion
To address the issue of ill-posed aggregation caused by
data imbalance, this paper proposes a method (FedFSA)
for aligning feature spaces across silos. FedFSA introduces
the variance transfer technique to construct the prototypi-
cal space, which calibrates feature distribution of minority
classes. Moreover, FedFSA aligns feature spaces from dif-
ferent sources to bridge inconsistency, fitting data from all
clients to obtain a generalized model. Experimental results
show that aligning the feature spaces of different clients can
improve the performance of the retrained model.

Despite FedFSA mitigates the impact of data imbal-
ance, there are still some directions worth exploring. Firstly,
stronger strategies for representation alignment and causal
discovery to enhance collaborative modeling (Chen et al.
2023a,b; Wang et al. 2022b,a; Lin et al. 2020; Yang et al.
2024a). Secondly, it makes sense to extend this to more
challenging tasks, such as video classification (Wang et al.
2023b, 2024b) and recommendation systems (Ma et al.
2023; Meng et al. 2020).
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