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ABSTRACT

Despite their excellent performance on in-distribution (ID) data, deep neural net-
works often confidently predict on out-of-distribution (OOD) samples that come
from novel classes instead of flagging them for expert evaluation. Even though
conventional OOD detection algorithms can distinguish far OOD samples, cur-
rent methods that can identify near OOD samples require training with labeled
data that is very similar to these near OOD samples. In turn, we develop a
new ensemble-based procedure for semi-supervised novelty detection (SSND) that
only utilizes a mixture of unlabeled ID and OOD samples to achieve good detec-
tion performance on near OOD data. It crucially relies on regularization to pro-
mote diversity on the OOD data while preserving agreement on ID data. Extensive
comparisons of our approach to state-of-the-art SSND methods on standard im-
age data sets (SVHN/CIFAR-10/CIFAR-100) and medical image data sets reveal
significant gains with negligible increase in computational cost 1.

1 INTRODUCTION

Despite achieving great in-distribution (ID) performance, deep neural networks (DNN) often have
trouble dealing with samples in the test set that are out-of-distribution (OOD), i.e. test inputs that are
unlike the data seen during training. For example, DNNs often make incorrect predictions with high
confidence when new unseen classes emerge over time (e.g. undiscovered bacteria Ren et al. (2019),
new diseases Katsamenis et al. (2020)), or when data suffers from distribution shift (e.g. corruptions
Lu et al. (2019), environmental changes Kumar et al. (2020)).

Figure 1: Comparison of methods that are applicable
in the SSND setting. Our method shows better perfor-
mance on challenging near OOD data sets. Averages
over the data sets presented in Table 2.

If the labels of these OOD samples follow the
same conditional probability distribution as the
training set Shimodaira (2000), it is most desir-
able to output calibrated uncertainty estimates
in addition to a single predicted value, as in
Neal (1996); Gal & Ghahramani (2016); Ma-
linin & Gales (2018); Lakshminarayanan et al.
(2017). In contrast, when this assumption does
not hold and some inputs might come from pre-
viously unseen classes, we would like to detect
such novel samples and bring them to the at-
tention of experts. More specifically, in novelty
detection, we want to detect inputs x that sat-
isfy PX(x) < α for a small threshold α, where
PX is the marginal training (ID) distribution.

Previous works that have tackled this problem
are known as open-set recognition and OOD detection methods. In what follows, we use the terms
novelty detection (ND) and OOD detection interchangeably. Related problems such as aforemen-
tioned uncertainty estimation or one-class (OC) classification have slightly different objectives but
also include methods that are applicable to novelty detection.

1Our code is publicly available at https://bit.ly/3a7aQyN
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Table 1: Taxonomy of novelty detection methods, categorized according to data availability
(horizontal axis) and overall objective (vertical axis). We highlight the ensemble-based methods.

P-UND SND Different OOD
A-UND

Synthetic OOD
A-UND SSND UND

Learn PX [RH21] [GKRB13,
DKT19,
RVGBM20]

OC classif. [SLYJP21,
TMJS20]

PU [KNPS17] Generative e.g. [AAB18],
OC classif. e.g. [SPSSW01]

Learn PX
using y

ViT
[FRL20]

Mahalanobis
[LLLS18],
MCD [YA19]

Contrastive loss [TMJS20,
LA20]

SSND for shallow
models [MBGBC10,
BLS10], U-LAC
[DYZ14, ZZMZ20]

Gram [SO19], Contrastive
[WBRSN20], OpenHybrid
[ZLGG20]

Uncertainty
of PY |X

ODIN [LLS18] DPN [MG18],
Outlier Expo-
sure [HMD19]

Calibrate using GAN
images [LLLS18], noise
[HTLID19] or uniform
samples ([JLMG20])

— Bayesian methods e.g.
[GG16], Vanilla Ensemble
[LPB17]

Numerous novelty detection methods are successful for simple benchmarks where the OOD samples
are far from the training samples (such as SVHN vs CIFAR10). As Winkens et al. (2020) and a
number of concurrent works (Tack et al., 2020; Fort et al., 2021) recently noted, these methods
however have subpar performance on near OOD data, for instance when OOD samples are drawn
from unseen classes from the same data set (e.g. CIFAR100 vs CIFAR10). A recent method that
is reported to have high near OOD detection performance involves tuning large models pretrained
on ImageNet21k (Fort et al., 2021) and, hence, arguably relies on using during training OOD data
that contains classes that are close to the unseen CIFAR classes during test time. However, in many
scientific applications that use, for instance, medical or satellite images, such large data sets for
pretraining are not available. In particular, truly novel classes will be inherently dissimilar from any
previously available data while still sharing some of the same characteristics.

Instead, a more realistic scenario assumes access to a small batch of unlabeled test data that includes
ID and OOD samples without knowing which are the outliers. We can use this set during train-
ing to ultimately perform well on future samples (i.e. semi-supervised novelty detection (SSND)
(Blanchard et al., 2010)) or to detect outliers from that particular test batch itself (reminiscent of
transductive OOD detection (Scott & Blanchard, 2008)). Even though using unlabeled data has the
potential to improve detection performance as argued in Scott & Blanchard (2009), existing SSND
methods for deep neural networks (Kiryo et al., 2017; Yu & Aizawa, 2019; Guo et al., 2020; Zhang
et al., 2020b) do not leverage the unlabeled set well enough to improve near OOD detection perfor-
mance, as shown in Figure 1. This includes previous methods that try to obtain a diverse ensemble
and use it for novelty detection, such as MCD (Yu & Aizawa, 2019).

In this paper, we introduce Ensembles with Regularized Disagreement (ERD), an ensemble method
for SSND that successfully takes advantage of the unlabeled data to achieve the right amount of
disagreement between the model predictions. The models in our ensemble are trained to not only
fit the training data but also the artificially labeled samples from the unlabeled set, while aiming to
achieve good validation accuracy. In particular,

• we argue why regularizing disagreement is crucial for OOD detection with ensemble methods.

• we give a justification, backed by theoretical arguments, as to why training with early stopping
and with artificial labels assigned to the unlabeled set achieves the right amount of disagreement.

• we test our method on many near OOD tasks, including medical data, demonstrating significant
gains with a negligible increase in computation cost compared to vanilla ensembles.

2 RELATED WORK AND A TAXONOMY OF OOD DETECTION METHODS

In this section we give an overview of approaches that are related to ours and categorize them
with respect to 1) data availability and 2) the final objective. Further, we list a few representative
approaches in Table 1 and refer the reader to surveys such as Bulusu et al. (2020) for a thorough
literature overview.

2.1 TAXONOMY ACCORDING TO DATA AVAILABILITY

In this section we present methods that are ordered by a decreasing necessary amount of labeled
OOD data or data similar to OOD data at test time.
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Supervised and augmented unsupervised ND. We call methods that use labeled OOD samples
from the test distribution for calibration or hyperparameter tuning supervised ND (SND) (Yu &
Aizawa, 2019; Lee et al., 2018; Liang et al., 2018; Ruff et al., 2020). Alternatively, some works
use during training either real, known outliers Hendrycks et al. (2019); Malinin & Gales (2018) or
OOD-like synthetically generated data to simulate the test OOD distribution, in what we call the
augmented unsupervised ND (A-UND). However, the performance of these methods relies on proxy
OOD data that is similar to test OOD. Concurrent works also propose to use models large-scale
models that are pretrained on datasets that contain classes similar to the novel classes (Fort et al.,
2021; Reiss & Hoshen, 2021), referred to as pretrained unsupervised ND.

Semi-supervised novelty detection (SSND, ours). This setting is the one we study in this work.2
We assume that, apart from class-labeled training data, we also have access to a small batch of
unlabeled data drawn from the test distribution. It consists of ID and OOD data without explicitly
knowing which samples are ID and OOD. SSND methods attempt to detect OOD samples from a
new batch drawn from the same test distribution (Blanchard et al., 2010; Mũnoz-Marı́ et al., 2010;
du Plessis et al., 2014; Liu et al., 2018). This is similar to the goal of approaches that use unlabeled
data for learning with augmented classes (U-LAC) (Da et al., 2014; Guo et al., 2020; Zhang et al.,
2020b). The SSND setting is related to transductive novelty detection (Scott & Blanchard, 2008;
Guo et al., 2020), where the test set coincides with the unlabeled set used for training.

Unsupervised novelty detection (UND). In this less restrictive setting, only ID data is avail-
able during training (Lakshminarayanan et al., 2017; Sastry & Oore, 2019; Nalisnick et al., 2019;
Choi et al., 2018), which generally leads to a poorer performance. Even though Scott & Blanchard
(2009) prove for shallow models that unlabeled data available in SSND should significantly im-
prove detection, it remains unclear how well deep neural networks can leverage the unlabeled data
set effectively.

2.2 TAXONOMY ACCORDING TO OVERALL OBJECTIVE

We now discuss the different objectives of methods in the literature that can be used to detect OOD
samples and explicitly list those that do not explicitly mention this keyword.

Learning the ID marginal PX . Since we define OOD samples as all x for which PX(x) < α, if
we had access to the marginal training distribution PX , we would have perfect OOD detection for
any x 6∈ XID. Generative models (Choi et al., 2018; Akçay et al., 2018; Nalisnick et al., 2019),
however, struggle to learn the density from finite samples when the data is high-dimensional. Alter-
natively, one-class classification (Mũnoz-Marı́ et al., 2010; Ruff et al., 2020; Sohn et al., 2021) and
PU learning approaches (du Plessis et al., 2014; Kiryo et al., 2017) try to directly learn a discrimina-
tor between ID and OOD data, but tend to produce indistinguishable representations for inliers and
outliers when the ID distribution consists of many diverse classes.

Learning PX using label information. (ours) When the ID training set has class labels, one can
take advantage of that additional information to distinguish points in the support of PX from OOD
data, for instance, by using the intermediate representations of trained neural networks (Lee et al.,
2018; Sastry & Oore, 2019). Often the task is to also simultaneously predict well on ID data, known
in the literature as the problem open-set recognition (Zhang et al., 2020a; Geng et al., 2021).

Learning uncertainty estimates for PY |X . Uncertainty estimates optimized for minimal calibra-
tion error can naturally be used for OOD samples. Many uncertainty quantification methods are
based on a Bayesian framework (Gal & Ghahramani, 2016; Malinin & Gales, 2018; Graves, 2011;
Blundell et al., 2015) or calibration improvement (Liang et al., 2018; Hafner et al., 2019) – neither
of them however perform as well as other OOD methods mentioned above (Ovadia et al., 2019).

3 PROPOSED METHOD

In this section we introduce our proposed algorithm, ERD, and provide a principled justification for
the key ingredients that lead to the improved performance of our method.

2We use the same definition of SSND as the survey by Bulusu et al. (2020), whereas some works use the
term to refer to SND (Gornitz et al., 2013; Daniel et al., 2019; Ruff et al., 2020) or UND (Song et al., 2017;
Akçay et al., 2018) according to our taxonomy.
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3.1 THE COMPLETE ERD PROCEDURE

Recall that we have access to both a labeled training set S = {(xi, yi)}ni=1 ∼ P , where xi ∈ X
are covariates and yi ∈ Y are discrete labels, and an unlabeled set U , which contains both ID
and unknown OOD samples. Moreover, we initialize the models of the ensemble using weights
pretrained on S.3

Algorithm 1: Fine-tuning the ERD ensemble
Input: Train set S, ID Validation set V , Unlabeled set U ,

Model f̃ pretrained on S, Ensemble size K
Result: ERD ensemble {fyi}Ki=1

Sample K different labels {y1, ..., yK} from Y
for c← {y1, ..., yK} do // fine-tune K models

fc ← Initialize(f̃)
(U, c)← {(x, c) : x ∈ U}
fc ← RegularizedFineTuning (fc, S ∪ (U, c);V )

return {fyi}Ki=1

Algorithm 2: OOD detection with ERD
Input: Ensemble {fyi}Ki=1, Test set T , O = ∅,

Threshold t0, Disagreement metric ρ
Result: O, i.e. the OOD elements of T
for x ∈ T do // run hypothesis test

if (Avg ◦ ρ)(fy1 , ..., fyK )(x) > t0 then
O ← O ∪ {x}

else
predict x using f̃

return O

The entire training procedure is described in Algorithm 1. For training a single model in the ensem-
ble, we assign a label c ∈ Y to all the unlabeled samples in U , resulting in the c-labeled set that
we denote as (U, c) := {(x, c) : x ∈ U}. We then fine-tune a classifier fc on the union S ∪ (U, c)
of the correctly-labeled training set S, and the unlabeled set (U, c). The model fc that we output is
regularized to have high validation accuracy on the validation set while still achieving a low training
error on S ∪ (U, c). We create an ensemble of K classifiers fc by choosing a different artificial label
c ∈ Y for every model4. Finally, during test time in Algorithm 2, any samples with an aggregate
disagreement metric (described in Section 3.2) larger than a threshold value t0 are flagged as OOD
while the rest can be predicted using the initial model trained on the labeled training set.

Intuitively, the training procedure encourages the models to produce different predictions on the
OOD samples in U , while regularization prevents them from fitting the incorrect label c and hence
disagreeing on the ID points. We argue in Section 3.2 why regularized disagreement is essential and
in Section 3.3 why we can find such models using early stopping.
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unlabeled set U
set of ID data set of OOD data
labeled set S identified as OOD in U

model/ensemble predictionensemble disagrees
predictions in U

model I

(a) SSND setting (b) Two models in the ensemble (c) Ensemble predictions

model II

Setting + ensembles w/ disagreement

Figure 2: Left: Sketch of the SSND setting. Middle and Right: OOD detection with a diverse ensemble.

3.2 ENSEMBLES WITH REGULARIZED DISAGREEMENT

We now discuss how we can use ensembles with disagreement detect OOD samples and why the
right amount of diversity is crucial. Note that we can cast the OOD detection problem as a hypothesis
test with null hypothesis H0 : x ∈ XID. Our Algorithm 2 tests the null hypothesis by using
an ensemble-based disagreement score: The null hypothesis is rejected and we report x as OOD
(positive) if the score is larger than a threshold t0 (Section 4.3 elaborates on the choice of t0).
Ideally, the test should have high power (flag true OOD as OOD) and low false positive rate (avoid
flagging true ID as OOD).

For simplicity of illustration, let us assume a training set with binary labels and a semi-supervised
novelty detection setting as depicted in Figure 2 a). If we obtain two different models as in Figure 2

3In Section 4 we also present a version of ERD trained from random initializations, i.e. ERD++.
4Choosing the ensemble size K = 5 is sufficient for all of our experiments even for |Y| ∼ 50 or larger.
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diversity of disagreements

identified as OOD in U
model/ensemble predictionensemble disagrees
predictions in U

c) Too much disagreementb) Just enough disagreementa) Too little disagreement

ensemble models
set of ID data set of OOD data
labeled set S

Figure 3: Varying degrees of ensemble disagreement and how that influences what regions are flagged OOD.

b), the ensemble agrees on the blue and red area and disagrees on the gray area depicted in Figure 2
c). If we flag as OOD all samples in the region where the models disagree, in this scenario we have
high power and a low false positive rate. To extend the concept of disagreement for a multi-class
model and multi-model ensemble, we propose to use the average disagreement between the softmax
outputs of the K models in the ensemble

(Avg ◦ ρ)(f1(x), ..., fK(x)) :=
2

K(K − 1)

∑
i6=j

ρ (fi(x), fj(x)) , (1)

where ρ is a measure of disagreement between the softmax outputs of two predictors, for example
the total variation distance ρTV(fi(x), fj(x)) = 1

2‖fi(x) − fj(x)‖1 used in our experiments5. We
provide a thorough discussion on the soundness of this statistic for disagreeing models and compare
it with previous metrics in Appendix B.

We would like to emphasize that the two models in Figure 2 are just diverse enough to obtain
both high power and low false positive rate at the same time. In particular, previous ensemble
methods usually do not reach the “sweet spot”: either they have too little disagreement as in Figure 3
a), resulting in low power, or they disagree too much, resulting in high false positive rate as in
Figure 3 c). In these figures, one can easily see that at the the sweet spot of what we call regularized
disagreement in Figure 3 b), the models are quite diverse while maintaining high ID validation
accuracy. Supported by previous empirical and theoretical observations, we now argue that we can
find the sweet spot via early-stopped fine-tuning on the artifically labeled unlabeled set.

3.3 DISAGREEMENT VIA ARTIFICIAL LABELS AND REGULARIZATION VIA EARLY STOPPING

In this section we show how we can obtain a neural network that achieves the right amount of
disagreement using unlabeled data and regularization via early stopping (refer to the following the-
oretical works on early stopping implicitly restricting model complexity Yao et al. (2007); Raskutti
et al. (2013); Wei et al. (2017)). Previous methods have also tried to leverage a set of unlabeled
data to obtain more diverse ensembles for OOD detection (Yu & Aizawa, 2019; Jain et al., 2020)
or for better predictive performance(Bennett et al., 2002; Zhang & Zhou, 2010). The Maximum
discrepancy method (MCD), the only candidate that can be used for our large-scale datasets, tends
to result in ensembles that do not disagree enough on OOD data, resulting in subpar performance
(see Figure 9a in Appendix B).

We argue that Algorithm 1 when regularized via early stopping succeeds based on two observations
in the literature: empirically, neural networks can fit arbitrary labels perfectly (Zhang et al., 2016)
while on the other hand, noisy samples with incorrect labels are often fit after the correctly labeled
samples Yilmaz & Heckel (2019); Li et al. (2020); Song et al. (2020); Liu et al. (2020); Xia et al.
(2021). This motivates our procedure that 1) fine-tunes models to fit artificial labels c during training,
while we 2) use the model at an earlier stopping time that achieves high validation accuracy while
enough of the samples in the U have been fit. We now give a more detailed argument why such a
stopping time can lead to good regularized disagreement.

Recall that in our approach, in addition to the correct labels of the ID training set S, each member of
the ensemble tries to fit one label c to the entire unlabeled set U that can be further partitioned into

5We also expect other distance metrics to be similarly effective.
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b) Effect of regularization on trained modelsa) Two models trained to fit artifically labeled data

artificially labeled U
model predictions

model trained with    -labeled U
set of ID data set of OOD data
labeled set S

model trained with    -labeled U

regularized disagreement with our method

Figure 4: Regularization prevents individual models trained on S ∪ (U, c) from fitting (U¬cID , c).

(U, c) = (UID, c) ∪ (UOOD, c) = {(x, c) : x ∈ UID} ∪ {(x, c) : x ∈ UOOD},
where UID := U ∩ XID and UOOD := U \ UID. Moreover, assuming that the labels of an ID
input x is deterministically y∗(x), we can partition the set (UID, c) (see Figure 4a) into a subset of
effectively “correctly labeled” samples (U cID, c) and “incorrectly labeled” samples (U¬cID , c):

(U¬cID , c) := {(x, c) : x ∈ UID with y∗(x) 6= c}
(U cID, c) := {(x, c) : x ∈ UID with y∗(x) = c}.

Note that (U¬cID , c) can be viewed as the noisy samples of our entire training set. Assuming the
OOD samples are representative, if the models fit (UOOD, c) perfectly to different artificial labels
c, then they will disagree on the OOD data in the labeled set, as well as on unseen similar OOD
samples, leading to a diverse ensemble. However, if the models also fit the samples in (U¬cID , c), the
ensemble becomes too diverse, as shown in Figure 4 a). As noted before, early stopping prevents
models from fitting training samples with label noise, which, in our case, amounts to the incorrectly
labeled subset (U¬cID , c). In Proposition A.1 in Appendix A we provide a rigorous proof based on
previous theoretical results that establishes the existence of such an optimal stopping time under
mild assumptions on the data distributions.
To find the best stopping time in practice, we use a validation set of labeled ID points to select
an intermediate checkpoint before convergence. As a model starts to fit (U¬cID , c), i.e. the wrongly
labeled ID samples in UID, it also predicts the label c on some validation ID points, leading to a
decrease in validation accuracy, as shown in Figure 5. In our experiments, we wait for one epoch
to allow for the fine-tuning to have any effect at all, and then pick the iteration with the largest
validation accuracy (indicated by the vertical line in the figure). In Appendix I we show that the
trend depicted in Figure 5 persists for various different data sets.
Finally, we note that instead of early stopping we could also explicitly regularize using dropout
or weight decay. However, running a grid search to select the right hyperparameters can be more
computationally expensive than simply using one run of the training process to select the optimal
stopping time.

Figure 5: Accuracy during fine-tuning a model pretrained on S (epoch 0 indicates values obtained with the
initial pretrained weights). The samples in (UOOD, c) are fit first, while the model reaches high accuracy on
(UID, c) much later. We fine-tune for at least one epoch and then early stop when the validation accuracy starts
decreasing after 7 epochs (vertical line). The model is trained on SVHN[0:4] as ID and SVHN[5:9] as OOD.
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4 EXPERIMENTAL RESULTS

In this section we evaluate the OOD detection performance of ERD for deep neural networks on
several image data sets. We find that our approach outperforms all baselines on difficult OOD
detection scenarios. In addition, we discuss some of the trade-offs that impact ERD’s performance.

4.1 DATA SETS

We report results on near and far OOD detection scenarios using standard data sets and a recent
OOD detection benchmark for medical images Cao et al. (2020) (see Appendix D for details):
Easy/Far OOD data. ID and OOD samples come from strikingly different data sets (e.g. CI-
FAR10 or CIFAR100 as ID and SVHN as OOD). These are the settings considered in the majority
of the literature and on which most baselines perform well.
Hard/Near OOD data. The OOD data consists of “novel” classes that resemble the ID samples.
For the standard image data sets we consider half of the classes as ID, and the other half as OOD.
For the medical benchmarks near OOD data consists of unseen diseases. The similarities between
the ID and the OOD classes make these settings significantly more challenging.

For all scenarios, we used a labeled training set (e.g. 40K samples for CIFAR10), a validation set
with ID samples (e.g. 10K samples for CIFAR10) and an unlabeled test set where half of the sam-
ples are ID and the other half are OOD (e.g. 5K ID samples and 5K OOD samples for CIFAR10
vs SVHN). For evaluation, we use a holdout set containing ID and OOD samples in the same pro-
portions as the unlabeled set. In Appendix E.1 we show that ERD can also successfully identify
the outliers from the unlabeled set used for fine-tuning. Furthermore, in Appendix E.4 we present
results obtained with a smaller unlabeled set of only 1K samples.

4.2 BASELINES

We compare our method against a wide range of baselines that require different access to OOD data
for training, as indicated in Table 1.
Semi-supervised novelty detection. We primarily compare our method to approaches that can be
used in the semi-supervised setting for deep neural networks, in which a small set of unlabeled ID
and OOD samples is available. The MCD method Yu & Aizawa (2019) trains an ensemble of two
classifiers with different types of predictive distributions on the unlabeled samples: one model gives
high-entropy predictions, while the other has low entropy. Notably, this method uses oracle OOD
data for hyperparameter tuning. Furthermore, positive-unlabeled (PU) learning du Plessis et al.
(2014) considers a binary classification setting, in which the labeled data comes from one class (i.e.
ID samples, in our case), while the unlabeled set contains a mixture of samples from both classes.
Crucially, PU learning methods, like nnPU Kiryo et al. (2017), require oracle knowledge of the ratio
of OOD samples in the unlabeled set.
In addition to these methods, we propose two more baselines that use an unlabeled set. Firstly,
we present a version of the Mahalanobis approach (Mahal-U) that is calibrated using the unlabeled
set. Secondly, since PU learning requires access to the OOD ratio of the unlabeled set, we also
consider a less burdensome alternative: a binary classifier trained to separate the training data from
the unlabeled set and regularized with early stopping like our method.
Unsupervised novelty detection. When it comes to methods that use no OOD data for training,
the current SOTA on the usual benchmarks is the Gram method Sastry & Oore (2019). Other ap-
proaches that use no OOD data include vanilla ensembles Lakshminarayanan et al. (2017), deep
generative models that tend to give undesirable results for OOD detection Kirichenko et al. (2020),
or various Bayesian approaches that are often poorly calibrated on OOD data Ovadia et al. (2019).
Other methods. We also compare with Outlier Exposure Hendrycks et al. (2019) and Deep Prior
Networks (DPN) Malinin & Gales (2018) which use TinyImages as known outliers during training,
irrespective of the OOD set used for evaluation (A-UND). On the other hand, the Mahalanobis
baseline Lee et al. (2018) is tuned on samples from the same OOD distribution used for evaluation
(SND). Preliminary analyses revealed that generative models and one-class classification methods
perform poorly on near OOD data sets (see also Appendix E.2).
Choice of hyperparameters. For all the baselines, we use the default hyperparameters suggested
by their authors on the same ID data set. The Gram method requires laborious hyperparameter tuning
for multi-layer perceptron (MLP) models, so we do not consider it for the MNIST and FMNIST data
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Table 2: AUROC and TNR@95 for different OOD detection scenarios (the numbers in squared brackets
indicate the ID or OOD classes). We highlight the best ERD variant and best baseline. The asterisk marks
baselines proposed in this paper. nnPU and MCD (†) use oracle information about the OOD data.

Other settings Unknown OOD

ID data OOD data Vanilla
Ensembles Gram DPN OE Mahal. nnPU† MCD† Mahal-U Bin.

Classif. * ERD *

AUROC ↑ / TNR@95 ↑

SVHN CIFAR10 0.97 / 0.88 0.97 / 0.86 1.00 / 1.00 1.00 / 1.00 0.99 / 0.98 1.00 / 1.00 0.97 / 0.85 0.99 / 0.95 1.00 / 1.00 1.00 / 0.99
CIFAR10 SVHN 0.92 / 0.78 1.00 / 0.98 0.95 / 0.85 0.97 / 0.89 0.99 / 0.96 1.00 / 1.00 1.00 / 0.98 0.99 / 0.96 1.00 / 1.00 1.00 / 1.00
CIFAR100 SVHN 0.84 / 0.48 0.99 / 0.97 0.77 / 0.44 0.82 / 0.50 0.98 / 0.90 1.00 / 1.00 0.97 / 0.73 0.98 / 0.92 1.00 / 1.00 1.00 / 1.00

FMNIST
[0,2,3,7,8]

FMNIST
[1,4,5,6,9] 0.64 / 0.07 – / – 0.77 / 0.15 0.66 / 0.12 0.77 / 0.20 0.95 / 0.71 0.78 / 0.30 0.82 / 0.39 0.95 / 0.66 0.94 / 0.67

SVHN
[0:4]

SVHN
[5:9] 0.92 / 0.69 0.81 / 0.31 0.87 / 0.19 0.85 / 0.52 0.92 / 0.71 0.96 / 0.73 0.91 / 0.51 0.91 / 0.63 0.81 / 0.40 0.95 / 0.74

CIFAR10
[0:4]

CIFAR10
[5:9] 0.80 / 0.39 0.67 / 0.15 0.82 / 0.32 0.82 / 0.41 0.79 / 0.27 0.61 / 0.11 0.69 / 0.25 0.64 / 0.13 0.85 / 0.43 0.93 / 0.70

CIFAR100
[0:49]

CIFAR100
[50:99] 0.78 / 0.35 0.71 / 0.16 0.70 / 0.26 0.74 / 0.31 0.72 / 0.20 0.53 / 0.06 0.70 / 0.26 0.72 / 0.19 0.66 / 0.13 0.82 / 0.44

Average 0.84 / 0.52 0.86 / 0.57 0.84 / 0.46 0.84 / 0.54 0.88 / 0.60 0.86 / 0.66 0.86 / 0.55 0.86 / 0.60 0.89 / 0.66 0.95 / 0.79

sets.6 For the binary classifier and nnPU, we pick hyperparameters only to optimize the loss on an
ID validation set. We defer the details regarding training the models to Appendix C.

4.3 OUR METHOD AND EVALUATION

ERD. We present results for two flavors of our method. For one, we fine-tune each model in
the ensemble with early stopping, starting from weights that are pretrained on the labeled ID set S
(ERD). We also train the models from random initializations (ERD++) that can obtain slightly better
OOD detection at the cost of more training iterations. We train ensembles of K = 5 MLP models
for MNIST and FMNIST and ResNet20 He et al. (2016) networks for the other settings (results
for other architectures and ensemble sizes are presented in Appendix E.7 and E.8, respectively).
We choose the arbitrary label assigned to the unlabeled set at random, without replacement (see
Appendix E.8 for a discussion on the impact of the choice of arbitrary label). For each model in
the ensemble we perform post-hoc early stopping: we train for 10 epochs (100 epochs for ERD++)
and select the iteration with the lowest validation loss. The other hyperparameters for training are
chosen to maximize validation accuracy on the ID data.
Evaluation. As in standard hypothesis testing problems, choosing different thresholds for reject-
ing the null hypothesis leads to different false positive and true positive rates (FPR and TPR, re-
spectively). The ROC curve follows the FPR and the TPR for all possible threshold values and the
area under the curve (AUROC; larger values are better) captures the performance of a statistical test
without having to select a specific threshold. In addition to the AUROC, we also use the TNR at a
TPR of 95% (TNR@95; larger values are better) for evaluation.7

4.4 MAIN RESULTS

Table 2 summarizes the main empirical results. On the easy scenarios (top part of the table) most
methods achieve near-perfect OOD detection with AUROC close to 1. However, on the novelty
detection scenarios (bottom part), ERD has a clear edge over other baselines, even when they are
calibrated on oracle OOD data, or when they use the true OOD ratio of the unlabeled set, e.g.
nnPU. The substantial gap between ERD and other approaches, both in average AUROC and average
TNR@95, indicates that our method lends itself well to practical situations when accurate OOD
detection is critical. We note that repeated runs of ERD show a small variance σ2 < 0.01 in the
detection metrics. In Appendix E we show that our method successfully identifies OOD samples
with mild distribution shift (e.g. corrupted CIFAR10 Hendrycks & Dietterich (2019), CIFAR10v2
Recht et al. (2018), ObjectNet Barbu et al. (2019)), which provides further evidence that ERD is
well-suited for the most difficult of OOD detection tasks.

For the medical OOD detection benchmark we show in Figure 6a the average AUROC achieved
by some representative baselines taken from Cao et al. (2020). Our method improves the average

6We note that the code provided by the authors does not include the configurations required for MLP models.
7In practice, choosing a good rejection threshold is important. A recent work Liu et al. (2018) proposes a

criterion for setting the threshold that is tailored specifically to the SSND setting. Alternatively, one can choose
the threshold so as to achieve a desired FPR, which we can estimate using a validation set of ID samples.
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(a) OOD detection performance on medical data (b) Effect of OOD proportion on detection

Figure 6: Left: AUROC averaged over all scenarios in the medical OOD detection benchmark. The values for
the baselines are computed using the code from Cao et al. (2020). Right: The AUROC of ERD as the number
and proportion of ID (CIFAR10[0:4]) and OOD (CIFAR10[5:9]) samples in the unlabeled set are varied.

AUROC from 0.85 to 0.91, compared to the best baseline. We refer the reader to Cao et al. (2020)
for precise details on the methods. Appendix F contains more results, as well as additional baselines.

5 CONCLUSION

In this section, we discuss the possible limitations of using ERD in practice before summarizing the
advantages compared to other methods and outlining potential avenues for future work.
Discussion on potential limitations of ERD and SSND. First, as mentioned in Section 3.3, ERD
requires the OOD samples in the unlabeled set to be representative of the OOD distribution. Even
though this may not be realistic for anomaly detection where outliers are rare, it may very well be
feasible when a novel class (such as a disease like COVID-19) emerges at inference time. We em-
pirically investigate the impact on the performance of ERD of the size and the ratio of OOD samples
in the unlabeled set ( |UOOD|

|UID|+|UOOD| ). We find that there is a broad spectrum of values for which
ERD maintains a good performance, as indicated in Figure 6b (see also Appendix H). Moreover, in
Appendix I and J we provide insight as to why near OOD data affects the performance of ERD.

Another limitation concerns the general applicability of SSND: the OOD data in the unlabeled set
used for fine-tuning needs to match the OOD data at test time. In the following we argue using an
example that i) it may be inherently valuable to predict the OOD samples in the unlabeled set itself;
and ii) ERD allows for a different test OOD distribution, at the cost of a slight delay.
Consider, for instance, a medical center that uses an automated system for real-time diagnosis and
an offline system which runs at the end of each week, for novelty detection. All the X-rays collected
during the week constitute the unlabeled set U that the SSND method may then use for training. If
a quickly spreading novel disease circulates the patient population, the detection model can identify
the OOD samples that are then shown to the scarcely available experts. While the experts are exam-
ining the peculiar X-rays in the course of the next week, the model helps to collect more instances
of the same new condition and can already encourage clinicians to practice extra caution when di-
agnosing these patients. Since the novelty detection algorithm is run every week, new diseases are
identified with a delay of at most a week – the time it takes to collect an unlabeled set. Since new dis-
eases emerge seldomly and the benefits of even delayed identification greatly outweigh the waiting
time, SSND approaches are particularly suitable to this practical scenario.
Summary and future work. We would like to stress once again that a significant advantage of the
SSND setting is that it does not require any labeled or oracle OOD data during fine-tuning, unlike
many other related works summarized in Table 1. The only other approach that achieves comparable
performance to our method (see Appendix E.2) uses a large transformer model pretrained on a much
larger data set (Fort et al., 2021). At the same time, computationally, ERD reaches the optimal
stopping time within the first 10 epochs on all the data sets we consider, which amounts to around
6 minutes of training time if the models in the ensemble are fine-tuned in parallel on NVIDIA
1080 Ti GPUs. Other ensemble diversification methods require training different models for each
hyperparameter choice and have training losses that cannot be easily parallelized.
In conclusion, we propose a procedure that succeeds in exploiting unlabeled data to generate an
ensemble with regularized disagreement, with remarkable novelty detection performance. We leave
as future work a thorough investigation into the influence of the labeling scheme of the unlabeled
set on the sample complexity of the method, as well as an analysis of the trade-off governed by the
complexity of the model class of the classifiers.
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A THEORETICAL STATEMENTS

Definition A.1 ((ε, ρ)-clusterable data set). We say that a data set D = {(xi, yi)}ni=1 is (ε, ρ)-
clusterable for fixed ε > 0 and ρ ∈ [0, 1] if there exists a partitioning of it into subsets {C1, ..., CK},
which we call clusters, each with their associated unit-norm cluster center ci, that satisfy the fol-
lowing conditions:

•
⋃K
i=1 Ci = D and Ci ∩ Cj = ∅,∀i, j ∈ [K];

• all the points in a cluster lie in the ε-neighborhood of their corresponding cluster center, i.e.
||x− ci||2 ≤ ε for all x ∈ Ci and all i ∈ [K];

• a fraction of at least 1− ρ of the points in each cluster Ci have the same label, which we call the
cluster label and denote y∗(ci). The remaining points suffer from label noise;

• if two cluster Ci and Cj have different labels, then their centers are 2ε far from each other, i.e.
||ci − cj ||2 ≥ 2ε;

• the clusters are balanced i.e. for all i ∈ [K], α1
n
K ≤ |Ci| ≤ α2

n
K , where α1 and α2 are two

positive constants.

In our case, for a fixed label c ∈ Y , we assume that the set S ∪ (U, c) is (ε, ρ)-clusterable into K
clusters. We further assume that each cluster Ci only includes a few noisy samples from (U¬cID , c),
i.e. |Ci∩(U¬cID ,c)|

|Ci| ≤ ρ and that for clusters Ci whose cluster label is not c, i.e. y∗(ci) 6= c, it holds
that Ci ∩ (UOOD, c) = ∅.
We define the matrices C := [c1, ..., cK ]T ∈ RK×d and Σ := (CCT )

⊙
Eg[φ

′(Cg)φ′(Cg)T ], with
g ∼ N (0, Id) and where

⊙
denotes the elementwise product. We use ‖ · ‖ and λmin(·) to denote

the spectral norm and the smallest eigenvalue of a matrix, respectively.

For prediction, we consider a 2-layer neural network model with p hidden units, where p &
K2‖C‖4
λmin(Σ)4 . We can write this model as follows:

x 7→ f(x;W ) = vTφ(Wx), (2)
The first layer weights W are initialized with random values drawn from N (0, 1), while the last
layer weights v have fixed values: half of them are set to 1/p and the other half is −1/p. We
consider activation functions φ with bounded first and second order derivatives, i.e. |φ′(x)| ≤ Γ
and φ′′(x) ≤ Γ. We use the squared loss for training, i.e. L(W ) = 1

2

∑n
i=0(yi − f(xi;W ))2 and

take gradient descent steps to find the optimum of the loss function, i.e. Wτ+1 = Wτ − η∇L(Wτ ),
where the step size is set to η ' K

n‖C‖2 .

We can now state the following proposition:

Proposition A.1. Assume that ρ ≤ δ/8 and ε ≤ αδλmin(Σ)2/K2, where δ is a constant such that
δ ≤ 2

|Y−1| and α is a constant that depends on Γ. Then it holds with high probability 1− 3/K100−
Ke−100d over the initialization of the weights that the neural network trained on S∪(U, c) perfectly
fits S, (U cID, c) and (UOOD, c), but not (U¬cID , c), after T = c4

‖C‖2
λmin(Σ) iterations.

This result shows that there exists an optimal stopping time at which the neural network predicts
the correct label on all ID points and the label c on all the OOD points. As we will see later in
the proof, the proposition is derived from a more general result which shows that the early stopped
model predicts these labels not only on the points in U but also in an ε-neighborhood around cluster
centers. Hence, an ERD ensemble can be used to detect holdout OOD samples similar to the ones in
U , after being tuned on U . This follows the intuition that classifiers regularized with early stopping
are smooth and generalize well.

The clusterable data model is generic enough to include data sets with non-linear decision bound-
aries. Moreover, notice that the condition in Proposition A.1 is satisfied when S ∪ (UID, c) is (ε, ρ)-
clusterable and (UOOD, c) is ε-clusterable and if the cluster centers of (UOOD, c) are at distance at
least 2ε from the cluster centers of S ∪ (UID, c). A situation in which these requirements are met
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is, for instance, when the OOD data comes from novel classes, when all classes (including the un-
seen ones that are not in the training set) are well separated, with cluster centers at least 2ε away
in Euclidean distance. In addition, in order to limit the amount of label noise in each cluster, it is
necessary that the number of incorrectly labeled samples in (U¬cID , c) is small, relative to the size of
S.

In practice, we only need that the decision boundary separating (UOOD, c) from S is easier to learn
than the classifier required to interpolate the incorrectly labeled (U¬cID , c), which is often the case,
provided that (UOOD, c) is large enough and the OOD samples come from novel classes.

We now provide the proof for Proposition A.1:

Proof. We begin by restating a result from Li et al. (2020):

Theorem A.1 (Li et al. (2020)). Let D := {(xi, yi)} ∈ Rd×Y be an (ε, ρ)-clusterable training set,
with ε ≤ c1δλmin(Σ)2/K2 and ρ ≤ δ/8, where δ is a constant that satisfies δ ≤ 2

|Y|−1 . Consider a
two-layer neural network as described above, and train it with gradient descent starting from initial
weights sampled i.i.d. from N (0, 1). Assume further that the step size is η = c2

K
n‖C‖2 and that the

number of hidden units p is at least c3
K2‖C‖4
λmin(Σ)4 . Under these conditions, it holds with probability at

least 1−3/K100−Ke−100d over the random draws of the initial weights, that after T = c4
‖C‖2

λmin(Σ)

gradient descent steps, the neural network x 7→ f(x;WT ) predicts the correct cluster label for all
points in the ε-neighborhood of the cluster center, namely:

arg max
y∈Y
|f(x;WT )− ω(y)| = y∗(ci), for all x with ‖x− ci‖2 ≤ ε and all clusters i ∈ [K], (3)

where ω : Y → {0, 1}|Y| yields one-hot embeddings of the labels. The constants c1, c2, c3, c4
depend only on Γ.

Notice that, under the assumptions introduced above, the set S∪(U, c) is (ε, ρ)-clusterable, since the
incorrectly labeled ID points in (U¬cID , c) constitute at most a fraction ρ of the clusters they belong
to. As a consequence, Proposition A.1 follows directly from Theorem A.1.

B DISAGREEMENT SCORE FOR OOD DETECTION

As we argue in Section 3.3, Algorithm 1 produces an ensemble that disagrees on OOD data, and
hence, we want to devise a scalar score that reflects this model diversity. Previous works Laksh-
minarayanan et al. (2017); Ovadia et al. (2019) first average the softmax predictions of the mod-
els in the ensemble and then use the entropy as a metric, i.e. (H ◦ Avg)(f1(x), ..., fK(x)) :=

−
∑|Y|
i=1(f(x))i log(f(x))i where f(x) := 1

K

∑K
i=1 fi(x) and (f(x))i is the ith element of f(x) ∈

[0, 1]|Y|8. We argue later that averaging discards information about the diversity of the models.

Recall that our average pairwise disagreement between the outputs of K models in an ensemble
reads:9

(Avg ◦ ρ)(f1(x), ..., fK(x)) :=
2

K(K − 1)

∑
i6=j

ρ (fi(x), fj(x)) , (4)

where ρ is a measure of disagreement between the softmax outputs of two predictors, for example
the total variation distance ρTV(fi(x), fj(x)) = 1

2‖fi(x)− fj(x)‖1 used in our experiments.

We briefly highlight the reason why averaging softmax outputs first like in previous works relin-
quishes all the benefits of having a more diverse ensemble, as opposed to the proposed pairwise

8We abuse notation slightly and denote our disagreement metric as (Avg◦ρ) to contrast it with the ensemble
entropy metric (H ◦ Avg), which first takes the average of the softmax outputs and only afterwards computes
the score.

9We abuse notation slightly and denote our disagreement metric as (Avg◦ρ) to contrast it with the ensemble
entropy metric (H ◦ Avg), which first takes the average of the softmax outputs and only afterwards computes
the score.
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Figure 7: Cartoon illustration showing a diverse ensemble of linear binary classifiers. We compare OOD
detection performance for two aggregation scores: (H ◦ Avg) (Left) and (Avg ◦ ρ) with ρ(f1(x), f2(x)) =
1sgn(f1(x))6=sgn(f2(x)) (Right). The two metrics achieve similar TPRs, but using (H◦Avg) instead of our score,
(Avg◦ρ), leads to more false positives, since the former simply flags as OOD a band around the averaged model
(solid black line) and does not take advantage of the ensemble’s diversity.

score in Equation 4. Recall that varying thresholds yield different true negative and true positive
rates (TNR and TPR, respectively) for a given statistic. In the sketch in Figure 7 we show that
the score we propose, (Avg ◦ ρ), achieves a higher TNR compared to (H ◦ Avg), for a fixed TPR,
which is a common way of evaluating statistical tests. Notice that the detection region for (H ◦Avg)
is always limited to a band around the average model for any threshold value t0. In order for the
(H ◦ Avg) to have large TPR, this band needs to be wide, leading to many false positives. Instead,
our disagreement score exploits the diversity of the models to more accurately detect OOD data.

Figure 8: Relying only on the randomness of SGD and of the weight initialization to diversify
models is not enough, as it often yields similar classifiers. Each column shows a different predictor
trained from random initializations with Adam. All models have the same 1-hidden layer MLP
architecture.

We now provide further quantitative evidence to support the intuition presented in Figure 7. The
aggregation metric is tailored to exploit ensemble diversity, which makes it particularly beneficial for
ERD. On the other hand, Vanilla Ensembles only rely on the stochasticity of the training process and
the random initializations of the weights to produce diverse models, which often leads to classifiers
that are strikingly similar as we show in Figure 8 for a few 2D data sets. As a consequence, using our
disagreement score (Avg◦ρ) for Vanilla Ensembles can sometimes hurt OOD detection performance.
To see this, consider the extreme situation in which the models in the ensemble are identical, i.e.
f1 = f2. Then it follows that (Avg ◦ ρ)(f1(x), f2(x)) = 0, for all test points x and for any function
ρ that satisfies the distance axioms.

We note that the disagreement score that we propose takes a form that is similar to previous diversity
scores, e.g. Zhang & Zhou (2010); Yu & Aizawa (2019). In the context of regression, one can
measure uncertainty using the variance of the outputs metric previously employed in works such
as Gal & Ghahramani (2016). However, we point out that using the output variance requires that
the ensemble is the result of sampling from a random process (e.g. sampling different training data
for the models, or sampling different parameters from a posterior). In our framework, we obtain
the ensemble by solving a different optimization problem for each of the models by assigning a
different label to the unlabeled data. Therefore, despite their similarities, our disagreement score
and the output variance are, on a conceptual level, fundamentally different metrics.
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Table 3 shows that (Avg ◦ ρ) leads to worse OOD detection performance for Vanilla Ensembles,
compared to using the entropy of the average softmax score, (H ◦ Avg), which was proposed in
prior work. However, if the ensembles are indeed diverse, as we argue is the case for our method
ERD (see Section 3.3), then there is a clear advantage to using a score that, unlike (H ◦ Avg), takes
diversity into account, as shown in Table 3.

Table 3: The disagreement score that we propose (Avg ◦ ρ) exploits ensemble diversity and benefits in partic-
ular ERD ensembles. OOD detection performance is significantly improved when using (Avg◦ρ) compared to
the previously proposed (H ◦ Avg) metric. Since Vanilla Ensemble are not diverse enough, a score that relies
on model diversity can hurt OOD detection performance. We highlight the AUROC and the TNR@95 obtained
with the score function that is best for Vanilla Ensemble and the best for ERD.

ID data OOD data
Vanilla

Ensembles
(H ◦ Avg)

Vanilla
Ensembles
(Avg ◦ ρ)

ERD
(H ◦ Avg)

ERD
(Avg ◦ ρ)

AUROC ↑ / TNR@95 ↑

SVHN CIFAR10 0.97 / 0.88 0.96 / 0.89 0.86 / 0.85 0.99 / 0.97
CIFAR10 SVHN 0.92 / 0.78 0.91 / 0.78 0.92 / 0.92 1.00 / 1.00
CIFAR100 SVHN 0.84 / 0.48 0.79 / 0.46 0.36 / 0.35 1.00 / 1.00
SVHN[0:4] SVHN[5:9] 0.92 / 0.69 0.91 / 0.69 0.94 / 0.66 0.94 / 0.66
CIFAR10[0:4] CIFAR10[5:9] 0.80 / 0.39 0.80 / 0.39 0.91 / 0.65 0.91 / 0.66
CIFAR100[0:49] CIFAR100[50:99] 0.78 / 0.35 0.76 / 0.34 0.63 / 0.38 0.81 / 0.40

Average 0.87 / 0.60 0.86 / 0.59 0.77 / 0.64 0.94 / 0.78

We highlight once again that other methods that attempt to obtain diverse ensembles, such as MCD,
fail to train models with sufficient disagreement, even when they use oracle OOD for hyperparameter
tuning (Figure 9a).

(a) Not enough diversity (MCD) (b) Regularized diversity (ERD)

Figure 9: Distribution of disagreement scores on ID and OOD data for an ensemble that is not
diverse enough (Left), and an ensemble with regularized disagreement (Right). Note that MCD is
early-stopped using oracle OOD data. ID=CIFAR10[0:4], OOD=CIFAR10[5:9].

C EXPERIMENT DETAILS

C.1 BASELINES

In this section we describe in detail the baselines with which we compare our method and describe
how we choose their hyperparameters. For all baselines we use the hyperparameters suggested by
the authors for the respective data sets (e.g. different hyperparameters for CIFAR10 or ImageNet).
For all methods, we use pretrained models provided by the authors. However, we note that for the
novel-class settings, pretraining on the entire training set means that the model is exposed to the
OOD classes as well, which is undesirable. Therefore, for these settings we pretrain only on the
split of the training set that contains the ID classes. Since the classification problem is similar to the
original one of training on the entire training set, we use the same hyperparameters that the authors
report in the original papers.

Moreover, we point out that even though different methods use different model architectures, that is
not inherently unreasonable when the goal is OOD detection, since it is not clear if a complex model
is more desirable than a smaller model. For this reason, we use the model architecture recommended
by the authors of the baselines and which was used to produce the good results reported in their
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published works. For Vanilla Ensembles and for ERD we show results for different architectures in
Appendix E.7.

• Vanilla Ensembles Lakshminarayanan et al. (2017): We train an ensemble on the training
set according to the true labels. For a test sample, we average the outputs of the softmax
probabilities predicted by the models, and use the entropy of the resulting distribution as the
score for the hypothesis test described in Section 3.2. We use ensembles of 5 models, with
the same architecture and hyperparameters as the ones used for ERD. Hyperparameters are
tuned to achieve good validation accuracy.

• Gram method Sastry & Oore (2019): The Gram baseline is similar to the Mahalanobis
method in that both use the intermediate feature representations obtained with a deep neural
network to determine whether a test point is an outlier. However, what sets the Gram
method apart is the fact that it does not need any OOD data for training or calibration.
We use the pretrained models provided by the authors, or train our own, using the same
methodology as described for the Mahalanobis baseline. For OOD detection, we use the
code published by the authors. We note that for MLP models, the Gram method is difficult
to tune and we could not find a configuration that works well, despite our best efforts and
following the suggestions proposed during our communication with the authors.

• Deep Prior Networks (DPN) Malinin & Gales (2018): DPN is a Bayesian Method that
trains a neural network (Prior Network) to parametrize a Dirichlet distribution over the
class probabilities. We train a WideResNet WRN-28-10 for 100 epochs using SGD with
momentum 0.9, with an initial learning rate of 0.01, which is decayed by 0.2 at epochs 50,
70, and 90. For MNIST, we use EMINST/Letters as OOD for tuning. For all other settings,
we use TinyImages as OOD for tuning.

• Outlier Exposure Hendrycks et al. (2019): This approach makes a model’s softmax pre-
dictions close to the uniform distribution on the known outliers, while maintaining a good
classification performance on the training distribution. We use the WideResNet architec-
ture (WRN) Zagoruyko & Komodakis (2016). For fine-tuning, we use the settings rec-
ommended by the authors, namely we train for 10 epochs with learning rate 0.001. For
training from scratch, we train for 100 epochs with an initial learning rate of 0.1. When
the training data set is either CIFAR10/CIFAR100 or ImageNet, we use the default WRN
parameters of the author’s code, namely 40 layers, 2 widen-factor, droprate 0.3. When the
training dataset is SVHN, we use the author’s recommended parameters of 16 layers, 4
widen-factor and droprate 0.4. All settings use the cosine annealing learning rate sched-
uler provided with the author’s code, without any modifications. For all settings, we use
TinyImages as known OOD data during training. In Section E.5 we show results for known
OOD data that is similar to the OOD data used for testing.

• Mahalanobis Lee et al. (2018): The method pretrains models on the labeled training data.
For a test data point, it uses the intermediate representations of each layer as “extracted fea-
tures”. It then performs binary classification using logistic regression using these extracted
features. In the original setting, the classification is done on “training” ID vs “training”
OOD samples (which are from the same distribution as the test OOD samples). Further-
more, hyperparameter tuning for the optimal amount of noise is performed on validation
ID and OOD data. We use the WRN-28-10 architecture, pretrained for 200 epochs. The
initial learning rate is 0.1, which is decayed at epochs 60, 120, and 160 by 0.2. We use
SGD with momentum 0.9, and the standard weight decay of 5 · 10−4. The code published
for the Mahalanobis method performs a hyperparameter search automatically for each of
the data sets.

The following baselines assume the same Unknown OOD setting as ERD, in which one has access
to both a labeled ID training set S and an unlabeled set with an unknown mixture of ID and OOD
samples U .

• Non-negative PU learning (nnPU) Kiryo et al. (2017): The method trains a binary predic-
tor to distinguish between a set of known positives (in our case the ID data) and a set that
contains a mixture of positives and negatives (in our case the unlabeled set). To prevent
the interpolation of all the unlabeled samples, Kiryo et al. (2017) proposes a regularized
objective. It is important to note that most training objectives in the PU learning literature
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require that the ratio between the positives and negatives in the unlabeled set is known or
easy to estimate. For our experiments we always use the exact OOD ratio to train the nnPU
baseline. Therefore, we obtain an upper bound on the AUROC/TNR@95. If the ratio is
estimated from finite samples, then estimation errors may lead to slightly worse OOD de-
tection performance. We perform a grid search over the learning rate and the threshold
that appears in the nnPU regularizer and pick the option with the best validation accuracy
measured on a holdout set with only positive samples (in our case, ID data).

• Maximum Classifier Discrepancy (MCD) Yu & Aizawa (2019): The MCD method trains
two classifiers at the same time, and makes them disagree on the unlabeled data, while
maintaining good classification performance. We use the WRN-28-10 architecture as sug-
gested in the paper. We did not change the default parameters which came with the author’s
code, so weight decay is 10−4, and the optimizer is SGD with momentum 0.9. When avail-
able (for CIFAR10 and CIFAR100), we use the pretrained models provided by the authors.
For the other training datasets, we use their methodology to generate pretrained models:
We train a WRN-28-10 for 200 epochs. The learning rate starts at 0.1 and drops by a factor
of 10 at 50% and 75% of the training progress.

• Mahalanobis-U: This is a slightly different version of the Mahalanobis baseline, for which
we use early-stopped logistic regression to distinguish between the training set and an un-
labeled set with ID and OOD samples (instead of discriminating a known OOD set from
the inliers). The early stopping iteration is chosen to minimize the classification errors on
a validation set that contains only ID data (recall that we do not assume to know which are
the OOD samples).

In addition to these approaches that have been introduced in prior work, we also propose a strong
novel baseline that that bares some similarity to PU learning and to ERD.

• Binary classifier The approach consists in discriminating between the labeled ID training
set and the mixed unlabeled set, that contains both ID and OOD data. We use regularization
to prevent the trivial solution for which the entire unlabeled set is predicted as OOD. Unlike
PU learning, the binary classifier does not require that the OOD ratio in the test distribution
is known. The approach is similar to a method described in Scott & Blanchard (2008)
which also requires that the OOD ratio of the unlabeled set is known. We tune the learning
rate and the weight of the unlabeled samples in the training loss by performing a grid search
and selecting the configuration with the best validation accuracy, computed on a holdout
set containing only ID samples. We note that the binary classifier that appears in Section F
in the medical benchmark, is not the same as this baseline. For more details on the binary
classifier that appears in the medical data experiments we refer the reader to Cao et al.
(2020).

C.2 TRAINING CONFIGURATION FOR ERD

For ERD we always use hyperparameters that give the best validation accuracy when training a
model on the ID training set. In other words, we pick hyperparameter values that lead to good ID
generalization and do not perform further hyperparameter tuning for the different OOD data sets on
which we evaluate our approach. We point out that, if the ID labeled set is known to suffer from
class imbalance, subpopulation imbalance or label noise, any training method that addresses these
issues can be used instead of standard empirical risk minimization to train our ensemble (e.g. see
the works of Sagawa et al. (2020); Li et al. (2020) etc).

For MNIST and FashionMNIST, we train ensembles of 3-layer MLP models with ReLU activations.
Each intermediate layer has 100 neurons. The models are optimized using Adam, with a learning
rate of 0.001, for 10 epochs.

For SVHN, CIFAR10/CIFAR100 and ImageNet, we train ensembles of ResNet20 He et al. (2016).
The models are initialized with weights pretrained for 100 epochs on the labeled training set. We
fine-tune each model for 10 epochs using SGD with momentum 0.9, and a learning rate of 0.001.
The weights are trained with an `2 regularization coefficient of 5e−4. We use a batch size of 128 for
all scenarios, unless explicitly stated otherwise. We used the same hyperparameters for all settings.
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For pretraining, we perform SGD for 100 epochs and use the same architecture and hyperparameters
as described above, with the exception of the learning rate that starts at 0.1, and is multiplied by 0.2
at epochs 50, 70 and 90.

Apart from ERD, which fine-tunes the ensemble models starting from pretrained weights, we also
present in the Appendix results for ERD++. This variant of our method trains the models from
random initializations, and hence needs more iterations to converge, making it more computationally
expensive than ERD. We train all models in the ERD++ ensembles for 100 epochs with a learning
rate that starts at 0.1, and is multiplied by 0.2 at epochs 50, 70 and 90. All other hyperparameters
are the same as for ERD ensembles.

For the medical data sets, we train a Densenet-121 as the authors do in the original paper Cao et al.
(2020). For ERD++, we do not use random weight initializations, but instead we start with the
ImageNet weights provided with Tensorflow. The training configuration is exactly the same as for
ResNet20, except that we use a batch size of 32 due to GPU memory restrictions, and for fine tuning
we use a constant learning rate of 10−5.

D ID AND OOD DATA SETS

D.1 DATA SETS

For evaluation, we use the following image data sets: MNIST Lecun et al. (1998), Fashion MNIST
Xiao et al. (2017), SVHN Netzer et al. (2011), CIFAR10 and CIFAR100 Krizhevsky (2009).

For the experiments using MNIST and FashionMNIST the training set size is 50K, the validation
size is 10K, and the test ID and test OOD sizes are both 10K. For SVHN, CIFAR10 and CIFAR100,
the training set size is 40K, the validation size is 10K, and the unlabeled set contains 10K samples:
5K are ID and 5K are OOD. For evaluation, we use a holdout set of 10K examples (half ID, half
OOD). For the settings that use half of the classes as ID and the other half as OOD, all the sizes are
divided by 2.

D.2 SAMPLES FOR THE SETTINGS WITH NOVEL CLASSES

(a) (b)

Figure 10: (a) Data samples for the MNIST/FashionMNIST splits. (b) Data samples for the CI-
FAR10/SVHN splits.
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E MORE EXPERIMENTS

E.1 EVALUATION ON THE UNLABELED SET

In the main text we describe how one can leverage the unlabeled set U to obtain an OOD detection
algorithm that accurately identifies outliers at test time that similar to the ones in U . It is, however,
possible to also use our method ERD to flag the OOD samples contained in the same set U used
for fine-tuning the ensemble. In Table 4 we show that the OOD detection performance of ERD is
similar regardless of whether we use U for evaluation, or a holdout test set T drawn from the same
distribution as U .
Table 4: Comparison between the OOD detection performance of ERD when using a holdout test
set T for evaluation, or the same unlabeled set U that was used for fine-tuning the models.

ID data OOD data ERD
(eval on T )

ERD
(eval onU )

AUROC ↑ / TNR@95 ↑

SVHN CIFAR10 1.00 / 0.99 1.00 / 0.99
CIFAR10 SVHN 1.00 / 1.00 1.00 / 1.00
CIFAR100 SVHN 1.00 / 1.00 1.00 / 1.00

FMNIST[0,2,3,7,8] FMNIST[1,4,5,6,9] 0.94 / 0.67 0.94 / 0.67
SVHN[0:4] SVHN[5:9] 0.95 / 0.74 0.96 / 0.79
CIFAR10[0:4] CIFAR10[5:9] 0.93 / 0.70 0.93 / 0.69
CIFAR100[0:49] CIFAR100[50:99] 0.82 / 0.44 0.80 / 0.36

Average 0.95 / 0.79 0.95 / 0.79

E.2 COMPARISON WITH OTHER RELATED WORKS

We compare our method to more OOD detection approaches. For various reasons we did not run
these methods ourselves on the data sets for which we evaluate our method in Section 4 (e.g. resource
constraints, code not available, unable to replicate published results, poor performance reported by
the authors etc). We collected the AUROC numbers presented in Table 5 from the papers that
introduce each method. We note that our approach shows an excellent overall performance, almost
matching the AUROC of the best performing method of Fort et al. (2021) which uses large scale
visual transformer models pretrained on a superset of the OOD data, i.e. ImageNet21k.

Furthermore, we note that generative models (Nalisnick et al., 2019; Choi et al., 2018; Akçay et al.,
2018) and one-class classification approaches (Ruff et al., 2020; Tack et al., 2020; Sohn et al., 2021)
showed generally bad performance, in particular on near OOD data. When the ID training set is
made up of several diverse classes, it is difficult to represent accurately all the ID data, and only the
ID data.
Table 5: AUROC numbers collected from the literature for a number of relevant OOD detection
methods. We note that the method of Fort et al. (2021) (†) uses a large scale visual transformer
models pretrained on a superset of the OOD data, i.e. ImageNet21k, while the method of Sehwag
et al. (2021) (∗) uses oracle OOD samples for training from the same data set as test OOD. For the
settings with random classes, the numbers are averages over 5 draws and the standard deviation is
always strictly smaller than 0.01 for our method.

ID data OOD data Fort et al.
(2021)†

Zhang
et al.
(2020a)

Winkens
et al.
(2020)

Tack et al.
(2020)

Sehwag
et al.
(2021)∗

Liu &
Abbeel
(2020)

Zhang
et al.
(2020b)

ERD
(ours)

ERD++
(ours)

CIFAR10 CIFAR100 98.52 0.95 0.92 0.92 0.93 0.91 - 0.92 0.95
CIFAR100 CIFAR10 96.23 0.85 0.78 - 0.78 - - 0.91 0.94

SVHN: 6
random
classes

SVHN: 4
random
classes

- 0.94 - - - - 0.91 0.94 0.94

CIFAR10: 6
random
classes

CIFAR10: 4
random
classes

- 0.94 - - - - 0.85 0.94 0.97

E.3 OOD DETECTION FOR DATA WITH COVARIATE SHIFT

In this section we evaluate the baselines and the method that we propose on settings in which the
OOD data suffers from covariate shift Shimodaira (2000). The goal is to identify all samples that
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come from the shifted distribution, regardless of how strong the shift is. Notice that mild shifts may
be easier to tackle by domain adaptation algorithms, but when the goal is OOD detection they pose
a much more difficult challenge.

We want to stress that in practice one may not be interested in identifying all samples with distri-
bution shift as OOD, since a classifier may still produce correct predictions on some of them. In
contrast, when data suffers from covariate shift we can try to learn predictors that perform well on
both the training and the test distribution, and we may use a measure of predictive uncertainty to
identify only those test samples on which the classifier cannot make confident predictions. Never-
theless, we use these covariate shift settings as a challenging OOD detection benchmark and show
in Table 7 that our method ERD does indeed outperform prior baselines on these difficult settings.

We use as outliers corrupted variants of CIFAR10 and CIFAR100 Hendrycks & Dietterich (2019), as
well as a scenario where ImageNet Deng et al. (2009) is used as ID data and ObjectNet Barbu et al.
(2019) as OOD, both resized to 32x32. Figure 11 shows samples from these data sets. The Gram
and nnPU baselines do not give satisfactory results on the difficult CIFAR10/CIFAR100 settings in
Table 2 and thus we do not consider them for the distribution shift cases. For the Unknown OOD
methods (i.e. MCD, Mahal-U and ERD/ERD++) we evaluate on the same unlabeled set that is used
for training (see the discussion in Section E.1).

Figure 11: Left: Samples from ImageNet and ObjectNet taken from the original paper by Barbu
et al. (2019). Right: Data samples for the corrupted CIFAR10-C data set.

Furthermore, we present results on distinguishing between CIFAR10 Krizhevsky (2009) and CI-
FAR10v2 Recht et al. (2018), a data set meant to be drawn from the same distribution as CIFAR10
(generated from the Tiny Images collection Torralba et al. (2008)). In Recht et al. (2019), the authors
argue that CIFAR10 and CIFAR10v2 come from very similar distributions. They provide supporting
evidence by training a binary classifier to distinguish between them, and observing that the accuracy
that is obtained of 52.9% is very close to random.

Our experiments show that the two data sets are actually distinguishable, contrary to what previous
work has argued. First, our own binary classifier trained on CIFAR10 vs CIFAR10v2 obtains a test
accuracy of 67%, without any hyperparameter tuning. The model we use is a ResNet20 trained for
200 epochs using SGD with momentum 0.9. The learning rate is decayed by 0.2 at epochs 90, 140,
160 and 180. We use 1600 examples from each data set for training, and we validate using 400
examples from each data set.
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Table 6: OOD detection performance on CIFAR10 vs CIFAR10v2

ID data OOD data Vanilla
Ensembles DPN OE Mahal. MCD Mahal-U ERD ERD++

AUROC ↑ / TNR@95 ↑

CIFAR10 CIFAR10v2 0.64 / 0.13 0.63 / 0.09 0.64 / 0.12 0.55 / 0.08 0.58 / 0.10 0.56 / 0.07 0.76 / 0.26 0.91 / 0.80

Our OOD detection experiments (presented in Table 6) show that most baselines are able to distin-
guish between the two data sets, with ERD achieving the highest performance. The methods which
require OOD data for tuning (Outlier Exposure and DPN) use CIFAR100.

Table 7: OOD detection performance on data with covariate shift. For ERD and vanilla ensembles,
we train 5 ResNet20 models for each setting. The evaluation metrics are computed on the unlabeled
set.

ID data OOD data Vanilla
Ensembles DPN OE Mahal. MCD Mahal-U ERD ERD++

AUROC ↑ / TNR@95 ↑

CIFAR10 CIFAR10-C sev 2 (A) 0.68 / 0.20 0.73 / 0.31 0.70 / 0.20 0.84 / 0.53 0.82 / 0.50 0.75 / 0.38 0.96 / 0.86 0.99 / 0.95
CIFAR10 CIFAR10-C sev 2 (W) 0.51 / 0.05 0.47 / 0.03 0.52 / 0.06 0.58 / 0.08 0.52 / 0.06 0.55 / 0.07 0.68 / 0.19 0.86 / 0.41
CIFAR10 CIFAR10-C sev 5 (A) 0.84 / 0.49 0.89 / 0.60 0.86 / 0.54 0.94 / 0.80 0.95 / 0.84 0.88 / 0.63 1.00 / 0.99 1.00 / 1.00
CIFAR10 CIFAR10-C sev 5 (W) 0.60 / 0.10 0.72 / 0.10 0.63 / 0.11 0.78 / 0.27 0.60 / 0.08 0.68 / 0.12 0.98 / 0.86 1.00 / 1.00

CIFAR100 CIFAR100-C sev 2 (A) 0.68 / 0.20 0.62 / 0.18 0.65 / 0.19 0.82 / 0.48 0.72 / 0.29 0.67 / 0.22 0.94 / 0.76 0.97 / 0.86
CIFAR100 CIFAR100-C sev 2 (W) 0.52 / 0.06 0.32 / 0.03 0.52 / 0.06 0.55 / 0.07 0.52 / 0.06 0.55 / 0.06 0.71 / 0.19 0.86 / 0.44
CIFAR100 CIFAR100-C sev 5 (A) 0.78 / 0.37 0.74 / 0.36 0.76 / 0.37 0.92 / 0.72 0.91 / 0.65 0.84 / 0.55 0.99 / 0.97 1.00 / 0.99
CIFAR100 CIFAR100-C sev 5 (W) 0.64 / 0.14 0.49 / 0.12 0.62 / 0.13 0.71 / 0.19 0.60 / 0.10 0.63 / 0.13 0.96 / 0.71 0.98 / 0.89

Tiny ImageNet Tiny ObjectNet 0.82 / 0.49 0.70 / 0.32 0.79 / 0.37 0.75 / 0.26 0.99 / 0.98 0.72 / 0.25 0.98 / 0.88 0.99 / 0.98

Average 0.67 / 0.23 0.63 / 0.23 0.67 / 0.23 0.76 / 0.38 0.74 / 0.39 0.70 / 0.27 0.91 / 0.71 0.96 / 0.83

E.4 RESULTS WITH A SMALLER UNLABELED SET

We now show that our method performs well even when the unlabeled set is significantly smaller. In
particular, we show in the table below that ERD maintains a high AUROC and TNR@95 even when
only 1,000 unlabeled samples are used for fine-tuning (500 ID and 500 OOD).

Table 8: Experiments with a test set of size 1,000, with an equal number of ID and OOD test samples.
For ERD and vanilla ensembles, we train 5 ResNet20 models for each setting. The evaluation
metrics are computed on the unlabeled set.

ID data OOD data Vanilla
Ensembles DPN OE Mahal. MCD Mahal-U ERD

AUROC ↑ / TNR@95 ↑

SVHN CIFAR10 0.97 / 0.88 1.00 / 1.00 1.00 / 1.00 0.99 / 0.98 0.97 / 0.85 0.99 / 0.95 1.00 / 0.99
CIFAR10 SVHN 0.92 / 0.78 0.95 / 0.85 0.97 / 0.89 0.99 / 0.96 1.00 / 0.98 0.99 / 0.96 1.00 / 1.00
CIFAR100 SVHN 0.84 / 0.48 0.77 / 0.44 0.82 / 0.50 0.98 / 0.90 0.97 / 0.73 0.98 / 0.92 0.99 / 1.00
SVHN[0:4] SVHN[5:9] 0.92 / 0.69 0.87 / 0.19 0.85 / 0.52 0.92 / 0.71 0.91 / 0.51 0.91 / 0.63 0.97 / 0.86
CIFAR10[0:4] CIFAR10[5:9] 0.80 / 0.39 0.82 / 0.32 0.82 / 0.41 0.79 / 0.27 0.69 / 0.25 0.64 / 0.13 0.87 / 0.50
CIFAR100[0:49] CIFAR100[50:99] 0.78 / 0.35 0.70 / 0.26 0.74 / 0.31 0.72 / 0.20 0.70 / 0.26 0.72 / 0.19 0.79 / 0.38

CIFAR10 CIFAR10-C sev 2 (A) 0.68 / 0.20 0.73 / 0.31 0.70 / 0.20 0.84 / 0.53 0.82 / 0.50 0.75 / 0.38 0.91 / 0.71
CIFAR10 CIFAR10-C sev 2 (W) 0.51 / 0.05 0.47 / 0.03 0.52 / 0.06 0.58 / 0.08 0.52 / 0.06 0.55 / 0.07 0.57 / 0.09
CIFAR10 CIFAR10-C sev 5 (A) 0.84 / 0.49 0.89 / 0.60 0.86 / 0.54 0.94 / 0.80 0.95 / 0.84 0.88 / 0.63 0.99 / 0.95
CIFAR10 CIFAR10-C sev 5 (W) 0.60 / 0.10 0.72 / 0.10 0.63 / 0.11 0.78 / 0.27 0.60 / 0.08 0.68 / 0.12 0.92 / 0.67

CIFAR100 CIFAR100-C sev 2 (A) 0.68 / 0.20 0.62 / 0.18 0.65 / 0.19 0.82 / 0.48 0.72 / 0.29 0.67 / 0.22 0.84 / 0.48
CIFAR100 CIFAR100-C sev 2 (W) 0.52 / 0.06 0.32 / 0.03 0.52 / 0.06 0.55 / 0.07 0.52 / 0.06 0.55 / 0.06 0.55 / 0.07
CIFAR100 CIFAR100-C sev 5 (A) 0.78 / 0.37 0.74 / 0.36 0.76 / 0.37 0.92 / 0.72 0.91 / 0.65 0.84 / 0.55 0.96 / 0.80
CIFAR100 CIFAR100-C sev 5 (W) 0.64 / 0.14 0.49 / 0.12 0.62 / 0.13 0.71 / 0.19 0.60 / 0.10 0.63 / 0.13 0.81 / 0.25

Average 0.75 / 0.37 0.72 / 0.34 0.75 / 0.38 0.82 / 0.51 0.78 / 0.44 0.77 / 0.42 0.87 / 0.62
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E.5 MORE RESULTS FOR OUTLIER EXPOSURE

Table 9: Results for Outlier Exposure, when using the same corruption type, but with a higher/lower
severity, as OOD data seen during training.

ID data OOD data OE (trained on sev5) OE (trained on sev2)
AUROC ↑

CIFAR10 CIFAR10-C sev 2 (A) 0.89 N/A
CIFAR10 CIFAR10-C sev 2 (W) 0.65 N/A
CIFAR10 CIFAR10-C sev 5 (A) N/A 0.98
CIFAR10 CIFAR10-C sev 5 (W) N/A 0.78

CIFAR100 CIFAR100-C sev 2 (A) 0.85 N/A
CIFAR100 CIFAR100-C sev 2 (W) 0.59 N/A
CIFAR100 CIFAR100-C sev 5 (A) N/A 0.97
CIFAR100 CIFAR100-C sev 5 (W) N/A 0.67

Average 0.87 0.98

The Outlier Exposure method needs access to a set of OOD samples during training. The numbers
we report in the rest of paper for Outlier Exposure are obtained by using the TinyImages data set
as the OOD samples that are seen during training. In this section we explore the use of an OODtrain
data set that is more similar to the OOD data observed at test time. This is a much easier setting for
the Outlier Exposure method: the closer OODtrain is to OODtest, the easier it will be for the model
tuned on OODtrain to detect the test OOD samples.

In Table 9 we focus only on the settings with corruptions. For each corruption type, we use the lower
severity corruption as OODtrain and evaluate on the higher severity data and vice versa. We report
for each metric the average taken over all corruptions (A), and the value for the worst-case setting
(W).

E.6 RESULTS ON MNIST AND FASHIONMNIST

Table 10: Results on MNIST/FashionMNIST settings. For ERD and vanilla ensembles, we train 5
3-hidden layer MLP models for each setting. The evaluation metrics are computed on the unlabeled
set.

ID data OOD data Vanilla
Ensembles DPN OE Mahal. nnPU MCD Mahal-U Bin.

Classif. ERD ERD++

AUROC ↑ / TNR@95 ↑

MNIST FMNIST 0.81 / 0.01 1.00 / 1.00 1.00 / 1.00 1.00 / 1.00 1.00 / 1.00 1.00 / 0.98 1.00 / 1.00 1.00 / 1.00 1.00 / 1.00 1.00 / 1.00
FMNIST MNIST 0.87 / 0.42 1.00 / 1.00 0.68 / 0.16 0.99 / 0.97 1.00 / 1.00 1.00 / 1.00 0.99 / 0.96 1.00 / 1.00 1.00 / 1.00 1.00 / 1.00
MNIST[0:4] MNIST[5:9] 0.94 / 0.72 0.99 / 0.97 0.95 / 0.78 0.99 / 0.98 0.99 / 0.97 0.96 / 0.76 0.99 / 0.98 0.99 / 0.94 0.99 / 0.96 0.99 / 0.97
FMNIST[0,2,3,7,8] FMNIST[1,4,5,6,9] 0.64 / 0.07 0.77 / 0.15 0.66 / 0.12 0.77 / 0.20 0.95 / 0.71 0.78 / 0.30 0.82 / 0.39 0.95 / 0.66 0.94 / 0.67 0.94 / 0.68

Average 0.82 / 0.30 0.94 / 0.78 0.82 / 0.51 0.94 / 0.79 0.98 / 0.92 0.94 / 0.76 0.95 / 0.83 0.98 / 0.90 0.98 / 0.91 0.98 / 0.91

For FashionMNIST we chose this particular split (i.e. classes 0,2,3,7,8 vs classes 1,4,5,6,9) because
the two partitions are more similar to each other. This makes OOD detection more difficult than the
0-4 vs 5-9 split.

E.7 VANILLA AND ERD ENSEMBLES WITH DIFFERENT ARCHITECTURES

In this section we present OOD detection results for Vanilla and ERD ensembles with different
architecture choices, and note that the better performance of our method is maintained across model
classes. Moreover, we observe that ERD benefits from employing more complex models, like the
WideResNet.
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Table 11: Results with three different architectures for Vanilla and ERD ensembles. All ensembles
comprise 5 models. For the corruption data sets, we report for each metric the average taken over all
corruptions (A), and the value for the worst-case setting (W). The evaluation metrics are computed
on the unlabeled set.

VGG16 ResNet20 WideResNet-28-10

ID data OOD data Vanilla
Ensembles ERD Vanilla

Ensembles ERD Vanilla
Ensembles ERD

AUROC ↑ / TNR@95 ↑

SVHN CIFAR10 0.97 / 0.88 0.99 / 0.94 0.97 / 0.88 0.99 / 0.97 0.96 / 0.86 1.00 / 0.99
CIFAR10 SVHN 0.88 / 0.69 1.00 / 1.00 0.92 / 0.78 1.00 / 1.00 0.94 / 0.81 1.00 / 1.00
SVHN[0:4] SVHN[5:9] 0.89 / 0.60 0.93 / 0.63 0.92 / 0.69 0.94 / 0.66 0.91 / 0.62 0.96 / 0.78
CIFAR10[0:4] CIFAR10[5:9] 0.74 / 0.29 0.91 / 0.63 0.80 / 0.39 0.91 / 0.66 0.80 / 0.35 0.94 / 0.71

CIFAR10 CIFAR10-C sev 2 (A) 0.66 / 0.17 0.94 / 0.79 0.68 / 0.20 0.96 / 0.86 0.69 / 0.18 0.98 / 0.90
CIFAR10 CIFAR10-C sev 2 (W) 0.51 / 0.05 0.68 / 0.19 0.51 / 0.05 0.68 / 0.19 0.51 / 0.05 0.84 / 0.35
CIFAR10 CIFAR10-C sev 5 (A) 0.80 / 0.41 0.99 / 0.96 0.84 / 0.49 1.00 / 0.99 0.84 / 0.47 1.00 / 1.00
CIFAR10 CIFAR10-C sev 5 (W) 0.58 / 0.10 0.95 / 0.72 0.60 / 0.10 0.98 / 0.86 0.59 / 0.09 0.99 / 0.97

Average 0.75 / 0.40 0.92 / 0.73 0.78 / 0.45 0.93 / 0.77 0.78 / 0.43 0.96 / 0.84

E.8 IMPACT OF THE ENSEMBLE SIZE AND OF THE CHOICE OF ARBITRARY LABEL

In this section we show OOD detection results with our method using a smaller number of models
for the ensembles. We notice that the performance is not affected substantially, indicating that the
computation cost of our approach could be further reduced by fine-tuning smaller ensembles.

Table 12: Results obtained with smaller ensembles for ERD. All numbers are averages over 3 runs,
where we use a different set of arbitrary labels for each run to illustrate our method’s stability with
respect the choice of labels to be assigned to the unlabeled set. We note that the standard deviations
are small (σ ≤ 0.01 for the AUROC values and σ ≤ 0.08 for the TNR@95 values).

K=2 K=3 K=4

ID data OOD data ERD ERD++ ERD ERD++ ERD ERD++
AUROC ↑ / TNR@95 ↑

SVHN CIFAR10 0.99 / 0.98 0.99 / 0.99 0.99 / 0.98 1.00 / 0.99 0.99 / 0.98 1.00 / 0.99
CIFAR10 SVHN 1.00 / 1.00 1.00 / 1.00 1.00 / 1.00 1.00 / 1.00 1.00 / 1.00 1.00 / 1.00
CIFAR100 SVHN 1.00 / 1.00 1.00 / 1.00 1.00 / 1.00 1.00 / 1.00 1.00 / 1.00 1.00 / 1.00
SVHN[0:4] SVHN[5:9] 0.95 / 0.69 0.94 / 0.68 0.95 / 0.73 0.95 / 0.75 0.96 / 0.76 0.96 / 0.77
CIFAR10[0:4] CIFAR10[5:9] 0.89 / 0.55 0.92 / 0.58 0.89 / 0.57 0.94 / 0.70 0.90 / 0.57 0.95 / 0.73
CIFAR100[0:49] CIFAR100[50:99] 0.81 / 0.40 0.82 / 0.43 0.81 / 0.41 0.84 / 0.44 0.81 / 0.41 0.84 / 0.44

Average 0.94 / 0.77 0.95 / 0.78 0.94 / 0.78 0.95 / 0.81 0.94 / 0.79 0.96 / 0.82

Impact of the choice of arbitrary labels. Furthermore, we note that in the table we report aver-
ages over 3 runs of our method, where for each run we use a different subset of Y to assign arbitrary
labels to the unlabeled data. We do this in order to assess the stability of ERD ensembles to the
choice of the arbitrary labels and notice that the OOD detection performance metrics do not vary
significantly. Concretely, the standard deviations are consistently below 0.01 for all data sets for the
AUROC metric, and below 0.07 for the TNR@95 metric.

F MEDICAL OOD DETECTION BENCHMARK

The medical OOD detection benchmark is organized as follows. There are four training (ID) data
sets, from three different domains: two data sets with chest X-rays, one with fundus imaging and
one with histology images. For each ID data set, the authors consider three different OOD scenarios:

1. Use case 1: The OOD data set contains images from a completely different domain, similar
to our category of easy OOD detection settings.

2. Use case 2: The OOD data set contains images with various corruptions, similar to the hard
covariate shift settings that we consider in Section E.3.

3. Use case 3: The OOD data set contains images that come from novel classes, not seen
during training.
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Figure 12: Samples from the medical image benchmark. There are 3 ID data sets containing frontal
and lateral chest X-rays and retinal images. Hard OOD samples contain images of diseases that are
not present in the training set.

The authors evaluate a number of methods on all these scenarios. The methods can be roughly
categorized as follows:

1. Data-only methods: Fully non-parametric approaches like kNN.

2. Classifier-only methods: Methods that use a classifier trained on the training set, e.g. ODIN
Liang et al. (2018), Mahalanobis Lee et al. (2018). ERD falls into this category as well.

3. Methods with Auxiliary Models: Methods that use an autoencoder or a generative model,
like a Variational Autoencoder or a Generative Adversarial Network. Some of these ap-
proaches can be expensive to train and difficult to optimize and tune.

We stress the fact that for most of these methods the authors use (known) OOD data during training.
Oftentimes the OOD samples observed during training come from a data set that is very similar to
the OOD data used for evaluation. For exact details regarding the data sets and the methods used for
the benchmark, we refer the reader to Cao et al. (2020).

Figure 13: AUROC averaged over all scenarios in the medical OOD detection benchmark Cao et al.
(2020). The values for all the baselines are computed using code made available by the authors of
Cao et al. (2020). Notably, most of the baselines assume oracle knowledge of OOD data at training
time.
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In addition, in Figure 14 we present the average taken over only the novel-class settings in the med-
ical benchmark. We observe that the performance of all methods is drastically affected, all of them
performing much worse than the average presented in Figure 13. This stark decrease in AUROC
and TNR@95 indicates that novelty detection is indeed a challenging task for OOD detection meth-
ods even in realistic settings. Nevertheless, our method maintains a better performance than the
baselines.

Figure 14: AUROC averaged over the novel-class scenarios in the medical OOD detection bench-
mark Cao et al. (2020), i.e. only use case 3.

In Figures 15, 16, 17 we present AUROC and AUPR (Area under the Precision Recall curve) for
ERD for each of the training data sets, and each of the use cases. Figure 13 presents averages over all
settings that we considered, for all the baseline methods in the benchmark. Notably, ERD performs
well consistently across data sets. The baselines are ordered by their average performance on all the
settings (see Figure 13).

Figure 15: Comparison between ERD and the various baselines on the NIH chest X-ray data set, for
use case 1 (top), use case 2 (middle) and use case 3 (bottom). Baselines ordered as in Figure 13.

27



Under review as a conference paper at ICLR 2022

Figure 16: Comparison between ERD and the various baselines on the PC chest X-ray data set, for
use case 1 (top), use case 2 (middle) and use case 3 (bottom). Baselines ordered as in Figure 13.

Figure 17: Comparison between ERD and the various baselines on the DRD fundus imaging data
set, for use case 1 (top), use case 2 (middle) and use case 3 (bottom). Baselines ordered as in
Figure 13.

For all medical benchmarks, the unlabeled set is balanced, with an equal number of ID and OOD
samples (subsampling the bigger data set, if necessary). We use the unlabeled set for evaluation.

G EFFECT OF LEARNING RATE AND BATCH SIZE

We show now that our method ERD is not too sensitive to the choice of hyperparameters. We
illustrate this by varying the learning rate and the batch size, the hyperparameters that we identify as
most impactful. As Figure 18 shows, many different configurations lead to similar OOD detection
performance.
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Figure 18: AUROCs obtained with an ensemble of WRN-28-10 models, as the initial learning rate
and the batch size are varied. We used the hardest setting, CIFAR100:0-50 as ID, and CIFAR100:50-
100 as OOD.

H ADDITIONAL FIGURE SHOWING THE DEPENDENCE ON THE UNLABELED
SET CONFIGURATION

The configuration of the unlabeled set (i.e. the size of the unlabeled set, the ratio of OOD samples
in the unlabeled set) influences the performance of our method, as illustrated in Figure 6b. Below,
we show that the same trend persists for different data sets too, e.g. when we consider CIFAR10 as
ID data and SVHN as OOD data.

Figure 19: The AUROC of ERD as the number and proportion of ID (CIFAR10) and OOD (SVHN)
samples in the unlabeled set are varied.

I LEARNING CURVES FOR OTHER DATA SETS

In addition to Figure 5, we present in this section learning curves for other data sets as well. The
trend that persists throughout all figures is that the arbitrary label is learned first on the unlabeled
OOD data. Choosing a stopping time before the validation accuracy starts to deteriorate prevents
the model from fitting the arbitrary label on unlabeled ID data.

Impact of near OOD data on training ERD ensembles. The learning curves illustrated in Fig-
ure 20 provide insight into what happens when the OOD data is similar to the ID training samples
and the impact that has on training the proposed method. In particular, notice that for CIFAR10[0-4]
vs CIFAR10[5-9] in Figure 20d, the models require more training epochs before reaching an accu-
racy on unlabeled OOD samples of 100%. The learning of the arbitrary label on the OOD samples
is delayed by the fact that the ID and OOD data are similar, and hence, the bias of the correctly la-
beled training set has a strong effect on the predictions of the models on the OOD inputs. Since we
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early stop when the validation accuracy starts deteriorating (e.g. at around epoch 8 in Figure 20d),
we end up using models that do not interpolate the arbitrary label on the OOD samples. Therefore,
the ensemble does not disagree on the entirety of the OOD data in the unlabeled set, which leads
to lower OOD detection performance. Importantly, however, our empirical evaluation reveals that
the drop in performance for ERD ensembles is substantially smaller than what we observe for other
OOD detection methods, even on near OOD data sets.

(a) ID = SVHN; OOD = CIFAR10. (b) ID = SVHN[0-4]; OOD = SVHN[5-9].

(c) ID = CIFAR10; OOD = SVHN. (d) ID = CIFAR10[0-4]; OOD = CIFAR10[5-9].

(e) ID = CIFAR100; OOD = SVHN. (f) ID = CIFAR100[0-49]; OOD = CIFAR100[50-99].

Figure 20: Accuracy measured while fine-tuning a model pretrained on S (epoch 0 indicates values obtained
with the initial pretrained weights). The samples in (UOOD, c) are fit first, while the model reaches high
accuracy on (UID, c) much later. We fine-tune for at least one epoch and then early stop when the validation
accuracy starts decreasing.

J EVOLUTION OF DISAGREEMENT SCORE DURING FINE-TUNING

In this section we illustrate how the distribution of the disagreement score changes during fine-tuning
for ID and OOD data. Thus, we can further understand why the performance of the ERD ensembles
is impacted by near OOD data.

Figure 21 reveals that for far OOD data (the left column) the disagreement scores computed on OOD
samples are well separated from the disagreement scores on ID data (note that disagreement on OOD
data is so concentrated around the maximum value of 2 that the boxes are essentially reduced to a line
segment). On the other hand, for near OOD data (the right column) there is sometimes significant
overlap between the disagreement scores on ID and OOD data, which leads to the slightly lower
AUROC values that we report in Table 2.

The figures also illustrate how the disagreement on the ID data tends to increase as we fine-tune the
ensemble for longer, as a consequence of the models fitting the arbitrary labels on the unlabeled ID
samples. Conversely, in most instances one epoch suffices for fitting the arbitrary label on the OOD
data.

We need to make one important remark: While in the figure we present disagreement scores for
the ensemble obtained after each epoch of fine-tuning, we stress that the final ERD ensemble need
not be selected among these. In particular, since each model for ERD is early stopped separately,
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(a) ID = SVHN; OOD = CIFAR10. (b) ID = SVHN[0-4]; OOD = SVHN[5-9].

(c) ID = CIFAR10; OOD = SVHN. (d) ID = CIFAR10[0-4]; OOD = CIFAR10[5-9].

(e) ID = CIFAR100; OOD = SVHN. (f) ID = CIFAR100[0-49]; OOD = CIFAR100[50-99].

Figure 21: The distribution of the disagreement score measured during fine-tuning on ID and OOD data (blue
and orange boxes, respectively). The box indicates the lower and upper quartiles of the distribution, while the
middle line represents the median and the whiskers show the extreme values. Notice that the distributions of
the scores are easier to distinguish for far OOD data (left column), and tend to overlap more for near OOD
settings (right column).

potentially at a different iteration, it is likely that the ERD ensemble contains models fine-tuned for
a different number of iterations. Since we select the ERD ensembles from a strictly larger set, the
final ensemble selected by the our proposed approach will be at least as good at distinguishing ID
and OOD data as the best ensemble depicted in Figure 21.

31


	Introduction
	Related work and a taxonomy of OOD detection methods
	Taxonomy according to data availability
	Taxonomy according to overall objective

	Proposed method
	The complete ERD procedure
	Ensembles with regularized disagreement
	Disagreement via artificial labels and regularization via early stopping

	Experimental results
	Data sets
	Baselines
	Our method and evaluation
	Main results

	Conclusion
	Theoretical statements
	Disagreement score for OOD detection
	Experiment details
	Baselines
	Training configuration for ERD

	ID and OOD data sets
	Data sets
	Samples for the settings with novel classes

	More experiments
	Evaluation on the unlabeled set
	Comparison with other related works
	OOD detection for data with covariate shift
	Results with a smaller unlabeled set
	More results for Outlier Exposure
	Results on MNIST and FashionMNIST
	Vanilla and ERD Ensembles with different architectures
	Impact of the ensemble size and of the choice of arbitrary label

	Medical OOD detection benchmark
	Effect of learning rate and batch size
	Additional figure showing the dependence on the unlabeled set configuration
	Learning curves for other data sets
	Evolution of disagreement score during fine-tuning

