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ABSTRACT

We propose a probabilistic generative extension of the DiffusionNet architecture,
widely used for surface learning tasks, by introducing latent random variables
derived from a stochastic reformulation of the underlying diffusion process. The
resulting probabilistic model can be used as a resolution-invariant and uncertainty-
aware surrogate for the trace solution map of PDEs whose boundary conditions are
determined by surface geometry. Such a surrogate can expedite and inform typical
engineering design and optimisation processes that require computationally burden-
some computational fluid dynamics (CFD) analysis pipelines. We demonstrate that
the proposed architecture produces superior uncertainty quantification (UQ) per-
formance on standard CFD datasets without sacrificing predictive accuracy, while
enjoying lower computational cost compared to other prevalent geometry-informed
PDE surrogates endowed with UQ capabilities.

1 INTRODUCTION

Across science and engineering it is often needed to produce solutions to non-linear partial differential
equations (PDEs) with boundary conditions, as they describe the behaviour of a wide range of physical
phenomena, from fluid dynamics and hydro-electromagnetics to relativistic gravitation. During the
typical design process it is necessary to solve these PDEs for changing geometric conditions, which
puts a time-consuming numerical solver in a loop. Machine learning promises to expedite the
optimisation lifecycle by introducing models as surrogates for PDE solvers (Li et al., 2023d; Wu
et al., 2024; Oldenburg et al., 2022; Sharp et al., 2022). For reliable application, a surrogate should to
be: (i) invariant to the resolution of the chosen discretisation, and (ii) able to produce predictive
uncertainty. The latter is particularly important in engineering applications where the output of a
surrogate is used to inform downstream decision-making.

Operator learning is a popular paradigm for building surrogate models that learn mappings between
function spaces (Lu et al., 2019; Anandkumar et al., 2020; Kovachki et al., 2023). Neural Opera-
tors, a type of operator learning, approximate a PDE’s solution operator, enabling generalization
across resolutions. However, methods like the Fourier Neural Operator (FNO) (Li et al., 2021) and
Geometry-Informed Neural Operator (GINO) (Li et al., 2023d), when applied to problems with
geometric boundary conditions, do not adequately leverage geometric information. This leads to
overparameterised networks and inefficient uncertainty quantification, as they fail to incorporate
useful geometric inductive biases.

In contrast, geometric deep learning architectures (Eliasof et al., 2021; Wu et al., 2024; Charles
et al., 2017a; Bamberger et al., 2024) learn a mapping from 3D geometry to a PDE solution on the
geometry’s surface. These methods are parameter-efficient due to geometric inductive biases but can
be overly sensitive to mesh discretization and struggle with global interactions. Recently, Sharp et al.
(2022) introduced DiffusionNet (DN) to address both of these issues. DiffusionNet draws its strength
for various surface learning tasks by using two simple geometric operations: (i) a diffusion layer with
learnable diffusion time parameters for message-passing, and (ii) spatial gradient features according
to manifold orientation for capturing anisotropy. Importantly, both these operations are agnostic to
the choice of discretisation and sampling, and thus the resulting architecture is resolution invariant by
construction, akin to a Neural Operator.
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Contributions. In this work, we develop a probabilistic reformulation of DiffusionNet using a
Fourier expansion of stochastic partial differential equations (SPDEs) (Holden et al., 1996; Walsh,
1986). This approach encodes uncertainty directly through the message-passing mechanism, avoiding
the familiar limitations such as poor uncertainty quality, drop in accuracy, and lack of computational
scalability of traditional Bayesian Neural Networks (Hernández-Lobato & Adams, 2015; Blundell
et al., 2015) or post-hoc methods like Laplace approximation (MacKay, 1992; Ritter et al., 2018)
and Conformal Predictions (Vovk et al., 2005). Instead, our reformulation allows us to build a
probabilistic generative model, Probabilistic DiffusionNet (PDN), in the same spirit as a traditional
variational auto-encoder that allows us to estimate PDE solutions given varying boundaries, with
spatially correlated probabilistic outputs on those surfaces that reflect uncertainties. Our experiments
show, firstly, that DiffusionNet is a powerful surrogate model competitive with state-of-the-art (SOTA)
Neural Operators and PDE surrogates. We then show that PDN retains DiffusionNet’s predictive
performance while producing well-calibrated uncertainty estimates compared to standard post-hoc
uncertainty quantification methods.

1.1 RELATED WORK

In this section we review the classes of models that have dominated the space of PDE surrogates, and
approaches to endow them with uncertainty quantification. We provide an extended discussion on
related works in Appendix A and F.

Geometric Deep Learning Graph Neural Graph Neural Networks (GNNs) (Scarselli et al., 2009;
Sanchez-Gonzalez et al., 2020; Niepert et al., 2016; Li & Farimani, 2022) use message-passing to
predict fields on mesh-structured data (Dalton et al., 2022; Pfaff et al., 2020; Horie & Mitsume,
2022; Brandstetter et al., 2022; Gladstone et al., 2024). Recently, Sharp et al. (2022) introduced
DiffusionNet, which employs diffusion and gradient mechanisms for message-passing, building on
the idea of GNNs as solutions to diffusion equations (Chamberlain et al., 2021).

For uncertainty quantification (UQ) in GNNs, methods include frequentist approaches like
temperature-scaling (Guo et al., 2017; Wang et al., 2021), conformal predictions (Vovk et al., 2005;
Huang et al., 2023a), ensembling (von Pichowski et al., 2024; Lin et al., 2022; Xu et al., 2022), as
well as Bayesian methods (Lamb & Paige, 2020; Hasanzadeh et al., 2020). More recently, Lin et al.
(2024b) and Bergna et al. (2024) extended GNNs by modeling stochastic diffusion/ODE processes to
capture uncertainty. However, these methods require complex backpropagation through numerical
solvers, making them computationally unsuitable for large-scale applications like CFD.

Neural Operators (NOs) (Kovachki et al., 2023; Lu et al., 2019; Pepe et al., 2025) are a popular method
for learning function space maps. A key class of NOs, like FNO, capture long-range correlations
using basis decompositions, with variants exploring alternative bases (Tripura & Chakraborty, 2023;
Gupta et al., 2021; Bonev et al., 2023; Cao et al., 2024; Chen et al., 2024). GINO combines the
graph-based GNO (Anandkumar et al., 2020; Li et al., 2020) for irregular domains with the FNO for
regular domains. Other work has focused on alternative message-passing schemes (Li et al., 2023a;
Alkin et al., 2024; Kissas et al., 2022).

For uncertainty quantification (UQ) in NOs, existing methods often require expensive post-training
steps, such as when using the Laplace approximation (Magnani et al., 2022), generative models with
Monte Carlo methods (Meng et al., 2022), or conformal prediction extensions (Ma et al., 2024b)
Taking a different approach, Salvi et al. (2022) propose a Neural SPDE method similar to the ideas
in Lin et al. (2024a) and Bergna et al. (2024), but lacks a direct UQ objective and requires slow
numerical solvers. Our work combines the SPDE formalism with variational inference and the
geometric inductive bias of DiffusionNet to create a scalable architecture for natural uncertainty
quantification.

Point Cloud Methods Given the ubiquity of point-cloud representations in engineering and graphics
applications, several methods (Charles et al., 2017a;b) have emerged that do not rely on connectivity
or grid structures. Recent approaches (Guo et al., 2021; Xiao et al., 2024) adapt transformers to
point-clouds, offering strong but computationally intensive PDE surrogates. To address the quadratic
complexity of attention mechanisms, Cao (2021) propose the Galerkin Transformer, while Wu et al.
(2024) introduce a Physics Attention layer. Both approaches scale linearly with the number of input
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points. While native uncertainty quantification remains unresolved, classical techniques like MC
dropout and Laplace approximation are applicable.

2 BACKGROUND

2.1 PROBLEM SETTING

Our work addresses problems, such as design optimisation, where multiple geometric shapes are
evaluated by solving systems of partial differential equations (PDEs). Formally, we consider a space
of shapes S, where each shape corresponds to a surface Ms embedded in R3. For each shape, we
consider a PDE system: {

L(us) = f in Ωs

B(us) = b on ∂Ωs
(1)

where us : Ωs → Rdu is the solution field and Ωs is the domain surrounding the surface Ms. L and
B are differential and boundary operators. We assume this PDE is well-posed, meaning a unique
solution us exists for any valid shape s and boundary conditions b and forcing function f . In many
applications—aerodynamics, heat transfer, structural mechanics—the quantities of interest are surface
fields obtained via the trace operator:

u†
s = Ts(us) : Ms → Rdu

We want to learn the solution map F † which maps each pair (s, bs) to a function u†
s : Ms → Rdu

that solves the trace of the PDE system on that particular surface geometry, where bs : Ms → Rdb

represents boundary data or physical parameters on the surface.

A classic example of this problem is the study of fluid flow around a moving object. The governing
partial differential equations (PDEs) are the Navier-Stokes equations, with the object’s shape, s,
representing the geometric domain. Of particular interest are surface quantities like pressure and
wall-shear stress, which are integrated over the object’s surface to calculate the aerodynamic drag.
By developing an efficient mapping from the object’s shape and other geometric parameters to these
surface fields, it becomes possible to directly minimise drag. This optimisation problem has been
extensively studied, for example by Wei et al. (2023) and Abbas et al. (2023).

The challenge in this setting, unlike traditional supervised learning on Euclidean spaces, is that the
domain of u†

s changes with each shape Ms. Because shapes in the dataset can vary in both geometry
and topology, traditional neural networks—which require fixed input/output dimensions and cannot
account for the geometric structure of each shape—are not directly applicable.

Supervised learning problem. In practice, each surface Ms is discretised as a triangular mesh
Mh

s = (Vs,Fs, Xs) with ns = |Vs| vertices having positions Xs ∈ Rns×3 and face connectivity
Fs defining the triangulation. Functions on the surface become vectors at vertices, with inputs
bs ∈ Rns×db representing boundary data and outputs us ∈ Rns×du representing the solution field.
While the continuous operator F † maps between infinite-dimensional spaces, we learn from a discrete
ground truth map Fh : (Mh

s ,bs) 7→ us obtained from numerical simulations. Henceforth, we will
use the symbol ys := us to define the solution field to make it clear that this quantity is the target
data. Given dataset D = {(Mh

si ,bsi , ysi)}
N
i=1, we seek a neural network that processes functions

on arbitrary meshes while respecting geometric structure and handling varying mesh sizes and
topologies.

2.2 DIFFUSIONNET

DiffusionNet, as proposed by Sharp & Crane (2020), employs heat diffusion as a learnable convolution
for surface analysis. It discretises the heat operator’s action, e∆M t: v(t) = e∆M tv(0) on a continuous
signal v(0) on an embedded surface, M . Here ∆M represents the Laplace-Beltrami operator (LBO).
The diffusion time, t, is a critical parameter that controls the scale of the convolution: a small t
captures local feature dependencies, while a large t facilitates global message-passing.

On a mesh Mh
s , the LBO is approximated by the lumped cotangent Laplacian Ls. Its first K

eigenvectors and eigenvalues are denoted by Φs ∈ Rns×K , Λs = diag(λ1, . . . , λK), respectively.
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The mass matrix As, derived from Ls is used to approximate the continuous L2(Ms) inner product.
We refer to Sharp & Crane (2020) for details on how to compute these quantities.

For features v ∈ Rns×dc with channel dimension dc, and learned diffusion times t = (t1, . . . , tdc), the
diffusion operator is built by applying the heat operator, described above in continuum, channelwise:

Pt(v) =
[
Φs exp(−Λst1)Φ

T
s Asv1 · · · Φs exp(−Λstdc)Φ

T
s Asvdc

]
(2)

where vj is the j-the column of v and exp(−Λstj) = diag(e−λ1tj , . . . , e−λKtj ). This creates a
learned spectral filter bank where each channel captures information at a different geometric scale,
analogous to multi-scale convolutions in traditional CNNs but adapted to the non-Euclidean setting.

While the diffusion operator efficiently propagates feature information across the mesh, its inherently
isotropic nature limits its effectiveness. To address this, DiffusionNet applies a learnable gradient
operator Γθg (·) to capture directional information from Pt(v). Since this operator is not a primary
focus of our work, we refer the reader to Sharp et al. (2022) for a detailed discussion of how the
gradients features are extracted. Finally, a pointwise MLP, Fw, is applied to the concatenated features
[v | Pt(v) | Γθg (Pt(v))]. The combination of these three elements results in a single DiffusionNet
block Bθ with parameters θ = (t, θg, w) given by

Bθ(v;M
h
s ) := v + Fw

(
[v | Pt(v) | Γθg (Pt(v))]

)
(3)

The inclusion of Mh
s as a second input signifies that the block’s operation is dependent on the

geometric quantities required by the diffusion and gradient operators such as Φs,Λs,As.

The full DiffusionNet architecture is a composition of L such blocks, along with pointwise lifting and
projection MLPs Lwlift : Rns×din → Rns×dc and Qwproj : Rns×dc → Rns×dout . The complete map is
defined as

Dθ(v;M
h
s ) := Qwproj ◦ BθL ◦ · · · ◦ Bθ1 ◦ Lwlift(v). (4)

DiffusionNet’s effectiveness stems from its intrinsic operations, which adapt to the unique geometry
of each surface. The spectral basis allows for multi-resolution processing while maintaining resolution
invariance, i.e. models trained on one mesh resolution generalize to others.

To adapt DiffusionNet for physics applications, we augment the input field with various geometric
and physical features such as: boundary conditions for the PDE (1), vertex coordinates and normals,
heat kernel signatures (Sharp et al., 2022), and any relevant physical parameters. The specific features
used in our experiments are detailed in Section 4.

Connection with Neural Operators Since the key components of DiffusionNet–diffusion and
gradients–can be formulated in continuum, the architecture can learn PDE operators on complex
geometries while maintaining geometric consistency and resolution invariance. This capability is
similar to that of a Neural Operator. We discuss this connection in detail in Appendix A.

3 METHODOLOGY

Learning from finite training data inherently introduces uncertainty—we cannot perfectly recover
Fh across all possible geometries, and our confidence should vary on unseen data. We therefore
extend DiffusionNet to learn a distribution over possible mappings rather than a single approximation,
enabling uncertainty quantification for predictions on novel geometries.

3.1 PROBABILISTIC DIFFUSIONNET

Our goal is to create a probabilistic model for surface fields on a mesh by leveraging the inductive
biases of a geometric model architecture. To achieve this, we reformulate DiffusionNet’s core
mechanism—the deterministic diffusion process—into a stochastic one. This approach injects a
noising mechanism directly into the underlying convolution operation, leading to a set of probabilistic
operations that are both intuitive and interpretable. To define these operations, we first obtain a
spectral representation of the solution to the stochastic heat equation in Theorem 3.1. We then use
this representation to build a stochastic diffusion operator for carrying out a stochastic convolution
(message-passing) layer that becomes the building block of a probabilistic model for surface fields on
a mesh.

4



216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269

Under review as a conference paper at ICLR 2026

Figure 1: Architecture of the Stochastic DiffusionNet Block. Note that except the Stochastic Diffusion
Operator, all other operations remain the same as DiffusionNet (Sharp et al., 2022).

A stochastic process, on an embedded surface M with LBO ∆M , can be obtained as a randomly
perturbed heat equation through the addition of spatial (coloured) noise:

∂tv(t) = ∆Mv(t) +WQ, v(0) = v0 (5)

where the spatial noise WQ is an L2(M)-valued Gaussian random field such that its covariance opera-
tor Q has LBO eigenvectors {ϕk}∞k=0 and eigenvalues {qk}∞k=0 (see, Prévôt & Röckner (2007)[Propo-
sition 2.1.6] and Lototsky & Rozovskii (2009)[Thm. 3.2.15]). The following theorem characterizes
the solution of (5). A more complete statement and proof is provided in Appendix B, where we also
provide an upper bound on the expected squared norm of v(t) under suitable initial conditions and
choice of {λk, zk}∞k=0.

Theorem 3.1. There exists a unique strong solution of (5) with the spectral representation:

v(t) =

∞∑
k=0

(
e−λkt⟨v0, ϕk⟩L2(M) +

√
qk

λk
(1− e−λkt)zk

)
ϕk , (6)

where {zk}∞k=0
i.i.d.∼ N (0, 1). Moreover, conditional on v0, v(t) is an L2(M)-valued Gaussian

random field.

Building on this foundation, we now construct our stochastic variant of the diffusion operator Pt. To
do this, we first parameterise the noise covariance via qk = λ2η

k where η controls the noise spectrum.
This parameterisation avoids basis ambiguities as discussed in Lim et al. (2022); Zhang et al. (2024)
(see Section A.1). For diffusion times t = (t1, . . . , tdc), noise parameters η = (η1, . . . , ηdc) and
random matrix z ∈ RK×dc with zkj ∼ N (0, 1), we can extend the diffusion operator Pt to a
corresponding stochastic one by discretising Eq. (18) on the mesh Mh

s :

SPt,η(z, v;M
h
s ) = Pt(v) +Nt,η,(z), (7)

where the noise perturbation term Nt,η,z = Φs(St,η ⊙ z), with [St,η]kj = λ
ηj−1
k (1− e−λktj ), and

⊙ denotes element-wise multiplication. In practice, we repeat the random variable across channels,
which reduces z to a K-dimensional random vector. A Stochastic DiffusionNet block (see Figure 1)
SBθ with parameters θ = (t, η, θg, w) is then given by:

SBθ(z, v;M
h
s ) := v + Fw

(
[v | SPt,η(z, v) | Γθg (SPt,η(z, v))]

)
. (8)

Probabilistic DiffusionNet (PDN), defines a hierarchical generative model encapsulated by the
following generative process:

z1, . . . , zL ∼ N (0, IK)

SDθ(z1:L, v;M
h
s ) := Qwproj ◦ SBθL ◦ · · · ◦ SBθ1 ◦ Lwlift(z1:L, v)

(9)
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where z1:L = {z1, . . . , zL} and θ = {wlift, θ1, . . . , θL, wproj}.

The generative process above lets us define a marginal distribution:

pθ(u|vinput,M
h
s ) =

∫
δ(u− SDθ(z1:L, v;M

h
s ))

L∏
ℓ=1

p(zℓ)dz1:L (10)

of a surface field u on a mesh Mh
s , where δ(·) denotes a Dirac delta distribution. The hierarchical

structure induces uncertainty at multiple geometric scales, with each layer ℓ adding stochastic
perturbations at scale tℓ and magnitude ηℓ.

3.2 VARIATIONAL INFERENCE

Having defined a probabilistic generative model for fields on a mesh surface, we can use it to model
the PDE solution fields obtained from simulation. Thus, we proceed to learn the parameters θ given
the training dataset D.

Observational model. We consider an observation model for the simulated solution field us given
by the following measurement equation:

ys = u + ϵ, (11)

where u ∼ pθ(u|vinput,M
h
s ) (10) is the probabilistic surrogate model, and ϵ ∼ N (0, σ2Insi

) is a
measurement noise. This measurement noise is added to capture some form of model discrepancy
and to stabilise the training dynamics.

ELBO. Our probabilistic model is a parametrised latent-variable model, where z represents the
random latent variable. Our goal is to maximize the marginal log-likelihood. After collecting the
solution fields, inputs, latent variables and meshes corresponding to all shapes in Y = {ysi}Ni=1,
V = {vinputi}

N
i=1, M = {Mh

si}
N
i=1, Z = {zi}Ni=1, we can write the marginal log-likelihood as:

ln pθ,σ(Y|V,M) = ln

∫
pθ,σ(Y|V,M,Z)p(Z)dZ , (12)

pθ,σ(Y|V,M,Z) =

N∏
i=1

N (ysi ; SDθ(z
i
1:L, vi), σ

2) . (13)

Since the integral cannot be computed analytically due to the non-linear relationship between ys
and z, we employ variational inference (Murphy, 2022). We introduce a family of distribution
qφ(Z|Y,V,M), parametrised by φ, to approximate the posterior p(Z|D). We optimize (θ, σ, φ) by
maximizing the evidence lower bound (ELBO):

L(θ, φ) = Eqφ [pθ,σ(Y|V,M,Z)]−DKL(qφ(Z|Y,V,M)∥p(Z)) ≤ ln pθ,σ(Y|V,M) . (14)

Amortized encoder. We adopt an amortized approach for the variational approximation given by:

qφ(Z|Y,V,M) =

N∏
i=1

L∏
l=1

N (ziℓ;µ
φ
ℓ (ysi , vinputi ,M

h
si),Σ

φ
l (ysi , vinputi ,M

h
si)) (15)

where µφ
ℓ and Σφ

ℓ are simple variants of DiffusionNet with an aggregation layer (see Section C for
details). We use the reparameterisation-trick to obtain a Monte Carlo estimate of the gradient of the
ELBO, to carry out its maximisation using a stochastic gradient descent algorithm.

Uncertainty quantification Once we have learned the optimal parameters (θ⋆, σ⋆, φ⋆) by maxi-
mizing (14), we may sample from the observational predictive distribution, for unseen shape s∗:

pθ,σ(ys∗ |vinput∗ ,Ms∗) =

∫
pθ,σ(ys∗ |vinput∗ ,M

h
s∗ , z

∗)p(z∗)dz∗ . (16)

The variance of the predictive distribution (16) reflects the model’s noise sensitivity, with shape-
dependent modulation through qk(s) = λk(s)

2η ensuring higher variance for unusual geometric
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spectra. While this correlates with epistemic uncertainty patterns (higher on novel shapes), it is
technically learned heteroscedastic aleatoric uncertainty since parameters are fixed post-training.
True epistemic uncertainty would require treating θ, σ as random variables. Nevertheless, PDN’s
geometrically-structured predictive variance provides valuable confidence estimates, effectively
warning when predictions extrapolate beyond the training distribution.

4 EXPERIMENTAL RESULTS

We benchmark our approach in two phases: first evaluating the accuracy of Probabilistic DiffusionNet
(PDN) against state-of-the-art (SOTA) geometric deep learning models for PDE surrogacy, then
comparing PDN against baseline UQ methods to assess predictive accuracy and uncertainty quality.

Datasets. We evaluate on two standard computational fluid dynamics datasets, both containing
Reynolds-Averaged Navier-Stokes simulations on varying geometries: ShapeNet car (Umetani &
Bickel, 2018), consisting of car meshes with 3,856 vertices, and Ahmed bodies (Li et al., 2023d),
consisting of simplified automotive test shapes with meshes having ∼ 105 vertices per shape.
Following Li et al. (2023d), we apply the same preprocessing and test/train splits, learning a mapping
from shape geometry to surface pressure distribution.

Baselines and Metrics. In Section 4.1, we compare PDN’s accuracy against three categories of
surrogate models: i) Neural operators that handle mesh data, including GNO, GINO, and Fengbo
(Pepe et al., 2025); ii) Transformer-based approaches like Transolver (Wu et al., 2024) and Point
Cloud Transformer (PCT); and iii) Graph-based methods, including GraphSage (Hamilton et al.,
2017), MeshGraphNet (Pfaff et al., 2020), and the original DiffusionNet (DN). We evaluate predictive
accuracy using the relative L2 loss. We left out benchmarking some of the graph and transformer-
based models for Ahmed bodies, due to the large mesh size. We report PDN’s performance for
an extended set of ShapeNet car dataset in Section G.1. In Section 4.2, we evaluate both accuracy
using RMSE, due to our probabilistic output, and uncertainty quality using total miscalibrated area
(MCAL), negative predictive log-likelihood (NLL), and interval score (IS). All metrics are computed
using the uncertainty toolbox package Chung et al. (2021). Note that there is no single metric that
captures every aspect of probabilistic predictions, so we resort to the collection of metrics as these
are the most commonly used and there is a rich literature to support them. We discuss further details
of the metrics and their choices in Section E. We compare PDN against GINO and Transolver, each
enhanced with standard UQ methods: Monte Carlo Dropout (DO), Laplace Approximation (LA), and
Model Ensembling (ME), with 10 models. As the code for the conformal prediction method proposed
in Ma et al. (2024b) has not been released, we do not provide a comparison to it. In Section F we
discuss the motivation behind choosing these UQ methods and their implementation. Finally in
Section 4.3 we evaluate PDN’s prediction quality on out-of-distribution (OOD) shapes by creating a
different split of the ShapeNet car dataset based on geometric similarity.

Implementation. For all experiments we used 16 blocks and chose K = 128 modes, based on
ablations (see Section G.2). To obtain the cotan-Laplacian, we used the robust Laplacian method
proposed in Sharp & Crane (2020) and used the approach in Sharp et al. (2022) to approximate the
gradient features. Note that these were obtained beforehand and cached. For the input field vinput, we
simply used the vertex positions Xs. In the Ahmed body dataset, the inlet velocity ρ changes between
samples, so we repeated this scalar value across vertices to form the input vinput = [Xs|ρ1ns

], where
1ns

∈ Rns is a vector of ones. We discuss further details of implementation including optimisation in
Section D. We used PyTorch (Paszke et al., 2017) for implementation. Experiments ran on a single
NVIDIA A100 GPU. The code is available at retracted.

4.1 PREDICTIVE ACCURACY

We compare the predictive performance of PDN against baseline methods across both datasets
(Table 1). Our results demonstrate that both DiffusionNet (DN) and PDN achieve SOTA performance
on the ShapeNet car dataset and outperform all other implementations on the larger Ahmed bodies
dataset. These results validate that shape-dependent operators provide an effective geometric inductive
bias for PDE surrogate modelling. Notably, PDN’s performance closely matches that of the original
DN implementation while adding UQ capabilities, and incurring a lower computational cost with a
smaller parameter count, (see Table 2 and Section G.3). The minimal impact on predictive accuracy

7
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Table 1: Performance of various methods for predicting the pressure field on a surface, evaluated
using the relative L2 (RL2) error. The values, shown in units of 10−2, represent the average RL2
error across all samples in the test dataset, with lower values indicating higher accuracy. For PDE we
used the mean of 100 samples from the predictive distribution (16).

The ShapeNet car dataset The Ahmed bodies dataset

Methods ↓ RL2 Methods ↓ RL2

PointNet (Charles et al., 2017a) 11 MeshGraphNet (Pfaff et al., 2020) 13.9
GraphSage (Hamilton et al., 2017) 10.5 UNet (with interpolation) 11.2
GNO (Anandkumar et al., 2020) 18.8 FNO (with interpolation) 12.6
GeoFNO (Li et al., 2023b) 15.9 GINO (Li et al., 2023d) 8.31
GINO (Li et al., 2023d) 7.1 Fengbo (Pepe et al., 2025) 10.7
Fengbo (Pepe et al., 2025) 8.9 Transolver (Wu et al., 2024) 7.1
PCT (Guo et al., 2021) 7.7 DN 5.4
Transolver (Wu et al., 2024) 6.2 PDN 6.2
DN 6.3
PDN 6.3

when moving from DN to PDN, despite incorporating probabilistic elements, highlights the advantage
of capturing uncertainty through the message-passing operation.

4.2 UNCERTAINTY QUANTIFICATION

In Table 2 we compare the quality of UQ. We evaluate models that create probabilistic predictions of
scalar pressure fields for new shapes. Each model learns a distribution over possible pressure fields,
allowing us to quantify its uncertainty by sampling candidate predictions. These samples are then
used to calculate uncertainty quantification metrics, assessing the model’s concentration, calibration,
and coverage.

We furnished the average values of metrics across test samples. Moreover, excluding ME, we carried
out additional repeats of the experiments and averaged the metrics across these. Since each metric
captures only a certain aspect of the UQ, it is important that a method performs in balanced way
across all these metrics. To highlight this aspect we ranked the performance of each of the competing
method on individual metrics for each dataset. We then averaged these ranks across all the metrics
and datasets. We noticed, based on the average rank, that TS-ME followed by PDN had the best
average rank, indicating their dominance in terms of producing a balanced performance. We also
noticed that for some methods, LA, DO, the performance can vary drastically across datasets and
models. Notice how the PDN metrics are always well balanced across the datasets. This shows that
PDN can reliably and robustly produce predictive uncertainties in a problem-agnostic manner. Fig. 2

Table 2: UQ metrics for surface pressure field prediction . Each metric is first averaged across the test
set shapes, and then averaged across three repeats of the experiments. We also report the average
rank (Rank) of each method across all metrics (a lowest value indicates most balanced performance
considering all metrics)

ShapeNet car Ahmed bodies

Methods Rank↓ RMSE↓ NLL↓ MCAL↓ IS↓ RMSE↓ NLL↓ MCAL↓ IS↓
GINO-DO 6.50 6.59 2.44 0.07 10.01 32.74 5.28 0.24 121.83
GINO-LA 8.25 4.27 29.30 0.23 14.81 34.58 5.27 0.24 110.31
GINO-ME 5.38 3.87 2.21 0.13 6.35 28.82 4.65 0.29 126.69
TS-DO 5.06 3.86 2.47 0.11 9.57 21.17 4.62 0.30 119.55
TS-LA 6.13 4.02 5.84 0.09 11.19 25.01 5.29 0.26 100.66
TS-ME 2.81 4.06 2.31 0.11 5.66 24.95 3.26 0.08 37.15
DN-DO 8.25 4.61 2.76 0.21 20.55 26.30 4.92 0.30 190.18
DN-LA 5.25 4.18 7.52 0.09 12.32 20.79 4.72 0.23 67.01
DN-ME 4.13 5.11 2.36 0.1 8.8 27.35 3.04 0.1 50.50
PDN (Ours) 3.25 3.91 2.77 0.08 7.99 18.28 4.23 0.23 67.33
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Figure 2: Visualization of uncertainty estimates produced by PDN for a Shape-Net car. a)
Ground-truth pressure field and one sampled geodesic path of vertices from the front to the back
of the car. b) Normalized absolute error between the predicted mean and the ground-truth field. c)
Normalized Credible Range, i.e., difference between the 5th and 95th percentiles, of 100 samples
from the predictive distribution, which correlates well, see the inset region, with the absolute error. d)
Comparison of the predicted samples and ground-truth along the geodesic path points shown in a).

Table 3: UQ metrics for surface pressure field prediction (test set averages) on OOD shapes.

ShapeNet car OOD

Methods RMSE↓ NLL↓ MCAL↓ IS↓
GINO-DO 7.65 5.67 0.06 13.85
TS-DO 5.99 3.45 0.30 42.74
DN-DO 5.68 2.77 0.12 16.57
PDN (Ours) 5.54 3.50 0.09 10.22

shows how PDN’s uncertainty estimate correlates well with the prediction error for a ShapeNet car
sample. Whilst model ensembling yields the strongest UQ performance, when combined with TS, it
comes with the significant cost of training multiple (in our case 10) models on different subsets of the
data, and so is infeasible for industrial scale applications. By contrast, PDN yields good UQ with no
additional cost.

4.3 OUT-OF-DISTRIBUTION PREDICTION

For this experiment, we clustered the ShapeNet car dataset using spectral clustering (Shi & Malik,
2000), where we used a pairwise chamfer distance to measure similarity. This lead to discovering
two clusters having 471 (used as training set) and 140 (used as test set) shapes respectively. We
then compared the performance of PDN, GINO-DO, TS-DO and DN-DO (since these do not incur
additional compute cost such as LA and ME methods) on this dataset using the same metrics used for
previous UQ experiments. We furnish the UQ metrics in Table 3. The above results reinforce PDN’s
strengths. All methods, except GINO-DO, show similar accuracy, with PDN having a slight edge.
Crucially, PDN’s coverage (IS) is significantly better, indicating it better handles distribution shifts.
While GINO-DO shows good calibration, this is a result of overly wide prediction intervals, which
negatively impacts its IS score.

5 CONCLUSIONS

DiffusionNet (DN) is an efficient graph neural network that uses a diffusion mechanism for message
passing. We introduced Probabilistic DiffusionNet, an extension that introduces stochasticity within
this message-passing operation of DiffusionNet by modifying the diffusion mechanism, yielding
spatially correlated predictive distributions. This approach delivers superior uncertainty quantification
on standard benchmarks while requiring substantially fewer parameters and computational resources
than other popular alternatives.

For the DN/PDN architecture, one has to eigendecompose the cotan-Laplacian; despite efficient
implementations, this can become a problem for large meshes. Future work may consider approxima-
tions to the eigendecomposition for efficiency. Future work may also consider applying the model to
real-world applications requiring UQ such as design optimisation and active learning.
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Probabilistic DiffusionNet: A geometry informed
probabilistic generative neural operator.

Supplementary material

A ADDITIONAL DETAILS ABOUT DIFFUSIONNET

A.1 CONNECTION WITH NORM

In Chen et al. (2024), the authors generalize Fourier Neural Operators (FNOs) to an arbitrary
Riemannian manifolds (M, g) by replacing the Fourier transform with projection onto the LBO
basis {ϕk}. The integral transformation layer of Chen et al. (2024) KT ∈ C(L2(M)dc ;L2(M)dc) is
defined by

[KT (M)(v)]c =

∞∑
k=0

dc∑
r=1

T cr
k ⟨ϕk, vr⟩L2(M)ϕk , c ∈ [dc] , (17)

where T ∈ ℓ∞(N0)
c×c is a bounded multiplier (in practice, one restricts to T such that Tk = 0 for

all k ≥ K). The resulting architecture with lifting, projection, and residual skips is called Neural
Operator on Riemannian Manifolds (NORM). The projection on to the LBO basis only corresponds
to a Fourier transform in the strict sense if the manifold M is a locally compact abelian group Rudin
(2017) .

In special cases, we recover familiar neural operators:

• If M = Td = [0, 2π]d/ ∼ is the flat torus, then KT (M) becomes the convolution layer in
FNOs since the LBO basis is given by {ϕk} = {ei⟨k,·⟩}k∈Zd Zelditch (2017)[Sec. 4.3] ,

• If M = S2 is the 2-sphere, then KT (M) is the convolution operator in Spherical Neural
Operators Bonev et al. (2023) since the LBO basis {ϕk} consists of the spherical harmonics
Zelditch (2017)[Sec. 4.4] .

The diffusion operator Pt introduced in Section 2.2, in continuum, is a special case of (17) with
spectral multiplier

T cr
k = e−λktrδcr ,

where δcr = 0 if c ̸= r and 1 otherwise.

While NORM provides a general framework for neural operators on manifolds, our primary focus is
inductive learning across different shapes. This introduces an important consideration: eigenfunctions
in a given eigenspace are defined only up to orthogonal transformations—particularly, when the
eigenvalue is simple (multiplicity one), they are defined only up to a sign flip. This phenomenon
creates the "basis ambiguity problem" well-documented in spectral graph neural networks Huang
et al. (2023b); Lim et al. (2022); Zhang et al. (2024).

To address ambiguities when learning across shapes, researchers have proposed several strategies:

• Use a restricted class of multipliers like Pt which are invariant to sign flips, and more
general, orthogonal transformations (see Huang et al. (2023b); Lim et al. (2022); Zhang
et al. (2024)),

• Apply an eigenfunction canonization procedure Ma et al. (2023; 2024a), or
• Randomly apply an orthonormal transformation to eigenfunctions in the same eigenspace

(effectively flipping signs in the simple eigenvalue case) Dwivedi et al. (2023)[App. E.1].

Therefore, the general spectral multiplier parameterization in (17) requires additional considerations
to be suitable for inductive learning across shapes. For this reason, we do not benchmark against this
architecture.

DiffusionNet uses the restricted diffusion operator Pt, which is naturally immune to the basis
ambiguity issue. Our experimental results demonstrate that the restricted nature of Pt does not
compromise performance in practice, especially when complemented with the anisotropic gradient
operator, which provides additional discriminative power.

17



918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971

Under review as a conference paper at ICLR 2026

A.2 CONNECTION WITH GINO

In Li et al. (2023d)[Sec. 2], the authors introduce a problem setting analogous to ours (cf. Section
2.1), addressing the challenge of learning the solution map of a boundary value problem from
geometry to solution. Their approach, Geometry-Informed Neural Operator (GINO), consists of three
components: i) a graph neural operator (GNO) encoder Anandkumar et al. (2020), ii) an FNO latent
on a rectangular grid, and iii) a GNO decoder. A similar strategy was employed in Li et al. (2023c),
albeit with different encoders and decoders that are diffeomorphic mappings between manifolds.
The advantage of moving to a rectangular grid is to leverage the speed of fast Fourier transforms to
perform global convolutions.

The encoder of GINO maps a function on a general manifold to a function on a rectangular latent
domain, and the decoder performs the opposite operation (though not the true inverse of the encoder).
Given embedded manifolds D1 ⊂ Rd and D2 ⊂ Rd and function spaces F1(D1)

d1 and F2(D2)
d2 , a

local linear GNO layer Gθ : F1(D1)
d1 → F2(D2)

d2 is defined by:

Gθ(v)(x) =

∫
B

(d)
r (x)∩D1

kθ(x, y)v(y)µD1(dy) , x ∈ D2 ,

where B
(d)
r (x) = {y ∈ Rd : |x − y|Rd < r} is a ball of radius r ∈ (0,∞] in Rd, kθ ∈ C(Rd ×

Rd;Rd2×d1) is a parameterized matrix of kernels, and µD1
is a measure on D1.

A crucial feature of GINO is that the kernel kθ is defined on the entire embedding space Rd, which
allows the decoder to be interpreted as mapping to functions defined throughout Rd. This design
makes GINO particularly well-suited to learn the extended solution map discussed in Li et al.
(2023d)[Sec. 2]. The trace solution map F † is not explicitly discussed in Li et al. (2023d). While
the experiments in Li et al. (2023d) (ShapeNet car and Ahmed body) focused entirely on surface
predictions—effectively learning the trace solution map to functions on Lebesgue measure-zero
subsets of the embedding space R3—the ability to decode to functions throughout the entire volume
has been recognized and utilized in subsequent works (see, e.g., Table 3 in Wu et al. (2024)).

In contrast to GINO, DiffusionNet and Probabilistic DiffusionNet are inherently constrained to
the surface for every shape input s ∈ S. We believe this architectural constraint introduces a
strong geometric inductive bias, enabling DiffusionNet to achieve competitive performance with a
significantly smaller parameter count than GINO while focusing precisely on the surface of interest
for the trace solution map F †. By working directly on the manifold rather than extending to the
ambient space, DiffusionNet exploits the intrinsic geometry of the problem.

B PROOF OF THEOREM 3.1

Let (M, g) denote a smooth Riemannian manifold embedded in R3 with the associated pullback
embedded metric g. Denote by W s,2(M), s ∈ R, the corresponding scale of L2-Sobolev spaces. We
note that if s > 1, then W s,2(M) ⊂ C(M) Behzadan & Holst (2022)[Thm. 9.14]. Let (Ω,F ,P) be a
complete probability space supporting an L2(M)-valued Gaussian random field WQ : Ω×M → R
is such that its covariance operator Q ∈ L(L2(M), L2(M)) has LBO eigenvectors {ϕk}∞k=0 and
eigenvalues {qk}∞k=0 (see, Prévôt & Röckner (2007)[Proposition 2.1.6] and Lototsky & Rozovskii
(2009)[Thm. 3.2.15]).
Definition B.1. A measurable stochastic process v : Ω× [0, T ] → L2(M) is called a weak solution
of (5) on the interval [0, T ] if P-a.s., v ∈ C([0, T ];L2(M)) and P-a.s., for all t ∈ [0, T ],

⟨v(t), ϕ⟩L2(M) = ⟨v0, ϕ⟩L2(M) +

∫ t

0

⟨v(s),∆Mϕ⟩L2(M)ds+ ⟨WQ, ϕ⟩L2(M)t .

If, in addition, P-a.s., v ∈ L1([0, T ];W 2,2(M)), then we say v is a strong solution.
Remark B.2. If v is a strong solution, then it follows that

v(t) = v0 +

∫ t

0

∆Mv(s)ds+WQt ,

where the equality is understood in L2(M).
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Theorem B.3. There exists a unique strong solution of (1) with the following properties:

(i) The solution admits the representation

v(t) =

∞∑
k=0

(
e−λkt⟨v0, ϕk⟩L2(M) +

√
qk

λk
(1− e−λkt)zk

)
ϕk , (18)

where {zk}∞k=0
i.i.d.∼ N (0, 1) ;

(ii) If
∑∞

k=0 λ
s−2
k qk < ∞ for some s ≥ 2, then for each t > 0, there is a positive constant Ct that

tends to infinity as t ↓ 0 such that

E[|v(t)|2Ws,2 ] ≤ Ct(E[|v0|2L2(M)] + 1) ;

(iii) Conditional on v0, the solution v(t) is an L2(M)-valued Gaussian random field with:

• Conditional mean: E[v(t) | v0] =
∑∞

k=0 e
−λkt⟨v0, ϕk⟩L2(M)ϕk

• Conditional covariance operator: K(t, s | v0) : L2(M) → L2(M) given by

K(t, s | v0) =
∞∑
k=0

qk
λ2
k

(1− e−λkt)(1− e−λks)(ϕk ⊗ ϕk) .

Proof of Theorem 3.1 and B.3. The existence and uniqueness of a weak solution for initial data
satisfying P-almost surely v0 ∈ L2(M) follows from classical theory, combining Ball (1977) with
Grigor’yan (2009)[Thm. 4.9]. We remark that additional comprehensive treatments for more general
equations with space-time white noise can be found in Da Prato & Zabczyk (2014)[Thm. 5.4], Prévôt
& Röckner (2007)[Thm. 4.2.4], and Elliott et al. (2012)[Prop. 2.6].

The space-time maximal regularity theory and continuity with respect to initial conditions follow
from standard parabolic theory Sinestrari (1985); Amann (2016) with summaries in Da Prato &
Zabczyk (2014)[App. A]). When P-almost surely v0 ∈ W 2,1(M), following [9, Ch. 7 Thm. 5], we
obtain P-almost surely v ∈ L2([0, T ];W 2,2(M)), confirming that v is a strong solution.

By Ball (1977), the solution v is also a mild solution satisfying P-a.s. for all t ∈ [0, T ]:

v(t) = exp(∆M t)v0 +

∫ t

0

exp(∆M (t− s))dsWQ .

Following Prévôt & Röckner (2007)[Prop. 2.1.6], the Gaussian random field WQ admits the decom-
position

WQ =

∞∑
k=0

√
qkϕkzk ,

which converges in L2(Ω;L2(M)). Substituting this into the mild solution formulation and using the
eigenfunction expansion of the heat semigroup yields the representation (18), which proves (i).

Expectation solution estimates can be derived from analogous solution estimates in the deterministic
theory. In particular, following Evans (2022)[Ch. 7 Thm. 5], one can obtain the variational bound:

E
[
sup
t≤T

|v(t)|2W 1,2(M)

]
+ E

∫ T

0

|v(t)|2W 2,2dt ≤ C
(
E[|v0|2W 1,2(M)] + E[|WQ|2L2(M)]

)
,

where E[|WQ|2L2(M)] =
∑∞

k=0 qk , and hence v ∈ L2(Ω;L∞([0, T ];W 1,2)) ∩ L2(Ω;W 2,2(M)).

To establish the W s,2 estimates for s ≥ 2, we employ a truncation argument. Define the finite-
dimensional approximation:

vK(t) :=

K∑
k=0

(
e−λkt⟨v0, ϕk⟩L2(M) +

√
qk

λk
(1− e−λkt)zk

)
ϕk .
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Let s ≥ 2. Using the Bessel-potential characterization of Sobolev spaces on M Behzadan & Holst
(2022) and the fact that E[|zk|2] = 1:

E
[
|vK(t)|2Ws,2

]
= E

[
K∑

k=0

(1 + λk)
s(vK(t), ϕk)

2
L2(M)

]

≤ 2

IK︷ ︸︸ ︷
E

[
K∑

k=0

(1 + λk)
se−2λkt(v0, ϕk)

2

]
+2

IIK︷ ︸︸ ︷
K∑

k=0

(1 + λk)
s qk
λ2
k

(1− e−λkt)2 .

By the power mean inequality, for all s ≥ 1, (1 + λk)
s ≤ 2s−1(1 + λs

k) . Since λk ≥ 0, we have
(1− e−λkt)2 ≤ 1 for all t ≥ 0. Thus, since Q is trace class, and importantly,

∑∞
k=0 λ

s−2
k qk < ∞,

we can bound IIK as:

IIK =

K∑
k=1

(1 + λk)
s qk
λ2
k

(1− e−λkt)2 ≤ 2s−1

λ2
1

∞∑
k=1

qk + 2s−1
∞∑
k=1

λs−2
k qk =: CII < ∞ ,

which establishes the uniform boundedness of IIK with respect to K.

To bound IK , we define ft,s : R+ → R+ by ft,s(λ) = λse−2λt and compute its derivative:

f ′
t,s(λ) = sλs−1e−2λt − 2tλse−2λt = λs−1e−2λt (s− 2tλ) .

This shows that ft,s attains its maximum at λ = s
2t with maximum value ft,s

(
s
2t

)
=

(
s

2te

)s
.

Therefore,

λs
ke

−2λkt ≤ C̃t := max

(
max

l:λl<
s
2t

λs
l e

−2λlt,
( s

2te

)s
)

, ∀t > 0 , k ∈ N0 ,

where we note that since λk → ∞ as k → ∞, there are only finitely many k′ such that λk′ < s
2t .

Indeed, by Weyl’s law Chavel (1984)[Ch. 1, Eq. 50], there exists a univeral constant C > 0
independent of M such that asymptotically λk ∼ C

ν(M)k , where ν(M) is the volume of M . Thus,
for each K ∈ N, we can bound IK as:

IK =

K∑
k=0

(1 + λk)
se−2λkt(v0, ϕk)

2 ≤ 2s−1(1 + C̃t)

K∑
k=0

(v0, ϕk)
2 ≤ 2s−1(1 + C̃t)|v0|2L2(M) .

Therefore, for each K ∈ N, defining

Ct = 2max(2s−1(1 + C̃t), CII) ,

we have the uniform bound:

E
[
|vK(t)|2Ws,2

]
≤ Ct(E[|v0|2L2(M)] + 1) .

Passing to the limit as K → ∞ and using the weak lower-semicontinuity of the norm, we obtain

E
[
|v(t)|2Ws,2

]
≤ lim inf

K→∞
E
[
|vK(t)|2Ws,2

]
≤ Ct(E[|v0|2L2(M)] + 1) .

The linearity of the stochastic heat equation ensures that conditional on the initial data v0 (which,
itself, may be random and non-Gaussian), the solution v is a Gaussian process on [0, T ]×M . The
conditional mean and covariance operator stated in part of the theorem follow directly from the
spectral representation and the independence of the {zk} from v0. This completes the proof of (iii),
and the theorem.

Remark B.4. It is worth highlighting the recent seminal work on Gaussian processes on manifolds
Borovitskiy et al. (2020); Hutchinson et al. (2021); Rosa et al. (2023). While these papers focus
on interpolating functions or tensor fields on a fixed Riemannian manifold, our work specifically
needs to address the more challenging problem of inference across different manifolds. Probabilistic
DiffusionNet is constructed by composing GP stochastic diffusion layers with MLPs, enabling transfer
learning between shapes. An interesting direction for future work would be to explore cross-manifold
inference purely from a GP perspective.

20



1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133

Under review as a conference paper at ICLR 2026

Table 4: Comparison of PD and DN+. We averaged the metric across all samples in the test split of
the ShapeNet car dataset.

Method Par (M) ↓RMSE ↓NLL ↓MCAL ↓IS

PD 1.8 3.87 2.74 0.09 8.02
DN+ 7.3 4.03 3.21 0.08 7.87

C ENCODER FOR AMORTIZED INFERENCE

When employing amortized variational inference for fitting PDN, we approximate the intractable
posterior distribution of the latent variables {zi}Ni=1 given observations of the solution fields {ysi}Ni=1,
inputs {vi}Ni=1 and meshes {Mh

si}
N
i=1, with a variational distribution qφ defined in (15). The varia-

tional distribution is designed to be tractable and easy to sample to compute the ELBO (14).

There are a number of choices for (µφ,Σφ), and we provide an ablation study in Table 4. In particular,
we consider the choices, where we drop the notation on the shape si for convenience:

1. Partial Diffusion (PD), in which for each mesh i ∈ {1, . . . , N}, channel c ∈ {1, . . . , dc},
and layer l ∈ {1, . . . , L},

µφ
l (y,M

h) = [exp(−Λτc)Φ
⊤ALµ

lift(y)]
dc
c=1

diag(Σφ
l )(y,M

h)(y,Mh) = [exp(−Λτc)Φ
⊤ALΣ

lift(y)]
dc
c=1

where Φ, Λ, and A denote the eigenvectors, eigenvalues, and mass matrix associated with
the cotan-laplacian of Mh, as defined in Section 2.2. Lµ

φlift
,LΣ

φlift
: Rdin+dout → Rdc are

pointwise lifting layers with learnable parameters φlift, and τc ∈ R+ is the learnable diffusion
time associated with channel c. We use τ to distinguish the diffusion time parameter in the
encoder from those of the base Diffusion-Net model. We call this partial diffusion block in
the sense that y is projected into the truncated eigenspace of the Laplace matrix Lh, before
the diffusion multiplier and a learnable linear transformation are applied.

2. Diffusion followed by an aggregation layer (DN+), in which

µφ
l (y,M

h) = [Eµ
ϕl

◦ Pl ◦ Lµ
φlift

](y) ,

diag(Σφ
l (y,M

h) = [EΣ
ϕl

◦ Pτ
l ◦ LΣ

φlift
](y) ,

where we use Pτ + l to denote the diffusion operation ((2)) for layer l ∈ {1, . . . , L} using
diffusion times τ , once again to distinguish between the diffusion times in the encoder
and those of the DN blocks. Eµ

ϕl
∈ C(RK×dc ;RK×dc), EΣ

ϕl
∈ C(RK×dcSK×dc

+ ) are
aggregation layers. In practice, we use Perceiver cross-attention modules (Jaegle et al.,
2021) to aggregate (see, also, Calvello et al. (2024)).

Notice that (PD) suffers from basis ambiguities in that, for a given eigenvalue, the eigenvectors in a
given eigenspace are defined only up to an orthogonal transformation, which reduces to sign ambigu-
ities for simple eigenvalues (c.f. Lim et al. (2022) and Section A.1). (DN+) is not subject to such
ambiguities. There are, of course, other possible variations in the encoder, such as choosing between
data-amortisation, in which µφ,Σφ do not use geometric features bi, geometry-amortisation, in which
µφ,Σφ do not use the output field yi, or no amortisation in which µφ,Σφ have no dependency on si.
In Table 4, we apply data-amortisation, however we will explore variations in future work.

Ablation Study In Table 4, we present an ablation of the choices (a) and (b). We compare their
performance with the same accuracy and UQ metrics. In both cases, we take 16 PDN layers. In the
case of (PD) we repeat the latent across all channels, whereas in (DN+) we learn mean and variance
parameters for each channel. Whilst both methods yield similar performance, (PD) has ∼ 4× fewer
parameters and so we report its results in the main text as PDN. We anticipate that for larger datasets
(DN+) will be more expressive than (PD). In future work we will explore this prospect, as well as
considerations for reducing the parameter footprint of (DN+).
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D IMPLEMENTATION DETAILS

Preprocessing for (P)DN Following Li et al. (2023d), we used a standard Gaussian normalisation
for the pressure fields. We also put all the meshes within a [−1, 1] bounding box, again following Li
et al. (2023d).

Optimization for (P)DN We used the AdamW (Loshchilov & Hutter, 2019) with learning rate
(LR) set to 10−3 and weight decay set to 10−4. We used the One Cycle LR scheduler with the same
hyperparameters as was used in Wu et al. (2024). We trained each model for 200 epochs. For PDN
we evaluated the Monte Carlo estimate of the gradient of the ELBO using just a single sample from
the encoder.

Architectural specifications of (P)DN For (P)DN we used K = 128 modes, and L = 16
layers throughout. We chose the number of channels to be the same size as the number of modes
(K = dc = 128), following Sharp et al. (2022).

Preprocessing/Optimization/architectural setup for other baselines We made sure for every
baseline we follow the same pressure field normalisation as described above. For optimization and
other geometric preprocessing we retained exactly the same settings as was originally proposed
for that particular baseline in its original publication or released code. We did the same for the
architecture. Specifically, while using Transolver as a base model, for the UQ experiments, we
retained the exact same architecture as was used for the results in Table 3 of Wu et al. (2024). For
GINO we used the same architecture as the “decoder" version in Table 2 & 3 in Li et al. (2023d),
respectively.

E EXPLANATION OF THE METRICS

To measure predictive accuracy, we use the the relative L2 norm which, for a given observation
y ∈ Rns×dout and prediction ŷ ∈ Rns×dout on a mesh Mh, is given by

RL2(y, ŷ) =
∥y − ŷ∥2
∥y∥2

.

This is a metric is widely used in the neural operator literature, allowing us to compare (P)DN with
other methods. However, for comparing UQ performance it is important to assess methods in a
holistic way. Thus, we have used a number of metrics which we describe next.

We use the following notation: Given a test set mesh i ∈ {Mh
1 , . . . ,M

h
Ntest

} and vertices Xi =

[xi1, . . . , xini
]⊤ ∈ Rni×3 where ni = |Vh

i | is the number of vertices in Mh
i , let yij denote the

evaluations of the observed output function at point xij ∈ V h
i . For baseline models that support

uncertainty quantification via sampling, µ̂ij ∈ Rdout represents the empirical mean over samples, and
σ̂ij ∈ Rdout

+ denotes the empirical standard deviation. For convenience, we collect yi = {yij}ni
j=1,

µ̂i = {µij}ni
j=1, σ̂i = {σij}ni

j=1.

Note that the empirical mean, standard deviations and other credible intervals were all obtained using
100 samples from the predictive distributions of respective models.

Negative log likelihood (NLL) We used the Gaussian negative log likelihood of the predicted field
given by

NLL(yi, µ̂i, σ̂i) = − 1

ni

ni∑
j=1

lnN (yij |µ̂ij , σ̂
2
ijIdout).

Total Miscalibration Area The Miscalibration Area (MCAL) measures the discrepancy between
predicted confidence levels and the observed frequencies of events. In particular, let π(p) denote
expected coverage levels for p ∈ [0, 1]. For each input i ∈ [Ntest] and channel c ∈ [dc], the observed
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coverage at level π(p) is:

π̂
(p)
i,c =

1

ni

ni∑
j

I
(
|yij,c − µ̂ij,c|

σ̂ij,c
≤ Φ−1

(
1 + π(p)

2

))
where Φ is the cumulative distribution function of the standard normal and I(·) is the indicator
function. The miscalibration area is given by

MCAL(yi, µ̂i, σ̂i) =
1

dc

dc∑
c=1

∫ 1

0

|π̂(p)
i,c − π(p)| dp.

In practice, the integral may be approximated through the trapezoidal rule Chung et al. (2021).

Interval Score Interval score, proposed in Gneiting & Raftery (2007), is a proper scoring rule (see
definition in Chung et al. (2021)) that is a summary statistic of overall performance of a distributional
prediction. In particular the formula for IS is given by

IS(yi, Li, Ui) =
1

ni · dout

ni,dout∑
j,c=1

[
(Uij,c − Lij,c) + 2 ∗ α ∗ (Lij,c − yij,c) ∗ I(yij,c < Lij,c)

+ 2 ∗ α ∗ (yij,c − Uij,c) ∗ I(yij,c > Uij,c)
]
,

where α is a parameter representing the level of the prediction interval; Ui, Li are the upper and lower
bounds of the prediction interval, and I(·) is the indicator function. We calculated Ui, Li by drawing
100 samples of ŷi, using a particular chosen α. We chose α = 0.025 throughout.

In all probabilistic experiments, we generated 100 samples per prediction, and the reported results
are averaged over all Ntest shapes in the test set.

Why multiple UQ metrics? When extracting probabilistic predictions for UQ one ideally wants
good coverage (smaller calibration error) so that we can associate regions (in the input space, for
us the mesh vertices) of high uncertainty with erroneous predictions. However, poor predictive
performance can also have good calibration since an underperforming model can have good coverage
with large credible intervals. Thus it is necessary to also access sharpness which quantifies the
concentration of the predictive distribution. The best models should be competitive in terms of both
sharpness and calibration. Thus, given the inherent trade-off between sharpness and calibration we
chose multiple metrics. We assessed calibration through the total miscalibrated area, coverage and
sharpness through the interval score.

F DISCUSSION ON THE CHOICE AND IMPLEMENTATION OF CLASSICAL UQ
METHODS

Choice of the base models Transolver (TS) and GINO have emerged as state-of-the-art approaches
towards building CFD surrogates for industrial scale problems, based on recent benchmarking studies
Li et al. (2023d); Pepe et al. (2025); Wu et al. (2024). Moreover, they propose contrasting, but
foundational, approaches (e.g. attention mechanism for Transolver) towards building an integral
transform layer, for achieving resolution invariance, that can serve as building blocks for similar
architectures. UQ performance with these base models, thus would be indicative of UQ capabilities
of similar base models. Finally, we have also considered DN as a base model to highlight the benefits
of PDN.

Choice of UQ methods We have specifically chosen those UQ methods that have recently been
used in the context of neural operators. Laplace Approximation have been applied recently to endow
a base FNO model, operating on a regular domain, with UQ capability Weber et al. (2024); Magnani
et al. (2022). Model ensembling for extracting uncertainty (Lakshminarayanan et al., 2017), in the
context of FNOs on regular domain, has been explored recently in Li et al. (2024) towards building
an active learning framework, and was shown to outperform other popular approaches for UQ. In
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addition to these, we have also considered Monte Carlo Dropout, which is arguably the most popular
approach for carrying out UQ for any deep neural network.

We like to point out that we indeed try to implement the Conformal Prediction (CP) approach for NOs
proposed in Ma et al. (2024b). However, we could not reproduce the results in Ma et al. (2024b). Due
to the lack of access to the officially released code, we decided against includ CP in our benchmarking.
However, note that: i) our results already show very good calibration out-of-the-box, at least for
ShapeNet cars, and ii) CP can be easily added on top of our method as an additional calibration
technique (see Fong & Holmes (2021)).

Laplace Approximation For the Laplace Approximation, we used a last-layer approximation. In
particular, we fit the Hessian of a Negative Log-Likelihood loss, using a learned homoscedastic noise
variance σ2, with respect to the parameters θf of the final (linear) layer of each baseline model

L(θf ) = −
N∑
i=1

lnN (yi|µθf , σ
2),

where yi is the observed output field i.e. the pressure field on the mesh vertices, and µθf is the
corresponding model (DN, Transolver, GINO) prediction, and m is the total number of shapes in the
training dataset.

We approximate the Hessian with the Fisher Information matrix, which is the outer product of the
gradients. Following Ritter et al. (2018), we scale the Hessian and add a multiple of the identity to
yield

HM,τ = ME

[
∂2 logL(θf )

∂θ2f

]
+ τI

where the expectation is approximated through Monte-Carlo samples and M, τ are hyperparameters
to tune on a validation set. In our case we choose N = 108, τ = 500.

Monte Carlo Dropout Monte Carlo Dropout (DO) is one of the most widely used methods to carry
out UQ for a deep neural network. We apply dropout both at the time of training and inference. In
Gal & Ghahramani (2016), it was shown that training a neural network while applying dropout is
equivalent to variational inference of the posterior distribution of the network weights. At test time, a
forward pass through the model, with Dropout, is equivalent to a sample from the posterior predictive
distribution of the network output, for us the pressure field. The role of a prior on weights is fulfilled
by applying a L2 regularisation: p(θ) ∝ wd∥θ∥2, where wd is a hyperparameter. In practise, the prior
is introduced through controlling the weight-decay hyperparameter in AdamW (Loshchilov & Hutter,
2019).

For all the baselines, we train using the same Gaussian Negative Log-Likelihood loss, using a
learned homoscedastic noise variance σ2, a dropout probability of p = 0.1 and as weight-decay of
wd = 10−4.

For Transolver DO was applied within the attention and projection layers, for GINO DO was applied
on MLPs within the FNO blocks, and for DN this was applied to the MLPs within each diffusion
block.

Model Ensemble Model Ensemble (ME) is a computationally intensive, yet conceptually simple
approach for carrying out UQ. ME constitutes ensembling the prediction of the same base model,
however trained with different parameter initializations. The intuition behind this approach is that
by exploring a basin of attraction, in the parameter space, through multiple local minima, one can
obtain a region in the parameter space each of whose points will generate a model output that would
correspondingly live within a “confidence" band, thus quantifying uncertainty.

In practise, as suggested in Lakshminarayanan et al. (2017), we trained all baselines using a a
Gaussian Negative Log-Likelihood loss, with a heteroskedastic noise i.e. with a spatially-varying
variance σ2

θ = σ2
θ(x), where x are the vertices of a mesh and θ are the model parameters. To generate

the spatially-varying mean and variance, we used two heads, as was proposed in Li et al. (2024), for
the last layer of all baselines. The resulting loss is given by

L(θ) = − lnN (y|µθ, σ
2
θ).
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The predictive distribution is then given by the following mixture distribution

1

P

P∑
p=1

N (µθ(p) , σ2
θ(p)),

where θ(p) is the learned parameter corresponding to the p-th model initialization. We set P = 10 for
all experiments.

G ADDITIONAL RESULTS

G.1 RESULTS ON NON-WATERTIGHT SHAPENET DATASET SPLIT:

Although our proposed approach relies on the assumption of a compact manifold, we relax that
assumption in practise as long as we can evaluate the Laplacian. In particular, we apply the method
proposed in Sharp & Crane (2020) which can operate on non-manifold shapes. As a result, we were
able to use the full ShapeNet car dataset (Umetani & Bickel, 2018) with 789 shapes for training
and 100 shapes for test, using the same train-test split as was used in Wu et al. (2024). We report
the results for PDN in Table 5. We like to point out that all models were trained using not just
the surface pressure field, but also the velocity field in the domain, putting PDN at a disadvantage.
Nevertheless PDN shows SOTA performance as it outperforms most baseline methods with a fraction
of the parameters (c.f. Table 7).

Table 5: Performance comparison in terms of relative L2 distance, between ground truth pressure
field on the surface of the shape and its prediction, using the full ShapeNet car dataset, used in Wu
et al. (2024). Both training and test sets have non-manifold meshes. Except PDN all models were
trained using both pressure and velocity information.

Methods ↓Relative L2 for surface pressure

GraphSage (Hamilton et al., 2017) 0.1050
PointNet (Charles et al., 2017a) 0.1104
Graph U-Net (Gao & Ji, 2019) 0.11024

MeshGraphNet Pfaff et al. (2020) 0.0781

GNO (Anandkumar et al., 2020) 0.0815
GeoFNO Li et al. (2023b) 0.2378
GINO (Li et al., 2023d) 0.0810
Galerkin (Cao, 2021) 0.0878

GNOT (Hao et al., 2023) 0.0798
3D-GeoCA (Deng et al., 2024) 0.0779

Transolver (Wu et al., 2024) 0.0745
PDN (Ours) 0.0752

G.2 ABLATIONS ON MODEL SIZE

In Table 6, we report an ablation study on the number of eigenmodes K and number of PDN layers L,
evaluated on the ShapeNet car dataset. We find that there is a clear increase in performance across all
UQ metrics as both hyperparameters increase. In the paper we report results for L = 16, K = 128.

G.3 COMPUTATIONAL ASPECTS

In Table 7 we report the number of parameters of each model, alongside the allocated memory (GB)
and average seconds per epoch during training. We found that for smaller meshes (ShapeNet cars,
∼ 3500 vertices) PDN, although being memory efficient, is slower than the baselines. However,
as the size of meshes (Ahmed bodies, ∼ 100, 000 vertices) grow, PDN runs much faster than the
baselines, making it ideal for larger meshes typically found in industrial CFD applications.

Notice that the timing results for PDN do not account for the time taken to construct the Laplacian
and compute its eigendecomposition. However, this can be done, offline, once per dataset.
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Table 6: Ablations of the number of probabilistic diffusion blocks L and number of eigenmodes K in
PDN. We averaged the metric across all samples in the test set of the ShapeNet car dataset.

Hyperparameters ↓RMSE ↓NLL ↓MCAL ↓IS

L = 4,K = 128 4.24 2.82 0.17 10.9
L = 8,K = 128 4.06 3.34 0.09 10.42
L = 16,K = 128 3.87 2.74 0.09 8.02
L = 4,K = 256 3.90 2.61 0.15 12.52
L = 8,K = 256 3.76 2.59 0.10 8.95
L = 16,K = 256 3.76 2.48 0.12 9.66

Table 7: Efficiency comparison in terms of parameters, average seconds per epoch and memory (GB)
allocated during a training epoch.

The ShapeNet car dataset The Ahmed bodies dataset

Methods Parameters
(M)

Time
(s/epoch)

Memory
(GB)

Parameters
(M)

Time
(s/epoch)

Memory
(GB)

GINO 366 17.86 18.69 366 237.2 18.15
TS 3.8 18.91 1.29 3.8 403.12 52.1
PDN (Ours) 1.8 34.6 0.70 1.8 88.29 22.34

H BROADER IMPACT

This study presents a probabilistic extension for a popular graph neural network architecture, while
providing solid theoretical footing for its interpretation as a neural operator for approximating
PDE solutions on domain boundaries. The probabilistic extension allows us to provide uncertainty
estimates without relying on post hoc methods which might struggle in the operator learning setting.
Through robust benchmarking, we show that our approach has significant advantages and, together
with our theoretical contributions, our work has the potential to advance computational modelling in
scientific and engineering disciplines.

Given the importance of quantifying uncertainty for downstream predictions used for decision-
making, how we are able to achieve that with a more efficient model, and how we provide theoretical
grounding for further improvements, we recognise that our method could be employed in a wide
range of high-stake applications and in sensitive contexts.

As the field adopts our contributions and advances, it will be essential to ensure that methods are used
responsibly, particularly in applications where predictive reliability and interpretability are critical.
Ongoing dialogue among machine learning researchers, domain experts, and the general public is
essential to ensure that the development and deployment of such tools remain aligned with societal
values and serve the public interest.
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