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Abstract

We propose a novel diffusion-based framework for automatic colorization of Anime-
style facial sketches, which preserves the structural fidelity of the input sketch while
effectively transferring stylistic attributes from a reference image. Our approach
builds upon recent continuous-time diffusion models, but departs from traditional
methods that rely on predefined noise schedules, which often fail to maintain per-
ceptual consistency across the generative trajectory. To address this, we introduce
SSIMBaD (Sigma Scaling with SSIM-Guided Balanced Diffusion), a sigma-space
transformation that ensures linear alignment of perceptual degradation, as mea-
sured by structural similarity. This perceptual scaling enforces uniform visual
difficulty across timesteps, enabling more balanced and faithful reconstructions.
On a large-scale Anime face dataset, SSIMBaD attains state-of-the-art structural
fidelity and strong perceptual quality, with robust generalization to diverse styles
and structural variations. Code and implementation details are available at[}

1 Introduction

The rapid growth of content industries such as webtoons, animation, and virtual avatars has intensified
the demand for automatic generation of high-quality Anime-style images. Among the various sub-
tasks, colorizing sketch images remains a labor-intensive step in the content creation pipeline, as line
art lacks shading and color information, requiring significant manual effort from artists. Automating
this process not only enhances production efficiency but also ensures visual consistency across frames
and styles [[7, [10]].

Early colorization models have been predominantly based on Generative Adversarial Networks
(GAN:Ss). For instance, [[7,[27, 37] leveraged conditional GANs guided by sparse color scribbles as
user-provided inputs. However, these methods rely heavily on user hints and are sensitive to scribble
placement and spatial correspondence. To alleviate this, Lee et al. [18] proposed reference-based
colorization using a Spatially Corresponding Feature Transfer (SCFT) module that extracts semantic
correspondences between the sketch and reference images. Yet, their approach struggles under large
domain gaps or structural mismatches, a challenge that persists across reference-guided generation
settings [19].
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Recently, diffusion models have emerged as a powerful class of generative models capable of
producing high-fidelity images while avoiding common GAN pitfalls such as mode collapse and
training instability [9} [13| 28| 30]. In particular, [3] was the first to apply Denoising Diffusion
Probabilistic Models [[13] to anime face colorization. By leveraging pixel-level supervision and
multi-scale structural similarity, they reported improvements in PSNR, MS-SSIM [33]], and FID [12]]
over GAN baselines. However, their discrete-cosine-based forward noise schedule rapidly degrades
SSIM in early timesteps and then flattens later, yielding uneven perceptual difficulty across the
trajectory. This non-uniform degradation complicates reverse-trajectory learning and hinders recovery
of fine-grained color textures [31]].

Alongside supervised diffusion, a line of exemplar-driven, zero-shot editing and transfer methods
has gained traction in the Stable Diffusion (SD) / Latent Diffusion Model (LDM) ecosystem [235]].
Cross-Image Attention [1]], Attention Distillation [39], and StyleAligned [[11] exploit attention maps
(reflecting semantic correspondences across domains) and feature/statistics modulation (e.g., AdaIN)
to perform appearance transfer without task-specific training. While appealing, these approaches
are typically tied to large SD/LDM backbones, may require text prompts or additional conditioning,
and incur considerable inference latency. In contrast, ControlNet [36]] introduces trainable control
branches on top of SD and does require fine-tuning but still inherits heavy foundation-model inference.
In this work, our goal is orthogonal: we pursue a lightweight and supervised colorization pipeline
targeted at near real-time inference and faithful recovery of high-frequency details. We nevertheless
include these SD/LDM-based methods and a ControlNet variant in our evaluation for completeness
and cross-paradigm comparison.

Elucidated Diffusion Models (EDM) [[14] introduced a continuous-time noise parameterization in
o-space, enabling finer control over corruption and improved sample quality. Despite its strengths,
EDM’s standard (logarithmic) o sampling induces perceptual non-uniformity in colorization, where
consistent difficulty across the trajectory is crucial.

To address this, we propose SSIMBaD (Sigma Scaling with SSIM-Guided Balanced Diffusion), a
sigma-space transformation ¢* (o) that aligns perceptual degradation linearly in SSIM, enforcing
uniform visual difficulty across timesteps. Integrating this schedule into the EDM framework yields a
continuous o-space diffusion model tailored for Anime-style sketch colorization. The same SSIM-
aligned schedule is used in training and in a lightweight reverse-only trajectory refinement stage:
during training it prevents bias toward either near-clean or extreme-noise regimes; during inference it
maintains consistent reconstruction difficulty over steps. Unlike prior methods that optimize reverse
fidelity purely empirically, we explicitly anchor both forward and reverse dynamics to SSIM [33, [3§]].
On a large-scale Anime face dataset, this design achieves state-of-the-art structural fidelity while
delivering strong, competitive perceptual quality, with robust generalization across diverse styles and
structural variations.

Our main contributions are summarized as follows:

* A Novel Unified Framework for Perceptually Balanced Diffusion : We propose SSIM-
BaD (Sigma Scaling with SSIM-Guided Balanced Diffusion, a pioneering framework that
balances structural and stylistic fidelity in anime face colorization. Unlike prior approaches
that suffer from inconsistencies in perceptual quality, SSIMBaD integrates perceptual sched-
ule alignment, training-time consistency, and trajectory refinement to achieve stable and
high-quality generation.

* A Perceptual Sigma-Space Transformation for Enhanced Stability and Consistency
: We propose a novel sigma-space transformation, ¢*(o), as a core innovation within
SSIMBaD. By linearly aligning SSIM degradation across diffusion timesteps, this perceptual
rescaling mechanism significantly improves step-wise consistency during the generation
process, ensuring consistent perceptual generation, and overcoming the limitations of
conventional noise schedules that often bias towards low or high-frequency details.

* State-of-the-Art Performance Validated by Comprehensive Experimentation : Exten-
sive experiments on Danbooru AnimeFace show that SSIMBaD sets a new state of the art
on PSNR, MS-SSIM, and FID, and delivers competitive LPIPS, CLIP-I, and DINOv2-I with
strong cross-reference generalization. Ablations attribute the gains to all components: the
EDM backbone, SSIM-aligned sigma scaling, and trajectory refinement.



2 Related Works

GAN-Based Sketch Colorization Early colorization models primarily relied on GANs, guided by
user-provided inputs such as sparse color scribbles [7, 27, 137]]. While effective, these approaches are
highly sensitive to scribble placement and often fail to generalize. To mitigate this, Lee et al. [[18]
proposed a reference-based method using SCFT module, which extracts semantic alignments between
sketches and reference images. However, SCFT remains vulnerable to domain gaps and structural
mismatches [19]]. Other works explored semi-automatic pipelines [10] and two-stage GANs for
flat-filling and shading [37]], or incorporated text tags for semantic guidance [[16], but challenges in
consistency and stability persist.

Generative Diffusion Models Diffusion models have emerged as powerful generative frameworks
that address key limitations of GANS, including mode collapse and training instability [ 13\ [29] 23] 9]
17, 126]. By learning to reverse a gradual noising process, they enable stable training and high-quality
image synthesis. Nichol and Dhariwal [23]] demonstrated that well-tuned diffusion models can
outperform GANSs across diverse benchmarks.

Subsequent advancements have improved their flexibility and performance. Song et al. [30, 31}
32] introduced a score-based formulation using stochastic differential equations (SDEs), enabling
continuous-time generation and principled control over sampling dynamics. In parallel, several works
have proposed deterministic sampling methods based on ordinary differential equations (ODEs), such
as PNDM [20] and DPM-Solver [21]], which accelerate inference while maintaining generation quality.
Karras et al. [14] extended this with EDM, which operate in continuous o-space and decouple noise
level selection from timestep scheduling. EDM achieves state-of-the-art results on high-resolution
datasets such as FFHQ [15] and ImageNet [8].

Reference-Guided Diffusion Colorization Diffusion models have shown strong potential for
image colorization by conditioning the denoising process on inputs such as sketches or reference
images. Techniques like classifier guidance [9], cross-attention, and adaptive normalization enable
fine-grained control. User-guided methods such as SDEdit [22]] and DiffusArt [S] leverage partial
noise or scribbles for controllable generation, but often require carefully crafted inputs. ILVR [6]]
and ControlNet [36] improve precision via reference alignment and auxiliary signals, yet depend on
heavy Stable Diffusion / Latent Diffusion backbones [25].

Beyond these, SD/LDM-based zero-shot transfer methods—Cross-Image Attention [[1], Attention
Distillation [39], and StyleAligned [11]—propagate appearance via cross/shared attention and AdalN,
sometimes with text prompts or inversion, and are training-free but incur notable memory/latency
costs. ControlNet, in turn, requires fine-tuning on SD while retaining foundation-model overhead. In
contrast, we target a lightweight, supervised, jointly conditioned (sketch, reference) diffusion pipeline
designed for near real-time inference and faithful high-frequency detail recovery; nevertheless, we
include a modified ControlNet and the two zero-shot methods as baselines for a fair cross-paradigm
comparison.

AnimeDiffusion Cao et al. [3] propose a DDPM-based [13] pipeline for anime face colorization
using a UNet denoiser with early-fusion conditioning: the sketch, the reference, and a noise-level
map are channel-wise concatenated at the input rather than fused via cross-image attention or adapter
modules. Training employs pixel-wise supervision and the forward corruption follows a discrete-
cosine schedule. This raw-piling design is simple and efficient, relying on supervision to learn
alignment without explicit correspondence layers.

3 Background: Elucidating the Design Space of Diffusion-Based Generative
Models

The EDM framework [14] generalizes DDPM by introducing a continuous-time formulation of the
forward noising process based on a scale variable 0 € [Omin, Omax], Which replaces the discrete
timestep index t. Under this formulation, a clean image z is perturbed into a noisy observation z
using a continuous noise level:



z(o)=xzg+0-¢ €~N(0I). (1)
This allows the model to learn over a continuous spectrum of corruption strengths, offering greater

flexibility than DDPM’s fixed timestep schedule. For notational simplicity, we denote z(c) as x in
the subsequent descriptions.

To stabilize training and ensure scale-invariant learning, the noisy input x is preconditioned using the
noise level o and a fixed constant g, (typically 0.5). The network Fj takes x and o as input and
produces a denoised estimate. The final prediction Dy (x; o), which serves as a function approximator
of the clean target x, is computed using noise-dependent skip connections, as defined by:

Dy(z;0) = cakip(0) - T + cou(0) - Fo(cin(0) - ,0), ()
where cgip, Cin, and ¢,y are predefined scaling coefficients derived from o.

At inference time, EDM defines the generative process as a reverse-time probability flow ODE,
derived from the SDE framework in score-based diffusion models [32]:

d 1
df’;:f;(pe(%a)ﬂ). 3)

This ODE is numerically integrated using Euler or higher-order methods such as Heun or Runge-
Kutta.

To discretize this continuous formulation, EDM introduces a p-parameterized noise schedule:

. P
i = (01111/£x+z\/vz_1(0-rln/1ﬁo—rln/apx)) ;, 1=0,...,N—1 “4)
By adjusting p, sampling steps can be concentrated in low- or high-noise regions. Most constants and
scheduling heuristics in this formulation are directly adopted from the original EDM framework [[14].

4 SSIMBad : Sigma Scaling with SSIM-Guided Balanced Diffusion for
AnimeFace Colorization

We propose SSIMBaD, which incorporates a perceptually grounded noise schedule into the EDM [14].
Unlike prior log-based schemes, SSIMBaD aligns forward and reverse trajectories using a transfor-
mation that ensures perceptually uniform SSIM degradation.

The model conditions on I.yng € REXW >4 formed by concatenating a reference image I,.; and a
sketch Igiercn. The clean target Iy € RAXWX3 g corrupted with Gaussian noise to produce Ippjse,
which is denoised over time conditioned on I.,ng. We now describe the key components of SSIMBaD,
while Appendix [A]further elaborates on how sketches and reference images are transformed, as well
as the data augmentation strategies applied.

4.1 SSIM-aligned Sigma-Space Scaling

The perceptual quality of diffusion models is highly sensitive to how noise is distributed across the
denoising trajectory. In EDM, inference uses a p-parameterized schedule (@) to sample noise levels in
a nonlinear manner, typically concentrating steps near low-noise regions. In contrast, training samples
In o from a log-normal distribution N ( Pyean, P2,), implicitly assuming a different transformation.
This discrepancy implies that the transformation applied during training, ¢u.n(0) = log(o), differs
from that used in inference, @inference (07) = ot/ P—resulting in a perceptual misalignment between
forward and reverse trajectories.

To resolve this, we propose SSIM-aligned sigma-space scaling—a perceptually motivated strategy
that defines a shared transformation ¢ : R, — R used consistently across both training and inference.
This transformation maps the noise scale o to a perceptual difficulty axis, ensuring visually uniform
degradation throughout the diffusion process. Based on this transformation, we construct the noise
schedule by interpolating linearly in the ¢-space:

O'id) = ¢! <¢(Umin) + ﬁ (¢(Omax) — ¢(0min))> , 1=01,...,N—1 ®)

4



To identify the optimal ¢*, we consider a diverse candidate set ® of analytic and squash-like
transformations:

1 1
o, log(o), log(l+o), o% —, —, arcsinh(o), tanh(o),
_ o’ o
"7 id(), 2 % logo®+ 1), arctan(o)
sigmoid (o og(o rctan(o
g ) O'—'—c’ O_p+17 g )

where ¢ > 0 and p > 0 are tunable constants. Each ¢ is evaluated by how linearly its induced
noise schedule aligns with perceptual degradation, measured by SSIM. Specifically, we compute the

coefficient of determination (R2) between af’ and SSIM degradation under additive noise:
N-1
¢* = argmax Er, {RZ ({ (o7, SSIM (I + 0 -, 1) ) | )] ©6)
ped ) i=0
where (Iy, ) are drawn from the data distribution and Gaussian noise, respectively.

‘We define the coefficient of determination as:
N N

R2 ({(xwyz)}fvzl) =1- N ) @)
i1 (Wi —9)?
where ; is the prediction of y; from the best linear fit to {x;} and 7 is their sample mean.
Our empirical search reveals that ¢* (o) = 403 Yields the highest R? and near-linear SSIM

degradation. We adopt this transformation consistently in both training and inference, unifying the
sampling dynamics across the diffusion process.

In addition, we replace the conventional log(c) noise embedding with ¢yeise = ¢* (o) to align temporal
conditioning with the perceptual trajectory. This alignment stabilizes training, improves reconstruc-
tion fidelity, and enhances generalization across diverse reference domains (see Section[5.3.1).

4.2 Framework of SSIMBaD

Denoising Network The denoising model Dy follows a preconditioned residual design adapted
from EDM [[14], where the noisy input is scaled and fused with a learned residual correction.
Distinctively, we replace the conventional log(c) noise embedding with a perceptually grounded
squash function ¢yeise (o) = ¢*(0) = ensuring better alignment with visual difficulty across
the noise trajectory.

_o
o+0.3°

Formally, the denoiser is defined as:
DO (Inoisea Icond; U) - Cskip(a) : Inoise + Cout(a) . F9 (Cin(g) : Inoise7 Icond; QS* (0))

Training To expose the model to a perceptually balanced distribution of noise scales, we sample
o such that ¢*(o) is uniformly distributed over [¢* (0 min ), @* (0max)]- The noise embedding cyoise
is set to ¢* (o), replacing traditional log-variance encodings. Given noisy input z = Iy + n with
n ~ N(0,02I), the pretraining loss is:

Liszin = Egr (0)mtd [+ (0min) 6% (0 )] Elaropins Ereenr(0,021) | Do(Lgt + 10, Leona; 0) — It|)* . (8)

Trajectory Refinement To further enhance perceptual fidelity, we apply trajectory refinement. The
reverse diffusion process is initialized from a pure Gaussian noise sample I =1 ~ A/(0,T), and
integrated backward using a perceptually scaled sigma schedule {o;})¥ ;" derived from ¢*(c). For
each denoising stept = N — 1,...,1 (oo = 0), we perform Euler updates as:

At;

ok}

1670 = 10 = S5 (g1, Jogpgs 07) — 1), Aty =0; = 011, ©)

Instead of treating the entire process as fixed, we fine-tune the denoising trajectory itself by aligning
the final reconstruction I(®) with the clean target Io via an £3 loss:

(10)

0
ACtrajectory refinement — Elg[dim EnNN(O7I) HI( ) — Igt



Here, 1(9) denotes the reconstructed image obtained after performing the full reverse trajectory from
1 = N — 1 down to 0. This refinement can be interpreted as a fine-tuning step that encourages the
entire denoising trajectory to terminate closer to the ground-truth image.

Inference During inference, we reuse the same ¢* (o) transformation and construct a deterministic
schedule:

0; = (¢*)_1 ¢*(Umin) +

1
N -1

(¢*(Urrlax) _¢*(Umin)) ) 1= Oa'“vN_ 1. (11)

We then apply the same Heun’s methodfollowing the formulation in EDM, as in trajectory refinement
to produce the final image from pure noise.

5 Experiments

5.1 Dataset Description

We evaluate our method on a benchmark dataset introduced by [3]], specifically curated for reference-
guided anime face colorization. The dataset comprises 31,696 sketch—color training pairs and 579
test samples, all resized to a resolution of 256 x 256 pixels. Each training instance consists of a
ground-truth color image Iy and its corresponding sketch Igeich, generated via an edge detection
operator such as XDoG [35]]. The sketch images serve as the structural input, while the reference
images provide appearance cues such as color and style.

We evaluate model robustness under two test settings. In the same-reference scenario, the reference
image is a perturbed version of the ground-truth, sharing the same structural input as Igewh. In the
cross-reference scenario, the reference is randomly sampled from other test images, introducing
variations in both color and facial attributes. This dual setup enables evaluation of reconstruction
fidelity under ideal conditions and generalization under domain shift.

5.2 Evaluation Metrics

Fidelity metrics focus on low-level accuracy and structural consistency. PSNR measures pixel-level
reconstruction quality via mean squared error, though it correlates weakly with human perception [2].
MS-SSIM extends SSIM across multiple scales of luminance, contrast, and structure [34]], making
it appropriate for sketch-conditioned colorization. FID computes the Fréchet distance between
generated and real image features [12], capturing distributional realism and overall fidelity.

Perceptual metrics capture semantic and stylistic alignment beyond pixel fidelity. LPIPS quantifies
perceptual distance using deep features [38], reflecting human judgments of texture and style plausi-
bility. CLIP-I measures semantic consistency through cosine similarity of CLIP embeddings between
generated and reference images [24]. DINOv2-I evaluates structural and style-level similarity using
self-supervised visual features [4]], offering a stable perceptual indicator less text-biased than CLIP.

5.3 Experimental Results

5.3.1 Empirical Evaluation of SSIM-Aligned Sigma-Space Scaling Functions

Table 1: Transformation functions ¢ (o) sorted by R? linearity with SSIM degradation. Bounded
squash functions yield the highest perceptual alignment.

¢(o) o? 0%2 o 1 log(c2 +1) loglp(c) arcsinh(o) Ugil
R? 0.0616 0.0624 0.0768 0.1183 0.2225 0.3754 0.4001 0.7332
¢(0) sigmoid(o) %5 tanh(o) %7 log() 0T 51075 5103
R? 0.6837 0.8196 0.8650 0.8710 0.8972 0.9275 0.9277 0.9793

To ensure perceptual consistency across the generative trajectory, we construct the noise schedule
by uniformly sampling in a transformed ¢ (o) space and applying its inverse. We empirically select



Figure 1: Qualitative comparison of colorization results under the same-reference scenario.
From left to right: (a) Sketch input. (b) Reference image. (¢) SCFT [18]. (d) AnimeDiffusion [3]]
(pretrained). (¢) AnimeDiffusion [3]] (finetuned). (f) AnimeDiffusion (EDM backbone, default
o-schedule). (g) ControlNet [36] (h) Cross-Image Attention [1]]. (i) Attention Distillation [39]. (j)
Our model (w/o trajectory refinement). (k) Our model (w/ trajectory refinement).

Figure 2: Qualitative comparison of colorization results under the cross-reference scenario.
From left to right: (a) Sketch input. (b) Reference image. (c) SCFT [18]]. (d) AnimeDiffusion [3]]
(pretrained). (¢) AnimeDiffusion [3]] (finetuned). (f) AnimeDiffusion (EDM backbone, default
o-schedule). (g) ControlNet [36] (h) Cross-Image Attention [1]]. (i) Attention Distillation [39]. (j)
Our model (w/o trajectory refinement). (k) Our model (w/ trajectory refinement).

o(o) = m based on its near-linear SSIM degradation behavior. Full analysis details are provided
in Appendix

To construct a perceptually uniform noise schedule, we empirically analyze the relationship between
SSIM degradation and transformed noise levels ¢(c) for various candidate functions. For each
transformation ¢, a clean image I.ja, is corrupted at N = 50 different noise levels by adding scaled
Gaussian noise as defined in (T)).

5.3.2 Evaluation under Same and Cross Reference Scenarios

Table[2] together with Figures|[Tand 2] supports a category-wise analysis of the evaluation. For clarity,
baselines are grouped into four families: GAN-based (SCFT [18])), train-free attention (Cross-Image
Attention [I]], Attention Distillation [39]), light finetuning (ControlNet [36]), and the AnimeDiffusion
family (pretrained, finetuned, EDM backbone [3} [14]). Our method (SSIMBaD) is reported with and
without trajectory refinement. This organization makes explicit how architectural biases manifest as
distinct trade-offs among structure, realism, and style, and it highlights why SSIMBaD achieves the
most favorable overall balance.

The GAN-based model provides a stable classical anchor. SCFT [18] is competitive under the
same-reference condition and remains relatively robust under cross-reference, yet it consistently



trails SSIMBaD on cross-reference fidelity. Style indicators are moderate. This pattern suggests that
stability alone is insufficient to dominate when the reference is mismatched.

Table 2: Quantitative comparison under both same-reference and cross-reference settings across
fidelity (PSNR, MS-SSIM, FID) and style-aware (LPIPS, CLIP-I, DINOv2-I) metrics. Best results
per column are in bold, second-best are underlined.

Method Training PSNR (1) MS-SSIM (1) FID (1) LPIPS (}) CLIP-I (1) DINOvV2-I (1)
Same Cross | Same Cross | Same Cross | Same Cross | Same Cross | Same Cross ‘

SCFT (I8 300 epochs 17.17 1547 | 07833 0.7627 | 43.98  45.18 | 0.1728 0.5008 | 0.9020 0.8247 | 0.9392 0.8622
AnimeDiffusion [3] (pretrained) 300 epochs 11.39 1139 | 0.6748 0.6721 | 46.96 46.72 | 0.2226 0.5107 | 0.8993 0.8203 | 0.9392 0.8576
AnimeDiffusion [3] (finetuned) 300+10 epochs 13.32 12,52 | 0.7001 0.5683 | 135.12 139.13 | 0.2242 0.5069 | 0.8797 0.8012 | 0.9359 0.8554
ControlNet [36 10 epochs 1474 12.08 | 0.7336 0.2007 | 40.20  50.25 | 0.2043 0.4930 | 0.9194 0.8311 | 0.9640 0.8739
Cross-Image Attention [1] free 13.95 10.60 | 0.7147 0.4932 | 53.63 60.54 | 0.2661 0.4569 | 0.9369 0.8554 | 0.9335 0.8793
Attention Distillation [39 free 19.58 10.08 | 0.8812 0.1252 | 32.93 94.17 | 0.1139 0.5385 | 0.9610 0.8819 | 0.9816 0.8941
SSIMBaD (w/o trajectory refinement) 300 epochs 15.15 13.04 | 0.7115 0.6736 | 53.33 55.18 | 0.1878 0.4889 | 0.8975 0.8332 | 0.9339 0.8605
SSIMBaD (w/ trajectory refinement)  300+10 epochs 18.92 15.84 | 0.8512 0.8207 | 3498 37.10 | 0.1174 0.4804 | 0.9334 0.8508 | 0.9644 0.8826

Train-free attention methods emphasize semantic transfer via attention mechanisms without task-
specific training on our data. As expected, this inductive bias aligns well with style metrics when
the reference is aligned, but it does not reliably preserve structure or realism under mismatch.
Attention Distillation [39] attains best-in-class same-reference columns for both structure and style,
but degrades sharply under cross-reference (for example, MS-SSIM and FID deteriorate markedly),
indicating brittle behavior when appearance cues no longer coincide with content. Cross-Image
Attention [36]] achieves the lowest cross-reference LPIPS, confirming its semantic alignment bias, but
is less competitive on the remaining style indicators and on fidelity.

Light finetuning with ControlNet [36] strengthens several same-reference columns yet exhibits a clear
drop under cross-reference. Style metrics remain decent, which suggests that short finetuning can
amplify appearance cues while risking structural drift and realism loss outside the finetuned regime.

Within the AnimeDiffusion family, the pretrained model [3]] offers a reasonable baseline. Simple
finetuning raises PSNR and, in the same-reference case, MS-SSIM, but severely harms realism
as reflected by large FID values, a characteristic fidelity-versus-realism failure mode. Replacing
the discrete backbone with an EDM formulation [[14] alone slightly perturbs perceptual alignment
in the same-reference regime, which is consistent with the additional optimization burden of a
continuous-time parameterization. Introducing SSIM-aligned sigma-space scaling on the EDM
backbone subsequently recovers and improves structural fidelity, indicating that perceptually paced
scheduling is a principal driver of reconstruction quality.

SSIMBaD combines an EDM backbone [14], SSIM-aligned sigma-space scaling, and a reverse-only
trajectory refinement to deliver the strongest cross-reference fidelity (PSNR, MS-SSIM, FID) while
remaining second-best in the same-reference setting; on style and perception it stays near the top
(LPIPS [38], DINOv2-I [4]) with competitive CLIP-I [24], and qualitative results preserve geometry
and transfer color without oversaturation. The mechanism is that SSIM-aligned scaling spreads
perceptual difficulty evenly across timesteps, yielding steadier training signals and a smoother reverse
trajectory that a lightweight reverse-only refinement can exploit without overfitting the forward
corruption. This accounts for SSIMBaD’s cross-reference advantage and consistently high style
ranks, and it clarifies the robustness gap with train-free attention methods whose semantic focus lacks
explicit structural pacing. In sum, across method families, SSIMBaD offers a balanced and robust
solution that is better suited to practical scenarios with reference mismatch than approaches that peak
on style but falter on structure or realism.

5.3.3 Comparison of Diffusion Schedules in DDPM, EDM, and EDM with SSIM-Aligned
Sigma-Space Scaling

Figure [3]illustrates the behavior of the forward diffusion process for a single training image under
different noise schedules. Specifically, it plots how SSIM values change across timesteps (N = 25)
and visualizes a series of 50 corrupted images corresponding to each timestep, allowing intuitive
assessment of the degree of corruption. These findings emphasize the crucial role of scheduling in
aligning diffusion dynamics with perceptual difficulty.
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Figure 3: Comparison of forward diffusion schedules. Top: SSIM curves for DDPM (a), EDM (b),
and our schedule ¢*(o) (¢). Bottom: 5 x 5 corrupted grids (d)—(f) show each schedule’s visual effect.
Our method yields perceptually uniform degradation across timesteps.

The DDPM baseline employs a cosine-based schedule, designed to increase noise linearly across
discrete timesteps. As seen in the graph in Figure3}(a), DDPM introduces minimal noise during early
steps but abruptly escalates noise levels in later stages, resulting in uneven SSIM degradation(noise
levels) across timesteps. This leads to difficulty in reconstruction during the reverse process.

EDM improves upon DDPM by interpolating noise levels in o-space via a p-parameterized schedule,
yielding a smoother degradation curve (Figure [3}(b)). However, SSIM changes are concentrated in
the mid-o range, with saturation at both ends. As a result, only a portion of the schedule contributes
effectively to training, reducing overall efficiency and biasing learning toward the central region.

As shown in Figure (c), the proposed ¢* (o) schedule, which employs SSIM-aligned sigma-space
scaling, is designed so that SSIM degradation becomes linear with respect to the transformation of o.
The images corresponding to each timestep demonstrate that, at no stage, is there an excessive SSIM
degradation; rather, smooth and balanced noise is introduced at every step. This uniformity ensures
that all diffusion stages become equally important, thereby improving reconstruction reconstruction
fidelity across all frequencies. Furthermore, it enables more stable training and interpretable sampling
behavior.

5.4 Ablation Study

Table 3] summarizes a cumulative ablation from the AnimeDiffusion baseline to three successive
additions: an EDM backbone, SSIM-aligned scaling, and a lightweight reverse-only trajectory
refinement. Moving to EDM raises PSNR in both regimes (same 11.39 to 13.30; cross 11.39 to
12.11) but slightly lowers MS-SSIM and worsens FID, consistent with the higher optimization burden
of a continuous-time formulation paired with a schedule that is not perceptually paced. Adding
SSIM-aligned scaling rebalances per-step corruption by difficulty and recovers structure (PSNR to
15.15/13.04; MS-SSIM to 0.7115/0.6736), while LPIPS decreases in both settings; however, FID
has not yet improved over the baseline. The reverse-only refinement then converts this headroom



into the largest overall gains, yielding the best results across metrics (PSNR 18.92/15.84, MS-SSIM
0.8512/0.8207, FID 34.98/37.10) and pushing style scores near the top (LPIPS 0.1174/0.4804;
DINOv2-1 0.9644/0.8826; competitive CLIP-I). Notably, FID improves by about 12 points in the
same-reference case and 10 points in the cross-reference case relative to the baseline, and the gaps
between same and cross shrink for MS-SSIM and DINOv2-1, indicating stronger style-preserving
generalization. Overall, the pattern is consistent with a synergistic mechanism: SSIM-aligned scaling
equalizes training signal across steps and smooths the reverse trajectory, and a small refinement
confined to that trajectory delivers simultaneous gains in structure and realism, particularly under
reference mismatch.

Table 3: Cumulative ablation study under both same- and cross-reference settings across fidelity
(PSNR, MS-SSIM, FID) and style-aware (LPIPS, CLIP-I, DINOv2-I) metrics. Each added component
incrementally improves model performance across all metrics and settings.

SSIM-aligned + Trajector
Base +EDM sigma-space v Y| PSNR (@) MS-SSIM (1) FID (1) LPIPS (}) CLIP-I (1) DINOvV2-I (1)

. Refinement

scaling

Same Cross | Same Cross | Same Cross | Same Cross | Same Cross | Same Cross
v - - - 11.39 11.39 | 0.6748 0.6721 | 46.96 46.72 | 0.2226 0.5107 | 0.8993 0.8203 | 0.9392 0.8576
v v - - 13.30 12.11 | 0.6426 0.6219 | 52.18 53.60 | 0.2192 0.4925 | 0.8886 0.8300 | 0.9217 0.8527
v ' v - 15.15 13.04 | 0.7115 0.6736 | 53.33 55.18 | 0.1878 0.4889 | 0.8975 0.8332 | 0.9339 0.8605
v v v v 18.92 15.84 | 0.8512 0.8207 | 34.98 37.10 | 0.1174 0.4804 | 0.9334 0.8508 | 0.9644 0.8826

6 Conclusion

This paper presented SSIMBaD, a diffusion framework for anime face colorization that reconciles
training and inference with perceptual difficulty. The central contribution is SSIM-aligned sigma-
space scaling, which reparameterizes the noise schedule to follow an approximately linear SSIM
degradation, yielding uniform perceptual difficulty across steps. Coupled with an EDM backbone
and a lightweight reverse-only trajectory refinement, the framework aligns forward corruption and
reverse reconstruction along a single perceptual trajectory.

Comprehensive experiments on the Danbooru AnimeFace dataset validate the approach. Under
same- and cross-reference conditions, SSIMBaD attains PSNR = 18.92/15.84 dB, MS-SSIM =
0.8512/0.8207, and FID = 34.98/37.10, outperforming SCFT, AnimeDiffusion, and a modified Con-
trolNet baseline (Table[2). Against recent training-free methods, SSIMBaD maintains substantially
stronger structure and realism under reference mismatch, e.g., cross-reference MS-SSIM 0.8207 and
FID 37.10 versus 0.4932/60.54 for Cross-Image Attention and 0.1252/94.17 for Attention Distillation.
Qualitative comparisons in Figures|l|and [2 corroborate these findings.

Ablation studies (Table[3)) show complementary contributions. Moving to EDM improves fidelity;
SSIM-aligned scaling equalizes per-step difficulty and stabilizes optimization; trajectory refinement
then exploits the smoother reverse trajectory to improve realism and semantic coherence. Schedule
analysis (Figure confirms that the proposed scaling produces near-linear SSIM decay (high R?),
avoiding early under- and late over-corruption and improving step efficiency. Additional sensitivity
analyses indicate robustness to solver choice (Euler, Heun) and step allocation, and faster convergence
under equal compute.

Limitations remain in fine-grained details (e.g., small accessories, iris highlights) under extreme
sketch sparsity or large reference—content gaps. Nevertheless, the empirical evidence indicates that
aligning diffusion schedules with perceptual degradation is an effective and general principle. Beyond
anime colorization, SSIM-aligned scaling is readily applicable to other conditional generation tasks
that require structural preservation and perceptual balance, including sketch-to-image synthesis and
controllable diffusion.
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NeurlIPS Paper Checklist

The checklist is designed to encourage best practices for responsible machine learning research,
addressing issues of reproducibility, transparency, research ethics, and societal impact. Do not remove
the checklist: The papers not including the checklist will be desk rejected. The checklist should
follow the references and follow the (optional) supplemental material. The checklist does NOT count
towards the page limit.

Please read the checklist guidelines carefully for information on how to answer these questions. For
each question in the checklist:

* You should answer [Yes] ,

* [NA] means either that the question is Not Applicable for that particular paper or the
relevant information is Not Available.

* Please provide a short (1-2 sentence) justification right after your answer (even for NA).

The checklist answers are an integral part of your paper submission. They are visible to the
reviewers, area chairs, senior area chairs, and ethics reviewers. You will be asked to also include it
(after eventual revisions) with the final version of your paper, and its final version will be published
with the paper.

The reviewers of your paper will be asked to use the checklist as one of the factors in their evaluation.
While "[Yes] " is generally preferable to " ", itis perfectly acceptable to answer " " provided a
proper justification is given (e.g., "error bars are not reported because it would be too computationally
expensive" or "we were unable to find the license for the dataset we used"). In general, answering
" "or "[NA] " is not grounds for rejection. While the questions are phrased in a binary way, we
acknowledge that the true answer is often more nuanced, so please just use your best judgment and
write a justification to elaborate. All supporting evidence can appear either in the main paper or the
supplemental material, provided in appendix. If you answer [Yes] to a question, in the justification
please point to the section(s) where related material for the question can be found.

IMPORTANT, please:

* Delete this instruction block, but keep the section heading ‘“NeurIPS Paper Checklist",
* Keep the checklist subsection headings, questions/answers and guidelines below.

* Do not modify the questions and only use the provided macros for your answers.

1. Claims

Question: Do the main claims made in the abstract and introduction accurately reflect the
paper’s contributions and scope?

Answer: [Yes]

Justification: The scope and contributions of the paper are clearly stated in both the abstract
and the introduction.

Guidelines:
e The answer NA means that the abstract and introduction do not include the claims
made in the paper.

* The abstract and/or introduction should clearly state the claims made, including the
contributions made in the paper and important assumptions and limitations. A No or
NA answer to this question will not be perceived well by the reviewers.

* The claims made should match theoretical and experimental results, and reflect how
much the results can be expected to generalize to other settings.

* It is fine to include aspirational goals as motivation as long as it is clear that these goals
are not attained by the paper.

2. Limitations
Question: Does the paper discuss the limitations of the work performed by the authors?

Answer: [Yes]
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Justification: Limitations such as difficulties in restoring fine details like eye color are
mentioned in the conclusion section.

Guidelines:

* The answer NA means that the paper has no limitation while the answer No means that
the paper has limitations, but those are not discussed in the paper.

* The authors are encouraged to create a separate "Limitations" section in their paper.

 The paper should point out any strong assumptions and how robust the results are to
violations of these assumptions (e.g., independence assumptions, noiseless settings,
model well-specification, asymptotic approximations only holding locally). The authors
should reflect on how these assumptions might be violated in practice and what the
implications would be.

* The authors should reflect on the scope of the claims made, e.g., if the approach was
only tested on a few datasets or with a few runs. In general, empirical results often
depend on implicit assumptions, which should be articulated.

* The authors should reflect on the factors that influence the performance of the approach.
For example, a facial recognition algorithm may perform poorly when image resolution
is low or images are taken in low lighting. Or a speech-to-text system might not be
used reliably to provide closed captions for online lectures because it fails to handle
technical jargon.

* The authors should discuss the computational efficiency of the proposed algorithms
and how they scale with dataset size.

* If applicable, the authors should discuss possible limitations of their approach to
address problems of privacy and fairness.

* While the authors might fear that complete honesty about limitations might be used by
reviewers as grounds for rejection, a worse outcome might be that reviewers discover
limitations that aren’t acknowledged in the paper. The authors should use their best
judgment and recognize that individual actions in favor of transparency play an impor-
tant role in developing norms that preserve the integrity of the community. Reviewers
will be specifically instructed to not penalize honesty concerning limitations.

3. Theory assumptions and proofs

Question: For each theoretical result, does the paper provide the full set of assumptions and
a complete (and correct) proof?

Answer:

Justification: This paper does not present formal theorems or proofs, but provides empirical
evidence.

Guidelines:

* The answer NA means that the paper does not include theoretical results.

* All the theorems, formulas, and proofs in the paper should be numbered and cross-
referenced.

* All assumptions should be clearly stated or referenced in the statement of any theorems.

* The proofs can either appear in the main paper or the supplemental material, but if
they appear in the supplemental material, the authors are encouraged to provide a short
proof sketch to provide intuition.

* Inversely, any informal proof provided in the core of the paper should be complemented
by formal proofs provided in appendix or supplemental material.

* Theorems and Lemmas that the proof relies upon should be properly referenced.

4. Experimental result reproducibility

Question: Does the paper fully disclose all the information needed to reproduce the main ex-
perimental results of the paper to the extent that it affects the main claims and/or conclusions
of the paper (regardless of whether the code and data are provided or not)?

Answer: [Yes]

Justification: The details required to reproduce the main experimental results are provided in
Sections @ and 3] as well as in Appendices[A] [B] and[Fl The code used for the experiments
is also available via an anonymous link.
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Guidelines:

* The answer NA means that the paper does not include experiments.
* If the paper includes experiments, a No answer to this question will not be perceived
well by the reviewers: Making the paper reproducible is important, regardless of
whether the code and data are provided or not.
If the contribution is a dataset and/or model, the authors should describe the steps taken
to make their results reproducible or verifiable.
Depending on the contribution, reproducibility can be accomplished in various ways.
For example, if the contribution is a novel architecture, describing the architecture fully
might suffice, or if the contribution is a specific model and empirical evaluation, it may
be necessary to either make it possible for others to replicate the model with the same
dataset, or provide access to the model. In general. releasing code and data is often
one good way to accomplish this, but reproducibility can also be provided via detailed
instructions for how to replicate the results, access to a hosted model (e.g., in the case
of a large language model), releasing of a model checkpoint, or other means that are
appropriate to the research performed.

While NeurIPS does not require releasing code, the conference does require all submis-

sions to provide some reasonable avenue for reproducibility, which may depend on the

nature of the contribution. For example

(a) If the contribution is primarily a new algorithm, the paper should make it clear how
to reproduce that algorithm.

(b) If the contribution is primarily a new model architecture, the paper should describe
the architecture clearly and fully.

(c) If the contribution is a new model (e.g., a large language model), then there should
either be a way to access this model for reproducing the results or a way to reproduce
the model (e.g., with an open-source dataset or instructions for how to construct
the dataset).

(d) We recognize that reproducibility may be tricky in some cases, in which case
authors are welcome to describe the particular way they provide for reproducibility.
In the case of closed-source models, it may be that access to the model is limited in
some way (e.g., to registered users), but it should be possible for other researchers
to have some path to reproducing or verifying the results.

5. Open access to data and code

Question: Does the paper provide open access to the data and code, with sufficient instruc-
tions to faithfully reproduce the main experimental results, as described in supplemental
material?

Answer: [Yes]

Justification: The paper explicitly mentions that code and implementation details are publicly
available via an anonymized URL provided in the abstract.

Guidelines:

* The answer NA means that paper does not include experiments requiring code.

¢ Please see the NeurIPS code and data submission guidelines (https://nips.cc/
public/guides/CodeSubmissionPolicy) for more details.

* While we encourage the release of code and data, we understand that this might not be
possible, so “No” is an acceptable answer. Papers cannot be rejected simply for not
including code, unless this is central to the contribution (e.g., for a new open-source
benchmark).

* The instructions should contain the exact command and environment needed to run to
reproduce the results. See the NeurIPS code and data submission guidelines (https:
//nips.cc/public/guides/CodeSubmissionPolicy) for more details.

* The authors should provide instructions on data access and preparation, including how
to access the raw data, preprocessed data, intermediate data, and generated data, etc.

* The authors should provide scripts to reproduce all experimental results for the new
proposed method and baselines. If only a subset of experiments are reproducible, they
should state which ones are omitted from the script and why.
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* At submission time, to preserve anonymity, the authors should release anonymized
versions (if applicable).

* Providing as much information as possible in supplemental material (appended to the
paper) is recommended, but including URLSs to data and code is permitted.
6. Experimental setting/details

Question: Does the paper specify all the training and test details (e.g., data splits, hyper-
parameters, how they were chosen, type of optimizer, etc.) necessary to understand the
results?

Answer: [Yes]
Justification: These are fully described in Section [5|and Appendices [A] [B] and [F}
Guidelines:

* The answer NA means that the paper does not include experiments.

* The experimental setting should be presented in the core of the paper to a level of detail
that is necessary to appreciate the results and make sense of them.

* The full details can be provided either with the code, in appendix, or as supplemental
material.
7. Experiment statistical significance

Question: Does the paper report error bars suitably and correctly defined or other appropriate
information about the statistical significance of the experiments?

Answer:

Justification: The paper presents quantitative comparisons using standard metrics (PSNR,
MS-SSIM, FID) without explicitly reporting error bars or statistical significance tests.

Guidelines:

* The answer NA means that the paper does not include experiments.

e The authors should answer "Yes" if the results are accompanied by error bars, confi-
dence intervals, or statistical significance tests, at least for the experiments that support
the main claims of the paper.

* The factors of variability that the error bars are capturing should be clearly stated (for
example, train/test split, initialization, random drawing of some parameter, or overall
run with given experimental conditions).

* The method for calculating the error bars should be explained (closed form formula,
call to a library function, bootstrap, etc.)

* The assumptions made should be given (e.g., Normally distributed errors).

¢ It should be clear whether the error bar is the standard deviation or the standard error
of the mean.

* It is OK to report 1-sigma error bars, but one should state it. The authors should
preferably report a 2-sigma error bar than state that they have a 96% CI, if the hypothesis
of Normality of errors is not verified.

» For asymmetric distributions, the authors should be careful not to show in tables or
figures symmetric error bars that would yield results that are out of range (e.g. negative
error rates).

* If error bars are reported in tables or plots, The authors should explain in the text how
they were calculated and reference the corresponding figures or tables in the text.

8. Experiments compute resources

Question: For each experiment, does the paper provide sufficient information on the com-
puter resources (type of compute workers, memory, time of execution) needed to reproduce
the experiments?

Answer: [Yes]
Justification: All detailed information can be found in Appendix
Guidelines:

* The answer NA means that the paper does not include experiments.
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9.

10.

11.

* The paper should indicate the type of compute workers CPU or GPU, internal cluster,
or cloud provider, including relevant memory and storage.

* The paper should provide the amount of compute required for each of the individual
experimental runs as well as estimate the total compute.

* The paper should disclose whether the full research project required more compute
than the experiments reported in the paper (e.g., preliminary or failed experiments that
didn’t make it into the paper).

Code of ethics

Question: Does the research conducted in the paper conform, in every respect, with the
NeurIPS Code of Ethics https://neurips.cc/public/EthicsGuidelines?

Answer: [Yes]

Justification: The paper does not present ethical concerns or violations of the NeurIPS Code
of Ethics.

Guidelines:

» The answer NA means that the authors have not reviewed the NeurIPS Code of Ethics.

* If the authors answer No, they should explain the special circumstances that require a
deviation from the Code of Ethics.

* The authors should make sure to preserve anonymity (e.g., if there is a special consid-
eration due to laws or regulations in their jurisdiction).

Broader impacts

Question: Does the paper discuss both potential positive societal impacts and negative
societal impacts of the work performed?

Answer:

Justification: Broader impacts such as potential applications in content creation industries
and possible generalization to other image-generation tasks are mentioned, though specific
negative impacts are not extensively detailed.

Guidelines:

» The answer NA means that there is no societal impact of the work performed.

e If the authors answer NA or No, they should explain why their work has no societal
impact or why the paper does not address societal impact.

» Examples of negative societal impacts include potential malicious or unintended uses
(e.g., disinformation, generating fake profiles, surveillance), fairness considerations
(e.g., deployment of technologies that could make decisions that unfairly impact specific
groups), privacy considerations, and security considerations.

* The conference expects that many papers will be foundational research and not tied
to particular applications, let alone deployments. However, if there is a direct path to
any negative applications, the authors should point it out. For example, it is legitimate
to point out that an improvement in the quality of generative models could be used to
generate deepfakes for disinformation. On the other hand, it is not needed to point out
that a generic algorithm for optimizing neural networks could enable people to train
models that generate Deepfakes faster.

* The authors should consider possible harms that could arise when the technology is
being used as intended and functioning correctly, harms that could arise when the
technology is being used as intended but gives incorrect results, and harms following
from (intentional or unintentional) misuse of the technology.

* If there are negative societal impacts, the authors could also discuss possible mitigation
strategies (e.g., gated release of models, providing defenses in addition to attacks,
mechanisms for monitoring misuse, mechanisms to monitor how a system learns from
feedback over time, improving the efficiency and accessibility of ML).

Safeguards

Question: Does the paper describe safeguards that have been put in place for responsible
release of data or models that have a high risk for misuse (e.g., pretrained language models,
image generators, or scraped datasets)?
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Answer: [NA]

Justification: The paper does not deal with sensitive data or models prone to misuse, thus no
specific safeguards are necessary.

Guidelines:

* The answer NA means that the paper poses no such risks.

* Released models that have a high risk for misuse or dual-use should be released with
necessary safeguards to allow for controlled use of the model, for example by requiring
that users adhere to usage guidelines or restrictions to access the model or implementing
safety filters.

 Datasets that have been scraped from the Internet could pose safety risks. The authors
should describe how they avoided releasing unsafe images.

* We recognize that providing effective safeguards is challenging, and many papers do
not require this, but we encourage authors to take this into account and make a best
faith effort.

12. Licenses for existing assets

Question: Are the creators or original owners of assets (e.g., code, data, models), used in
the paper, properly credited and are the license and terms of use explicitly mentioned and
properly respected?

Answer: [Yes]
Justification: These are cited properly from the original source.
Guidelines:

» The answer NA means that the paper does not use existing assets.
* The authors should cite the original paper that produced the code package or dataset.

* The authors should state which version of the asset is used and, if possible, include a
URL.

* The name of the license (e.g., CC-BY 4.0) should be included for each asset.

* For scraped data from a particular source (e.g., website), the copyright and terms of
service of that source should be provided.

o If assets are released, the license, copyright information, and terms of use in the
package should be provided. For popular datasets, paperswithcode.com/datasets
has curated licenses for some datasets. Their licensing guide can help determine the
license of a dataset.

* For existing datasets that are re-packaged, both the original license and the license of
the derived asset (if it has changed) should be provided.

* If this information is not available online, the authors are encouraged to reach out to
the asset’s creators.
13. New assets

Question: Are new assets introduced in the paper well documented and is the documentation
provided alongside the assets?

Answer: [NA]

Justification: No new datasets or significant assets beyond the methodological framework
are introduced.

Guidelines:

* The answer NA means that the paper does not release new assets.

* Researchers should communicate the details of the dataset/code/model as part of their
submissions via structured templates. This includes details about training, license,
limitations, etc.

* The paper should discuss whether and how consent was obtained from people whose
asset is used.

» At submission time, remember to anonymize your assets (if applicable). You can either
create an anonymized URL or include an anonymized zip file.
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14.

15.

16.

Crowdsourcing and research with human subjects

Question: For crowdsourcing experiments and research with human subjects, does the paper
include the full text of instructions given to participants and screenshots, if applicable, as
well as details about compensation (if any)?

Answer: [NA]
Justification: The research does not involve crowdsourcing or human subjects.
Guidelines:
* The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

* Including this information in the supplemental material is fine, but if the main contribu-
tion of the paper involves human subjects, then as much detail as possible should be
included in the main paper.

* According to the NeurIPS Code of Ethics, workers involved in data collection, curation,
or other labor should be paid at least the minimum wage in the country of the data
collector.

Institutional review board (IRB) approvals or equivalent for research with human
subjects

Question: Does the paper describe potential risks incurred by study participants, whether
such risks were disclosed to the subjects, and whether Institutional Review Board (IRB)
approvals (or an equivalent approval/review based on the requirements of your country or
institution) were obtained?

Answer: [NA]
Justification: The research does not involve human subjects.
Guidelines:
* The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

* Depending on the country in which research is conducted, IRB approval (or equivalent)
may be required for any human subjects research. If you obtained IRB approval, you
should clearly state this in the paper.

* We recognize that the procedures for this may vary significantly between institutions
and locations, and we expect authors to adhere to the NeurIPS Code of Ethics and the
guidelines for their institution.

* For initial submissions, do not include any information that would break anonymity (if
applicable), such as the institution conducting the review.

Declaration of LLM usage

Question: Does the paper describe the usage of LLMs if it is an important, original, or
non-standard component of the core methods in this research? Note that if the LLM is used
only for writing, editing, or formatting purposes and does not impact the core methodology,
scientific rigorousness, or originality of the research, declaration is not required.

Answer: [NA]

Justification: The paper does not utilize large language models (LLMs) in its methodological
approach.

Guidelines:

* The answer NA means that the core method development in this research does not
involve LLMs as any important, original, or non-standard components.

* Please refer to our LLM policy (https://neurips.cc/Conferences/2025/LLM)
for what should or should not be described.
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Appendix

A Details of the Proposed Framework

A.1 Conditional Input Construction

Let Iy, € RTXW>3 denote the RGB ground-truth anime image, where H and W are the spatial
resolution of the image. To form a pair of conditioning signals that guide both structure and style
reconstruction, we derive two distinct inputs from Iy: a structural sketch and a perturbed reference.

Sketch Extraction The sketch g 18 extracted via the extended Difference-of-Gaussians (XDoG)
operator [35]], which enhances edge-like regions through nonlinear contrast enhancement. Formally:

Tskerch = XDOG(Igt) c RHEXWx1 1)

This 1-channel sketch preserves high-frequency structure such as contours and character outlines,
serving as a strong spatial constraint during generation.

Reference Transformation To simulate reference-guided generation under diverse style domains,
we construct a distorted version of I using a sequence of geometric transformations. First, a Thin
Plate Spline (TPS) deformation is applied to introduce local warping, followed by random global
rotations to inject non-aligned style cues:

Iref = ROtate(TPS(Igt)) c RHXWX?,. (13)

This 3-channel reference encodes the target color palette and texture, potentially with mild spatial
misalignments.

Channel-Wise Conditioning The final conditional input is formed by concatenating the sketch
and reference along the channel dimension:

Icond = [Iref || Isketch] S RHXWX47 (14)

where || denotes channel-wise concatenation. This composite input retains both semantic layout and
color style information, enabling the network to model structural consistency and stylization jointly.
Note that Iong is held fixed throughout each diffusion trajectory to serve as a conditioning context for
the denoiser.

A.2 Incorporating EDM

We reformulate [3] within the continuous-time framework of EDM [14], preserving its U-Net-based
conditional denoiser Fy while adopting a noise-level parameterization based on a continuous scale
o rather than a discrete timestep ¢. This transition from discrete to continuous noise coordinates
enables finer-grained modeling of the forward and reverse processes, as well as improved control
over perceptual degradation across the diffusion trajectory.

Under the EDM formulation, the forward process perturbs a ground-truth image I into a noisy
observation [ by adding Gaussian noise of standard deviation o:

Do (Inoise | Icond) = / N (Inoise; Igta 021) pdata(Igt | Icnnd) dIgt; (15)
RHXW x3

where I o is a fixed conditioning tensor (e.g., reference and sketch) and I denotes the identity matrix.

This parameterization allows the model to operate over a continuous spectrum of noise intensities,

removing the timestep discretization bottleneck of DDPM [13]].

Noise-Aware Preconditioning To stabilize training and normalize feature magnitudes across
varying o, EDM applies a noise-aware preconditioning scheme [14]. The denoiser Dy is constructed
as a residual mapping composed of pre-scaled input/output paths:

Dy (Inoisea Teond; U) = Cskip(o')lnoise + Cout(g) - Fy (Cin(a')]noisea Leond; CnOiSC(U))a (16)



where ¢jn, Cout, and cqip are scale-dependent coefficients defined as:
2
0 data c _ g i = 1 o = —
2 2 ) out — 2 b m — 2 b noise —
oo+ T data V o? + O data V o? + O data 4

This formulation ensures that input features have consistent scale, preventing signal collapse at low
noise or amplification at high noise levels. In practice, we use gy, = 0.5.

Cskip = Ino.

Training Objective Unlike DDPM which samples timesteps t € {1, ..., T}, EDM samples ln o
from a normal distribution N ( Ppean, R%d) The training loss is defined over random o as:

L= IEln o ~N (Puean, P2,) EIgledala IE:an(O,o21) ”DO(Igt + n, Ieond; 0) - Igt||2 . (I7)

std

Sampling via Reverse-Time ODE At inference time, EDM uses a score-based formulation to
define a reverse-time ordinary differential equation (ODE) that approximates the likelihood gradient
with the denoiser output:

DG ([noise; Icond; J) - Inoise

vlnoi,e 1ng(lnoise | Icond; 0) ~ o2 s (18)
leading to the continuous reverse-time dynamics:
d1noi 1
e (DG(Inoise;Icond;U) - Inoise) . (19)
dt o

Sigma Schedule and Discretization To discretize this process, we apply the Euler method using a
p-parameterized sigma schedule:

. p
Ji—[al/p +z(01/ﬂ01/P)] , i=0,1,...,N—1. (20)

max N—1 min max
We initialize the trajectory from pure noise I(N =1 ~ A/ (0,1) and integrate the ODE in reverse over
the precomputed {o; } sequence. The denoising step at each index ¢ is performed as:
At;

gi

JE=D — 1)

(Da(f(i)Jcond;Gi) - I(i)) , Aty =0, -0 1. (21

This continuous-time formulation enables [3]] to benefit from the architectural and sampling improve-
ments of EDM, while retaining its original conditioning and loss structure. In Sectiond.1] we further
extend this pipeline by introducing a perceptual scaling of ¢ to ensure uniform SSIM degradation
across steps.

B Details on SSIM-Aligned Sigma-Space Scaling

To design a perceptually uniform noise schedule, we empirically analyze the relationship between
SSIM degradation and transformed noise levels ¢(o) across various candidate functions. For each
transformation ¢, a clean image I ey is corrupted at N = 50 distinct noise levels by adding
scaled Gaussian noise as described in (I). We then compute the SSIM between each noisy image
and its clean counterpart to obtain a degradation curve. To quantify the perceptual consistency of
each transformation, we plot SSIM values against ¢(o) and measure the linearity of the resulting
curve using the coefficient of determination (R?). This procedure is applied to 1% of randomly
sampled training images, each undergoing 50 corruption steps, yielding a comprehensive perceptual
degradation profile across a wide range of noise intensities.

As illustrated in Figure 4] plotting SSIM against ¢ (o) reveals that certain transformations induce
nearly linear degradation. In particular, bounded squash functions of the form

¢(0) =

o
o—+c

produce the most perceptually uniform trends. Among these, ¢(o) = ﬁ

linearity with an R? value of 0.9949. Based on this result, we adopt this transformation as our default

achieves near-perfect
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Figure 4: SSIM degradation across various transformations ¢(c). Each curve shows the SSIM
between the clean image and its noisy counterpart as the noise level o increases, under a specific
transformation ¢. The transformations are ordered by increasing linearity (R?). Among them,
bounded squash functions of the form ¢(c) = > exhibit the most linear degradation trends. In
particular, ¢(0) = — +o3 achieves near-perfect linearity, making it well-suited for constructing
perceptually uniform sigma schedules. For clarity, we visualize a representative subset of the
evaluated transformations.

scaling function in sigma-space. Table [1| summarizes the R? values for representative candidate
functions.

Finally, we construct our noise schedule by uniformly sampling steps in the transformed ¢-space
and applying the inverse of the selected transformation to compute the corresponding o values,
as defined in (3). This perceptually aligned schedule ensures that each diffusion step contributes
uniformly to structural degradation, which is critical for achieving balanced and stable restoration
during generation.

C Extended Qualitative Comparisons

To complement our main results, we present qualitative comparisons in both same-reference and
cross-reference scenarios (Figures [5]and [6)). In the same-reference scenario, our model produces
visually faithful results that align well with both structure and style. In the cross-reference scenario,
it generalizes robustly to unseen references, avoiding oversaturation and preserving content. These
results highlight the benefit of SSIM-aligned sigma-space scaling and trajectory refinement in
achieving perceptually consistent generation.



C.1 Same-Reference Scenario

Figure 5: Qualitative comparison under the same-reference scenario. (a) Sketch input. (b)
Reference image. (¢) SCFT [I8]]. (d) AnimeDiffusion [3]] (pretrained). (e) AnimeDiffusion [3]]
(finetuned). (f) AnimeDiffusion (EDM backbone, default o-schedule). (g) ControlNet [36]. (h)
Cross-Image Attention [1]]. (i) Attention Distillation [39]. (j) Our model (w/o trajectory refinement).
(k) Our model (w/ trajectory refinement).



C.2 Cross-Reference Scenario

Figure 6: Qualitative comparison under the cross-reference scenario. (a) Sketch input. (b)
Reference image. (¢) SCFT [18]]. (d) AnimeDiffusion [3]] (pretrained). (e) AnimeDiffusion [3]]
(finetuned). (f) AnimeDiffusion (EDM backbone, default o-schedule). (g) ControlNet [36]. (h)

Cross-Image Attention [1]]. (i) Attention Distillation [39]. (j) Our model (w/o trajectory refinement).
(k) Our model (w/ trajectory refinement).



D Why Did We Add Rotation to TPS?

Table 4: Quantitative results without TPS rotation under both same-reference and cross-reference
settings. Finetuning improves visual fidelity in both conditions.

Method PSNR 1

Same Cross

MS-SSIM 1
Same Cross

FID |
Same Cross

20.55 11.34
23.10 14.00

0.8446  0.5996
0.9190 0.7714

56.18  65.69
2435 40.73

SSIMBaD (w/o trajectory refinement)
SSIMBaD (w/ trajectory refinement)

Despite visually plausible results in Figure [8] especially after trajectory refinement, Table [ reveals a
significant performance gap between same- and cross-reference scenarios. For instance, PSNR drops
from 23.10 dB to 14.00 dB, and MS-SSIM from 0.9190 to 0.7714, highlighting limited referential
generalization. To address this, we introduce a lightweight affine rotation into the TPS pipeline,
improving alignment between the sketch and reference. As shown in Table [2] incorporating TPS
rotation reduces the PSNR and MS-SSIM gaps from 9.1 dB and 0.1476 to 3.08 dB and 0.0305,
respectively. FID also improves, and our method surpasses all baselines under cross-reference
scenario while retaining strong performance in the same-reference scenario.

E Does SSIM Behave as Intended During Generation?

101 —e— Reverse (Generation)

—- Reverse Linear Fit (R*=0.9944)
—¢ Forward (Corruption)

1 Forward Linear Fit (R*=0.9902)
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(a) Ours (w/o trajectory refinement) (b) Ours (w/ trajectory refinement)

Figure 7: SSIM vs ¢(o) curves for the same input image under forward (corruption, red) and
reverse (generation, blue) processes. Finetuning improves perceptual linearity in certain regions, but
quickly saturates due to existing generation dynamics. The model nonetheless maintains an overall
perceptually stable trajectory, suggesting potential for further improvement through trajectory-aware
objectives.

To visually examine how closely the model’s generation aligns with the intended noise schedule, we
plot SSIM against ¢ (o )* for both the forward (corruption) and reverse (generation) processes, using
the same input image and schedule.

Figure [/|compares this alignment before and after trajectory refinement. In both cases, the forward
trajectory (red) shows near-perfect linear SSIM degradation, serving as a perceptual baseline. Notably,
the reverse trajectory (blue) already exhibits a fair degree of linearity even before trajectory refinement,
suggesting that the model implicitly learns to follow the ¢(c)* path.

Importantly, trajectory refinement does not disrupt this linearity, preserving perceptual consistency
while improving sample quality. These results highlight the robustness of our noise schedule
and suggest that further improvements may be possible by designing more principled refinement
objectives, which we leave for future work.



Figure 8: Comparison under same- and cross-reference scenarios without TPS rotation. (a)
Sketch input. (b) Reference image (same style). (c) Reference image (cross style). (d—e) Our
model under same-reference scenario (w/o and w/ trajectory refinement, no TPS rotation). (f—g) Our
model under cross-reference scenario (w/o and w/ trajectory refinement, no TPS rotation). Even
without explicit rotation-based alignment, our model preserves structural integrity and transfers style
consistently across reference domains, outperforming baselines in both scenarios.



F Implementation Details

To ensure rigorous and reproducible comparisons, we reimplemented each baseline model under a
standardized pipeline. All models were trained and evaluated on the same dataset split, using identical
image resolution (256 x 256), batch size (32), and consistent data augmentation strategy.

Hardware environment : 2x NVIDIA H100 SXM5 GPUs with a 128-core AMD EPYC 9354
CPU and 512GB RAM. Experiments were conducted using PyTorch 2.1.0 with AMP-based mixed-
precision training.

Common hyperparameters :
* Optimizer: AdamW; Learning rate: 1 x 10~%; Weight decay: 1 x 1072
* Scheduler: Cosine decay with 1 epoch warmup

» Epochs: 300; Batch size: 32; Gradient clipping: max-norm of 1.0
* Distributed training via PyTorch Lightning DDP; 64 data loading workers

F.1 Pretraining Comparisons

For fair comparison of the pretraining phase, we evaluated models based on their ability to learn
from distorted reference inputs and produce structure-preserving reconstructions.

SCFT [18] :

* Dense semantic correspondence-based reference transfer model originally designed for
exemplar-guided colorization

» Adapted to 256 x 256 resolution

* Trained from scratch on our dataset with the same optimizer, learning rate schedule, and
number of epochs

AnimeDiffusion [3] :
* Diffusion-based colorization model trained with fixed iDDPM-style 3-schedule [[13]]
* Inference conducted using 50 denoising steps with DDIM [29]
* Official implementation modified for consistent data split and batch size

F.2 Finetuning Comparisons

Finetuning Settings :

* Strategy: MSE, depending on baseline capability
* Inference time steps: 50 (Euler or DDIM sampling for diffusion models)
* Finetuning conducted with preloaded pretrained weights on the same hardware

AnimeDiffusion [3] :

* MSE-based perceptual finetuning with 50-step DDIM inference [29]
* Reference and sketch inputs preserved; distorted images created via noise+augmentation

SSIMBaD (Ours):
* Pretrained with SSIM-aligned ¢* (o) schedule for uniform perceptual degradation
* Finetuned using MSE loss, with explicit control over 50 step inference trajectory
F.3 Evaluation Metrics :

For both stages, we report PSNR, MS-SSIM [34], and FID [12]]. All models were evaluated using
50-step sampling, and outputs were resized to 256 x 256 prior to metric computation.
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