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Abstract
In the context of adversarial robustness, we make
three strongly related contributions. First, we
prove that while attacking ReLU classifiers is NP -
hard, ensuring their robustness at training time is
Σ2

P -hard (even on a single example). This asym-
metry provides a rationale for the fact that robust
classifications approaches are frequently fooled
in the literature. Second, we show that inference-
time robustness certificates are not affected by this
asymmetry, by introducing a proof-of-concept ap-
proach named Counter-Attack (CA). Indeed, CA
displays a reversed asymmetry: running the de-
fense is NP -hard, while attacking it is ΣP

2 -hard.
Finally, motivated by our previous result, we ar-
gue that adversarial attacks can be used in the
context of robustness certification, and provide an
empirical evaluation of their effectiveness. As a
byproduct of this process, we also release UG100,
a benchmark dataset for adversarial attacks.

1. Introduction
Adversarial attacks, i.e. algorithms designed to fool ma-
chine learning models, represent a significant threat to the
applicability of such models in real-world contexts (Brown
et al., 2017; Brendel et al., 2019; Wu et al., 2020). Despite
years of research effort, countermeasures (i.e. “defenses”) to
adversarial attacks are frequently fooled by applying small
tweaks to existing techniques (Carlini & Wagner, 2016;
2017a; He et al., 2017; Hosseini et al., 2019; Tramer et al.,
2020; Croce et al., 2022). We argue that this pattern is
due to differences between the fundamental mathematical
problems that defenses and attacks need to tackle, and we
investigate this topic by providing three contributions.

First, we prove a set of theoretical results about the complex-
ity of attack and training-time defense problems, including
the fact that attacking a ReLU classifier is NP -hard in the
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general case, while finding a parameter set that makes a
ReLU classifier robust on even a single input is ΣP

2 -hard. To
the best of our knowledge, this is the first complexity bound
for general ReLU classifiers, and the main contribution of
this work. We also provide more general bounds for non-
polynomial classifiers, and show in particular that an A-time
classifier can be attacked in NPA time. Instead of using a
PAC-like formalization, we rely on a worst-case semantic
of robustness. This approach results in a formalization that
is both more easier to deal with and independent of data dis-
tribution assumptions, while still providing a rationale for
difficulties in training robust classifiers that are well-known
in the related literature. Our proofs also lay the ground work
for identifying tractable classes of defenses.

Second, we prove by means of an example that inference-
time defenses can sidestep the asymmetry. Our witness is
a proof-of-concept approach, referred to as Counter-Attack
(CA), that evaluates robustness on the fly for a specific input
(w.r.t. to a maximum distance ε) by running an adversarial
attack. Properties enjoyed by this technique are likely to
extend to other inference-time defense methods, if they
are based on similar principles. Notably, when built over
an exact attack, generating a certificate is NP -hard in the
worst case, ε-bounded attacks are impossible, and attacking
using perturbations of magnitude ε′ > ε is ΣP

2 -hard. On
the other hand, using a non-exact attack results in partial
guarantees (no false positives for heuristic attacks, no false
negatives for bounding techniques).

Finally, since our results emphasize the connection between
verification and attack problems, we provide an empirical in-
vestigation of the use of heuristic attacks for verification. We
found heuristic attacks to be high-quality approximators for
exact decision boundary distances: a pool of seven heuristic
attacks provided an accurate (average over-estimate between
2.04% and 4.65%) and predictable (average R2 > 0.99) ap-
proximation of the true optimum for small-scale Neural
Networks trained on the MNIST and CIFAR10 datasets. We
release1 our benchmarks and adversarial examples (both
exact and heuristic) in a new dataset, named UG100.

Overall, we hope our contributions can support future re-
search by highlighting potential structural challenges, point-

1All our code, models, and data are available under MIT license
at https://github.com/samuelemarro/counter-attack.
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ing out key sources of complexity, inspiring research on
heuristics and tractable classes, and suggesting alternative
perspectives on how to build robust classifiers.

2. Background and Formalization
In this section, we introduce key definitions (adapted from
Dreossi et al. (2019)) that we will use to frame our results.
Our aim is to capture the key traits shared by most of the
literature on adversarial attacks, so as to identify properties
that are valid under broad assumptions.

Adversarial Attacks and Robustness We start by defin-
ing the concept of adversarial example, which intuitively
represents a modification of a legitimate input that is so
limited as to be inconsequential for a human observer,
but sufficient to mislead a target model. Formally, let
f : X → {1, . . . , N} be a discrete classifier. Let
Bp(x, ε) = {x′ ∈ X | ∥x − x′∥p ≤ ε} be a Lp ball of
radius ε and center x. Then we have:
Definition 2.1 (Adversarial Example). Given an input x,
a threshold ε, and a Lp norm2, an adversarial example is
an input x′ ∈ Bp(x, ε) such that f(x′) ∈ C(x), where
C(x) ⊆ {1, . . . , N} \ {f(x)}.

This definition is a simplification compared to human per-
ception, but it is adequate for a sufficiently small ε, and it is
adopted in most of the relevant literature. An adversarial
attack can then be viewed as an optimization procedure that
attempts to find an adversarial example. We define an adver-
sarial attack for a classifier f as a function af,p : X → X
that solves the following optimization problem:

argmin
x′∈X

{∥x′ − x∥p | f(x′) ∈ C(x)} (1)

The attack is considered successful if the returned solu-
tion x′ = af,p(x) also satisfies ∥x′ − x∥p ≤ ε. We say
that an attack is exact if it solves Equation (1) to optimal-
ity (or, in the case of its decision variant, if it succeeds
if and only if a solution exists); otherwise, we say that
the attack is heuristic. An attack is said to be targeted if
C(x) = Ct,y′(x) = {y′} with y′ ̸= f(x); it is instead un-
targeted if Cu(x) = {1, . . . , N} \ {f(x)}. We define the
decision boundary distance d∗p(x) of a given input x as the
minimum Lp distance between x and another input x′ such
that f(x) ̸= f(x′). This is also the value of ∥af,p(x)−x∥p
for an exact, untargeted, attack.

Intuitively, a classifier is robust w.r.t. an example x iff x
cannot be successfully attacked. Formally:
Definition 2.2 ((ε, p)-Local Robustness). A discrete clas-
sifier f is (ε, p)-locally robust w.r.t. an example x ∈ X iff
∀x′ ∈ Bp(x, ε) we have f(x′) = f(x).

2We use the term “norm” for 0 < p < 1 even if in such cases
the Lp function is not subadditive.

Under this definition, finding a parameter set θ that makes a
classifier fθ robust on x0 can be seen as solving the follow-
ing constraint satisfaction problem:

find θ s. t. ∀x′ ∈ Bp(x0, ε).fθ(x
′) = fθ(x) (2)

which usually features an additional constraint on the min-
imum clean accuracy of the model (although we make no
assumptions on this front). Note that classifiers are usually
expected to be robust on more than one point. However, we
will show that the computational asymmetry exists even if
we require robustness on a single point.

A common optimization reformulation of Equation (2),
which enforces robustness and accuracy, is the nested op-
timization problem used for adversarial training in Madry
et al. (2018). Specifically, if we have a single ground truth
data point ⟨x0, y⟩, the optimization problem is:

argmin
θ

max
x′∈Bp(x0,ε)

L(θ,x′, y0) (3)

where L is a proxy for fθ(x′) = y (e.g. the cross entropy
loss between fθ(x

′) and y). The link between ∃∀ queries
(such as that in Equation (2) and nested optimization prob-
lems (such as that in Equation (3)) underlies the intuition of
several of our theoretical results (see Section 3.1).

ReLU Networks and FSFP Spaces Additionally, our
results rely on definitions of ReLU networks and FSFP
spaces.

Definition 2.3 (ReLU network). A ReLU network is a
composition of sum, multiplication by a constant, and
ReLU activation, where ReLU : R → R+

0 is defined as
ReLU(x) = max(x, 0).

Note that any hardness result for ReLU classifiers also ex-
tends to general classifiers.

Fixed-Size Fixed-Precision (FSFP) spaces, on the other
hand, capture two common assumptions about real-world
input spaces: all inputs can be represented with the same
number of bits and there exists a positive minorant of the
distance between inputs.

Definition 2.4 (Fixed-Size Fixed-Precision space). Given
a real p > 0, a space X ⊆ Rn is FSFP if there exists a
ν ∈ N such that ∀x.|r(x′)| ≤ ν (where |r(x)| is the size of
the representation of x) and there exists a µ ∈ R such that
µ > 0 and ∀x,x′ ∈ X. (∥x′ − x∥p < µ =⇒ x = x′).

Examples of FSFP spaces include most image encodings,
as well as 32-bit and 64-bit IEE754 tensors. Examples of
non-FSFP spaces include the set of all rational numbers in
an interval. Similarly to ReLU networks, hardness results
for FSFP spaces also apply to more general spaces.
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ΣP
2 Complexity Several of our theoretical results concern

complexity classes in the Polynomial Hierarchy such as
ΣP

2 . ΣP
2 is the class of problems that can be solved in NP

time if we have an oracle that solves an NP -time problem
in O(1). ΣP

2 -hard problems include finding a strong Nash
equilibrium (Gottlob et al., 2011) and coΠ23SAT (Stock-
meyer, 1976). A notable conjecture is the Polynomial Hi-
erarchy conjecture (Stockmeyer, 1976), a generalization of
the P ̸= NP conjecture which states that the Polynomial Hi-
erarchy does not collapse (i.e. P ⊊ NP ⊊ ΣP

2 ⊊ ΣP
3 . . . ).

In other words, under broad assumptions, we cannot solve a
ΣP

2 -hard problem efficiently even if we can solve NP -hard
problems in constant time.

3. An Asymmetrical Setting
In this section, we prove the existence of a structural asym-
metry between the computational classes of attack and
training-time defense problems (barring the collapse of the
Polynomial Hierarchy) by studying their decision versions3.
While the asymmetry is worst-case in nature, it holds un-
der broad assumptions and provides an explanation for why
attacks seem to outperform defenses in practice.

3.1. Intuition

The intuition behind our theorems consists in three main
observations:

• ReLU networks, due to their expressive power, are
capable of computing input-output relations that are at
least as complex as Boolean formulae;

• Attacking usually requires solving an optimization
problem, whose decision variant (finding any adversar-
ial example) can be expressed as an ∃ query;

• Training a robust classifier, on the other hand, usually
requires solving a nested optimization problem, whose
decision variant (finding any robust parameter set) can
be expressed as an ∃∀ query.

From these considerations, we show that solving 3SAT can
be reduced to attacking the ReLU classifier that computes
the corresponding Boolean formula, and thus that attacking
a ReLU classifier is NP -hard (Theorem 3.1).

We then prove that, given a 3CNF formula z(x,y), it is
possible to build a ReLU classifier fx(y) (where x are pa-
rameters and y are inputs) that computes the same formula.
We use this result to prove that coΠ23SAT (a subclass of
TQBF that is known to be ΣP

2 -hard) can be reduced to
finding a parameter set that makes f robust, which means
that the latter is ΣP

2 -hard (Theorem 3.7).

Note that, when performing the reductions, we choose the

3Note that hardness results for decision problems trivially ex-
tend to their corresponding optimization variants.

ReLU networks that we need to solve the corresponding
problem without considering how likely they are to arise
in natural settings. This approach (which is common in
proofs by reduction) allows us to study the worst-case com-
plexity of both tasks without making assumptions on the
training distribution or the specifics of the learning algo-
rithm. Studying the average-case complexity of such tasks
would of course be of great importance, however: 1) such an
approach would require to introduce assumptions about the
training distribution; and 2) despite the recent advancements
in fields such as PAC learning, average case proof in this
setting are still very difficult to obtain except in very specific
cases (see Section 3.4). We hope that our theoretical contri-
butions will allow future researchers to extend our work to
average-case results.

In short, while our theorems rely on specific instances of
ReLU classifiers, they capture very general phenomena:
ReLU networks can learn functions that are at least as com-
plex as Boolean formulae, and robust training requires solv-
ing a nested optimization problem. The proofs thus provide
an intuition on the formal mechanisms that underly the com-
putational asymmetries, while at the same time outlining
directions for studying tractable classes (since both 3SAT
and TQBF are extensively studied in the literature).

3.2. Preliminaries

We begin by extending the work of Katz et al. (2017), who
showed that proving linear properties of ReLU networks is
NP -complete. Specifically, we prove that the theorem holds
even in the special case of adversarial attacks:

Theorem 3.14 (Untargeted L∞ attacks against ReLU classi-
fiers are NP -complete). Let U -ATTp be the set of all tuples
⟨x, ε, f⟩ such that:

∃x′ ∈ Bp(x, ε).f(x
′) ̸= f(x) (4)

where x ∈ X , X is a FSFP space and f is a ReLU classifier.
Then U -ATT∞ is NP -complete.

Corollary 3.2. For every 0 < p ≤ ∞, U -ATTp is NP -
complete.

Corollary 3.3. Targeted Lp attacks (for 0 < p ≤ ∞)
against ReLU classifiers are NP -complete.

Corollary 3.4. Theorem 3.1 holds even if we consider the
more general set of polynomial-time classifiers w.r.t. the
size of the tuple.

A consequence of Theorem 3.1 is that the complementary
task of attacking, i.e. proving that no adversarial example
exists (which is equivalent to proving that the classifier is
locally robust on an input), is coNP -complete.

4The proofs of all our theorems and corollaries can be found in
the appendices.
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We then provide a more general upper bound that holds for
classifiers in any complexity class:

Theorem 3.5 (Untargeted Lp attacks against A-time clas-
sifiers are in NPA). Let A be a complexity class, let f be
a classifier, let Zf = {⟨x, y⟩ | y = f(x),x ∈ X} and
let U -ATTp(f) = {⟨x, ε, g⟩ ∈ U -ATT ′

p | g = f}, where
U -ATT ′

p is the same as U -ATTp but without the ReLU
classifier restriction. If Zf ∈ A, then for every 0 < p ≤ ∞,
U -ATTp(f) ∈ NPA.

Corollary 3.6. For every 0 < p ≤ ∞, if Zf ∈ ΣP
n , then

U -ATTp(f) ∈ ΣP
n+1.

As a consequence, if Zf ∈ P , then U -ATTp(f) ∈ NP .
Informally, Theorem 3.1 establishes that, under broad as-
sumptions, evaluating and attacking a general classifier are
in complexity classes that are strongly conjectured to be
distinct, with the attack problem being the harder one. Note
that, in some special cases, one can obtain polynomial-time
classifiers with polynomial-time attacks by placing addi-
tional restrictions on the input distribution and/or the struc-
ture of the classifier. Refer to Section 3.4 for an overview
of such approaches.

3.3. Complexity of Robust Training

We then proceed to prove our main result, i.e. that finding a
robust parameter set, as formalized by our semantic, is in a
distinct complexity class compared to the attack problem.

Theorem 3.7 (Finding a set of parameters that make a ReLU
network (ε, p)-locally robust on an input is ΣP

2 -complete).
Let PL-ROBp be the set of tuples ⟨x, ε, fθ, v⟩ such that:

∃θ′. (vf (θ
′) = 1 =⇒ ∀x′ ∈ Bp(x, ε).fθ′(x′) = fθ′(x))

(5)
where x ∈ X , X is a FSFP space and vf is a polynomial-
time function that is 1 iff the input is a valid parameter set
for f . Then PL-ROB∞ is ΣP

2 -complete.

Corollary 3.8. PL-ROBp is ΣP
2 -complete for all 0 < p ≤

∞.

Corollary 3.9. Theorem 3.7 holds even if, instead of ReLU
classifiers, we consider the more general set of polynomial-
time classifiers w.r.t. the size of the tuple.

The ΣP
2 complexity class includes NP and is conjectured

to be strictly harder (as part of the Polynomial Hierarchy
conjecture). In other words, if the Polynomial Hierarchy
conjecture holds, robustly training a general ReLU clas-
sifier is strictly harder than attacking it. Note that our
results hold in the worst-case, meaning there can be specific
circumstances under which guaranteed robustness could be
achieved with reasonable effort. However, in research fields
where similar asymmetries are found, they tend to translate
into practically meaningful difficulty gaps: for example,

∃∀ Quantified Booolean Formula problems (which are ΣP
2 -

complete) are in practice much harder to solve than pure
SAT problems (which are NP -complete).

We conjecture this is also the case for our result, as it mirrors
the key elements in the SAT/TQBF analogy. First, generic
classifiers can learn (and are known to learn) complex input-
output mappings with many local optima. Second, while
attacks rely on existential quantification (finding an exam-
ple), achieving robustness requires addressing a universally
quantified problem (since we need to guarantee the same
prediction on all neighboring points).

3.4. Relevance of the Result and Related Work

In this section we discuss the significance of our results,
both on the theoretical and the practical side.

Theoretical Relevance As we mentioned, results about
polynomial-time attack and/or robustness certificates are
available, but under restrictive assumptions. For example,
Mahloujifar & Mahmoody (2019) showed that there exist
exact polynomial-time attacks against classifiers trained
on product distributions. Similarly, Awasthi et al. (2019)
showed that for degree-2 polynomial threshold functions
there exists a polynomial-time algorithm that either proves
that the model is robust or finds an adversarial example.

Other complexity lower bounds also exist, but again they
apply under specific conditions. Degwekar et al. (2019),
extending the work of Bubeck et al. (2018) and Bubeck
et al. (2019), showed that there exist certain cryptography-
inspired classification tasks such that learning a classifier
with a robust accuracy of 99% is as hard as solving the
Learning Parity with Noise problem (which is NP -hard).
On the other hand, Song et al. (2021) showed that learning
a single periodic neuron over noisy isotropic Gaussian dis-
tributions in polynomial time would imply that the Shortest
Vector Problem (conjectured to be NP -hard) can be solved
in polynomial time.

Finally, Garg et al. (2020) provided an average-case com-
plexity analysis, by introducing assumptions on the data-
generation process. In particular, by requiring attackers to
provide a valid cryptographic signature for inputs, it is possi-
ble to prevent attacks with limited computational resources
from fooling the model in polynomial time.

Compared to the above results, both Theorem 3.1 and Theo-
rem 3.7 apply to a wider class of models. In fact, to the best
of our knowledge, Theorem 3.7 is the first robust training
complexity bound for general ReLU classifiers.

Empirical Relevance Theorems 3.1 and 3.7 imply that
training-time defenses can be strictly (and significantly)
harder than attacks. This result is consistent with a recurring
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pattern in the literature where new defenses are routinely
broken. For example, defensive distillation (Papernot et al.,
2016) was broken by Carlini & Wagner (2016). Carlini
also showed that several adversarial example detectors (Car-
lini & Wagner, 2017a), as well as model-based purifiers
(Carlini & Wagner, 2017b) can be fooled. Similarly, He
et al. (2017) showed that ensembles of weak defenses can
be fooled, while the defense of Roth et al. (2019) was fooled
by Hosseini et al. (2019). Finally, Tramer et al. (2020) and
Croce et al. (2022) broke a variety of adaptive defenses.

While our theorems formally hold only in the worst case,
they rely at their core on two properties that can be expected
to be practically relevant, and namely: 1) that NNs can
learn response surfaces that are as complex as Boolean
formulas, and 2) that robustness involves universal rather
then existential quantification. For this reason, we think
that the asymmetry we identified can provide valuable
insight into a large body of empirical work.

3.5. Additional Sources of Asymmetry

On top of our identified structural difference, there are addi-
tional factors that may provide an advantage to the attacker,
despite the fact that they lack a formal characterization at
the moment of writing. We review them in this section, both
as promising directions for future theoretical research, and
since awareness of them can support efforts to build more
robust defenses.

First, the attacker can gather information about the target
model, e.g. by using genuine queries (Papernot et al., 2017),
while the defender does not have such an advantage. As a
result, the defender often needs to either make assumptions
about adversarial examples (Hendrycks & Gimpel, 2017;
Roth et al., 2019) or train models to identify common prop-
erties (Feinman et al., 2017; Grosse et al., 2017). These
assumptions can be exploited, such as in the case of Carlini
& Wagner (2017a), who generated adversarial examples that
did not have the expected properties.

Second, the attacker can focus on one input at the time,
while the defender has to guarantee robustness on a large
subset of the input space. This weakness can be exploited:
for example, MagNet (Meng & Chen, 2017) relies on a
model of the entire genuine distribution, which can be some-
times inaccurate. Carlini & Wagner (2017b) broke MagNet
by searching for examples that were both classified differ-
ently and mistakenly considered genuine.

Finally, defenses cannot significantly compromise the accu-
racy of a model. Adversarial training, for example, often
reduces the clean accuracy of the model (Madry et al., 2018),
leading to a trade-off between accuracy and robustness.

All of these factors can, depending on the application con-
text, exacerbate the effects of the structural asymmetry; for

this reason, minimizing their impact represents another im-
portant research direction.

4. Sidestepping the Asymmetry
An important aspect of our theoretical results is that they
apply only to building robust classifiers at training time.
This leaves open the possibility to sidestep the asymmetry
by focusing on defenses that operate at inference time. Here,
we prove that this indeed the case by means of an example,
and characterize its properties since they can be expected to
hold for other systems based on the same principles.

Our witness is a proof-of-concept robustness checker, called
Counter-Attack (CA), that relies on adversarial attacks to
compute robustness certificates at inference time, w.r.t. to
a maximum p-norm ε. CA can compute certificates in NP -
time, and attacking it beyond its intended certification radius
is ΣP

2 -hard, proving that inference-time defenses can flip
the attack-defense asymmetry. While an argument can be
made that CA is usable as it is, our main aim is to pave the
ground for future approaches with the same strengths, and
hopefully having better scalability.

4.1. Inference-Time Defenses can Flip the Asymmetry:
the Case of Counter-Attack

The main idea in CA is to evaluate robustness on a case-by-
case basis, flagging inputs as potentially unsafe if a robust
answer cannot be provided. Specifically, given a norm-order
p and threshold ε, CA operates as follows:

• For a given input x, we determine if the model is (ε, p)-
locally robust by running an untargeted adversarial
attack on x;

• If the attack succeeds, we flag the input.

In a practical usage scenario, flagged inputs would then
be processed by a slower, but more robust, model (e.g. a
human) or rejected; this behavior is similar to that of ap-
proaches for learning with rejection, but with a semantic
tied to adversarial robustness5.

Similarly, it is possible to draw comparisons between robust
transductive learning (e.g. the work of Chen et al. (2021))
and CA. While the two techniques use different approaches,
we believe that parts of our analysis might be adapted to
study existing applications of transductive learning to robust
classification. Refer to Appendix G for a more in-depth
comparison.

Finally, note that the flagging rate depends on the model

5Note that the learning-with-rejection approach usually in-
volves some form of confidence score; while the decision boundary
distance might be seen as a sort of score, it does not have a proba-
bilistic interpretation. Studying CA under this light represents a
promising research direction.
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robustness: a model that is locally robust on the whole in-
put distribution would have a flagging rate of 0, while in
the opposite case all inputs would be flagged. As a conse-
quence, this form of inference-time defense is best thought
of as a complement to training-time robustness approaches,
designed to catch those cases that are hard to handle due to
Theorem 3.7. A technique such as CA would indeed benefit
from most advances in the field of adversarial robustness:
training-time defenses for a better flagging rate, and attack
algorithms for more effective and efficient certificates.

4.2. Formal Properties

The formal properties of the CA approach depend on the
kind of attack used to perform the robustness check. Specif-
ically, when used with an exact attack, such as those from
Carlini et al. (2017) and Tjeng et al. (2019), CA provides
formal robustness guarantees for an arbitrary p and ε:

Theorem 4.1. Let 0 < p ≤ ∞ and let ε > 0. Let f : X →
{1, . . . , N} be a classifier and let a be an exact attack. Let
fa
CA : X → {1, . . . , N} ∪ {⋆} be defined as:

fa
CA(x) =

{
f(x) ∥af,p(x)− x∥p > ε

⋆ otherwise
(6)

Then ∀x ∈ X an Lp attack on x with radius greater than
or equal to ε and with ⋆ ̸∈ C(x) fails.

The notation fa
CA(x) refers to the classifier f combined

with CA, relying on attack a. The condition ⋆ ̸∈ C(x)
requires that the input generated by the attack should not be
flagged by CA. Intuitively, CA guarantees robustness due to
the fact that, if x′ is an adversarial example for an input x,
x is also an adversarial example for x′, which means that
x′ will be flagged.

Due to the properties of Lp norms, CA also guarantees a
degree of robustness against attacks with a different norm:

Corollary 4.2. Let 1 ≤ p ≤ ∞ and let ε > 0. Let f be a
classifier on inputs with n elements that uses CA with norm
p and radius ε. Then for all inputs and for all 1 ≤ r < p,
Lr attacks of radius greater than or equal to ε and with
⋆ ̸∈ C(x) will fail. Similarly, for all inputs and for all
r > p, Lr attacks of radius greater than or equal to n

1
r− 1

p ε
and with ⋆ ̸∈ C(x) will fail (treating 1

∞ as 0).

Note that since the only expensive step in CA consists in
applying an adversarial attack to an input, the complexity is
the same as that of a regular attack.

Attacking with a Higher Radius In addition to robust-
ness guarantees for a chosen ε, CA provides a form of
computational robustness even beyond its intended radius.
To prove this statement, we first formalize the task of attack-
ing CA (referred to as Counter-CA, or CCA). This involves

finding, given a starting point x, an input x′ ∈ Bp(x, ε
′)

that is adversarial but not flagged by CA, i.e. such that
f(x′) ∈ C(x) ∧ ∀x′′ ∈ Bp(x

′, ε).f(x′′) = f(x′). Note
that, for ε′ ≤ ε, no solution exists, since x ∈ Bp(x

′, ε) and
f(x) ̸= f(x′).
Theorem 4.3 (Attacking CA with a higher radius is
ΣP

2 -complete). Let CCAp be the set of all tuples
⟨x, ε, ε′, C, f⟩ such that:

∃x′ ∈ Bp(x, ε
′).

(f(x′) ∈ C(x) ∧ ∀x′′ ∈ Bp(x
′, ε).f(x′′) = f(x′))

(7)

where x ∈ X , X is a FSFP space, ε′ > ε, f(x) ̸∈ C(x) f
is a ReLU classifier and whether an output is in C(x∗) for
some x∗ can be decided in polynomial time. Then CCA∞
is ΣP

2 -complete.
Corollary 4.4. CCAp is ΣP

2 -complete for all 0 < p ≤ ∞.
Corollary 4.5. Theorem 4.3 also holds if, instead of ReLU
classifiers, we consider the more general set of polynomial-
time classifiers w.r.t. the size of the tuple.

In other words, under our assumptions, fooling CA can
be harder than running it, thus flipping the computational
asymmetry. Corollary 3.6 also implies that it is impossible to
obtain a better gap between running the model and attacking
it, from a Polynomial Hierarchy point of view (e.g. a P -
time model that is ΣP

2 -hard to attack). Note that, due to
the worst-case semantic of Theorem 4.3, fooling CA can be
expected to be easy in practice when ε′ ≫ ε: this is however
a very extreme case, where the threshold might have been
poorly chosen or the adversarial examples might be very
different from genuine examples.

Partial Robustness While using exact attacks with CA is
necessary for the best formal behavior, the approach remains
capable of providing partial guarantees when used with
either heuristic or lower-bounding approaches.

In particular, if a heuristic attack returns an example x′

with ∥x − x′∥p ≤ ε, then f is guaranteed to be locally
non-robust on x. However, a heuristic attack failing to find
an adversarial example does not guarantee that the model is
locally robust.

Conversely, if we replace the attack with an optimization
method capable of returning a lower bound lb(x) on the de-
cision boundary distance (e.g. a Mathematical Programming
solver), we get the opposite result: if the method proves that
lb(x) > ε, then f is locally robust on x, but f might be
robust even if the method fails to prove it.

In other words, with heuristic attacks false positives are im-
possible, while with lower-bound methods false negatives
are impossible. Note that these two methods can be com-
bined to improve scalability while retaining some formal
guarantees.
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These considerations provide further motivation for research
in heuristic attacks, since every improvement in that field
could lead to more reliable or faster robustness “certificates”.
Additionally, they emphasize the potential of lower bound-
ing techniques (e.g. guaranteed approximation algorithms)
as efficient certification tools. Finally, while we think that
CA is an interesting technique per-se, we reiterate that the
main appeal of the approach is to prove by means of an
example that it is possible to circumvent the computational
asymmetry we identified. We hope that future work will ex-
pand on this research direction, developing approaches that
are both more efficient and with more formal guarantees.

5. An Evaluation of Adversarial Attacks as
Certification Tools

CA highlights an interesting aspect of adversarial attacks:
since attacking a classifier and certifying its local robustness
are complementary tasks, adversarial attacks can be used
to build inference-time certification techniques. This
observation raises interest in evaluating existing (heuris-
tic) attack algorithms in terms of their ability to serve as
defenses (of which CA is just one of many possible applica-
tions). For example, in contexts where provable robustness
is too resource-intensive, one could use sufficiently power-
ful heuristic attacks to determine with great accuracy if the
model is locally robust (but without formal guarantees).

From this point of view, it should be noted that checking
robustness only requires evaluating the decision boundary
distance, and not necessarily finding the adversarial example
that is closest to an input x, i.e. the optimal solution of
Equation (1). As a consequence, an attack does not need
to perform well to be usable as a defense, but just to come
predictably close to the decision boundary. For example,
an algorithm that consistently overestimates the decision
boundary distance by a 10% factor would be as good as an
exact attack for many practical purposes, since we could
simply apply a correction to obtain an exact estimate. This
kind of evaluation is natural when viewing the issue from
the perspective of our CA method, but to the best of our
knowledge it has never been observed in the literature.

In this section, we thus empirically evaluate the quality of
heuristic attacks. Specifically, we test whether ∥x− xh∥p,
where xh is an adversarial example found by a heuristic
attack, is predictably close to the true decision boundary
distance d∗p(x). To the best of our knowledge, the only
other work that performed a somewhat similar evaluation is
Carlini et al. (2017), which evaluated the optimality of the
Carlini & Wagner attack on 90 MNIST samples for a ∼20k
parameter network.

Consistently with Athalye et al. (2018) and Weng et al.
(2018), we focus on the L∞ norm. Additionally, we focus

on pools of heuristic attacks. The underlying rationale is that
different adversarial attacks should be able to cover for their
reciprocal blind spots, providing a more reliable estimate.
Since this evaluation is empirical, it requires sampling from
a chosen distribution, in our case specific classifiers and
the MNIST (LeCun et al., 1998) and CIFAR10 (Krizhevsky
et al., 2009) datasets. This means that the results are not
guaranteed for other distributions, or for other defended
models: studying how adversarial attacks fare in these cases
is an important topic for future work.

Experimental Setup We randomly selected ∼2.3k sam-
ples each from the test set of two datasets, MNIST and
CIFAR10. We used three architectures per dataset (named
A, B and C), each trained in three settings, namely standard
training, PGD adversarial training (Madry et al., 2018) and
PGD adversarial training with ReLU loss and pruning (Xiao
et al., 2019) (from now on referred to as ReLU training), for
a total of nine configurations per dataset.

Since our analysis requires computing exact decision bound-
ary distances, and size and depth both have a strong adverse
impact on solver times, we used small and relatively shal-
low networks with parameters between ∼2k and ∼80k. For
this reason, the natural accuracy for standard training are
significantly below the state of the art (89.63% - 95.87%
on MNIST and 47.85% - 55.81% on CIFAR10). Adversar-
ial training also had a negative effect on natural accuracies
(84.54% - 94.24% on MNIST and 45.19% - 51.35% on CI-
FAR10), similarly to ReLU training (83.69% - 93.57% on
MNIST and 32.27% - 37.33% on CIFAR10). Note that us-
ing reachability analysis tools for NNs, such as (Gehr et al.,
2018), capable of providing upper bounds on the decision
boundary in a reasonable time would not be sufficient for
our goal: indeed both lower and upper bounds on the deci-
sion boundary distance could be arbitrarily far from d∗(x),
thus preventing us from drawing any firm conclusion.

We first ran a pool of heuristic attacks on each example,
namely BIM (Kurakin et al., 2017), Brendel & Bethge
(Brendel et al., 2019), Carlini & Wagner (Carlini & Wag-
ner, 2017c), Deepfool (Moosavi-Dezfooli et al., 2016), Fast
Gradient (Goodfellow et al., 2015) and PGD (Madry et al.,
2018), in addition to simply adding uniform noise to the
input. Our main choice of attack parameters (from now on
referred to as the “strong” parameter set) prioritizes finding
adversarial examples at the expense of computational time.
For each example, we considered the nearest feasible ad-
versarial example found by any attack in the pool. We then
ran the exact solver-based attack MIPVerify (Tjeng et al.,
2019), which is able to find the nearest adversarial example
to a given input. The entire process (including test runs)
required ∼45k core-hours on an HPC cluster. Each node
of the cluster has 384 GB of RAM and features two Intel
CascadeLake 8260 CPUs, each with 24 cores and a clock
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frequency of 2.4GHz. We removed the examples for which
MIPVerify crashed in at least one setting, obtaining 2241
examples for MNIST and 2269 for CIFAR10. We also ex-
cluded from our analysis all adversarial examples for which
MIPVerify did not find optimal bounds (atol = 1e-5, rtol =
1e-10), which represent on average 11.95% of the examples
for MNIST and 16.30% for CIFAR10. Additionally, we
ran the same heuristic attacks with a faster parameter set
(from now on referred to as the “balanced” set) on a single
machine with an AMD Ryzen 5 1600X six-core 3.6 GHz
processor, 16 GBs of RAM and an NVIDIA GTX 1060 6
GB GPU. The process took approximately 8 hours. Refer
to Appendix H for a more comprehensive overview of our
experimental setup.

Distance Approximation Across all settings, the mean
distance found by the strong attack pool is 4.09±2.02%
higher for MNIST and 2.21±1.16% higher for CIFAR10
than the one found by MIPVerify. For 79.81±15.70% of
the MNIST instances and 98.40±1.63% of the CIFAR10
ones, the absolute difference is less than 1/255, which is the
minimum distance in 8-bit image formats. The balanced
attack pool performs similarly, finding distances that are
on average 4.65±2.16% higher for MNIST and 2.04±1.13%
higher for CIFAR10. The difference is below 1/255 for
77.78±16.08% of MNIST examples and 98.74±1.13% of
CIFAR10 examples. We compare the distances found by
the strong attack pool for MNIST A and CIFAR10 (using
standard training) with the true decision bound distances in
Figure 1. Refer to Appendix J for the full data.

For all datasets, architectures and training techniques there
appears to be a strong, linear, correlation between the
distance of the output of the heuristic attacks and the
true decision boundary distance. We chose to measure
this by training a linear regression model linking the two
distances. For the strong parameter set, we find that the
average R2 across all settings is 0.992±0.004 for MNIST
and 0.997±0.003 for CIFAR10. The balanced parameter
set performs similarly, achieving an R2 of 0.990±0.006 for
MNIST and 0.998±0.002 for CIFAR10. From these results,
we conjecture that increasing the computational budget of
heuristic attacks does not necessarily improve predictability,
although further tests would be needed to confirm such
a claim. Note that such a linear model can also be used
to correct decision boudary distance overestimates in the
context of heuristic CA. Another (possibly more reliable)
procedure would consist in using quantile fitting; results for
this approach are reported in Appendix I.

Attack Pool Ablation Study Due to the nontrivial com-
putational requirements of running several attacks on the
same input, we now study whether it is possible to drop
some attacks from the pool without compromising its pre-
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Figure 1. Distances of the nearest adversarial example found by
the strong attack pool compared to those found by MIPVerify on
MNIST A and CIFAR10 A with standard training. The black line
represents the theoretical optimum. Note that no samples are below
the black line.

dictability. Specifically, we consider all possible pools of
size n (with a success rate of 100%) and pick the one
with the highest average R2 value over all architectures
and training techniques. As shown in Figure 2, adding
attacks does increase predictability, although with dimin-
ishing returns. For example, the pool composed of the
Basic Iterative Method, the Brendel & Bethge Attack and
the Carlini & Wagner attack achieves on its own a R2

value of 0.988±0.004 for MNIST+strong, 0.986±0.005 for
MNIST+balanced, 0.935±0.048 for CIFAR10+strong and
0.993±0.003 for CIFAR10+balanced. Moreover, dropping
both the Fast Gradient Sign Method and uniform noise leads
to negligible (≪ 0.001) absolute variations in the mean
R2. These findings suggest that, as far as consistency is
concerned, the choice of attacks represents a more impor-
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Figure 2. Best mean R2 value in relation to the number of attacks
in the pool.

tant factor than the number of attacks in a pool. Refer to
Appendix K for a more in-depth overview of how different
attack selections affect consistency and accuracy.

Efficient Attacks We then explore if it is possible to in-
crease the efficiency of attacks by optimizing for fast, rather
than accurate, results. We pick three new parameter sets
(namely Fast-100, Fast-1k and Fast-10k) designed to find
the nearest adversarial examples within the respective num-
ber of calls to the model. We find that while Deepfool is not
the strongest adversarial attack (see Appendix J), it provides
adequate results in very few model calls. For details on
these results see Appendix L.

UG100 Dataset We collect all the adversarial examples
found by both MIPVerify and the heuristic attacks into a
new dataset, which we name UG100. UG100 can be used
to benchmark new adversarial attacks. Specifically, we can
determine how strong an attack is by comparing it to both
the theoretical optimum and heuristic attack pools. Another

potential application involves studying factors that affect
whether adversarial attacks perform sub-optimally.

6. Conclusion
In this work, we provided three contribution in the context
of adversarial robustness.

First, we proved that attacking a ReLU classifier is NP -hard,
while training a robust model of the same type is ΣP

2 -hard.
This result implies that defending is in the worst case harder
than attacking; moreover, due to the broad applicability
assumptions and the structure of its proof, it represents a
reasonable explanation for the difficulty gap often encoun-
tered when building robust classifiers. The intuition behind
our proofs can also help to pave the way for research into
more tractable classes.

Second, we showed how inference-time techniques can
sidestep the aforementioned computational asymmetry, by
introducing a proof-of-concept defense called Counter At-
tack (CA). The central idea in CA is to check robustness by
relying on adversarial attacks themselves: this strategy pro-
vides robustness guarantees, can invert the computational
asymmetry, and may serve as the basis for devising more
advanced inference-time defenses.

Finally, motivated by the last observation, we provided an
empirical evaluation of heuristic attacks in terms of their
ability to consistently approximate the decision boundary
distance. We found that state-of-the-art heuristic attacks are
indeed very reliable approximators of the decision boundary
distance, suggesting that even heuristic attacks might be
used in defensive contexts.

Our theoretical results highlight a structural challenge in
adversarial ML, one that could be sidestepped through not
only our CA approach, but potentially many more. Addi-
tionally, we showed that adversarial attacks can also play
a role in asymmetry-free robustness, thus opening up new
research directions on their defensive applications. We hope
that our observations, combined with our formal analysis
and our UG100 benchmark, can serve as the starting point
for future research into these two important areas.
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A. Proof Preliminaries
A.1. Notation

We use fi to denote the i-th output of a network. We define f as

f(x) = argmax
i

{fi(x)} (8)

for situations where multiple outputs are equal to the maximum, we use the class with the lowest index.

A.2. µ Arithmetic

Given two FSFP spaces X and X ′ with distance minorants µ and µ′, we can compute new positive minorants after applying
functions to the spaces as follows:

• Sum of two vectors: µX+X′ = min(µ, µ′);

• Multiplication by a constant: µαX = |α|µ;

• ReLU: µReLU(X) = µ.

Since it is possible to compute the distance minorant of a space transformed by any of these functions in polynomial time, it
is also possible to compute the distance minorant of a space transformed by any composition of such functions in polynomial
time.

A.3. Functions

We now provide an overview of several functions that can be obtained by using linear combinations and ReLUs.

max Carlini et al. (2017) showed that we can implement the max function using linear combinations and ReLUs as
follows:

max(x, y) = ReLU(x− y) + y (9)

We can also obtain an n-ary version of max by chaining multiple instances together.

step If X is a FSFP space, then the following scalar function:

step0(x) =
1

µ
(ReLU(x)−ReLU(x− µ)) (10)

is such that ∀i.∀x ∈ X , step0(xi) is 0 for xi ≤ 0 and 1 for xi > 0.

Similarly, let step1 be defined as follows:

step1(x) =
1

µ
(ReLU(x+ µ)−ReLU(x)) (11)

Note that ∀i.∀x ∈ X , step1(xi) = 0 for xi < 0 and step1(xi) = 1 for xi ≥ 0.

Boolean Functions We then define the Boolean functions not : {0, 1} → {0, 1}, and : {0, 1}2 → {0, 1}, or : {0, 1}2 →
{0, 1} and if : {0, 1}3 → {0, 1} as follows:

not(x) = 1− x (12)
and(x, y) = step1(x+ y − 2) (13)
or(x, y) = step1(x+ y) (14)

if(a, b, c) = or(and(not(a), b), and(a, c)) (15)

where if(a, b, c) returns b if a = 0 and c otherwise.

Note that we can obtain n-ary variants of and and or by chaining multiple instances together.
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cnf3 Given a set z = {{z1,1, . . . , z1,3}, . . . , {zn,1, zn,3}} of Boolean atoms (i.e. zi,j(x) = xk or ¬xk for a certain k)
defined on an n-long Boolean vector x, cnf3(z) returns the following Boolean function:

cnf ′
3(x) =

∧
i=1,...,n

∨
j=1,...,3

zi,j(x) (16)

We refer to z as a 3CNF formula.

Since cnf ′
3 only uses negation, conjunction and disjunction, it can be implemented using respectively neg, and and or.

Note that, given z, we can build cnf ′
3 in polynomial time w.r.t. the size of z.

Comparison Functions We can use step0, step1 and neg to obtain comparison functions as follows:

geq(x, k) = step1(x− k) (17)
gt(x, k) = step0(x, k) (18)
leq(x, k) = not(gt(x, k)) (19)
lt(x, k) = not(geq(x, k)) (20)
eq(x, k) = and(geq(x, k), leq(x, k)) (21)

Moreover, we define open : R3 → {0, 1} as follows:

open(x, a, b) = and(gt(x, a), lt(x, b)) (22)

B. Proof of Theorem 3.1
B.1. U -ATT∞ ∈ NP

To prove that U -ATT∞ ∈ NP , we show that there exists a polynomial certificate for U -ATT that can be checked in
polynomial time. The certificate is the value of x′, which will have a representation of the same size as x (due to the FSFP
space assumption) and can be checked by verifying:

• ∥x− x′∥∞ ≤ ε, which can be checked in linear time;

• fθ(x
′) ̸= f(x), which can be checked in polynomial time.

B.2. U -ATT∞ is NP -Hard

We will prove that U -ATT∞ is NP -Hard by showing that 3SAT ≤ U -ATT∞.

Given a set of 3CNF clauses z = {{z11, z12, z13}, . . . , {zm1, zm2, zm3}} defined on n Boolean variables x1, . . . , xn, we
construct the following query q(z) for U -ATT∞:

q(z) = ⟨x(s),
1

2
, f⟩ (23)

where x(s) =
(
1
2 , . . . ,

1
2

)
is a vector with n elements. Verifying q(z) ∈ U -ATT∞ is equivalent to checking:

∃x′ ∈ B∞

(
xs,

1

2

)
.f(x′) ̸= f(x(s)) (24)

Note that x ∈ B∞
(
x(s), 1

2

)
is equivalent to x ∈ [0, 1]n.

Truth Values We will encode the truth values of x̂ as follows:

x′
i ∈
[
0,

1

2

]
⇐⇒ x̂i = 0 (25)

x′
i ∈
(
1

2
, 1

]
⇐⇒ x̂i = 1 (26)

We can obtain the truth value of a scalar variable by using isT (xi) = gt
(
xi,

1
2

)
. Let bin(x) = or(isT (x1), . . . , isT (xn)).

13
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Definition of f We define f as follows:

f1(x) = and(not(isx(s)(x)), cnf ′
3(bin(x))) (27)

f0(x) = not(f1(x)) (28)

where cnf ′
3 = cnf3(z) and isx(s) is defined as follows:

isx(s)(x) = and

(
eq

(
x1,

1

2

)
, . . . , eq

(
xn,

1

2

))
(29)

Note that f is designed such that f(x(s)) = 0, while for x′ ̸= x(s), f(x′) = 1 iff the formula z is true for the variable
assignment bin(x′).

Lemma B.1. z ∈ 3SAT =⇒ q(z) ∈ U -ATT∞

Proof. Let z ∈ 3SAT . Therefore ∃x∗ ∈ {0, 1}n such that cnf3(z)(x∗) = 1. Since bin(x∗) = x∗ and x∗ ̸= x(s),
f(x∗) = 1, which means that it is a valid solution for Equation (24). From this we can conclude that q(z) ∈ U -ATT∞.

Lemma B.2. q(z) ∈ U -ATT∞ =⇒ z ∈ 3SAT

Proof. Since q(z) ∈ U -ATT∞, ∃x∗ ∈ [0, 1]n \ {x(s)} that is a solution to Equation (24) (i.e. f(x∗) = 1). Then
cnf ′

3(bin(x
∗)) = 1, which means that there exists a x̂ (i.e. bin(x∗)) such that cnf ′

3(x̂) = 1. From this we can conclude
that z ∈ 3SAT .

Since:

• q(z) can be computed in polynomial time;

• z ∈ 3SAT =⇒ q(z) ∈ U -ATT∞;

• q(z) ∈ U -ATT =⇒ z ∈ 3SAT .

we can conclude that 3SAT ≤ U -ATT∞.

B.3. Proof of Corollary 3.2

B.3.1. U -ATTp ∈ NP

The proof is identical to the one for U -ATT∞.

B.3.2. U -ATTp IS NP -HARD

The proof that q(z) ∈ U -ATTp =⇒ z ∈ 3SAT is very similar to the one for U -ATT∞. Since q(z) ∈ U -ATTp, we
know that ∃x∗ ∈ Bp(x

(s), ε) \ {x(s)}.f(x∗) = 1, which means that there exists a x̂ (i.e. bin(x∗)) such that cnf ′
3(x̂) = 1.

From this we can conclude that z ∈ 3SAT .

The proof that z ∈ 3SAT =⇒ q(z) ∈ U -ATTp is slightly different, due to the fact that since x∗ ̸∈ Bp(x
(s), 1

2 ) we need
to use a different input to prove that ∃x′ ∈ Bp(x

(s)).f(x′) = 1.

Let 0 < p < ∞. Given a positive integer n and a real 0 < p < ∞, let ρp,n(r) be a positive minorant of the L∞ norm of a
vector on the Lp sphere of radius r. For example, for n = 2, p = 2 and r = 1, any positive value less than or equal to

√
2
2 is

suitable. Note that, for 0 < p < ∞ and n, r > 0, ρp,n(r) < r.

Let z ∈ 3SAT . Therefore ∃x∗ ∈ {0, 1}n such that cnf3(z)(x∗) = 1. Let x∗∗ be defined as:

x∗∗
i =

{
1
2 − ρp,n

(
1
2

)
x∗
i = 0

1
2 + ρp,n

(
1
2

)
x∗
i = 1

(30)

14
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By construction, x∗∗ ∈ Bp

(
x(s), ρp,n

(
1
2

))
. Additionally, bin(x∗∗) = x∗, and since we know that z is true for the variable

assignment x∗, we can conclude that f(x∗∗) = 1, which means that x∗∗ is a valid solution for Equation (24). From this we
can conclude that q(z) ∈ U -ATTp.

B.4. Proof of Corollary 3.3

The proof is identical to the proof of Theorem 3.1 (for p = ∞) and Corollary 3.2 (for 0 < p < ∞), with the exception of
requiring f(x′) = 1.

B.5. Proof of Corollary 3.4

The proof that attacking a polynomial-time classifier is in NP is the same as that for Theorem 3.1.

Attacking a polynomial-time classifier is NP -hard due to the fact that the ReLU networks defined in the proof of Theorem 3.1
are polynomial-time classifiers. Since attacking a general polynomial-time classifier is a generalization of attacking a ReLU
polynomial-time classifier, the problem is NP -hard.

C. Proof of Theorem 3.5
Proving that U -ATTp(f) ∈ NPA means proving that it can be solved in polynomial time by a non-deterministic Turing
machine with an oracle that can solve a problem in A. Since Zf ∈ A, we can do so by picking a non-deterministic Turing
machine with access to an oracle that solves Zf . We then generate non-deterministically the adversarial example and return
the output of the oracle. Due to the FSFP assumption, we know that the size of this input is the same as the size of the starting
point, which means that it can be generated non-deterministically in polynomial time. Therefore, U -ATTp(f) ∈ NPA.

C.1. Proof of Corollary 3.6

Follows directly from Theorem 3.5 and the definition of ΣP
n .

D. Proof of Theorem 3.7
D.1. Preliminaries

ΠP
2 3SAT is the set of all z such that:

∀x̂∃ŷ.R(x̂, ŷ) (31)

where R(x̂, ŷ) = cnf3(z)(x̂1, . . . , x̂n, ŷ1, . . . , ŷn).

Stockmeyer (1976) showed that Π23SAT (also known as ∀∃3SAT ) is ΠP
2 -complete. Therefore, coΠ23SAT , which is

defined as the set of all z such that:
∃x̂∀ŷ¬R(x̂, ŷ) (32)

is ΣP
2 -complete.

D.2. PL-ROB∞ ∈ ΣP
2

PL-ROB∞ ∈ ΣP
2 if there exists a problem A ∈ P and a polynomial q such that ∀Γ = ⟨x, ε, fθ, vf ⟩:

Γ ∈ PL-ROB ⇐⇒ ∃y.|y| ≤ q(|Γ|) ∧ (∀z.(|z| ≤ q(|Γ|) =⇒ ⟨Γ,y, z⟩ ∈ A)) (33)

This can be proven by setting y = θ′, z = x′ and A as the set of triplets ⟨Γ,θ′,x′⟩ such that all of the following are true:

• vf (θ
′) = 1;

• ∥x− x′∥∞ ≤ ε;

• fθ(x) = fθ(x
′).

Since all properties can be checked in polynomial time, A ∈ P and thus PL-ROB∞ ∈ ΣP
2 .

15
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D.3. PL-ROB∞ is ΣP
2 -Hard

We will prove that PL-ROB∞ is ΣP
2 -hard by showing that coΠ23SAT ≤ PL-ROB∞.

Let nx̂ be the length of x̂ and let nŷ be the length of ŷ.

Given a set z of 3CNF clauses, we construct the following query q(z) for PL-ROB:

q(z) = ⟨x(s),
1

2
, fθ, vf ⟩ (34)

where x(s) =
(
1
2 , . . . ,

1
2

)
is a vector with nŷ elements and vf (θ) = 1 ⇐⇒ θ ∈ {0, 1}nx̂ . Note that θ′ ∈ {0, 1}nx̂ can be

checked in polynomial time w.r.t. the size of the input.

Truth Values We will encode the truth values of x̂ as a set of binary parameters θ′, while we will encode the truth values
of ŷ using x′ through the same technique mentioned in Appendix B.2.

Definition of fθ We define fθ as follows:

• fθ,1(x) = and(not(isx(s)(x)), cnf ′′
3 (θ,x)), where cnf ′′

3 is defined over θ and bin(x) using the same technique
mentioned in Appendix B.2 and isx(s)(x) = andi=1,...,neq(xi,

1
2 );

• fθ,0(x) = not(fθ,1(x)).

Note that fθ(x(s)) = 0 for all choices of θ. Additionally, fθ is designed such that:

∀x′ ∈ B∞

(
x(s),

1

2

)
\ {x(s)}.∀θ′. (vf (θ

′) = 1 =⇒ (fθ′(x′) = 1 ⇐⇒ R(θ′, bin(x′)))) (35)

Lemma D.1. z ∈ coΠ23SAT =⇒ q(z) ∈ PL-ROB∞

Proof. Since z ∈ coΠ23SAT , there exists a Boolean vector x∗ such that ∀ŷ.¬R(x∗, ŷ).

Then both of the following statements are true:

• vf (x
∗) = 1, since x∗ ∈ {0, 1}nx̂ ;

• ∀x′ ∈ B∞(x(s), ε).fx∗(x′) = 0, since fx∗(x′) = 1 ⇐⇒ R(x∗, bin(x′));

Therefore, x∗ is a valid solution for Equation (5) and thus q(z) ∈ PL-ROB∞.

Lemma D.2. q(z) ∈ PL-ROB∞ =⇒ z ∈ coΠ23SAT

Proof. Since q(z) ∈ PL-ROB∞, there exists a θ∗ such that:

vf (θ) = 1 ∧ ∀x′ ∈ B∞(x(s), ε).fθ∗(x′) = fθ∗(x(s)) (36)

Note that θ∗ ∈ {0, 1}nx̂ , since vf (θ
∗) = 1. Moreover, ∀ŷ.¬R(θ∗, ŷ), since bin(ŷ) = ŷ and fθ∗(ŷ) = 1 ⇐⇒ R(θ∗, ŷ).

Therefore, θ∗ is a valid solution for Equation (32), which implies that z ∈ coΠ23SAT .

Since:

• q(z) can be computed in polynomial time;

• z ∈ coΠ23SAT =⇒ q(z) ∈ PL-ROB∞;

• q(z) ∈ PL-ROB∞ =⇒ z ∈ coΠ23SAT .

we can conclude that coΠ23SAT ≤ PL-ROB∞.
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D.4. Proof of Corollary 3.8

D.4.1. PL-ROBp ∈ ΣP
2

The proof is identical to the one for PL-ROB∞.

D.4.2. PL-ROBp IS ΣP
2 -HARD

We follow the same approach used in the proof for Corollary 3.2.

Proof of q(z) ∈ PL-ROBp =⇒ z ∈ coΠ23SAT If q(z) ∈ PL-ROBp, it means that
∃θ∗.

(
vf (θ

∗) = 1 =⇒ ∀x′ ∈ Bp

(
x(s), 1

2

)
.f(x′) = 0

)
. Then ∀ŷ, there exists a corresponding input y∗∗ ∈ Bp

(
x(s), 1

2

)
defined as follows:

y∗∗i =

{
1
2 − ρp,n

(
1
2

)
ŷi = 0

1
2 + ρp,n

(
1
2

)
ŷi = 1

(37)

such that e(y)(y∗∗) = ŷ. Since y∗∗ ∈ Bp

(
x(s), 1

2

)
, cnf ′′

3 (θ
∗, bin(y∗∗)) = 0, which means that R(θ∗, ŷ) is false. In other

words, ∃θ∗.∀ŷ.¬R(θ∗, ŷ), i.e. z ∈ coΠ23SAT .

Proof of z ∈ coΠ23SAT =⇒ q(z) ∈ PL-ROBp The proof is very similar to the corresponding one for Theorem 3.7.

If z ∈ coΠ23SAT , then ∃x̂∗.∀ŷ.¬R(x̂, ŷ). Set θ∗ = x̂∗. We know that f∗
θ (x

(s)) = 0. We also know
that ∀x′ ∈ Bp

(
x(s), 1

2

)
\ {x(s)}. (fθ∗(x) = 1 ⇐⇒ cnf ′′

3 (θ
∗,x′) = 1). In other words, ∀x′ ∈ Bp

(
x(s), 1

2

)
\

{x(s)}. (fθ∗(x′) = 1 ⇐⇒ R(θ∗, bin(x′))). Since R(θ∗, ŷ) is false for all choices of ŷ, ∀x′ ∈ Bp

(
x(s), 1

2

)
\

{x(s)}.fθ∗(x′) = 0. Given the fact that fθ∗(x(s)) = 0, we can conclude that θ∗ satisfies Equation (5).

D.5. Proof of Corollary 3.9

Similarly to the proof of Corollary 3.4, it follows from the fact that ReLU classifiers are polynomial-time classifiers (w.r.t.
the size of the tuple).

E. Proof of Theorem 4.1
There are two cases:

• ∀x′ ∈ Bp(x, ε).f(x
′) = f(x): then the attack fails because f(x) ̸∈ C(x);

• ∃x′ ∈ Bp(x, ε).f(x
′) ̸= f(x): then due to the symmetry of the Lp norm x ∈ Bp(x

′, ε). Since f(x) ̸= f(x′), x is a
valid adversarial example for x′, which means that f(x′) = ⋆. Since ⋆ ̸∈ C(x), the attack fails.

E.1. Proof of Corollary 4.2

Assume that ∀x.||x||r ≥ η||x||p and fix x(s) ∈ X . Let x′ ∈ Br(x
(s), ηε) be an adversarial example. Then ||x′ −x(s)||r ≤

ηε, and thus η||x′ − x(s)||p ≤ ηε. Dividing by η, we get ||x′ − x(s)||p ≤ ε, which means that x(s) is a valid adversarial
example for x′ and thus x′ is rejected by p-CA.

We now proceed to find the values of η.

E.1.1. 1 ≤ r < p

We will prove that ||x||r ≥ ||x||p.

Case p < ∞ Consider e = x
||x||p . e is such that ||e||p = 1 and for all i we have |ei| ≤ 1. Since r < p, for all 0 ≤ t ≤ 1

we have |t|p ≤ |t|r. Therefore:

||e||r =

(
n∑

i=1

|ei|r
)1/r

≥
(

n∑
i=1

|ei|p
)1/r

= ||e||p/rp = 1 (38)
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Then, since ||e||r ≥ 1:
||x||r = || ||x||pe||r = ||x||p||e||r ≥ ||x||p (39)

Case p = ∞ Since ||x||r ≥ ||x||p for all r < p and since the expressions on both sides of the inequality are compositions
of continuous functions, as p → ∞ we get ||x||r ≥ ||x||∞.

E.1.2. r > p

We will prove that ||x||r ≥ n
1
r− 1

p ||x||p.

Case r < ∞ Hölder’s inequality states that, given α, β ≥ 1 such that 1
α + 1

β = 1 and given f and g, we have:

||fg||1 ≤ ||f ||α||g||β (40)

Setting α = r
r−p , β = r

p , f = (1, . . . , 1) and g = (xp
1, . . . , x

p
n), we know that:

• ||fg||1 =
∑n

i=1(1 · x
p
i ) = ||x||pp;

• ||f ||α = (
∑n

i=1 1)
1/α

= n1/α;

• ||g||β =
(∑

i=1 x
pr/p
i

)p/r
= (
∑

i=1 x
r
i )

p/r
= ||x||pr .

Therefore ||x||pp ≤ n1/α||x||pr . Raising both sides to the power of 1/p, we get ||x||p ≤ n1/(pα)||x||r. Therefore:

||x||p ≤ n(r−p)/(pr)||x||r = n
1
p− 1

r ||x||r (41)

Dividing by n
1
p− 1

r we get:
n

1
r− 1

p ||x||p ≤ ||x||r (42)

Case r = ∞ Since the expressions on both sides of the inequality are compositions of continuous functions, as r → ∞
we get ||x||∞ ≥ n− 1

p ||x||p.

F. Proof of Theorem 4.3
F.1. CCA∞ ∈ ΣP

2

CCA∞ ∈ ΣP
2 iff there exists a problem A ∈ P and a polynomial p such that ∀Γ = ⟨x, ε, ε′, C, f⟩:

Γ ∈ CCA∞ ⇐⇒ ∃y.|y| ≤ p (|Γ|) ∧ (∀z.(|z| ≤ p(|Γ|) =⇒ ⟨Γ,y, z⟩ ∈ A)) (43)

This can be proven by setting y = x′,z = x′′ and A as the set of all triplets ⟨Γ,x′,x′′⟩ such that all of the following are
true:

• ∥x− x′∥∞ ≤ ε′

• f(x′) ∈ C(x)

• ∥x′′ − x′∥∞ ≤ ε

• f(x′′) = f(x′)

Since all properties can be checked in polynomial time, A ∈ P .
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F.2. CCA∞ is ΣP
2 -Hard

We will show that CCA∞ is ΣP
2 -hard by proving that coΠ23SAT ≤ CCA∞.

First, suppose that the length of x̂ and ŷ differ. In that case, we pad the shortest one with additional variables that will not
be used.

Let n be the maximum of the lengths of x̂ and ŷ.

Given a set z of 3CNF clauses, we construct the following query q(z) for CCA∞:

q(z) = ⟨x(s), γ,
1

2
, Cu, h⟩ (44)

where 1
4 < γ < 1

2 and x(s) =
(
1
2 , . . . ,

1
2

)
is a vector with n elements. Verifying q(z) ∈ CCA∞ is equivalent to checking:

∃x′ ∈ B

(
xs,

1

2

)
.

(
h(x′) ̸= h(x) ∧

(
∀x′′ ∈ B

(
x′,

1

4

)
. h(x′′) = h(x′)

))
(45)

Note that x′ ∈ [0, 1]n.

Truth Values We will encode the truth values of x̂ and ŷ as follows:

x′′
i ∈

(
0,

1

4

)
⇐⇒ x̂i = 0 ∧ ŷi = 0

x′′
i ∈

(
1

4
,
1

2

)
⇐⇒ x̂i = 0 ∧ ŷi = 1

x′′
i ∈

(
1

2
,
3

4

)
⇐⇒ x̂i = 1 ∧ ŷi = 0

x′′
i ∈

(
3

4
, 1

)
⇐⇒ x̂i = 1 ∧ ŷi = 1

(46)

Let ex̂i(x) = gt
(
xi,

1
2

)
. Let:

eŷi(x) = or

(
open

(
xi,

1

4
,
1

2

)
, open

(
xi,

3

4
, 1

))
(47)

Note that ex̂i(x′′
i ) returns the truth value of x̂i and eŷi(x

′′
i ) returns the truth value of ŷi (as long as the input is within one of

the ranges described in Equation (46)).

Invalid Encodings All the encodings other than the ones described in Equation (46) are not valid. We define invF as
follows:

invF (x) = ori=1,...,nor(out(xi), edge(xi)) (48)

where out(xi) = or(leq(xi, 0), geq(xi, 1)) and

edge(xi) = or

(
eq

(
xi,

1

4

)
, eq

(
xi,

1

2

)
, eq

(
xi,

3

4

))
(49)

On the other hand, we define invT as follows:

invT (x) = ori=1,...,neq

(
xi,

1

2

)
(50)
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Definition of h Let g be a Boolean formula defined over e(x)(x) and e(y)(x) that returns the value of R (using the same
technique as cnf ′

3).

We define h as a two-class classifier, where:

h1(x) = or(invT (x), and(not(invF (x)), g(x))) (51)

and h0(x) = not(h1(x)).

Note that:

• If xi =
1
2 for some i, the top class is 1; therefore, h(x(s)) = 1;

• Otherwise, if x is not a valid encoding, the top class is 0;

• Otherwise, the top class is 1 if R(e(x)(x), e(y)(x)) is true and 0 otherwise.

Lemma F.1. z ∈ coΠ23SAT =⇒ q(z) ∈ CCA∞

Proof. If z ∈ coΠ23SAT , then there exists a Boolean vector x∗ such that ∀ŷ.¬R(x∗, ŷ).

We now prove that setting x′ = x∗ satisfies Equation (7). First, note that h(x∗) = 0, which satisfies h(x′) ̸= h(x). Then
we need to verify that ∀x′′ ∈ B∞(x∗, γ).h(x) = 0.

For every x′′ ∈ B∞(x∗, γ), we know that x′′ ∈ ([−γ, γ] ∪ [1− γ, 1 + γ])
n. There are thus two cases:

• x′′ is not a valid encoding, i.e. x′′
i ≤ 0 ∨ x′′

i ≥ 1 ∨ x′′
i ∈

{
1
4 ,

3
4

}
for some i. Then h(x′′) = 0. Note that, since γ < 1

2 ,
1
2 ̸∈ [−γ, γ] ∪ [1− γ, 1 + γ], so it is not possible for x′′ to be an invalid encoding that is classified as 1;

• x′′ is a valid encoding. Then, since γ < 1
2 , e(x)(x′′) = x∗. Since h(x′′) = 1 iff R(e(x)(x′′), e(y)(x′′)) is true and

since R(x∗, ŷ) is false for all choices of ŷ, h(x′′) = 0.

Therefore, x∗ satisfies Equation (45) and thus q(z) ∈ CCA∞.

Lemma F.2. q(z) ∈ CCA∞ =⇒ z ∈ coΠ23SAT

Proof. Since q(z) ∈ CCA, there exists a x∗ ∈ B
(
x(s), 1

2

)
such that h(x∗) ̸= h(x(s)) and ∀x′′ ∈ B∞(x∗, γ).h(x′′) =

h(x′). We will prove that e(x)(x∗) is a solution to coΠ23SAT .

Since h(x(s)) = 1, h(x∗) = 0, which means that ∀x′′ ∈ B∞(x∗, γ).h(x′′) = 0.

We know that x∗ ∈ B∞
(
x(s), 1

2

)
= [0, 1]n. We first prove by contradiction that x∗ ∈

(
[0, 1

2 − γ) ∪ ( 12 + γ, 1]
)n

. If
x∗
i ∈ [ 12 − γ, 1

2 + γ] for some i, then the vector x(w) defined as follows:

x
(w)
j =

{
1
2 i = j

x∗
i otherwise

(52)

is such that x(w) ∈ B∞(x∗
i , γ) and h

(
x(w)

)
= 1 (since invT

(
x(w)

)
= 1). This contradicts the fact that ∀x′′ ∈

Bp(x
∗, γ).h(x) = 0. Therefore, x∗ ∈

(
[0, 1

2 − γ) ∪ ( 12 + γ, 1]
)n

.

As a consequence, ∀x′′ ∈ B∞(x∗, γ).e(x)(x′′) = e(x)(x∗).

We now prove that ∀ŷ∗.∃x′′∗ ∈ B∞(x∗, γ) such that e(y)(x′′∗) = ŷ∗. We can construct such x′′∗ as follows. For every i:

• If e(x)(x∗) = 0 and e(y)(x∗) = 0, set x′′∗
i equal to a value in

(
0, 1

4

)
;

• If e(x)(x∗) = 0 and e(y)(x∗) = 1, set x′′∗
i equal to a value in

(
1
4 , γ
)
;
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• If e(x)(x∗) = 1 and e(y)(x∗) = 0, set x′′∗
i equal to a value in

(
1− γ, 3

4

)
;

• If e(x)(x∗) = 1 and e(y)(x∗) = 1, set x′′∗
i equal to a value in

(
3
4 , 1
)
.

By doing so, we have obtained a x′′∗ such that x′′∗ ∈ B∞(x∗, γ) and e(y)(x′′∗) = ŷ∗.

Since:

• e(x)(x′′) = e(x)(x∗) for all x′′;

• h(x′′) = 0 for all x′′;

• h(x′′) = 1 iff R(e(x)(x′′)), e(y)(x′′)) is true;

R(e(x)(x∗), ŷ∗) is false for all choices of ŷ∗. In other words, x̂∗ is a solution to Equation (32) and thus z ∈ coΠ23SAT .

Since:

• q(z) can be computed in polynomial time;

• z ∈ coΠ23SAT =⇒ q(z) ∈ CCA∞;

• q(z) ∈ CCA∞ =⇒ z ∈ coΠ23SAT ;

we can conclude that coΠ23SAT ≤ CCA.

F.3. Proof of Corollary 4.4

The proof of CCAp ∈ ΣP
2 is the same as the one for Theorem 4.3.

For the hardness proof, we follow a more involved approach compared to those for Corollaries 3.2 and 3.8.

First, let ερp,n
be the value of epsilon such that ρp,n

(
ερp,n

)
= 1

2 . In other words, Bp(x
(s), ερp,n

) is an Lp ball that contains
[0, 1]n, while the intersection of the corresponding Lp sphere and [0, 1]n is the set {0, 1}n (for p < ∞).

Let inv′T (x) be defined as follows:

inv′T (x) = ori=1,...,n

(
or

(
eq

(
xi,

1

2

)
, leq(xi, 0), geq(xi, 1)

))
(53)

Let inv′F (x) be defined as follows:

inv′F (x) = ori=1,...,n

(
or

(
eq

(
xi,

1

4

)
, eq

(
xi,

3

4

)))
(54)

We define h′ as follows:
h′
1 = or(inv′T (x), and(not(inv

′
F (x)), g(x)) (55)

with h′
0(x) = not(h′

1(x)).

Note that:

• If xi ∈ (−∞, 0] ∪ { 1
2} ∪ [1,∞) for some i, then the top class is 1;

• Otherwise, if x is not a valid encoding, the top class is 0;

• Otherwise, the top class is 1 if R(e(x)(x), e(y)(x)) is true and 0 otherwise.

Finally, let 1
8 < γ′ < 1

4 . Our query is thus:

q(z) = ⟨x(s), γ′,
1

2
, Cu, h

′⟩ (56)
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Proof of z ∈ coΠ23SAT =⇒ q(z) ∈ CCAp If z ∈ coΠ23SAT , then ∃x∗.∀ŷ.¬R(x∗, ŷ). Let x∗∗ be defined as
follows:

x∗∗
i =

{
1
4 x∗

i = 0
3
4 x∗

i = 1
(57)

Note that:

• x∗∗ ∈ Bp

(
x(s), ερp,n

)
;

• e(x)(x∗∗) = x∗;

• f(x∗∗) = 0, since x∗∗ ∈ { 1
4 ,

3
4}n;

• Since γ′ < 1
4 , there is no i such that ∃x′′ ∈ Bp(x

∗∗, γ′).x′′
i ∈ (−∞, 0] ∪

{
1
2

}
∪ [1,∞);

• For all x′′ ∈ Bp(x
∗∗, γ′):

– If x′′ is not a valid encoding (i.e. x′′
i ∈ { 1

4 ,
3
4} for some i), then h′(x′′) = 0;

– Otherwise, h′(x′′) = 1 iff R(e(x)(x′′), e(y)(x′′)) is true.

Therefore, since ∀ŷ.¬R(x∗, ŷ), we know that ∀x′′ ∈ Bp(x
∗∗, γ′).f(x′′) = 0. In other words, x∗∗ is a solution to

Equation (7).

Proof of q(z) ∈ CCAp =⇒ z ∈ coΠ23SAT If q(z) ∈ CCAp, then we know that
∃x∗ ∈ Bp

(
x(s), ερp,n

)
.
(
h′(x∗) ̸= h(x(s)) ∧ ∀x′′ ∈ Bp(x

∗, γ′).h′(x′′) = h′(x∗)
)
. In other words, ∃x∗ ∈

Bp

(
x(s), ερp,n

)
. (h′(x∗) = 0 ∧ ∀x′′ ∈ Bp(x

∗, γ′).h′(x′′) = 0).

We will first prove by contradiction that x∗ ∈
(
(γ′, 1

2 − γ′) ∪ ( 12 + γ′, 1− γ′)
)n

.

First, suppose that x∗
i ∈ (−∞, 0) ∪ (1,∞) for some i. Then h′(x∗) = 0 due to the fact that invT (x∗) = 1.

Second, suppose that x∗
i ∈ [0, γ′] ∪ [1− γ′, 1] for some i. Then x(w), defined as follows:

x
(w)
j =


0 i = j ∧ x∗

i ∈ [0, γ′]

1 i = j ∧ x∗
i ∈ [1− γ′, 1]

x∗
j j ̸= i

(58)

is such that x(w) ∈ Bp(x
∗, γ′) but h′(x(w)) = 1.

Finally, suppose that x∗
i ∈ [ 12 − γ, 1

2 + γ] for some i. Then x(w), defined as follows:

x
(w)
j =

{
1
2 i = j

x∗
j otherwise

(59)

is such that x(w) ∈ Bp(x
∗, γ′) but h′(x(w)) = 1.

Therefore, x∗ ∈
(
(γ′, 1

2 − γ′) ∪ ( 12 + γ′, 1− γ′)
)n

.

As a consequence ∀x′′ ∈ Bp(x
∗, γ′).e(x)(x′′) = e(x)(x′).

From this, due to the fact that γ′ > 1
8 and that p > 0, we can conclude that for all ŷ, there exists a x′′ ∈ Bp(x

∗, γ′) such
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that:

x′′
i ∈

(
0,

1

4

)
for x∗

i ∈
(
γ′,

1

2
− γ′

)
, ŷi = 0

x′′
i ∈

(
1

4
,
1

2

)
for x∗

i ∈
(
γ′,

1

2
− γ′

)
, ŷi = 1

x′′
i ∈

(
1

2
,
3

4

)
for x∗

i ∈
(
1

2
+ γ′, 1− γ′

)
, ŷi = 0

x′′
i ∈

(
3

4
, 1

)
for x∗

i ∈
(
1

2
+ γ′, 1− γ′

)
, ŷi = 1

(60)

In other words, for all ŷ there exists a corresponding x′′ ∈ Bp(x
∗, γ′) such that e(y)(x′′) = ŷ.

Therefore, since h′(x′′) = 1 iff R(e(x)(x′′), e(y)(x′′)) is true and since ∀x′′ ∈ Bp(x
∗, γ′).h′(x′′) = 0, we can conclude

that ∀ŷ.¬R(e(x)(x∗), ŷ). In other words, z ∈ coΠ23SAT .

F.4. Proof of Corollary 4.5

Similarly to the proof of Corollary 3.4, it follows from the fact that ReLU classifiers are polynomial-time classifiers (w.r.t.
the size of the tuple).
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G. Relation with Robust Transductive Learning
In this section, we outline the similarities between transductive approaches to robust learning (taking the work of Chen et al.
(2021) as an example) and CA: the former fixes the input and adapts the model at inference time, while the latter fixes the
model and solves an optimization problem in the input space. In particular, the approach by Chen et al. involves adapting
the model at test time to a set U of user-provided (and potentially adversarially corrupted) inputs. For the sake of clarity, we
rewrite the adaptation task as follows:

argmin
θ

Ld(fθ, U) (61)

where Ld is an unsupervised adaptation loss, and define Γ(U) = fθ∗ , where θ∗ is the solution to Equation (61). Attacking
this technique thus involves solving the following constrained optimization problem (adapted from Equation 6 of the original
paper):

argmax
U ′∈N(U)

La(fθ∗,U ′) s.t. θ∗ = argmin
θ

Ld(fθ, U
′) (62)

where La is the loss for the adversarial objective. Chen then provides an alternative formulation (Equation 8 of the original
paper) that is more tractable from a formal point of view; however, our adapted equation is a good starting point for our
comparison. In particular, as in our work, attacking the approach by Chen et al. requires solving a problem that involves
nested optimization, and therefore the same “core” of complexity. With this formulation, the connections between Chen et
al. and CA become clear:

• Both approaches use an optimization problem at inference time that is parameterized over the input (thus avoiding the
second informal asymmetry mentioned in Section 3.5);

• Attacks against both approaches lead to nested optimization problems.

We therefore conjecture that it should be possible to extend the result from our Theorem 4.3 to the approach by Chen et. al.
However, there are some differences between the work of Chen et al. and ours that will likely need to be addressed in a
formal proof:

• The former is designed with transductive learning in mind, while the latter is intended for “regular” classification (i.e.
where the model is fixed);

• The former is meant to be used with arbitrarily large sets of inputs, while the latter only deals with one input at the time;
• The former uses two different losses (Ld and La), which can potentially make theoretical analyses more complex;
• There are several possible ways to adapt a model to a given U , and a proof would likely have to consider a sufficiently

“interesting” subset of such techniques.

We hope that our theoretical findings will encourage research into such areas.
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H. Full Experimental Setup
All our code is written in Python + PyTorch (Paszke et al., 2019), with the exception of the MIPVerify interface, which is
written in Julia. When possible, most experiments were run in parallel, in order to minimize execution times.

Models All models were trained using Adam (Kingma & Ba, 2014) and dataset augmentation. We performed a manual
hyperparameter and architecture search to find a suitable compromise between accuracy and MIPVerify convergence. The
process required approximately 4 months. When performing adversarial training, following (Madry et al., 2018) we used the
final adversarial example found by the Projected Gradient Descent attack, instead of the closest. To maximize uniformity, we
used for each configuration the same training and pruning hyperparameters (when applicable), which we report in Table 1.
We report the chosen architectures in Tables 2 and 3, while Table 4 outlines their accuracies and parameter counts.

UG100 The first 250 samples of the test set of each dataset were used for hyperparameter tuning and were thus not
considered in our analysis. For our G100 dataset, we sampled uniformly across each ground truth label and removed the
examples for which MIPVerify crashed. Table 5 details the composition of the dataset by ground truth label.

Attacks For the Basic Iterative Method (BIM), the Fast Gradient Sign Method (FGSM) and the Projected Gradient Descent
(PGD) attack, we used the implementations provided by the AdverTorch library (Ding et al., 2019). For the Brendel &
Bethge (B&B) attack and the Deepfool (DF) attack, we used the implementations provided by the Foolbox Native library
(Rauber et al., 2020). The Carlini & Wagner and the uniform noise attacks were instead implemented by the authors. We
modified the attacks that did not return the closest adversarial example found (i.e. BIM, Carlini & Wagner, Deepfool, FGSM
and PGD) to do so. For the attacks that accept ε as a parameter (i.e. BIM, FGSM, PGD and uniform noise), for each example
we first performed an initial search with a decaying value of ε, followed by a binary search. In order to pick the attack
parameters, we first selected the strong set by performing an extensive manual search. The process took approximately 3
months. We then modified the strong set in order to obtain the balanced parameter set. We report the parameters of both sets
(as well as the parameters of the binary and ε decay searches) in Table 6.

MIPVerify We ran MIPVerify using the Julia library MIPVerify.jl and Gurobi (Gurobi Optimization, LLC, 2022). Since
MIPVerify can be sped up by providing a distance upper bound, we used the same pool of adversarial examples utilized
throughout the paper. For CIFAR10 we used the strong parameter set, while for MNIST we used the strong parameter set
with some differences (reported in Table 7). Since numerical issues might cause the distance upper bound computed by the
heuristic attacks to be slightly different from the one computed by MIPVerify, we ran a series of exploratory runs, each with
a different correction factor (1.05, 1.25, 1.5, 2), and picked the first factor that caused MIPVerify to find a feasible (but not
necessarily optimal) solution. If the solution was not optimal, we then performed a main run with a higher computational
budget. We provide the parameters of MIPVerify in Table 8. We also report in Table 9 the percentage of tight bounds for
each combination.
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Table 1. Training and pruning hyperparameters.

Parameter Name Value

MNIST CIFAR10

Common Hyperparameters

Epochs 425
Learning Rate 1e-4
Batch Size 32 128
Adam β (0.9, 0.999)
Flip % 50%
Translation Ratio 0.1
Rotation (deg.) 15°

Adversarial Hyperparameters (Adversarial and ReLU only)

Attack PGD
Attack #Iterations 200
Attack Learning Rate 0.1
Adversarial Ratio 1
ε 0.05 2/255

ReLU Hyperparameters (ReLU only)

L1 Regularization Coeff. 2e-5 1e-5
RS Loss Coeff. 1.2e-4 1e-3
Weight Pruning Threshold 1e-3
ReLU Pruning Threshold 90%

Table 2. MNIST Architectures.
(a) MNIST A

Input
Flatten

Linear (in = 784, out = 100)
ReLU

Linear (in = 100, out = 10)
Output

(b) MNIST B

Input
Conv2D (in = 1, out = 4, 5x5 kernel, stride = 3, padding = 0)

ReLU
Flatten

Linear (in = 256, out = 10)
Output

(c) MNIST C

Input
Conv2D (in = 1, out = 8, 5x5 kernel, stride = 4, padding = 0)

ReLU
Flatten

Linear (in = 288, out = 10)
Output
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Table 3. CIFAR10 architectures.
(a) CIFAR10 A

Input
Conv2D (in = 3, out = 8, 3x3 kernel, stride = 2, padding = 0)

ReLU
Flatten

Linear (in = 1800, out = 10)
Output

(b) CIFAR10 B

Input
Conv2D (in = 3, out = 20, 5x5 kernel, stride = 4, padding = 0)

ReLU
Flatten

Linear (in = 980, out = 10)
Output

(c) CIFAR10 C

Input
Conv2D (in = 3, out = 8, 5x5 kernel, stride = 4, padding = 0)

ReLU
Conv2D (in = 8, out = 8, 3x3 kernel, stride = 2, padding = 0)

ReLU
Flatten

Linear (in = 72, out = 10)
Output

Table 4. Parameter counts and accuracies of trained models.
Architecture #Parameters Training Accuracy

MNIST A 79510
Standard 95.87%
Adversarial 94.24%
ReLU 93.57%

MNIST B 2674
Standard 89.63%
Adversarial 84.54%
ReLU 83.69%

MNIST C 3098
Standard 90.71%
Adversarial 87.35%
ReLU 85.67%

CIFAR10 A 18234
Standard 53.98%
Adversarial 50.77%
ReLU 32.85%

CIFAR10 B 11330
Standard 55.81%
Adversarial 51.35%
ReLU 37.33%

CIFAR10 C 1922
Standard 47.85%
Adversarial 45.19%
ReLU 32.27%
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Table 5. Ground truth labels of the UG100 dataset.
(a) MNIST

Ground Truth Count %

0 219 9.77%
1 228 10.17%
2 225 10.04%
3 225 10.04%
4 225 10.04%
5 220 9.82%
6 227 10.13%
7 221 9.86%
8 225 10.04%
9 226 10.08%

(b) CIFAR10

Ground Truth Count %

Airplane 228 10.05%
Automobile 227 10.00%
Bird 228 10.05%
Cat 228 10.05%
Deer 226 9.96%
Dog 227 10.00%
Frog 227 10.00%
Horse 227 10.00%
Ship 225 9.92%
Truck 226 9.96%
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Table 6. Parameters of heuristic attacks.

Attack Parameter Name MNIST CIFAR10

Strong Balanced Strong Balanced

BIM

Initial Search Factor 0.75
Initial Search Steps 30
Initial Search Factor 0.75
Binary Search Steps 20
#Iterations 2k 200 5k 200
Learning Rate 1e-3 1e-2 1e-5 1e-3

Brendel & Bethge

Initial Attack Blended Noise
Overshoot 1.1
LR Decay 0.75
LR Decay Every n Steps 50
#Iterations 5k 200 5k 200
Learning Rate 1e-3 1e-3 1e-5 1e-3
Momentum 0.8
Initial Directions 1000
Init Steps 1000

Carlini & Wagner

Minimum τ 1e-5
Initial τ 1
τ Factor 0.95 0.9 0.99 0.9
Initial Const 1e-5
Const Factor 2
Maximum Const 20
Reduce Const False
Warm Start True
Abort Early True
Learning Rate 1e-2 1e-2 1e-5 1e-4
Max Iterations 1k 100 5k 100
τ Check Every n Steps 1
Const Check Every n Steps 5

Deepfool

#Iterations 5k
Candidates 10
Overshoot 1e-5

FGSM
Initial Search Factor 0.75
Initial Search Steps 30
Initial Search Factor 0.75
Binary Search Steps 20

PGD

Initial Search Factor 0.75
Initial Search Steps 30
Initial Search Factor 0.75
Binary Search Steps 20
#Iterations 5k 200 5k 200
Learning Rate 1e-4 1e-3 1e-4 1e-3

Uniform Noise

Initial Search Factor 0.75
Initial Search Steps 30
Initial Search Factor 0.75
Binary Search Steps 20
Runs 8k 200 8k 200
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Table 7. Parameter set used to initialize MIPVerify for MNIST. All other parameters are identical to the strong MNIST attack parameter
set.

Attack Name Parameter Name Value

BIM #Iterations 5k
Learning Rate 1e-5

Brendel & Bethge Learning Rate 1e-3

Carlini & Wagner
Tau Factor 0.99
Learning Rate 1e-3
#Iterations 5k

Table 8. Parameters of MIPVerify.

Parameter Name Value

Exploration Main

Absolute Tolerance 1e-5
Relative Tolerance 1e-10
Threads 1
Timeout (s) 120 7200
Tightening Absolute Tolerance 1e-4
Tightening Relative Tolerance 1e-10
Tightening Timeout (s) 20 240
Tightening Threads 1

Table 9. MIPVerify bound tightness statistics.

Architecture Training % Tight

MNIST A
Standard 95.40%
Adversarial 99.60%
ReLU 82.46%

MNIST B
Standard 74.61%
Adversarial 85.68%
ReLU 75.55%

MNIST C
Standard 86.21%
Adversarial 97.28%
ReLU 95.63%

CIFAR10 A
Standard 81.18%
Adversarial 82.50%
ReLU 92.73%

CIFAR10 B
Standard 56.32%
Adversarial 58.88%
ReLU 81.67%

CIFAR10 C
Standard 100.00%
Adversarial 100.00%
ReLU 100.00%
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(a) MNIST A Standard Strong
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(b) MNIST A Standard Balanced
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(c) MNIST A Adversarial Strong
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(d) MNIST A Adversarial Balanced
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(e) MNIST A ReLU Strong

0 5 10 15 20 25 30

·10−2

0.8

0.85

0.9

0.95

1

ε

M
ea
n
F
1

1%

50%

99%

(f) MNIST A ReLU Balanced

Figure 3. F1 scores in relation to ε for MNIST A for each considered percentile. For ease of visualization, we set the graph cutoff at
F1 = 0.8. We also mark 8/255 (a common choice for ε) with a dotted line.

I. Quantile-Based Calibration
The error correction model in CA can be empirically calibrated so as to control the chance of false positives (i.e. inputs
wrongly reported as not robust) and false negatives (i.e. non-robust inputs reported as being robust).

Given the strong correlation that we observed between the distance of heuristic adversarial examples and the true decision
boundary distance, using a linear model bα seems a reasonable choice. Under this assumption, the correction model depends
only on the distance between the original example and the adversarial one, i.e. on ∥x, a(x)∥. This property allows us to
rewrite the main check performed by CA as:

||x− a(x))||p − b(x) = α1||x− a(x)||p + α0 ≤ ε (63)

where a(x) is the adversarial example found by the attack a for the input x. The parameters α1, α0 can then be obtained via
quantile regression (Koenker & Bassett Jr, 1978) by using the true decision boundary distance (i.e. d∗p(x)) as a target.

The approach provides a simple, interpretable mechanism to control how conservative the detection check should be: with a
small quantile, CA will tend to underestimate the decision boundary distance, leading to fewer missed detections, but more
false alarms; using a high quantile will lead to the opposite behavior.

We test this type of buffer using 5-fold cross-validation on each configuration. Specifically, we calibrate the model using
1%, 50% and 99% as quantiles. Tables 10 to 13 provide a comparison between the expected quantile and the average true
quantile of each configuration on the validation folds. Additionally, we plot in Figures 3 to 8 the mean F1 score in relation
to the choice of ε.
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Table 10. Expected vs true quantile for MNIST strong with 5-fold cross validation.

Architecture Training Expected Quantile True Quantile

A

Standard
1.00% 0.99±1.02%
50.00% 49.93±2.35%
99.00% 95.60±3.77%

Adversarial
1.00% 1.11±0.53%
50.00% 50.25±1.58%
99.00% 89.84±6.42%

ReLU
1.00% 1.11±0.45%
50.00% 50.02±1.72%
99.00% 91.95±5.64%

B

Standard
1.00% 1.07±0.48%
50.00% 49.80±0.76%
99.00% 97.76±0.71%

Adversarial
1.00% 1.22±1.01%
50.00% 49.88±4.63%
99.00% 98.10±0.36%

ReLU
1.00% 1.04±0.77%
50.00% 49.98±3.17%
99.00% 97.69±1.41%

C

Standard
1.00% 1.07±0.37%
50.00% 50.17±1.64%
99.00% 98.73±0.42%

Adversarial
1.00% 1.05±0.29%
50.00% 49.87±3.58%
99.00% 99.00±0.47%

ReLU
1.00% 1.06±0.67%
50.00% 50.02±1.85%
99.00% 93.99±3.51%
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Table 11. Expected vs true quantile for MNIST balanced with 5-fold cross validation.

Architecture Training Expected Quantile True Quantile

A

Standard
1.00% 1.30±0.79%
50.00% 49.98±3.10%
99.00% 93.99±2.59%

Adversarial
1.00% 0.97±0.40%
50.00% 50.12±1.14%
99.00% 90.44±1.90%

ReLU
1.00% 1.02±0.31%
50.00% 50.02±1.05%
99.00% 95.10±2.82%

B

Standard
1.00% 1.03±0.36%
50.00% 49.98±0.70%
99.00% 98.88±0.45%

Adversarial
1.00% 1.17±0.97%
50.00% 50.17±4.54%
99.00% 98.69±0.59%

ReLU
1.00% 1.04±0.49%
50.00% 50.34±2.49%
99.00% 98.73±0.53%

C

Standard
1.00% 1.07±0.33%
50.00% 49.98±0.91%
99.00% 98.88±0.55%

Adversarial
1.00% 1.10±0.37%
50.00% 50.12±4.15%
99.00% 99.00±0.35%

ReLU
1.00% 1.06±0.67%
50.00% 50.12±2.67%
99.00% 98.62±0.50%

33



Computational Asymmetries in Robust Classification

Table 12. Expected vs true quantile for CIFAR10 strong with 5-fold cross validation.

Architecture Training Expected Quantile True Quantile

A

Standard
1.00% 1.09±0.86%
50.00% 50.09±1.84%
99.00% 98.82±0.63%

Adversarial
1.00% 1.05±0.23%
50.00% 49.86±3.59%
99.00% 98.90±0.62%

ReLU
1.00% 0.97±0.41%
50.00% 49.93±3.42%
99.00% 97.66±1.35%

B

Standard
1.00% 0.98±0.18%
50.00% 49.91±1.18%
99.00% 98.84±0.56%

Adversarial
1.00% 0.91±0.48%
50.00% 50.00±3.58%
99.00% 98.69±0.72%

ReLU
1.00% 1.10±0.72%
50.00% 49.98±2.21%
99.00% 98.85±0.61%

C

Standard
1.00% 0.93±0.60%
50.00% 50.00±1.86%
99.00% 98.71±0.71%

Adversarial
1.00% 1.09±0.17%
50.00% 50.14±2.63%
99.00% 98.27±0.81%

ReLU
1.00% 1.01±0.62%
50.00% 50.02±2.09%
99.00% 96.17±2.40%
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Table 13. Expected vs true quantile for CIFAR10 balanced with 5-fold cross validation.

Architecture Training Expected Quantile True Quantile

A

Standard
1.00% 0.95±0.61%
50.00% 50.32±2.38%
99.00% 98.87±0.59%

Adversarial
1.00% 1.05±0.23%
50.00% 50.23±2.65%
99.00% 98.81±0.96%

ReLU
1.00% 4.14±5.32%
50.00% 50.37±1.02%
99.00% 94.62±2.87%

B

Standard
1.00% 1.07±0.46%
50.00% 49.91±2.78%
99.00% 98.93±0.73%

Adversarial
1.00% 1.13±0.57%
50.00% 50.18±2.05%
99.00% 98.82±0.71%

ReLU
1.00% 1.23±0.38%
50.00% 50.11±0.38%
99.00% 98.77±0.51%

C

Standard
1.00% 0.98±0.50%
50.00% 50.09±2.21%
99.00% 98.85±0.43%

Adversarial
1.00% 1.09±0.26%
50.00% 49.96±2.72%
99.00% 98.86±0.32%

ReLU
1.00% 1.01±0.36%
50.00% 49.93±1.60%
99.00% 97.93±0.63%
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(a) MNIST B Standard Strong
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(b) MNIST B Standard Balanced
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(c) MNIST B Adversarial Strong
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(d) MNIST B Adversarial Balanced
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(e) MNIST B ReLU Strong
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(f) MNIST B ReLU Balanced

Figure 4. F1 scores in relation to ε for MNIST B for each considered percentile. For ease of visualization, we set the graph cutoff at
F1 = 0.8. We also mark 8/255 (a common choice for ε) with a dotted line.
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(a) MNIST C Standard Strong

0 2 4 6 8 10 12

·10−2

0.8

0.85

0.9

0.95

1

ε

M
ea
n
F
1

1%

50%

99%

(b) MNIST C Standard Balanced
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(c) MNIST C Adversarial Strong
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(d) MNIST C Adversarial Balanced
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(e) MNIST C ReLU Strong
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(f) MNIST C ReLU Balanced

Figure 5. F1 scores in relation to ε for MNIST C for each considered percentile. For ease of visualization, we set the graph cutoff at
F1 = 0.8. We also mark 8/255 (a common choice for ε) with a dotted line.
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(a) CIFAR10 A Standard Strong
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(b) CIFAR10 A Standard Balanced
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(c) CIFAR10 A Adversarial Strong
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(d) CIFAR10 A Adversarial Balanced
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(e) CIFAR10 A ReLU Strong
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(f) CIFAR10 A ReLU Balanced

Figure 6. F1 scores in relation to ε for CIFAR10 A for each considered percentile. For ease of visualization, we set the graph cutoff at
F1 = 0.8. We also mark 8/255 (a common choice for ε) with a dotted line.
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(a) CIFAR10 B Standard Strong
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(b) CIFAR10 B Standard Balanced
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(c) CIFAR10 B Adversarial Strong
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(d) CIFAR10 B Adversarial Balanced
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(e) CIFAR10 B ReLU Strong
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(f) CIFAR10 B ReLU Balanced

Figure 7. F1 scores in relation to ε for CIFAR10 B for each considered percentile. For ease of visualization, we set the graph cutoff at
F1 = 0.8. We also mark 8/255 (a common choice for ε) with a dotted line.
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(a) CIFAR10 C Standard Strong
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(b) CIFAR10 C Standard Balanced
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(c) CIFAR10 C Adversarial Strong
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(d) CIFAR10 C Adversarial Balanced
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(e) CIFAR10 C ReLU Strong
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(f) CIFAR10 C ReLU Balanced

Figure 8. F1 scores in relation to ε for CIFAR10 C for each considered percentile. For ease of visualization, we set the graph cutoff at
F1 = 0.8. We also mark 8/255 (a common choice for ε) with a dotted line.
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Table 14. Performance of the strong attack set on MNIST.

Architecture Training Success Rate Difference % Below 1/255 R2

MNIST A
Standard 100.00% 1.51% 98.16% 0.996
Adversarial 100.00% 2.48% 81.43% 0.994
ReLU 100.00% 2.14% 84.33% 0.995

MNIST B
Standard 100.00% 3.38% 97.36% 0.995
Adversarial 100.00% 4.34% 75.09% 0.991
ReLU 100.00% 4.80% 68.02% 0.992

MNIST C
Standard 100.00% 4.52% 96.92% 0.996
Adversarial 100.00% 8.76% 48.78% 0.981
ReLU 100.00% 4.84% 68.24% 0.988

Table 15. Performance of the balanced attack set on MNIST.

Architecture Training Success Rate Difference % Below 1/255 R2

MNIST A
Standard 100.00% 1.68% 97.94% 0.995
Adversarial 100.00% 2.87% 77.64% 0.993
ReLU 100.00% 2.55% 80.86% 0.993

MNIST B
Standard 100.00% 4.09% 96.55% 0.995
Adversarial 100.00% 4.90% 72.60% 0.988
ReLU 100.00% 5.53% 62.96% 0.989

MNIST C
Standard 100.00% 5.43% 96.04% 0.995
Adversarial 100.00% 9.50% 48.43% 0.977
ReLU 100.00% 5.28% 66.96% 0.986

J. Additional Results
Tables 14 to 17 detail the performance of the various attack sets on every combination, while Figures 9 to 14 showcase the
relation between the true and estimated decision boundary distances.
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Table 16. Performance of the strong attack set on CIFAR10.

Architecture Training Success Rate Difference % Below 1/255 R2

CIFAR10 A
Standard 100.00% 1.62% 100.00% 0.999
Adversarial 100.00% 4.42% 95.88% 0.995
ReLU 100.00% 0.26% 100.00% 1.000

CIFAR10 B
Standard 100.00% 1.44% 100.00% 0.999
Adversarial 100.00% 3.17% 97.69% 0.997
ReLU 100.00% 1.38% 98.81% 0.999

CIFAR10 C
Standard 100.00% 2.11% 100.00% 0.999
Adversarial 100.00% 3.10% 97.14% 0.996
ReLU 100.00% 2.35% 96.12% 0.990

Table 17. Performance of the balanced attack set on CIFAR10.

Architecture Training Success Rate Difference % Below 1/255 R2

CIFAR10 A
Standard 100.00% 1.71% 100.00% 0.999
Adversarial 100.00% 4.18% 96.57% 0.995
ReLU 100.00% 0.18% 100.00% 1.000

CIFAR10 B
Standard 100.00% 1.53% 100.00% 0.999
Adversarial 100.00% 2.92% 98.46% 0.996
ReLU 100.00% 1.19% 98.94% 0.999

CIFAR10 C
Standard 100.00% 2.06% 100.00% 0.999
Adversarial 100.00% 3.12% 97.28% 0.996
ReLU 100.00% 1.45% 97.44% 0.995

(a) MNIST A Standard Strong (b) MNIST A Standard Balanced (c) MNIST A Adversarial Strong

(d) MNIST A Adversarial Balanced (e) MNIST A ReLU Strong (f) MNIST A ReLU Balanced

Figure 9. Decision boundary distances found by the attack pools compared to those found by MIPVerify on MNIST A. The black line
represents the theoretical optimum. Note that no samples are below the black line.
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(a) MNIST B Standard Strong (b) MNIST B Standard Balanced (c) MNIST B Adversarial Strong

(d) MNIST B Adversarial Balanced (e) MNIST B ReLU Strong (f) MNIST B ReLU Balanced

Figure 10. Decision boundary distances found by the attack pools compared to those found by MIPVerify on MNIST B. The black line
represents the theoretical optimum. Note that no samples are below the black line.

(a) MNIST C Standard Strong (b) MNIST C Standard Balanced (c) MNIST C Adversarial Strong

(d) MNIST C Adversarial Balanced (e) MNIST C ReLU Strong (f) MNIST C ReLU Balanced

Figure 11. Decision boundary distances found by the attack pools compared to those found by MIPVerify on MNIST C. The black line
represents the theoretical optimum. Note that no samples are below the black line.
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(a) CIFAR10 A Standard Strong (b) CIFAR10 A Standard Balanced (c) CIFAR10 A Adversarial Strong

(d) CIFAR10 A Adversarial Balanced (e) CIFAR10 A ReLU Strong (f) CIFAR10 A ReLU Balanced

Figure 12. Decision boundary distances found by the attack pools compared to those found by MIPVerify on CIFAR10 A. The black line
represents the theoretical optimum. Note that no samples are below the black line.

(a) CIFAR10 B Standard Strong (b) CIFAR10 B Standard Balanced (c) CIFAR10 B Adversarial Strong

(d) CIFAR10 B Adversarial Balanced (e) CIFAR10 B ReLU Strong (f) CIFAR10 B ReLU Balanced

Figure 13. Decision boundary distances found by the attack pools compared to those found by MIPVerify on CIFAR10 B. The black line
represents the theoretical optimum. Note that no samples are below the black line.
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(a) CIFAR10 C Standard Strong (b) CIFAR10 C Standard Balanced (c) CIFAR10 C Adversarial Strong

(d) CIFAR10 C Adversarial Balanced (e) CIFAR10 C ReLU Strong (f) CIFAR10 C ReLU Balanced

Figure 14. Decision boundary distances found by the attack pools compared to those found by MIPVerify on CIFAR10 C. The black line
represents the theoretical optimum. Note that no samples are below the black line.
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Table 18. Best pools of a given size by success rate and R2 for MNIST strong.

n Attacks Success Rate Difference < 1/255 R2

1 PGD 100.00±0.00% 10.98±4.41% 51.83±27.78% 0.975±0.010
2 C&W, PGD 100.00±0.00% 7.99±3.31% 60.68±25.43% 0.986±0.005
3 B&B, C&W, PGD 100.00±0.00% 4.71±1.97% 77.97±15.52% 0.989±0.004
4 B&B, C&W, DF, PGD 100.00±0.00% 4.36±2.03% 79.02±15.62% 0.991±0.005
5 No FGSM, Uniform 100.00±0.00% 4.09±2.02% 79.81±15.70% 0.992±0.005
6 No Uniform 100.00±0.00% 4.09±2.02% 79.81±15.70% 0.992±0.005
7 All 100.00±0.00% 4.09±2.02% 79.81±15.70% 0.992±0.005

Table 19. Best pools of a given size by success rate and R2 for MNIST balanced.

n Attacks Success Rate Difference < 1/255 R2

1 BIM 100.00±0.00% 11.72±4.18% 50.92±26.43% 0.965±0.010
2 BIM, B&B 100.00±0.00% 6.11±2.28% 73.23±15.90% 0.980±0.007
3 BIM, B&B, C&W 100.00±0.00% 5.29±2.06% 75.72±16.10% 0.986±0.005
4 BIM, B&B, C&W, DF 100.00±0.00% 4.85±2.10% 77.33±15.85% 0.989±0.005
5 No FGSM, Uniform 100.00±0.00% 4.65±2.16% 77.78±16.08% 0.990±0.006
6 No Uniform 100.00±0.00% 4.65±2.16% 77.78±16.08% 0.990±0.006
7 All 100.00±0.00% 4.65±2.16% 77.78±16.08% 0.990±0.006

K. Ablation Study
We outline the best attack pools by size in Tables 18 to 21. Additionally, we report the performance of pools composed of
individual attacks in Tables 22 to 25. Finally, we detail the performance of dropping a specific attack in Tables 26 to 29.

Table 20. Best pools of a given size by success rate and R2 for CIFAR10 strong.

n Attacks Success Rate Difference < 1/255 R2

1 DF 100.00±0.00% 6.11±3.49% 95.06±4.81% 0.989±0.011
2 DF, PGD 100.00±0.00% 4.71±2.37% 96.32±3.56% 0.995±0.007
3 C&W, DF, PGD 100.00±0.00% 2.54±1.30% 98.17±2.00% 0.996±0.006
4 B&B, C&W, DF, PGD 100.00±0.00% 2.21±1.16% 98.40±1.63% 0.997±0.003
5 No FGSM, Uniform 100.00±0.00% 2.21±1.16% 98.40±1.63% 0.997±0.003
6 No Uniform 100.00±0.00% 2.21±1.16% 98.40±1.63% 0.997±0.003
7 All 100.00±0.00% 2.21±1.16% 98.40±1.63% 0.997±0.003
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Table 21. Best pools of a given size by success rate and R2 for CIFAR10 balanced.

n Attacks Success Rate Difference < 1/255 R2

1 DF 100.00±0.00% 6.11±3.49% 95.06±4.81% 0.989±0.011
2 B&B, DF 100.00±0.00% 2.52±1.51% 98.23±1.81% 0.995±0.004
3 BIM, B&B, DF 100.00±0.00% 2.21±1.25% 98.53±1.52% 0.997±0.002
4 BIM, B&B, C&W, DF 100.00±0.00% 2.06±1.16% 98.73±1.32% 0.998±0.002
5 No FGSM, Uniform 100.00±0.00% 2.04±1.13% 98.74±1.29% 0.998±0.002
6 No FGSM 100.00±0.00% 2.04±1.13% 98.74±1.29% 0.998±0.002
7 All 100.00±0.00% 2.04±1.13% 98.74±1.29% 0.998±0.002

Table 22. Performance of individual attacks for MNIST strong.

Attack Success Rate Difference < 1/255 R2

BIM 100.00±0.00% 10.90±4.42% 53.57±28.07% 0.966±0.012
B&B 99.99±0.01% 18.50±7.09% 58.78±9.91% 0.812±0.044
C&W 100.00±0.00% 17.52±2.74% 48.02±21.28% 0.910±0.024
Deepfool 100.00±0.00% 21.59±7.73% 44.15±20.02% 0.923±0.027
FGSM 99.72±0.51% 44.43±15.76% 28.20±17.30% 0.761±0.132
PGD 100.00±0.00% 10.98±4.41% 51.83±27.78% 0.975±0.010
Uniform 99.52±0.91% 414.47±140.54% 0.82±0.55% 0.623±0.138

Table 23. Performance of individual attacks for MNIST balanced.
Attack Success Rate Difference < 1/255 R2

BIM 100.00±0.00% 11.72±4.18% 50.92±26.43% 0.965±0.010
B&B 99.99±0.03% 18.65±7.29% 58.43±9.61% 0.812±0.039
C&W 100.00±0.00% 22.55±3.83% 38.95±22.49% 0.904±0.025
Deepfool 100.00±0.00% 21.59±7.73% 44.15±20.02% 0.923±0.027
FGSM 99.72±0.51% 44.43±15.76% 28.20±17.30% 0.761±0.132
PGD 100.00±0.00% 16.23±6.59% 48.08±28.88% 0.905±0.070
Uniform 98.66±1.90% 521.61±181.40% 0.57±0.38% 0.484±0.122

Table 24. Performance of individual attacks for CIFAR10 strong.

Attack Success Rate Difference < 1/255 R2

BIM 91.96±7.40% 19.97±5.95% 80.32±12.97% 0.934±0.041
B&B 100.00±0.00% 508.66±196.37% 42.74±7.85% 0.174±0.074
C&W 99.98±0.02% 10.67±3.64% 90.09±5.51% 0.926±0.030
Deepfool 100.00±0.00% 6.11±3.49% 95.06±4.81% 0.989±0.011
FGSM 100.00±0.00% 31.80±11.12% 69.20±17.72% 0.847±0.123
PGD 100.00±0.00% 19.36±5.99% 77.23±15.89% 0.952±0.027
Uniform 99.99±0.02% 1206.79±277.68% 2.48±0.88% 0.910±0.044
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Table 25. Performance of individual attacks for CIFAR10 balanced.
Attack Success Rate Difference < 1/255 R2

BIM 100.00±0.00% 19.23±5.92% 77.33±15.89% 0.954±0.025
B&B 100.00±0.00% 50.64±52.17% 81.20±10.68% 0.615±0.349
C&W 99.89±0.09% 17.44±4.01% 84.82±8.51% 0.923±0.026
Deepfool 100.00±0.00% 6.11±3.49% 95.06±4.81% 0.989±0.011
FGSM 100.00±0.00% 31.80±11.12% 69.20±17.72% 0.847±0.123
PGD 100.00±0.00% 20.18±6.56% 76.97±16.07% 0.947±0.031
Uniform 99.85±0.26% 1617.74±390.50% 1.80±0.67% 0.853±0.068

Table 26. Performance of pools without a specific attack for MNIST strong.

Dropped Attack Success Rate Difference < 1/255 R2

None 100.00±0.00% 4.09±2.02% 79.81±15.70% 0.992±0.005
BIM 100.00±0.00% 4.35±2.03% 79.02±15.62% 0.991±0.005
B&B 100.00±0.00% 6.76±3.31% 64.46±25.01% 0.990±0.005
C&W 100.00±0.00% 4.65±2.20% 77.70±16.02% 0.989±0.006
Deepfool 100.00±0.00% 4.33±1.97% 79.04±15.75% 0.990±0.004
FGSM 100.00±0.00% 4.09±2.02% 79.81±15.70% 0.992±0.005
PGD 100.00±0.00% 4.26±1.99% 79.36±15.59% 0.991±0.004
Uniform 100.00±0.00% 4.09±2.02% 79.81±15.70% 0.992±0.005

Table 27. Performance of pools without a specific attack for MNIST balanced.

Dropped Attack Success Rate Difference < 1/255 R2

None 100.00±0.00% 4.65±2.16% 77.78±16.08% 0.990±0.006
BIM 100.00±0.00% 5.13±2.27% 76.14±15.98% 0.988±0.007
B&B 100.00±0.00% 7.93±3.69% 60.79±25.99% 0.987±0.006
C&W 100.00±0.00% 4.93±2.22% 77.05±15.96% 0.988±0.006
Deepfool 100.00±0.00% 5.03±2.14% 76.34±16.36% 0.988±0.005
FGSM 100.00±0.00% 4.65±2.16% 77.78±16.08% 0.990±0.006
PGD 100.00±0.00% 4.85±2.10% 77.33±15.85% 0.989±0.005
Uniform 100.00±0.00% 4.65±2.16% 77.78±16.08% 0.990±0.006

Table 28. Performance of pools without a specific attack for CIFAR10 strong.

Dropped Attack Success Rate Difference < 1/255 R2

None 100.00±0.00% 2.21±1.16% 98.40±1.63% 0.997±0.003
BIM 100.00±0.00% 2.21±1.16% 98.40±1.63% 0.997±0.003
B&B 100.00±0.00% 2.54±1.30% 98.17±2.00% 0.996±0.006
C&W 100.00±0.00% 3.83±2.06% 96.84±3.12% 0.996±0.004
Deepfool 100.00±0.00% 4.02±1.19% 95.65±3.10% 0.992±0.005
FGSM 100.00±0.00% 2.21±1.16% 98.40±1.63% 0.997±0.003
PGD 100.00±0.00% 2.50±1.48% 98.11±1.93% 0.995±0.005
Uniform 100.00±0.00% 2.21±1.16% 98.40±1.63% 0.997±0.003
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Table 29. Performance of pools without a specific attack for CIFAR10 balanced.

Dropped Attack Success Rate Difference < 1/255 R2

None 100.00±0.00% 2.04±1.13% 98.74±1.29% 0.998±0.002
BIM 100.00±0.00% 2.07±1.15% 98.72±1.31% 0.998±0.002
B&B 100.00±0.00% 4.08±1.95% 97.26±2.70% 0.996±0.006
C&W 100.00±0.00% 2.18±1.22% 98.54±1.50% 0.997±0.002
Deepfool 100.00±0.00% 4.00±0.99% 95.89±3.13% 0.993±0.003
FGSM 100.00±0.00% 2.04±1.13% 98.74±1.29% 0.998±0.002
PGD 100.00±0.00% 2.06±1.16% 98.73±1.32% 0.998±0.002
Uniform 100.00±0.00% 2.04±1.13% 98.74±1.29% 0.998±0.002
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Table 30. Parameters for the Fast-100, Fast-1k and Fast-10k sets.

Attack Parameter Name MNIST CIFAR10

100 1k 10k 100 1k 10k

BIM

Initial Search Factor N/A
Initial Search Steps N/A
Binary Search Steps 10 20 20 10 20 20
Starting ε 0.5 0.1
#Iterations 10 50 500 10 50 500
Learning Rate 0.1 0.01 1e-3 0.01 1e-3 1e-3

Deepfool

#Iterations 100 500 500 500
Candidates 10
Overshoot 0.1 1e-5 1e-5 1e-4
Loss Logits

FGSM

Initial Search Factor 0.75 0.5
Initial Search Steps 30 10
Binary Search Steps 20
Starting ε 1 0.1

PGD

Initial Search Factor N/A 0.5 0.5 N/A 0.5 0.75
Initial Search Steps N/A 10 10 N/A 10 30
Binary Search Steps 10 10 10 20
Starting ε 0.1 0.1 0.1 1
#Iterations 10 50 500 10 50 200
Learning Rate 0.1 0.01 1e-3 0.01 1e-3 1e-3
Random Initialization True

Uniform Noise

Initial Search Factor 0.75 0.75 0.75 0.25
Initial Search Steps 30 30 30 5
Binary Search Steps 20 20 20 15
Starting ε 1 1 1 0.5
Runs 200 500 200 10 50 500

L. Fast Parameter Set Tests
We list the chosen parameter sets for Fast-100, Fast-1k and Fast-10k in Table 30. We plot the difference between the distance
of the closest adversarial examples and the true decision boundary distance in Figures 15 to 23, while we plot the R2 values
in Figures 24 to 32. We do not study the Brendel & Bethge and the Carlini & Wagner attacks due to the fact that the number
of model calls varies depending on how many inputs are attacked at the same time. Note that, for attacks that do not have
the a 100% success rate, the mean adversarial example distance can increase with the number of steps as new adversarial
examples (for inputs for which there were previously no successful adversarial examples) are added.
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(a) MNIST A Standard Fast-100
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(b) CIFAR10 A Standard Fast-100
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(c) MNIST A Standard Fast-1k
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(d) CIFAR10 A Standard Fast-1k
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(e) MNIST A Standard Fast-10k
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(f) CIFAR10 A Standard Fast-10k

BIM Deepfool Fast Gradient PGD Uniform

Figure 15. Mean difference between the distance of the closest adversarial examples and the exact decision boundary distance for MNIST
& CIFAR10 A Standard. A dashed line means that the attack found adversarial examples (of any distance) for only some inputs, while the
absence of a line means that the attack did not find any adversarial examples. The loosely and densely dotted black lines respectively
represent the balanced and strong attack pools. Both axes are logarithmic.
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(a) MNIST A Adversarial Fast-100
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(c) MNIST A Adversarial Fast-1k
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(e) MNIST A Adversarial Fast-10k
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(f) CIFAR10 A Adversarial Fast-
10k

BIM Deepfool Fast Gradient PGD Uniform

Figure 16. Mean difference between the distance of the closest adversarial examples and the exact decision boundary distance for MNIST
& CIFAR10 A Adversarial. A dashed line means that the attack found adversarial examples (of any distance) for only some inputs, while
the absence of a line means that the attack did not find any adversarial examples. The loosely and densely dotted black lines respectively
represent the balanced and strong attack pools. Both axes are logarithmic.
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(a) MNIST A ReLU Fast-100
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(b) CIFAR10 A ReLU Fast-100
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(c) MNIST A ReLU Fast-1k
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(d) CIFAR10 A ReLU Fast-1k
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(e) MNIST A ReLU Fast-10k
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(f) CIFAR10 A ReLU Fast-10k

BIM Deepfool Fast Gradient PGD Uniform

Figure 17. Mean difference between the distance of the closest adversarial examples and the exact decision boundary distance for MNIST
& CIFAR10 A ReLU. A dashed line means that the attack found adversarial examples (of any distance) for only some inputs, while the
absence of a line means that the attack did not find any adversarial examples. The loosely and densely dotted black lines respectively
represent the balanced and strong attack pools. Both axes are logarithmic.
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(a) MNIST B Standard Fast-100
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(b) CIFAR10 B Standard Fast-100
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(c) MNIST B Standard Fast-1k
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(d) CIFAR10 B Standard Fast-1k
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(e) MNIST B Standard Fast-10k
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(f) CIFAR10 B Standard Fast-10k

BIM Deepfool Fast Gradient PGD Uniform

Figure 18. Mean difference between the distance of the closest adversarial examples and the exact decision boundary distance for MNIST
& CIFAR10 B Standard. A dashed line means that the attack found adversarial examples (of any distance) for only some inputs, while the
absence of a line means that the attack did not find any adversarial examples. The loosely and densely dotted black lines respectively
represent the balanced and strong attack pools. Both axes are logarithmic.
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(a) MNIST B Adversarial Fast-100
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(c) MNIST B Adversarial Fast-1k
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(e) MNIST B Adversarial Fast-10k
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(f) CIFAR10 B Adversarial Fast-
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Figure 19. Mean difference between the distance of the closest adversarial examples and the exact decision boundary distance for MNIST
& CIFAR10 B Adversarial. A dashed line means that the attack found adversarial examples (of any distance) for only some inputs, while
the absence of a line means that the attack did not find any adversarial examples. The loosely and densely dotted black lines respectively
represent the balanced and strong attack pools. Both axes are logarithmic.
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(a) MNIST B ReLU Fast-100
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(b) CIFAR10 B ReLU Fast-100
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(c) MNIST B ReLU Fast-1k
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(d) CIFAR10 B ReLU Fast-1k
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(e) MNIST B ReLU Fast-10k
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(f) CIFAR10 B ReLU Fast-10k

BIM Deepfool Fast Gradient PGD Uniform

Figure 20. Mean difference between the distance of the closest adversarial examples and the exact decision boundary distance for MNIST
& CIFAR10 B ReLU. A dashed line means that the attack found adversarial examples (of any distance) for only some inputs, while the
absence of a line means that the attack did not find any adversarial examples. The loosely and densely dotted black lines respectively
represent the balanced and strong attack pools. Both axes are logarithmic.
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(a) MNIST C Standard Fast-100
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(b) CIFAR10 C Standard Fast-100
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(c) MNIST C Standard Fast-1k
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(d) CIFAR10 C Standard Fast-1k
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(e) MNIST C Standard Fast-10k
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(f) CIFAR10 C Standard Fast-10k

BIM Deepfool Fast Gradient PGD Uniform

Figure 21. Mean difference between the distance of the closest adversarial examples and the exact decision boundary distance for MNIST
& CIFAR10 C Standard. A dashed line means that the attack found adversarial examples (of any distance) for only some inputs, while the
absence of a line means that the attack did not find any adversarial examples. The loosely and densely dotted black lines respectively
represent the balanced and strong attack pools. Both axes are logarithmic.

102 103 104

10−2

10−1

100

Calls to the Model

H
eu
ri
st
ic

D
is
ta
n
ce

-
E
x
a
ct

D
is
ta
n
ce

(a) MNIST C Adversarial Fast-100
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(c) MNIST C Adversarial Fast-1k
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(e) MNIST C Adversarial Fast-10k
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(f) CIFAR10 C Adversarial Fast-
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Figure 22. Mean difference between the distance of the closest adversarial examples and the exact decision boundary distance for MNIST
& CIFAR10 C Adversarial. A dashed line means that the attack found adversarial examples (of any distance) for only some inputs, while
the absence of a line means that the attack did not find any adversarial examples. The loosely and densely dotted black lines respectively
represent the balanced and strong attack pools. Both axes are logarithmic.
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(a) MNIST C ReLU Fast-100
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(b) CIFAR10 C ReLU Fast-100
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(c) MNIST C ReLU Fast-1k
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(d) CIFAR10 C ReLU Fast-1k
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(e) MNIST C ReLU Fast-10k
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(f) CIFAR10 C ReLU Fast-10k
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Figure 23. Mean difference between the distance of the closest adversarial examples and the exact decision boundary distance for MNIST
& CIFAR10 C ReLU. A dashed line means that the attack found adversarial examples (of any distance) for only some inputs, while the
absence of a line means that the attack did not find any adversarial examples. The loosely and densely dotted black lines respectively
represent the balanced and strong attack pools. Both axes are logarithmic.
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Figure 24. R2 of linear model for the heuristic adversarial distances given the exact decision boundary distances for MNIST & CIFAR10
A Standard. A dashed line means that the attack found adversarial examples (of any distance) for only some inputs, while the absence of a
line means that the attack did not find any adversarial examples. The loosely and densely dotted black lines respectively represent the
balanced and strong attack pools. The x axis is logarithmic.
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(a) MNIST A Adversarial Fast-100
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Figure 25. R2 of linear model for the heuristic adversarial distances given the exact decision boundary distances for MNIST & CIFAR10
A Adversarial. A dashed line means that the attack found adversarial examples (of any distance) for only some inputs, while the absence
of a line means that the attack did not find any adversarial examples. The loosely and densely dotted black lines respectively represent the
balanced and strong attack pools. The x axis is logarithmic.
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Figure 26. R2 of linear model for the heuristic adversarial distances given the exact decision boundary distances for MNIST & CIFAR10
A ReLU. A dashed line means that the attack found adversarial examples (of any distance) for only some inputs, while the absence of a
line means that the attack did not find any adversarial examples. The loosely and densely dotted black lines respectively represent the
balanced and strong attack pools. The x axis is logarithmic.
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Figure 27. R2 of linear model for the heuristic adversarial distances given the exact decision boundary distances for MNIST & CIFAR10
B Standard. A dashed line means that the attack found adversarial examples (of any distance) for only some inputs, while the absence of a
line means that the attack did not find any adversarial examples. The loosely and densely dotted black lines respectively represent the
balanced and strong attack pools. The x axis is logarithmic.
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Figure 28. R2 of linear model for the heuristic adversarial distances given the exact decision boundary distances for MNIST & CIFAR10
B Adversarial. A dashed line means that the attack found adversarial examples (of any distance) for only some inputs, while the absence
of a line means that the attack did not find any adversarial examples. The loosely and densely dotted black lines respectively represent the
balanced and strong attack pools. The x axis is logarithmic.
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Figure 29. R2 of linear model for the heuristic adversarial distances given the exact decision boundary distances for MNIST & CIFAR10
B ReLU. A dashed line means that the attack found adversarial examples (of any distance) for only some inputs, while the absence of a
line means that the attack did not find any adversarial examples. The loosely and densely dotted black lines respectively represent the
balanced and strong attack pools. The x axis is logarithmic.
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Figure 30. R2 of linear model for the heuristic adversarial distances given the exact decision boundary distances for MNIST & CIFAR10
C Standard. A dashed line means that the attack found adversarial examples (of any distance) for only some inputs, while the absence of a
line means that the attack did not find any adversarial examples. The loosely and densely dotted black lines respectively represent the
balanced and strong attack pools. The x axis is logarithmic.
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Figure 31. R2 of linear model for the heuristic adversarial distances given the exact decision boundary distances for MNIST & CIFAR10
C Adversarial. A dashed line means that the attack found adversarial examples (of any distance) for only some inputs, while the absence
of a line means that the attack did not find any adversarial examples. The loosely and densely dotted black lines respectively represent the
balanced and strong attack pools. The x axis is logarithmic.

102 103 104
0

0.2

0.4

0.6

0.8

1

Calls to the Model

R
2

(a) MNIST C ReLU Fast-100

102 103 104
0

0.2

0.4

0.6

0.8

1

Calls to the Model

R
2

(b) CIFAR10 C ReLU Fast-100

102 103 104
0

0.2

0.4

0.6

0.8

1

Calls to the Model

R
2

(c) MNIST C ReLU Fast-1k

102 103 104
0

0.2

0.4

0.6

0.8

1

Calls to the Model

R
2

(d) CIFAR10 C ReLU Fast-1k

102 103 104
0

0.2

0.4

0.6

0.8

1

Calls to the Model

R
2

(e) MNIST C ReLU Fast-10k

102 103 104
0

0.2

0.4

0.6

0.8

1

Calls to the Model

R
2

(f) CIFAR10 C ReLU Fast-10k

BIM Deepfool Fast Gradient PGD Uniform

Figure 32. R2 of linear model for the heuristic adversarial distances given the exact decision boundary distances for MNIST & CIFAR10
C ReLU. A dashed line means that the attack found adversarial examples (of any distance) for only some inputs, while the absence of a
line means that the attack did not find any adversarial examples. The loosely and densely dotted black lines respectively represent the
balanced and strong attack pools. The x axis is logarithmic.
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