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ABSTRACT

Transformers and their attention mechanism have been revolutionary in the field of
Machine Learning. While originally proposed for the language data, they quickly
found their way to the image, video, graph, etc. data modalities with various
signal geometries. Despite this versatility, generalizing the attention mechanism
to scenarios where data is presented at different scales from potentially different
modalities is not straightforward. The attempts to incorporate hierarchy and multi-
modality within transformers are largely based on ad hoc heuristics, which are not
seamlessly generalizable to similar problems with potentially different structures.
To address this problem, in this paper, we take a fundamentally different approach:
we first propose a mathematical construct to represent multi-modal, multi-scale
data. We then mathematically derive the neural attention mechanics for the pro-
posed construct from the first principle of entropy minimization. We show that
the derived formulation is optimal in the sense of being the closest to the standard
Softmax attention while incorporating the inductive biases originating from the
hierarchical/geometric information of the problem. We further propose an effi-
cient algorithm based on dynamic programming to compute our derived attention
mechanism. By incorporating it within transformers, we show that the proposed
hierarchical attention mechanism not only can be employed to train transformer
models in hierarchical/multi-modal settings from scratch, but it can also be used to
inject hierarchical information into classical, pre-trained transformer models post
training, resulting in more efficient models in zero-shot manner.

1 INTRODUCTION

The field of Deep Learning has recently experienced a spectacular breakthrough with the rise of
Large Language Models (LLMs). It is no secret that this success is largely owed to the Transformer
neural architecture (Vaswani et al., 2017) and its self-attention mechanism. Although they were
originally proposed to work with language (Beltagy et al., 2020; Brown et al., 2020; Devlin et al.,
2018; Liu et al., 2019), transformers have found their way to deal with images (Dosovitskiy et al.,
2020; Touvron et al., 2021; Yu et al., 2021), video (Arnab et al., 2021; Bertasius et al.; Li et al., 2022;
Neimark et al., 2021), audio (Borsos et al., 2023; Gong et al., 2021; Koutini et al., 2021; Verma &
Berger, 2021), graphs (Min et al., 2022; Rampášek et al., 2022; Rong et al., 2020; Yun et al., 2019),
groups (Hutchinson et al., 2021; Tai et al., 2019), manifolds (He et al., 2021) and point clouds (Guo
et al., 2021; Zhao et al., 2021) without significantly altering their basic neural attention mechanism.
This is mainly due to the fact that, unlike many other neural architectures, transformers incorporate
data geometry not by architectural priors but by explicit, black-box, position embedding functions,
which can be easily replaced from one domain to another.

Despite this versatility, the information in real world quite often comes in different modalities and at
different scales. In terms of geometry, this means that we deal with problems where each datapoint
may occupy multiple, mutually-inconsistent geometries at potentially different scales. This is indeed
challenging, even for transformers! To address these challenges, various novel (but often heuristic)
neural architectures have been proposed to deal with multi-modal (Deshmukh et al., 2023; Huang
et al., 2020; Kim et al., 2021; Lu et al., 2019a; Prakash et al., 2021; Truong et al., 2021; Zhang &
Zhang, 2020; Zhu et al., 2021) and hierarchical data (Cao et al., 2021; Liu et al., 2021; Pappagari
et al., 2019; Wu et al., 2021; Zhang et al., 2022; Zhao et al., 2022; Zhu & Soricut, 2021).
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Aside from the heuristic-based nature of many of these empirical architectures, they quite often
suffer from a more practical dilemma. On one hand, many such frameworks tend to partially discard
geometrical or hierarchical information depriving the learning task from valuable domain knowledge
which can significantly reduce the model’s statistical complexity. On the other hand, by incorporating
the full geometrical knowledge of different modalities and their hierarchical structure within these
heuristic frameworks, we often end up with highly problem-specific architectures that are hardly
generalizable to other similar problems.

To address this challenge in a unified and principled way, in this work, we take a radically different
approach. In particular:

• Instead of coming up with yet another heuristic neural architecture right off the bat, we first propose
a mathematical construct called nested signal to formally represent multi-geometry, hierarchical
information. As we show, the proposed formalism enables us to coherently represent different
geometrical domains at different scales while maintaining its generality across different problems.

• In order to define mathematically-sound neural operations on nested signals, we turn to the
attention mechanism. In particular, first we show that the standard Softmax self-attention (Vaswani
et al., 2017) can be mathematically derived from the principle of entropy minimization. Then by
generalizing this principle to nested signals, we derive the hierarchical self-attention (HSA) neural
mechanics which is the generalization of the Softmax attention mechanism for nested signals.

• We further show that the attention weights derived from the HSA are optimal in the sense of being
the closest to flat Softmax attention weights in terms the total KL-divergence, while at the same
time adhering to the hierarchical structure of the data.

• Next, we propose an efficient algorithm based on dynamic programming to calculate the HSA,
that is provably faster than its direct evaluation. By implementing HSA within the transformer
architecture, we empirically show that we are able to train models that can seamlessly incorporate
the hierarchical/multi-modal domain knowledge to arrive at better and more efficient transformers.

• Last but not least, we show that HSA can further replace the standard Softmax self-attention
operation in pre-trained transformers and significantly reduce the number of self-attention FLOPs
while incurring minimal Accuracy drop, in an entirely zero-shot manner.

2 RELATED WORK

Hierarchical models: The notion of hierarchy has played a key role in data representation and
clustering in Machine Learning (Murtagh & Contreras, 2012; Shetty & Singh, 2021). In the context
of transformers, the idea of multi-scale attention has been mainly used to combat the long-context
challenge in language (Huang et al., 2023a; Nawrot et al., 2021; Pappagari et al., 2019; Yang et al.,
2016; Ye et al., 2019), but it has also made its way into vision (Liu et al., 2021; Zhang et al., 2022)
and audio (Yu et al., 2022). Nevertheless, most of these frameworks deal with a single modality
that occupies the same geometry, just at different scales. Our proposed framework, in contrast, can
incorporate an arbitrary number of mutually-inconsistent geometries within its representation of the
multi-scale data. Another related line of work is based on hierarchical matrices (Hackbusch, 1999;
Hackbusch & Khoromskij, 2000) that have been used traditionally for clustering (Thiesson & Kim,
2012) as well as transition matrix approximation (Amizadeh et al., 2012), but more recently for
attention matrix approximation (Zhu & Soricut, 2021).

Multi-modal models: Multi-modality has been vastly explored in Machine Learning (Baltrušaitis
et al., 2018) and more recently within various neural architectures, using various fusion techniques
(Bayoudh et al., 2022; Gao et al., 2020; Guo et al., 2019; Suzuki & Matsuo, 2022). As for multi-modal
transformers (Xu et al., 2023), most frameworks are tailored toward a fixed set of modalities, e.g.
vision-language (Huang et al., 2020; Kim et al., 2021; Lu et al., 2019a; Zhu et al., 2021), audio-visual
(Truong et al., 2021), audio-language (Deshmukh et al., 2023), graph-language (Zhang & Zhang,
2020), vision-pose-audio (Rahman et al., 2021), audio-vision-language (Tsai et al., 2019), etc. The
fusion of different modalities in these frameworks typically takes place via a heuristic operation at
the embedding or the attention stages resulting in distinct architectural variants, which are typically
categorized as (1) single-stream (e.g. (Li et al., 2019)), (2) multi-stream (e.g. (Lu et al., 2019a)),
and (3) hybrid-stream (e.g. (Lin et al., 2020)). However, most of these frameworks either ignore the
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geometrical (positional) information for some of the input modalities, or impose artificial restrictions
on input geometries such as alignment.

Geometric Deep Learning: Geometric Deep Learning (Bronstein et al., 2021) studies the invariance
and equivariance properties of deep learning models by introducing the notion of signal and its
geometry which is explicitly modeled via the signal’s domain. We build our framework also based on
the same notion of signal and generalize it further to nested signals which can represent hierarchical,
multi-modal data which potentially encompass multiple domains. Also, most frameworks within
Geometric Deep Learning achieve the desired equivariance properties through the model’s architecture
(e.g. CNNs (Li et al., 2021b), GNNs (Wu et al., 2020), and Group-equivaraint CNNs (Finzi et al.,
2020)). A prominent exception is the LieTransformer (Hutchinson et al., 2021) where the desired
group-equivariance is achieved by explicit modeling of the position information and its separate
similarity computation (as opposed to adding it to the feature vectors). The formulation of the position
information in our framework is in part inspired by the LieTransfomer.

The theoretical foundations of self-attention: Despite its revolutionary success in Deep Learning,
there has been quite little effort to understand the theoretical foundations of self-attention. These
efforts provide various interpretations of self-attention, including the probabilistic view (Fan et al.,
2020; Shim, 2022), the causal view (Rohekar et al., 2024), the structural inference view (Singh &
Buckley, 2023), the dynamical system view (Dutta et al., 2021; Huang et al., 2023b; Lu et al., 2019b),
the statistical mechanical view (Rende et al., 2023), the variational denoising view (Nguyen et al.,
2024), the clustering view (Geshkovski et al., 2024), and the Hopfield network view (Ramsauer et al.,
2020). In this paper, we provide a statistical mechanical perspective to derive self-attention from
the first principle of entropy minimization; in that sense, our interpretation is closely related to the
statistical mechanical, denoising and Hopfiled network views. More importantly, our interpretation
lends itself to straightforward generalization to the hierarchical self-attention mechanism which, as
we show, is both theoretically optimal and efficiently computable.

3 REPRESENTING HIERARCHICAL, MULTI-GEOMETRY DATA

In Geometric Deep Learning, a signal x is defined as the mapping x : Ω→ C, where the set Ω is the
domain of the signal and C is a vector space, typically Rd with d being the channel dimension. For
example, an RGB image is a signal where Ω is the 2D grid and C = R3, i.e. the RGB color space.
Similarly, text can be seen as a signal with Ω being the 1D grid and C a word embedding space. More
niche applications in Geometric Deep Learning Bronstein et al. (2021) extend the notion of signals to
the domain of graphs, gauges, manifolds, etc. by defining the appropriate structure for Ω. We refer
to the set of all such possible domains as D. The elements Ω ∈ D are not necessarily vector spaces
(e.g. 2D grid). In order to numerically handle these spaces, we define a special signal εΩ : Ω→ Rc

for each Ω ∈ D which maps the elements of each domain in D to Rc; we refer to this special signal
as the position embedding. Given εΩ, each signal x defined on Ω is seen as x : εΩ(Ω) → C. In
Appendix B, we generalize the notion of signal to encompass traditional tabular features.

In this section, we introduce the notion of nested signals which is the key modeling tool to represent
multi-modal, hierarchical data. To this end, we first define the set of all simple signals S as the set
of all possible signals defined on all possible domains; that is, S = {x : Ω → C | Ω ∈ D}. Note
that the signals defined on different domains may have different channel dimensions; to make the
channel dimension uniform across different domains, we zero-pad the lower dimensional signals to
the maximum channel dimensionality d across different domains, such that each element of S has the
same channel dimension d regardless of its domain.
Definition 3.1 (Nested Signal). The set of d-dimensional nested signals up to depth ℓ, Nℓ, is
recursively defined as Nℓ =

{
x : Ω → U | Ω ∈ D,U ∈ {Nℓ−1,Rd}

}
, where N0 = Rd.

Furthermore, defineN = Nℓ as ℓ→∞; each element x ∈ N is then referred as a nested signal. The
top-level domain Ω ∈ D of a nested signal x is denoted by r(x).
For example, a website is a nested signal where at the top level, we have webpages defined on the
nodes of a graph domain representing the link structure between the webpages. Each webpage is in
turn another nested signal where at its top level we have an unordered set of textboxes and images
constituting the page. Going one level further, each textbox or image is a (simple) signal assigning
word embeddings or pixel values to the nodes of 1D or 2D grid domains, respectively. Fig. 1(Left)
depicts this example. While in theory, the domains Ω ∈ D can be infinite, in practice, we mostly
deal with nested and simple signals defined on finite Ω’s. In particular, a nested signal x is said to be
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finite if the domains Ω’s at all of its nesting levels are finite. Given the set of position embeddings
ε = {εΩ | Ω ∈ D}, a finite nested signal can be represented by a signal hierarchy as defined below.

Definition 3.2 (Signal Hierarchy). For a finite nested signal x, its signal hierarchy hx is a tree with
the root node Rx associated with r(x), the top level domain of x. The children of Rx are defined as
chd(Rx) = {hx(u) | u ∈ r(x)} where x(u) is the value of signal (possibly another nested signal)
at u. If x(u) is a vector instead of a signal, then hx(u) is simply x(u). Furthermore, each child
hx(u) ∈ chd(Rx) is annotated by εr(x)(u), the position embedding vector dictated by its parent node.

We denote the nodes (and equivalently their corresponding sub-trees) in the signal hierarchy hx
by upper-case letters. Any set of sibling nodes in hx is referred as a family. The members of a
family are nested signals (or real vectors for the leaf nodes) that reside on the same domain Ω
and therefore share the same position embedding function εΩ. Furthermore, for A ∈ hx, chd(A),
sib(A) and ℓ(A) represent the set of A’s children, its siblings and the index set of the leaf node
descendants of A, respectively. Two nodes in hx are called unrelated if neither of them is descendant
of the other. For two unrelated nodes A and B, their immediate common ancestor is denoted by
ica(A,B), while their highest distinct ancestors are denoted by A′ and B′, respectively, where we
have A′, B′ ∈ chd(ica(A,B)); i.e., A′ and B′ are always siblings even if A and B are not. See
Appendix A for the notational details as well as a visual demonstration of the tree-related concepts.

Since sibling nodes share the same position embedding function, the relative positional distance (or
similarity) between them is well-defined. More generally, for any two unrelated nodes A,B ∈ hx,
we can form a well-defined positional distance between them by comparing the position embeddings
of A′ and B′ which is well-defined since A′ and B′ are always siblings. The implication of this
construction is indeed powerful as it would enable the signal hierarchy formalism to define meaningful
positional distance between any two unrelated nodes in the hierarchy regardless of their modalities or
signal types. Fig. 1(Right) shows the signal hierarchy representation for our earlier website example.

Figure 1: (Left) A nested signal example for representing a website. (Right) Its signal hierarchy
representation. Different colors encode different types of position embeddings assigned to each node.

4 HIERARCHICAL SELF-ATTENTION

The nested signal formalism and its signal hierarchy representation introduced in the previous section
provide a systematic way to represent hierarchical data that can potentially span across different
modalities and domain structures. However, the question remains what kind of neural architectures
can handle such versatile data structure? To answer this question, we note that for non-hierarchical,
simple signals, the transformer architecture first introduced by Vaswani et al. (2017) allows for a
unified representation learning methodology that can accommodate various signal domains (as long
as the position embedding is available), not to mention its remarkable success in revolutionizing deep
learning. Nevertheless, extending the attention mechanism to nested signals is not straightforward as
the information in the nested signal can come with different signal domains at different scales.

To address this problem, in this section, we first propose a statistical mechanical framework that ele-
gantly derives the classical Softmax attention mechanism from the principle of entropy minimization
when a finite (simple) signal is viewed as a physical system with N particles. By generalizing our
proposed construction to nested systems, we then derive a novel, theoretically-rigorous mechanism
for calculating self-attention within nested signals, which we refer as Hierarchical Self-Attention
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(HSA). By its direct construction, the proposed HSA mechanism aims at reducing the total entropy of
the nested system, or equivalently put, increasing information within the learned representation of
the nested signal. We further show that our proposed construction to derive HSA is optimal in the
sense of Kullback-Leibler (KL) divergence from the Softmax attention weights if the hierarchical
structure were to be ignored. This result will subsequently open the door for the application of our
proposed formulation to approximate the inefficient Softmax attention in pre-trained transformers
using the more efficient hierarchical calculations if a hierarchy exists and can be imposed in a given
problem. Finally, we propose an efficient algorithm based on dynamic programming that calculates
HSA for a given signal hierarchy hx in O(M · b2), where M is the number of families in hx and b is
its maximum branching factor (i.e. family size).

4.1 SOFTMAX ATTENTION REVISITED

Let x = {xi ∈ Rd′ | 1 ≤ i ≤ N} be a finite signal with N elements in Rd′
with the corresponding

position embeddings {ei ∈ Rc | 1 ≤ i ≤ N}. To calculate self-attention over x, one needs to define
the set of query variables Q = {qi ∈ Rd | 1 ≤ i ≤ N} and key variables K = {ki ∈ Rd | 1 ≤ i ≤
N}, where qi’s and ki’s are (linear) functions of xi. Then the conditional entropy of Q given K is:

H(Q | K) = −
∫
℘(Q,K) log℘(Q | K)dQdK = −EQ,K

[
log℘(Q | K)

]
(1)

where ℘(Q,K) and ℘(Q | K) are the unknown joint and posterior distributions over Q and K.
While the joint distribution can be approximated using the Monte Carlo method, the posterior can be
approximated by a variational distribution ξ(Q | K), which gives rise to the variational upper-bound
on the conditional entropy:

HUB(Q | K) = −EQ,K

[
log ξ(Q | K)

]
≥ H(Q | K) (2)

We further represent the variational distribution by the Boltzmann distribution, i.e. ξ(Q | K) =
1

Z(K) exp[−ϕ(Q,K)/τ ], where ϕ(Q,K), Z(K), and τ are the energy function1, the partition function
and the temperature parameter, respectively. The variational upper-bound then can be written as:

HUB(Q | K) = EQ,K

[
ϕ(Q,K)/τ

]
+ EK

[
log Z(K)

]
(3)

The end goal of representation learning is to transform the input signal (i.e. the query variables Q)
into a "better" representation. A principled way to arrive at a better representation is to modify Q
such that its information content is maximized, or equivalently its entropy is minimized. Since we
cannot directly calculate the entropy, we can work with its variational upper-bound HUB as a proxy.
Then, the entropy minimization approach amounts to gradient descent on HUB w.r.t. each qi:

qi ← qi − λ · ∇qiHUB(Q | K) = qi − λ · EQ,K

[1
τ
∇qiϕ(Q,K)

]
, 1 ≤ i ≤ N (4)

where λ > 0 is the step size.
Proposition 1 (Softmax Attention). For the energy function ϕ(Q,K), defined as:

ϕ(Q,K) = − 1

N

N∑
i=1

log

(
1

N − 1

N∑
j=1,j ̸=i

exp
[ −1
2
√
d
∥qi − kj∥2 + eTi ej

])
(5)

if both Q and K variables are normalized using the LayerNorm function Ba et al. (2016), then for
τ = (N

√
d)−1, λ = 1 and sample size of 1, the Eq. equation 4 reduces to:

qi ← qi +

N∑
j=1,j ̸=i

exp(qTi kj/
√
d+ eTi ej)∑N

t=1,t̸=i exp(q
T
i kt/

√
d+ eTi ej)

· kj , 1 ≤ i ≤ N (6)

which is in effect the Softmax attention function via residual connection.

Proof. See Appendix G.1.

Note that equation 6 is similar to the original attention formulation proposed by Vaswani et al.
(2017), except for a few differences: (1) there is no separate value linear projection; the value
projection emerges later as we incorporate learnable step-size (see Appendix C), (2) the LayerNorm
is applied post-linear projection as opposed to pre-normalization in the original formulation, and (3)
the residual addition is applied post-linear projection. In other words, with few minor modifications,
the original Softmax attention operation can be interpreted as maximizing the information content
in the representation. But the real importance of the formulation in equation 4 is that depending on
how we define the energy function, we can arrive at various types of attention mechanisms tailored to
different applications. We use this feature in the next section to derive a hierarchical self-attention
(HSA) mechanism for nested signals.

1Note that the energy function needs to satisfy
∫
exp[−ϕ(Q,K)/τ ]dQ < ∞.
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4.2 GENERALIZING ATTENTION TO NESTED SIGNALS

We derive a self-attention mechanism for finite nested signals represented via a signal hierarchy tree.
We follow the same recipe as the previous section by defining an appropriate energy function. But
first, for any two unrelated nodes A and B in hx, we define the interaction energy ψA→B :

ψA→B = −εΩ(A′)T εΩ(B
′) +

1

2
√
d · |ℓ(A)| · |ℓ(B)|

∑
i∈ℓ(A)

∑
j∈ℓ(B)

∥qi − kj∥2 (7)

where | · | denotes set cardinality, εΩ(·) is the position embedding dictated by ica(A,B) (i.e. Ω =
r(ica(A,B))), and A′ and B′ are the highest distinct ancestors of A and B, as defined in Section
3. Intuitively speaking, the interaction energy ψA→B captures the dissimilarity between the nested
signals rooted at A and B as a weighted sum of their highest non-common ancestors’ position
dissimilarity (the first term) and the average Euclidean distance between their leaf nodes (the second
term). By calculating energy (dissimilarity) at the subtree level instead of individual leaves, we
inherently encode the inductive bias that the leaf nodes of a subtree (i.e. a nested signal) can be
pooled into a single representative (i.e. the subtree’s root) while roughly maintaining the underlying
semantics. This is referred as scale separation in Geometric Deep Learning Bronstein et al. (2021), a
fundamental prior in dealing with multi-scale physical systems, benefiting us both statistically (by
taming the curse of dimensionality) and computationally (by providing efficient algorithms).

Using the interaction energy definition, now the energy of the signal hierarchy rooted at non-leaf
node A is recursively defined as:

ϕ(A) = −
∑

B∈chd(A)

|ℓ(B)|
|ℓ(A)|

log

[
exp

(
− ϕ(B)

)
+

∑
C∈sib(B)

|ℓ(C)| exp
(
− ψB→C

)]
(8)

For leaf nodes, ϕ(A) is set to∞. ϕ(Rx) is the energy of the whole signal hierarchy hx. Intuitively,
equation 8 states that the energy of a system (a signal hierarchy tree) is the weighted sum of the
energy contribution of its subsystems (immediate subtrees) where the weights are proportional to the
size of each subsystem. The contribution of each subsystem, in turn, is a non-linear combination (via
the weighted log-sum-exp function, which is the addition operation in the log-space) of the energy of
the subsystem itself (the recursion term) and its interactions with its sibling subsystems (the second
term). It is easy to see that for single-level hx (i.e. simple signals), ϕ(Rx) reduces to equation 5.
Having defined the energy function, we can follow the recipe in equation 4 to calculate the HSA for
hx by recursively computing the gradients∇qiϕ(Rx) ∈ Rd for each leaf node qi, i ∈ ℓ(Rx) as:

∇qiϕ(Rx) =
|ℓ(Bi)|
|ℓ(Rx)|

[
α(Bi) · ∇qiϕ(B

i) +
∑

C∈sib(Bi) |ℓ(C)|β(Bi, C) · ∇qiψBi→C

α(Bi) +
∑

C∈sib(Bi) |ℓ(C)|β(Bi, C)

]
(9)

where,
α(Bi) = exp

(
− ϕ(Bi)

)
and β(Bi, C) = exp

(
− ψBi→C

)
(10)

and Bi denotes the child of Rx which contains qi as a leaf. It is not difficult to show that for
the quadratic interaction energy function in equation 7, if both Q and K variables are normalized
beforehand using a LayerNorm layer, then the recurrence in equation 9 can be unrolled and written in
the matrix form (see equation 36 in Appendix G.3):

∇Φ = ΘK, where ∇Φ = [∇q1ϕ(Rx), ...,∇q|ℓ(Rx)|ϕ(Rx)]
T ,K = [k1, ..., k|ℓ(Rx)|]

T (11)

and Θ = [θi,j ]|ℓ(Rx)|×|ℓ(Rx)| is the attention matrix; that is, θi,j is the coefficient of the key variable
kj for computing the attention update∇qiϕ(Rx) for the query variable qi in equation 9. However, Θ
is different from classical attention matrix in the sense that many of its entries share the same values.
In particular, for any two sibling nodes A and B in hx, the corresponding entries between the leaves
of A and B form a block in Θ with one value; that is, θi,j = θA,B , ∀i ∈ ℓ(A), j ∈ ℓ(B). In other
words, the attention weight between any leaf node in A and any leaf node in B is approximated by
one value θAB ; we refer to this approximation between the leaves of sibling nodes in hx as the block
constraint which makes the attention matrix a hierarchical matrix Hackbusch (1999); Hackbusch &
Khoromskij (2000). Fig. 2(Left) illustrates the self-attention matrix for a toy example signal hierarchy
with the block constraint. The block constraint is directly administered by the form of the interaction
energy function in equation 7 as well as the signal hierarchy energy recurrence in equation 8.

The block constraint effectively reduces the degrees of freedom for an attention matrix from
O(|ℓ(Rx)|2) = O(M2 · b2) to O(M · b2), where |ℓ(Rx)|, M and b are the total number of leaf nodes,
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the number families (i.e. non-leaf nodes) and the maximum branching factor in hx, respectively. With-
out it, we essentially go back to the standard Softmax attention mechanism where the unormalized
attention weights before Softmax are calculated by evaluating the interaction energy function for every
pair of leaf nodes. We refer to this process as flattening a nested signal. Fig 2(Right) shows the self-
attention matrix for the flattened version of our earlier toy example without the block constraint. Flat-
tening is not only computationally costly (by being quadratic in M instead of linear), it may also hurt
the model statistically. Note that by enforcing coarse-grained attention weights through the block con-
straint, we effectively administer a form of regularization guided by the scale separation prior which is
in turn induced from the prior knowledge of the hierarchical structure in the problem. By flattening a
nested signal, we simply discard this prior knowledge which can make the model prone to overfitting.

Figure 2: (Left) The self-attention matrix for a toy
signal hierarchy with the block constraint. Each
contiguous tile here represents one tied value for
the corresponding cells. (Right) The self-attention
matrix for the flattened (or simple) signal without
the block constraint.

It is important to note that the block constraint
by itself merely enforces tied values for the at-
tention weights over the leaves of sibling nodes;
it does not, however, specify what those values
should be. That is, there are infinitely many
attention matrices that adhere to the block con-
straint; our proposed formulation in equation 9
is just one of them. However, as we show
next, our proposed formulation is optimal in
the sense of being the closest approximation
to the standard Softmax attention if the nested
signal were to be treated as a flat, simple signal.
Theorem 1 (The optimality of HSA). Let both
Q and K variables be normalized using the
LayerNorm function. For the given interac-
tion energy function ψ in equation 7, if Θ =
[θi,j ]|ℓ(Rx)|×|ℓ(Rx)| is the self-attention matrix
for the nested signal x derived from the pro-
posed gradient recurrence in equation 9 (as depicted by equation 11), then for the temperature
parameter τ =

(
|ℓ(Rx)|

√
d
)−1

, Θ̂ = − 1
τΘ is a stochastic matrix; that is, it is non-negative and we

have Θ̂1 = 1. Moreover, Θ̂ is the closest attention matrix with the block constraint to the classical
Softmax attention matrix for the flattened signal in terms of total KL-divergence; that is,

Θ̂ = arg min
Θ∈B

∑
i∈ℓ(Rx)

DKL(θi,·∥θfi,·) (12)

where B ⊂ R|ℓ(Rx)|×|ℓ(Rx)| is the space of all stochastic attention matrices that admit the block
constraint induced by hx, and θfi,· (∀i ∈ ℓ(Rx)) are the rows of the attention matrix for the flattened
version of the signal:

θfi,j =
exp(−ψi→j)∑

k∈ℓ(Rx),k ̸=i exp(−ψi→k)
, ∀i, j ∈ ℓ(Rx) (13)

Proof. See Appendix G.2.

This result is crucial in the sense that it shows our proposed HSA mechanism for nested signals
formalized by equation 8 and equation 9 is the closest approximation to the classical attention
mechanism while at the same time adhering to the block constraint (induced by the hierarchical
structure of the nested signal), which in turn benefits the model both computationally and statistically.

From the practical perspective, this result has another important implication: if we replace the
interaction energy function ψi→j with the original cosine similarity in transformers (where the
position information is simply added to the signal), our proposed methodology provides the closest
hierarchical approximation of the original Softmax attention. Practically speaking, this means that
if we have access to some form of hierarchical information hx in a problem at inference time, we
can simply replace the self-attention operation in pre-trained transformer-based models by HSA and
arrive at much more efficient calculations without the need for major re-training. Note that the direct
evaluation of the recurrence in equation 9 for all query variables qi still takes O(b2 ·M logbM). In
Appendix D, we prove that the HSA can be computed in O(M · b2) using a dynamic programming
algorithm. Furthermore, we propose a transformer encoder architecture based on the HSA in
Appendix E.
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5 EXPERIMENTAL RESULTS

In this section, we present an empirical study aiming at two main goals: (1) showing the capability
of the HSA mechanism in incorporating useful domain hierarchy knowledge into training better
transformer models from scratch, and (2) demonstrating the unique capacity of HSA as post-training
approximation of the Softmax attention in pre-trained transformer models in order to reduce the
self-attention computation FLOPS in a zero-shot manner.

5.1 HIERARCHICAL LANGUAGE

Despite its unimodality, natural language data often comes in a semantically meaningful hierarchy
(e.g. sections, paragraphs, sentences, etc.) which can be seen as granular abstraction of the underlying
semantics in the data. Nonetheless, most transformer-based frameworks ignore this hierarchical
structure which not only discards valuable prior knowledge about the semantics of the text, but
in the long context scenario, it can also result in loss of information due to truncation (which is a
common practice for long sequences in order to manage the computational complexity of the Softmax
attention). HSA avoids truncation for long sequences by effectively reducing the computational
complexity of the attention calculation via incorporating the hierarchical abstraction.

For our empirical assessment, we have chosen the text classification problem for the sentiment
analysis task on two datasets: IMDB (imd; Maas et al., 2011b), and Elec (ele; McAuley & Leskovec,
2013)—for sentiment classification in movie reviews and Amazon electronics product reviews,
respectively (ama). The rationale for choosing these datasets lies in their inclusion of lengthy texts,
which means they can benefit from hierarchical representation. For details, see Appendix H.1.

Signal Hierarchy: We represent each text datapoint in our datasets as a 3-level signal hierarchy:
paragraphs, sentences and tokens. The position embedding at each level is the 1D grid embedding
materialized by random Fourier features (Li et al., 2021a). The tokens form the leaves of each
signal hierarchy and are represented via vector embeddings. We have experimented with two token-
embeddings in our experiments: the simple Word2Vec (wor; Mikolov et al., 2013), and the richer,
transformer-based T5 (t5; Raffel et al., 2020).

Experimental Settings: We have used similar architectures for both the baseline and the HSA, each
amounting to 1.2M trainable parameters. For a fair comparison, we have used the same training
hyper-parameters for both models. See Appendix H for the details of experimental settings.

Dataset Model Word2Vec embedding T5-small embedding
Acc F1 Score Acc F1 Score

IMDB FSA 0.6739± 0.0004 0.6739±0.0004 0.7577±0.0024 0.7577±0.0024
HSA 0.7469±0.0029 0.7468±0.0027 0.8129±0.0010 0.8129±0.0010

Elec FSA 0.7182±0.0001 0.7182±0.0001 0.8212±0.0014 0.8212±0.0014
HSA 0.7549±0.0005 0.7549±0.0005 0.8521±0.0022 0.8521±0.0022

Table 1: The sentiment classification Accuracy/F1 score comparison for the Flat Self-Attention
(FSA), i.e. the Softmax attention, and the Hierarchical Self-Attention (HSA).

HSA vs. Flat Self-Attention: Table 1 depicts the test Accuracy and F1 Score of sentiment classifica-
tion for the two models on the IMDB and Elec datasets. As these results show, HSA consistently
and significantly outperforms the standard Softmax self-attention across the datasets as well as the
token-embeddings. The superiority of HSA over the standard self-attention can be attributed to two
main factors: (1) by incorporating the semantic hierarchical knowledge of the problem within the
attention computation process, HSA effectively employs a form of regularization based on the scale
separation prior that protects it against potential overfitting, and (2) for long input sequences, unlike
the standard self-attention mechanism, HSA can evade truncation of the input sequence by effectively
reducing the memory and the compute footprints of the attention mechanism.

Word2Vec vs. T5 embedding: From Table 1, we also observe that the classification results signifi-
cantly improve for both models by replacing the basic Word2Vec token embedding with the richer
T5 embedding. This is not surprising, but it also shows that our proposed HSA framework can be
incorporated as a (shallow) adaptor on the top of pre-trained foundational models and adapt them for
a new domain. Furthermore, we can see the gap between the HSA and the standard self-attention
intensifies for simpler token embeddings. In other words, where we do not have access to pre-trained
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embedding models, the superiority of HSA and its hierarchical inductive bias is even more significant.
This points to the potential significant boost we can gain by training HSA-based, multi-modal founda-
tional models instead of the classical transformers. Due to its demanding computational requirements,
we leave this empirical investigation for future work.

5.2 MULTI-MODAL NEWS CLASSIFICATION

In order to showcase the capabilities of our proposed framework in multi-modal settings, we have
performed experiments for the news classification task on N24News dataset (Wang et al., 2022),
where for each news article not only we have language and image modalities present, but the text
itself consists of multiple sub-modalities, i.e. headline, abstract, image caption and main body.

Model Acc F1 Score
FSA 0.7921± 0.0036 0.7902± 0.0003

DeepSet 0.7578± 0.0096 0.7590± 0.0065
HSA 0.7952±0.0155 0.8091±0.0102

Table 2: The news classification Accuracy/F1
score comparison for the Flat Self-Attention (FSA),
i.e. the Softmax attention, DeepSet(Zaheer et al.,
2017), and the Hierarchical Self-Attention (HSA)
on N24News dataset.

Baselines: For N24News dataset, most ap-
proaches in the literature concatenate a sub-
set of the text sub-modalities and use that as
the representation of the whole article. There
are also a few multi-modal methods that in-
corporate the image modality as well, the best
of which achieves 91% Accuracy and 90% F1
Score using 211M trainable parameters (Wang
et al., 2022), not to mention incorporating other
tricks such as using multiple loss functions to
achieve the SOTA performance. For our experimental evaluation of HSA, however, we would need
to keep these other contributing factors out, and instead compare moderate size models within our
computational budget that are only different in their attention mechanisms. To this end, for our
baseline method, we concatenate headline, abstract and body into one text sequence and use that
to train a classical transformer (realized via one-level signal hierarchy). As the second baseline,
we incorporate a multi-modal model based on the DeepSet architecture (Zaheer et al., 2017) to
incorporate the image modality as well as the text; see Appendix H.2 for details. For all baselines as
well as our HSA-based model, we ensure the number of trainable parameters is around 12M.

Signal Hierarchy: For the HSA-based model, each news article is represented as a signal hierarchy
where at the top level the image modality as well as the text sub-modalities are represented by the
key-value signal type (see Appendix B). The headline, abstract and caption sub-trees are further
divided into tokens in the next level using the 1D Grid signal type; whereas, the body is divided into
paragraphs (again using 1D Grid signal) where each paragraph is treated as a leaf by pooling the
text embedding of the whole paragraph. To embed the text components at the leaves, we have used
e5-base (e5; Wang et al., 2022); whereas, for image leaves, we have used VIT (vit; Dosovitskiy et al.,
2021). Both of these models have shown superior performance in various benchmarks (Muennighoff
et al., 2023; Russakovsky et al., 2015).

Results: Table 2 shows the test accuracy and F1 Score for the three competing methods for the
N24News multi-class classification problem. From these results, we can see that our HSA methodol-
ogy outperforms the baselines and the difference is significant. Interestingly, despite incorporating
the additional modality of image, the performance of DeepSet significantly declines compared to the
vanilla uni-modal, flat attention. This signifies the fact that it is not enough to only incorporate other
information modalities within the model, but also how they are incorporated is equally important
to boost the model’s generalization. In that sense, our proposed nested signal formalism along
with its hierarchical attention mechanism provide a principled methodology to incorporate different
information modalities within a transformer model.

5.3 ZERO-SHOT HIERARCHICAL APPROXIMATION OF SOFTMAX ATTENTION

An important feature of our proposed framework is that Theorem 1 gives us the theoretical basis for
approximating Softmax attention via HSA given an appropriate hierarchical structure. This means
that HSA can seamlessly replace regular Softmax attention after training, and depending on the
task and the original model, the accuracy may not experience significant drop. The main objective
for such replacement post-training is to reduce the number of FLOPs needed for the self-attention
operation. To further examine this idea, we have adopted the classical pre-trained RoBERTa model
(Liu et al., 2019) and have replaced the Softmax self-attention operation in it with HSA, and then
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Dataset Original RoBERTa HSA-RoBERTa
Acc↑ Pre↑ Rec↑ FL(M)↓ Acc↑ Pre↑ Rec↑ FL(M)↓

IMDB(264) 0.9558 0.9558 0.9558 214.94 0.9494 0.9501 0.9494 4.32
AGNEWS(54) 0.9469 0.9469 0.9469 8.99 0.9422 0.9423 0.9422 0.8357

CoLA(12) 0.8150 0.8348 0.8017 0.4441 0.7687 0.7608 0.7821 0.1912
SST-2(26) 0.9403 0.9404 0.9402 2.08 0.9025 0.9083 0.9014 0.4132
MRPC(55) 0.9117 0.9006 0.8938 9.33 0.8553 0.8613 0.7963 0.8481
RTE(70) 0.7833 0.7870 0.7796 15.11 0.7400 0.7400 0.7377 1.29

QNLI(38) 0.9267 0.9267 0.9268 4.45 0.5072 0.3398 0.7531 0.5643

Table 3: The FLOPs comparisons for zero-shot HSA approximation of RoBERTa-base layers 7,9,11
and RoBERTa-large layers 16,18,20,22,24 (for IMDB). We have reported MFLOPs per impacted
layers as well as Accuracy (Acc), Precision (Pre) and Recall (Rec). The FLOPs are computed based
on the average sequence length (shown in parentheses) for each dataset.

run it against some benchmark classification datasets. During this experimentation, we made a few
insightful observations. First, in general, the performance drops significantly if we replace Softmax
attention with HSA for all hidden layers of RoBERTa, and some amount of fine-tuning is needed
to regain the original performance. However, zero-shot replacement is still feasible if only a subset
of layers go through HSA replacement. In particular, earlier layers seem to be more sensitive to
HSA approximation while the final layers are more amenable to it. Furthermore, we observed that by
interleaving HSA layers and regular Softmax layers, we can significantly reduce the accuracy gap.

Based on these observations, we applied HSA approximation to layers 7, 9 and 11 in RoBERTa-
base and 16, 18, 20, 22 and 24 in RoBERTa-large. As for the hierarchy, instead of using the
sentence/paragraph/etc. structures in text, we opted to fixed hierarchies generated by non-overlapping
hopping windows on the input text. In particular, we used a four level hierarchy where the layers’
branching factors from top to bottom are 16, 8, 4 and 2. For more experimental results on different
hierarchy structures and different HSA layer combinations, see Appendix K. Table 3 compares
HSA-equipped RoBERTa (henceforth HSA-RoBERTa) and the original RoBERTa in terms of FLOPs
as well as Accuracy on 5 GLUE benchmarks (Wang et al., 2018), IMDB benchmark (Maas et al.,
2011a) and AGNEWS benchmark (Zhang et al., 2015). As these results show HSA layers significantly
reduce the number of FLOPs for attention computation, and depending on the task the accuracy drop
can be minimal. Keep in mind these results are obtained completely zero-shot without any fine-tuning.
Indeed fine-tuning can further close the accuracy gap while maintaining the performance gain by
HSA. This points to another HSA’s strong potential: to be used as a self-attention approximation
technique for long-context problems. We leave the further exploration of this direction to future work.

6 CONCLUSIONS

In this paper, we propose HSA, a novel mathematical framework for generalizing classical Softmax
self-attention mechanism to hierarchical problems that not only occupy multiple scales but may be
also defined on multiple geometries. Unlike many existing work that approach these problems via
heuristic neural architectures, we mathematically derive our formulation from the principle of entropy
minimization given the (nested) data signal is seen as a statistical mechanical system. Given its
strong theoretical and algorithmic properties, we empirically showed that HSA can be used to inject
hierarchical domain knowledge into training of transformer models and hence produce models with
better generalization. We further showed that HSA can be used as a self-attention approximation
technique for pre-trained models to significantly reduce the FLOPs needed for self-attention at the
test time. This opens the door for HSA to be used as a "fast" self-attention technique on long context
data, even after training.

One high-impact future application of HSA is training large-scale foundational models that can
naturally handle multi-modal and hierarchical inputs using the HSA formalism. On the theoretical
side, HSA can be also extended to include non-Softmax attention mechanisms (See Appendix J).
The other important future direction is application of HSA to transformer decoder for hierarchical
auto-regressive generation. This is important specially because it has the potential to boost LLMs in
terms of both generalization (by incorporating hierarchical, multi-modal domain knowledge) and
speed (due to the low-rank nature of HSA computation). Due to its significance, we have laid the
foundations of hierarchical decoding via HSA in Appendix F while leaving details to future work.
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A NOTATIONS

Table 4 summarizes our notations in the main paper. Moreover, Fig 3 visually demonstrates some of
our tree-related notations.

Figure 3: The visual demonstration of some of our tree-related notations in the paper.

B GENERALIZING THE NOTION OF SIGNAL

In standard Geometric Deep Learning, signals typically represent data structures in Computer Vision,
Audio Processing, Natural Language Processing and Graph and Manifold Processing. But the
notion off signal is quite versatile and can be generalized to include feature representations in
classical Machine Learning. In particular, we note the special case where the signal domain Ω is a
countable, discrete set with no additional structure. In this case, if the elements of Ω are conceptually
indistinguishable, then any signal x on Ω is said to be defined on an unordered set and subsequently,
the position embedding εΩ maps all the elements of Ω to the constant vector 0. The latter conveys
that there is no positional information associated with the signal. As an example, a vector set can be
seen as a signal defined on an unordered set.

On the other hand, if the elements of Ω are distinguishable, we can define a bijective position
embedding εΩ to carry that information into the position vector space. We refer to signals defined
on such Ω domains as key-value signals. For instance, a tabular feature vector in classical Machine
Learning can be seen as a set of key-value pairs where the keys are the feature names and the values
are the feature values, and hence modeled as a key-value signal. In this case, a text embedding
model can be used to map the feature names into a vector space and regard the results as the position
embeddings of those features. In other words, the notion of signal in our work is quite generic and
encompasses not only the signal types in Geometric Deep Learning but also the classical tabular
feature vectors.

C THE EMERGENCE OF THE VALUE PROJECTION MATRIX

The derived formulation for Softmax attention in equation 6 deviates from the classical Softmax
attention in that it lacks separate value projections, which can be quite restrictive as it significantly
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Notation Description
Bold face A vector or a matrix when it is not obvious from the context

0 A column vector of zeros
1 A column vector of ones
x A simple or nested signal

x(u) The value of signal x at position u
Ω The signal domain
C The vector space containing the signal range
d The dimensionality of C, i.e. the channel dimension
D The set of all signal domains present in the problem
εΩ The position embedding function for domain Ω
c The dimensionality of each position embedding
ε The set of all position embedding functions for all domains in D
S The set of all possible simple signals in the problem
Nℓ The set of all possible nested signals up to depth ℓ
N The set of all possible nested signals in the problem
N0 An equivalent notation for C
hx The signal hierarchy representing the finite nested signal x

A,B,C, ... The nodes in the signal hierarchy hx
Li The leaf node in the signal hierarchy hx corresponding to the query variable qi
Rx The root node of the signal hierarchy hx
ℓ(A) The set of indices of the leaf node descendants of node A
chd(A) The children of node A
pa(A) The parent of node A
sib(A) The siblings of node A

ica(A,B) The immediate common ancestors of the unrelated nodes A and B
A′, B′ The highest distinct ancestors of the unrelated nodes A and B
M The number of non-leaf nodes of the signal hierarchy hx
b The maximum branching factor of the signal hierarchy hx
| · | Set cardinality

H(Q | K) The conditional entropy of the query variable Q given the key variable K
ψA→B The (directional) interaction energy between the unrelated nodes A and B
ϕ(A) The energy of node A
∇qiϕ(A) The gradient of the energy of node A wrt the query vector qi
θi,j The (directional) attention weight between query qi and key kj
Θ The attention matrix
B The set of (hierarchical) stochastic matrices respecting the block constraint wrt hx

Table 4: The notations used in the main paper.

reduces the model’s degrees of freedom. Nevertheless, the value projections can be theoretically
injected into our derived formulation by considering learnable step-size for the gradient update in
equation 6. In particular, instead of setting step size to λ = 1, we can let λ =Wv where Wv ∈ Rd×d

is a trainable parameter. By doing so, equation 6 changes to:

qi ← qi +

N∑
j=1,j ̸=i

exp(qTi kj/
√
d+ eTi ej)∑N

t=1,t̸=i exp(q
T
i kt/

√
d+ eTi ej)

·Wvkj , 1 ≤ i ≤ N (14)

By defining vi = Wvkj = WvWkxj , we effectively arrive at separate value projections, where
WvWk can be seen as the value projection matrix used in the standard Softmax attention formulation.

Note that by introducing learning step-size in the form of projection matrix, we effectively project the
direction of the gradient vector into a new direction. So in that sense, equation 14 is no longer a strict
gradient ascent update. In other words, depending on the learned projection matrix Wv and the value
of gradient vector for point qi, we may decrease or even increase the upper-bound on the conditional
entropy. This extra degree of flexibility indeed enables the transformer model to best adapt to the
end task. And therefore, we have adopted separate value projections in our code as well as all of our
reported experiments, similar to the standard transformer architecture.
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D EFFICIENT CALCULATION OF HSA

D.1 DYNAMIC PROGRAMMING

Even though our proposed HSA formulation in Eq. equation 9 brings down the degrees of freedom
for the attention matrix to O(M · b2), the naïve implementation of the recurrence in Eq. equation 9
for all query variables qi still takes O(b2 ·M logbM) time. However, we note that the calculation
of ∇qiϕ(Rx) and ∇qjϕ(Rx) for any two leaf nodes i, j ∈ ℓ(Rx) shares some common intermediate
calculations corresponding to the shared segment of the two paths that connect the root node to i
and j. This is indeed the notion of common substructure which is the hallmark of problems that can
be efficiently solved by dynamic programming. To this end, in this section, we propose a dynamic
programming algorithm that computes ∇Φ in Eq. equation 11 in O(M · b2) time by traversing the
signal hierarchy tree in two passes: a bottom-up pass followed by a top-down pass. Essentially, the
former computes the energy function ϕ(·) while the latter calculates the attention vectors∇qiϕ(·) for
all i ∈ ℓ(Rx). Algorithms 1–3 illustrate these steps.

Algorithm 1: Hierarchical Self Attention (HSA)
Input :hx //The signal hierarchy for nested signal x

Output :{∇qiϕ(Rx) ∈ Rd,∀i ∈ ℓ(Rx)}
1 u← − log(|ℓ(Rx)|)
2 ComputeSufficientStats(Rx) //Bottom-up
3 ComputeAttention(Rx, u,0) //Top-down
4 foreach i ∈ ℓ(Rx) do
5 ∇qiϕ(Rx)← ϑ(Li)
6 end
7 return {∇qiϕ(Rx) | i ∈ ℓ(Rx)}

Algorithm 2: The Bottom-up Sufficient Statistics Computation
Input :A ∈ hx //A node in the signal hierarchy
Output :ϕ(A) ∈ R, η(A) ∈ R, ϑ(A) ∈ Rd

1 Function ComputeSufficientStats(A):
2 if A is a leaf then
3 ϕ(A)←∞
4 ρq(A)← q(A) //q(A) is the query at leaf A
5 ρk(A)← k(A) //k(A) is the key at leaf A
6 ρv(A)← v(A) //v(A) is the value at leaf A
7 else
8 foreach C ∈ chd(A) do
9 ComputeSufficientStats(C)

10 end
11 ϕ(A)← −

∑
C∈chd(A)

|ℓ(C)|
|ℓ(A)| · log

[
exp

(
− ϕ(C)

)
+ exp

(
− η(C)

)]
12 ρq(A)← 1

|ℓ(A)|
∑

C∈chd(A) |ℓ(C)|ρq(C)
13 ρk(A)← 1

|ℓ(A)|
∑

C∈chd(A) |ℓ(C)|ρk(C)
14 ρv(A)← 1

|ℓ(A)|
∑

C∈chd(A) |ℓ(C)|ρv(C)
15 end
16 ∀B ∈ sib(A) : ψ′

A→B ← ε(A)T ε(B) + 1√
d
ρq(A)

T ρk(B)−
√
d+ log |ℓ(B)|

17 η(A)← − log
[∑

B∈sib(A) exp(ψ
′
A→B)

]
18 ϑ(A)← exp

(
− η(A)

)∑
B∈sib(A) exp(ψ

′
A→B) · ρv(B)

19 End Function
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Algorithm 3: The Top-down Attention Computation

Input :A ∈ hx, u ∈ R, v ∈ Rd

Output :ϑ(A) ∈ Rd //The attention vectors
1 Function ComputeAttention(A, u, v):
2 foreach C ∈ chd(A) do
3 ϑ(C)← v− 1√

d
exp

(
u+ LogSigmoid

[
ϕ(C)− η(C)

])
· ϑ(C)

4 u′ ← u+ LogSigmoid
[
η(C)− ϕ(C)

]
5 ComputeAttention(C, u′, ϑ(C))
6 end
7 End Function

D.2 CORRECTNESS AND COMPLEXITY

First off, it is not hard to show that for the case of flat hierarchy, Algorithms 1–3 reduce to the standard
Softmax attention calculations. In other words, the standard Softmax attention calculation is a special
case of our proposed algorithm here. Showing the correctness and the complexity of Algorithms 1–3
for the general case, however, is more involved, which we achieve through the following theorem.

Theorem 2. For a given signal hierarchy hx, if both query and key variables are normalized via the
LayerNorm function, then Algorithms 1–3 compute {∇qiϕ(Rx) | i ∈ ℓ(Rx)} in Eq. equation 9 in
O(M · b2) based on the interaction energy function defined in Eq. equation 7, where b and M are the
branching factor and the number of families in hx, respectively.

Proof. See Appendix G.3.

Once the attention values are computed using Algorithm 1, the query vector representations at the
leaf nodes can be updated via the residual connection:

qi ← qi − |ℓ(Rx)|
√
d · ∇qiϕ(Rx),∀i ∈ ℓ(Rx) (15)

And that would conclude the HSA operation.

D.3 BLACK-BOX ATTENTION COMPUTATION

It is important to note that Lines 16-18 in Algorithm 2 perform the standard Softmax attention
mechanism on the members of a family that contains node A. In other words, our proposed HSA
algorithm can be seen as a divide-and-conquer algorithm where the attention computation on the
whole sequence (i.e. the hierarchy’s leaves) is broken down into attention computation on the much
smaller families in the hierarchy (aka the sub-problems) via the bottom-up part of the algorithm,
and then these intermediate results (aka the sufficient statistics) are combined through the top-down
part of the algorithm to produce the final self-attention output. From this perspective, if the average
branching factor (i.e. the family size) in the hierarchy is b, then on average, the sub-problem attention
calculation takes O(b) time and memory for each node A, which makes the O(b2) complexity for the
entire family. Then intuitively for the total of M families in the hierarchy, the final computational
complexity comes to O(M · b2). As a special case, for flat hierarchies where there is only M = 1
family of size b = N (i.e. the sequence length), the complexity becomes O(N2).

More importantly, from the practical perspective, the divide-and-conquer view of the proposed
algorithm encapsulates the sub-problem self-attention computation (in Lines 16-18 in Algorithm
2) as a black-box module that can be easily replaced by any exact or approximate function that
computes the standard Softmax attention. This has a significant practical implication, as it allows the
HSA algorithm to invoke any efficient attention computation frameworks in the literature as its base
attention calculation sub-module. For instance, the quadratic factor b2 in O(M · b2) can be further
reduced to linear if one employs one of the many approximation techniques proposed for efficient
computation of Softmax attention Beltagy et al. (2020); Choromanski et al. (2020); Katharopoulos
et al. (2020); Peng et al. (2021) as the black-box sub-problem attention computation module in Lines
16-18 in Algorithm 2.
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D.4 GPU IMPLEMENTATION

The Algorithms 1–3 are technically classical tree-traversal algorithms which are typically not fit for
parallel processing on GPU. Indeed, this would introduce a practical challenge for incorporation
of HSA within modern Deep Learning frameworks. To address this challenge, in this section, we
present two major techniques for introducing parallelization both at the node level for one signal
hierarchy as well as at the batch level across multiple signal hierarchies.

First, we note that all the summations in Algorithms 2 and 3 can be done in parallel for different sets
of nodes in hx. In particular, if a summation statement can be parallelized for K nodes of hx, it can
be implemented as a (sparse) matrix by dense vector multiplication W v, where W = [wi,j ]K×S is
the sparse coefficient matrix and v = [vi]S×1 contains the values of the input terms. In particular,
wi,j is the weight of the jth term for computing the summed quantity at the ith node (typically 1
or 0). As for the quantities in Algorithms 2 and 3, µk(·), µq(·) and η(·) can be parallelized over
all the nodes in hx; that is, in order to compute each one of these quantities for all nodes of hx,
only one sparse matrix-vector multiplication is needed given the appropriate coefficient matrix. The
computation of ϕ(·) and ϑ(·) is also parallelizable over the nodes belonging to the same depth in hx;
in other words, given the appropriate coefficient matrices, we would need D sparse matrix-vector
multiplications to calculate each one of these quantities for all nodes in hx, where D is the depth of
hx. Since the coefficient matrices in this scheme are highly sparse, we have represented the coefficient
matrices using sparse tensors and used the efficient implementation of sparse matrix by dense vector
multiplication in Pytorch to carry out the tree-based summations in Algorithms 2 and 3.

The other fundamental aspect of parallelization in Deep Learning is batch computation, which
typically boils down to matrix operations for the standard batches of fixed-size tensors. However,
in our scenario, the signal hierarchies in each batch are trees with different structures as well as
potentially different signal types/modalities appearing in arbitrary arrangements for each signal
hierarchy in the batch. This effectively makes the classical batch computation impossible for signal
hierarchies. To address this challenge, we propose a completely different technique for batch
parallelization. As explained above, we already have a method to parallelize the computations within
each signal hierarchy; we can further parallelize the computations across different signal hierarchies
in a batch by making them part of one hierarchy. In particular, we introduce a dummy root node and
make each signal hierarchy in the batch a direct child of it. The position embedding for this dummy
root is set to unordered-set embedding; that is, no position embedding. This way, we end up with only
one, wide signal hierarchy in our batch that is just one level deeper than the deepest signal hierarchy
in the original batch. By performing the parallel version of Algorithms 1–3 (as described above)
on this one "concatenated" signal hierarchy, we effectively compute all the targeted quantities for
all signal hierarchies in the batch at the same time. We refer to this batch processing technique as
breadth-wise tree concatenation.

E HIERARCHICAL TRANSFORMER ENCODER

The proposed HSA mechanism does not introduce any trainable parameters on its own; it is simply an
attention operation. However, similar to classical transformers, we can add trainable linear projections
before performing HSA. This gives rise to the hierarchical transformer encoder (HTE) architecture
which is capable of operating on signal hierarchies representing finite nested signals. Similar to
classical transformers, we also add multiple heads as well as point-wise linear projection of the
output of HSA followed by some non-linearity. The same way the classical transformer layers do
not change the query sequence length or the position embeddings of its tokens, HTE layers do not
alter the structure of the hierarchy tree or its nodes’ positional embeddings2. Figure 4 depicts our
proposed architecture for each HTE layer.

Aside from HSA, HTE is different from classical transformer encoder in two ways. First, the
LayerNorm operation is performed after linear projection as opposed to before it. As mentioned
before, by doing so, the attention operation will minimize a proper energy function which is in turn a
proxy for minimizing the entropy of the representation. Second, unlike simple signals in standard

2Even though, the same position embeddings are fed to each layer, in our implementation, we have designed
a separate linear projection per position embedding type per layer to project the position embeddings before the
HSA operation.
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Figure 4: The proposed Hierarchical Transformer Encoder (HTE) layer architecture.

transformers, signal hierarchies can contain different modalities and signal domains within their
different families across the hierarchy. Therefore, using the same linear projection layer for all this
various types of information may be an over-simplification. To this end, our proposed framework
allows different linear projection per the type of input information. For example, the leaf vectors
coming from the language and vision modalities can be transformed using their own separate linear
projection layers. Note that this distinction is only allowed at the linear projection layer; the HSA
operation itself is universal and does not treat different types of information differently. Also, it
is assumed the different types of information in a given problem (including modalities and signal
domains) are a priori known and fixed, even though each signal hierarchy in the input dataset can be
an arbitrary, variable-depth composition of these known types. By making this assumption, we can
know ahead of time how many linear projection layers are needed within each HTE layer.

The HTE layers can be cascaded to form a hierarchical transformer based on the HSA. Furthermore,
different types of pooling operations can be introduced to (gradually) coarsen the hierarchical structure
of the input nested signal. In particular, using a local pooling operation, the leaf nodes of the input
signal hierarchy are either merged together or completely pooled into their parents resulting in a
coarser representation of the underlying nested signal. Furthermore, since the channel dimensionality
d is constant across the hierarchy, global pooling is also well-defined which reduces the whole signal
hierarchy into a single, fixed-size vector of d dimensions (e.g. by taking the average). Depending on
the application, global pooling can also be realized by taking a specific leaf node’s query vector of
the output signal hierarchy (e.g. in per-token classification tasks on uni-modal, hierarchical data).

F HIERARCHICAL AUTO-REGRESSIVE GENERATION

The HSA-based, encoder-only architecture introduced in Appendix E is primarily suitable for
classification and regression applications. However, for auto-regressive generation such as causal
language modeling, we would need to have a decoder. One straightforward approach is to use an
encoder-decoder architecture where the encoder is HSA-based while the decoder is the standard
sequential decoder. In particular, in this scheme, the hierarchical self-attention is only incorporated for
the initial prompt while for the generated text, we simply compute the standard flat attention. While
simple, this solution does not take the full advantage HSA, especially if the generated text allows for
the similar hierarchical structure as the prompt text. For instance, if the hierarchy is built upon the
sentence and paragraph structure of the prompt text, then it is fairly reasonable for the generated text
to have the same hierarchical construct as well. The same can be said when the hierarchy is based on
fixed hopping windows over the text. In such cases, a HSA-based, decoder-only architecture is needed
to incorporate the hierarchical structure of the generated text during auto-regressive generation.

Theoretically speaking, for a HSA-based decoder during auto-regressive generation, we would need
to maintain a dynamic signal hierarchy where every generated token augments the signal hierarchy
with at least one new leaf node and possibly multiple non-leaf nodes. Once the signal hierarchy is
updated, the HSA calculations are, in principle, the same as before. Nevertheless, there are two major
issues here specific to auto-regressive generation. First, unlike the HSA mechanism introduced so far,
due to causal generation of tokens, leaf nodes are only allowed to attend to the other leaf nodes that
have appeared before them; that is, we would need a hierarchical causal masking mechanism. Second,
running the full HSA algorithm for every generated token is inefficient as it would re-compute some
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of the sufficient statistics in Algorithm 2, which is clearly redundant. In the following sections, we
address these two problems.

F.1 HIERARCHICAL CAUSAL MASKING

In the standard auto-regressive generation using the self-attention mechanism, in order to prohibit
tokens from attending to the future tokens, one incorporates a causal mask in calculation of the
attention weights via an appropriate lower-triangular mask matrix. However, this straightforward
approach will not work with hierarchical self-attention mechanism because attention weights between
all tokens are not computed simultaneously but rather in hierarchical fashion.

Nevertheless, one can easily show that if the standard causal masking is applied at each level of the
hierarchical attention calculation, at the end, no leaf token will attend to its future tokens (i.e. the
tokens to its right) in the hierarchy. In particular, as explained in Appendix D.3, Lines 16–18 of
Algorithm 2 encapsulate a black-box Softmax self-attention function that is applied for each family
in the hierarchy. For applying hierarchical causal masking, we can simply apply the standard causal
masking within this black-box self-attention calculation. This is equivalent to replacing the sibling
function sib(A) in lines 16–18 of Algorithm 2 with sibL(A) which restricts A’s siblings to the ones
to its left (i.e. previous tokens). This simple black-box causal masking will further propagate through
the hierarchy such that at the end, the leaf nodes will only attend to other leaf nodes that are located
to their left. Figure 5 illustrates this process through a toy example.

Figure 5: An illustration of the proposed Hierarchical Causal Masking scheme for hierarchical
auto-regressive generation.

F.2 HIERARCHICAL CACHING

In standard auto-regressive generation, every generated token merely attends to the tokens seen so far
whose projections are cached via a key-value cache. This makes the attention computation for each
token linear in the (generated + prompt) sequence length. This simple idea, however, is not directly
applicable to the hierarchical case. One important distinction that we need to keep in mind is that
in the hierarchical case, we are not only generating a sequence but also a hierarchy that comes with
it; in other words, the generated sequence is the set of the leaf nodes of a hierarchy that needs to be
maintained and updated as well. As such, any caching mechanism would need to maintain and update
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the signal hierarchy and not just its leaf nodes. Note that caching the hierarchy means maintaining its
structure as well as its nodes’ sufficient statistics pre-computed by Algorithm 2.

Nevertheless, during generation, we do not need to keep the entire signal hierarchy. In particular, in
our HSA framework not every leaf node directly attend to every other leaf node; instead, leaf nodes
that are not in the same family only attend to each other at the coarse scale through their highest
distinct ancestors. This means that during generation, a newly generated token (leaf node) only needs
to directly attend to its previously generated leaf siblings and not other leaf nodes. Instead it will
indirectly attend to other leaf nodes en masse by attending to their highest ancestor that is not an
ancestor of the new token. Following this scheme, we would only need to cache a sub-tree of the
original hierarchy that consists of the ancestor line of the latest generated token as well as their
immediate children nodes. We refer to this sub-tree as right-skewed because only the right-most
sibling in each family across the signal hierarchy is allowed to have children. Figure 6(A) illustrates
the maximal right-skewed sub-tree for the toy hierarchy in Figure 6(B).

Once the the right-skewed sub-tree of the signal hierarchy is extracted, we can simply update as
new tokens are generated. However, we have to be careful as not all of the newly generated tokens
are added to the latest family: some new tokens may start a new family via a higher level of the
hierarchy. For example, if the hierarchy for language data is built based upon the sentence and
paragraph structure in the text, a new token is not always going to be part of the latest sentence or
paragraph; it may start a new sentence or even a new paragraph. In such cases, more nodes need
to be added to or deleted from the cache other than the new token’s leaf node. These two cases are
illustrated in Figure 6(C)-(D).

Finally we note that during the entire generation process the hierarchical cache remains a right-skewed
tree which means that the CPU and memory complexity for calculating attention and maintaining
the cache would be O(b logbN) where N is the length of the generated sequence so far and b is
the average branching factor of the hierarchy. This is in stark contrast to the classical key-value
caching where the memory and computation are of O(N) complexity, and hence shows the potential
computational advantage of our hierarchical scheme.

Figure 6: An illustration of the proposed hierarchical caching mechanism for hierarchical auto-
regressive generation: (A) The original signal hierarchy built on the prompt text. (B) The right-skewed
sub-tree of the original hierarchy. (C) The updated hierarchy after generation of a new token that
does not end the latest family. (D) The updated hierarchy after generation of another token that does
end the latest family. The green leaf nodes depict the latest generated tokens in each step.

G PROOFS

G.1 PROPOSITION 1: SOFTMAX ATTENTION

Proof. Since each Q and K variables is normalized via a LayerNorm layer, we have ∥qi∥2 = d and
∥ki∥2 = d, ∀1 ≤ i ≤ N , which would reduce the energy function in equation 5 to:

ϕ(Q,K) =
√
d− 1

N

N∑
i=1

log

(
1

N − 1

N∑
j=1,j ̸=i

exp
[
qTi kj/

√
d
])
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By taking the gradient of w.r.t. qi, we get:

∇qiϕ(Q,K) =

N∑
j=1,j ̸=i

exp(qTi kj/
√
d)∑N

t=1,t̸=i exp(q
T
i kt/

√
d)
· kj , 1 ≤ i ≤ N

By plugging∇qiϕ(Q,K) into equation 4 and setting τ = (N
√
d)−1, λ = 1 and the sample size to 1,

we will get the Softmax attention formulation in equation 6.

G.2 THEOREM 1: THE OPTIMALITY OF HSA

First off, since each Q and K variables is normalized via a LayerNorm layer, we have ∥qi∥2 = d and
∥ki∥2 = d, ∀1 ≤ i ≤ N , which would reduce the interaction energy function ψA→B in equation 7
to:

ψA→B = −εΩ(A′)T εΩ(B
′) +
√
d− 1√

d · |ℓ(A)| · |ℓ(B)|

∑
i∈ℓ(A)

∑
j∈ℓ(B)

qTi kj (16)

Then ∇qiψA→B becomes:

∇qiψA→B = − 1√
d · |ℓ(A)| · |ℓ(B)|

∑
j∈ℓ(B)

kj (17)

Proof of stochasticity. Next, we show that Θ̂ = − 1
τΘ is a stochastic matrix where τ =(

|ℓ(Rx)|
√
d
)−1

and Θ = [θi,j ]|ℓ(Rx)|×|ℓ(Rx)| is the HSA matrix for the nested signal x in equation 11.

This is equivalent to showing that Θ is a negative matrix whose rows sum to −
(
|ℓ(Rx)|

√
d
)−1

. We
prove the latter by induction on the depth of the signal hierarchy hx.

The base case: Using the equation 17, for a signal hierarchy hx of depth 1 (i.e. a simple signal),
equation 9 reduces to:

∇qiϕ(Rx) = −
1√

d|ℓ(Rx)|

[ ∑
Lj∈sib(Li)

exp
(
− ψLi→Lj

)∑
Lk∈sib(Li)

exp
(
− ψLk→Lj

) · kj] = Θi.K (18)

where

K = [k1, ..., k|ℓ(Rx)|]
T ,

Θi. =

[ − exp
(
− ψLi→Lj

)
√
d|ℓ(Rx)|

∑
Lk∈sib(Li)

exp
(
− ψLk→Lj

)]|ℓ(Rx)|

j=1

is the ith row of Θ, and Li, Lj and Lk are the leaf nodes corresponding to qi, qj and qk, respec-
tively. From equation 18, it is clear that the elements of Θ are all negative and each row sums to
−
(
|ℓ(Rx)|

√
d
)−1

.

The induction step: Now assume that the above statement holds for any Θ matrix derived from a
signal hierarchy up to depth T − 1, we show that it also holds for the signal hierarchy hx of depth T .
To this end, equation 9 can be written as:

∇qiϕ(Rx) =
|ℓ(Bi)|
|ℓ(Rx)|

[
α(Bi) · ∇qiϕ(B

i) +
∑

C∈sib(Bi) |ℓ(C)|β(Bi, C) · ∇qiψBi→C

α(Bi) +
∑

C∈sib(Bi) |ℓ(C)|β(Bi, C)

]
=
|ℓ(Bi)|
|ℓ(Rx)|

[
µ(Bi)∇qiϕ(B

i) +
∑

C∈sib(Bi)

|ℓ(C)|δ(Bi, C)∇qiψBi→C

]
where,

µ(Bi) =
α(Bi)

α(Bi) +
∑

D∈sib(Bi) |ℓ(D)|β(Bi, D)
(19)

δ(Bi, C) =
β(Bi, C)

α(Bi) +
∑

D∈sib(Bi) |ℓ(D)|β(Bi, D)
(20)
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and we have µ(Bi) +
∑

C∈sib(Bi) |ℓ(C)|δ(Bi, C) = 1, for all i ∈ ℓ(Rx). On the other hand, since
Bi is a child of the root node Rx, the depth of its corresponding sub-signal hierarchy is inevitably
less than T , and therefore its corresponding energy gradient ∇ϕ(Bi) induces an attention matrix
ΘBi

that is negative with rows that sum to −
(
|ℓ(Bi)|

√
d
)−1

according to the induction hypothesis.
With that in mind, we can write

∇qiϕ(Rx) =
|ℓ(Bi)|
|ℓ(Rx)|

[
µ(Bi)ΘBi

i. KBi

−
∑

C∈sib(Bi)

δ(Bi, C)√
d · |ℓ(Bi)|

∑
j∈ℓ(C)

kj

]
= Θi.K

where ΘBi

i. is the ith row of ΘBi

, KBi

= [kj ]j∈ℓ(Bi), and we have:

Θi. = concat

[
|ℓ(Bi)|
|ℓ(Rx)|

µ(Bi)ΘBi

i. ,concat
[
− δ(Bi, C)√

d · |ℓ(Rx)|
1|ℓ(C)|

]
C∈sib(Bi)

]

Then the sum of the elements of the row vector Θi. is given by:

∑
j∈ℓ(Rx)

θi,j =
1

|ℓ(Rx)|

[
|ℓ(Bi)|µ(Bi)

∑
j∈ℓ(Bi)

θB
i

i,j −
∑

C∈sib(Bi)

|ℓ(C)|√
d
δ(Bi, C)

]

=
1

|ℓ(Rx)|

[
− 1√

d
µ(Bi)−

∑
C∈sib(Bi)

|ℓ(C)|√
d
δ(Bi, C)

]

= − 1√
d|ℓ(Rx)|

[
µ(Bi) +

∑
C∈sib(Bi)

|ℓ(C)|δ(Bi, C)

]
= − 1√

d|ℓ(Rx)|

where the second equality comes from the induction hypothesis that
∑

j∈ℓ(Bi) θi,j =

−
(
|ℓ(Bi)|

√
d
)−1

. In other words, ΘRx is negative with rows that sum to −
(
|ℓ(Rx)|

√
d
)−1

, which
in turn, implies that Θ̂ = −

(
|ℓ(Rx)|

√
d
)
Θ is a stochastic matrix.

Before proving the optimality of HSA, we need to show that the KL-divergence admits optimal
sub-structure in our setting. To this end, let ℘ = [pi]

N
i=1 be a categorical distribution over N items

such that
∑N

i=1 pi = 1. Furthermore, let R = {R1, ..., RK} be a K-partition on the index set
I = {1, ..., N} such that

⋃K
j=1Rj = I and Ri ∩Rj = ∅,∀i, j ∈ 1..K, i ̸= j. We say a categorical

distribution ω = [wi]
N
i=1 admits the tie constraint w.r.t. R iff we have wi = wj if ∃Rk ∈ R s.t.

i, j ∈ Rk. We refer to set of all such distributions as WR.

Given a distribution ω ∈ WR and the sub-partition R′ ⊂ R, the projection of ω on R′ is defined
as ω⊥R′ = [wi/h]i∈I(R′) where I(R′) =

⋃
R∈R′ R, and h =

∑
i∈I(R′) wi is the re-normalization

constant. From this definition, it is clear ω⊥R′ is a categorical distribution restricted to the items in
the partitionR′.

Lemma 1 (The optimal sub-structure of the KL-divergence). Let ℘, R and WR be defined as
above; furthermore, let ω∗ ∈WR be the closest categorical distribution in WR to ℘ in terms of the
KL-divergence; that is,

ω∗ = arg min
ω∈WR

DKL(ω∥℘)

Then, for anyR′ ⊂ R, we have:

ω∗
⊥R′ = arg min

ω∈WR′
DKL(ω∥℘⊥R′)
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Proof. Let us assume the closest distribution in WR′ to ℘⊥R′ is ω′ that is not equal to ω∗
⊥R′ . Then

we have,

DKL(ω
∗∥℘) =

∑
i∈I(R′)

w∗
i log(w

∗
i /pi) +

∑
i∈I(R\R′)

w∗
i log(w

∗
i /pi)

= h1 log(h1/h2) + h1
∑

i∈I(R′)

w∗
⊥R′i log(w

∗
⊥R′i/p⊥R′i) +

∑
i∈I(R\R′)

w∗
i log(w

∗
i /pi)

> h1 log(h1/h2) + h1
∑

i∈I(R′)

w′
i log(w

′
i/p⊥R′i) +

∑
i∈I(R\R′)

w∗
i log(w

∗
i /pi)

=
∑

i∈I(R′)

h1w
′
i log(h1w

′
i/pi) +

∑
i∈I(R\R′)

w∗
i log(w

∗
i /pi)

= DKL(ω
′′∥℘)

where

ω′′ = [w′′
i ]

N
i=1, such that w′′

i =

{
h1w

′
i, for i ∈ I(R′)

w∗
i , for i ∈ I(R \R′)

and h1 =
∑

i∈I(R′) w
∗
i and h2 =

∑
i∈I(R′) pi are the re-normalization coefficients. The inequality

in the above derivation is the direct result of the fact that ω′ is the closest distribution to ℘⊥R′ in
WR′ . This further implies that we just found another distribution ω′′ ∈WR that is closer to ℘ than
ω∗ is. And this contradicts our assumption regarding the optimality of ω∗. Therefore, ω∗

⊥R′ must be
the closest distribution to ℘⊥R′ in WR′ .

Intuitively speaking, Lemma 1 states that any sub-structure of an optimal solution for the KL-
divergence to a target distribution is also optimal. With that, we are now ready to show the optimality
of HSA.

Proof of optimality. We would like to show that the HSA formulation in equation 9 results in a self
attention matrix Θ̂ that minimizes the total KL-divergence in equation 12. In order to do so, we derive
the optimal solution for the total KL-divergence and show that it obeys the recurrence in equation 9.

For a signal hierarchy hx rooted at Rx, let Θ̂R denote the closest HSA matrix in B (the space of
all matrices that admit the block constraint according to the signal hierarchy hx) to the flattened
self-attention matrix Θf described by equation 13. That is,

Θ̂R = arg min
Θ∈B

∑
i∈ℓ(Rx)

DKL(θi,·∥θfi,·) ≡ arg min
Θ∈B

D̄KL(Θ∥Θf ) (21)

Since each row of Θ̂R is a categorical distribution, by applying Lemma 1 to the rows of Θ̂R, it is
straightforward to see that the diagonal blocks of Θ̂R corresponding to the children ofRx are also (up
to a re-normalization factor) the closest HSA matrices to the restriction of the flattened self-attention
matrix Θf to the corresponding sub-hierarchies. For the child node A ∈ chd(Rx), the renormalized
restriction of Θf to A is denoted by Θf,A. The elements of Θf are then can be written as:

∀i, j ∈ ℓ(Rx), θ
f
i,j =

{
zi

zi+z̄i
θf,A

i

i,j , if Ai = Aj

bi,j
zi+z̄i

, if Ai ̸= Aj
(22)

where Ai denotes that child of Rx that contains the ith leaf node, bi,j = exp(−ψi→j), zi =∑
j∈ℓ(Ai) bi,j , and z̄i =

∑
j∈ℓ(Rx)\ℓ(Ai) bi,j . Similarly, if we denote the renormalized restriction of

Θ̂R to A by Θ̂R,A, the elements of of Θ̂R are then can be written as:

∀i, j ∈ ℓ(Rx), θ̂
R
i,j =

{
µ(Ai)θ̂R,Ai

i,j , if Ai = Aj

δ(Ai, Aj), if Ai ̸= Aj
(23)

where µ(Ai) and δ(Ai, Aj) are unknown coefficients. Note that unlike equation 22, for the case
of Ai ̸= Aj , we only have one number representing the attention weight between sub-trees Ai

and Aj - i.e. δ(Ai, Aj). This is due to the block constraint being enforced on Θ̂R. Similarly,
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the block constraint requires the renormalization coefficient for every child Ai, i.e. µ(Ai), to be
the same for all the rows k ∈ ℓ(Ai). If we assume we already know the optimal restricted HSA
matrices Θ̂R,A,∀A ∈ chd(Rx), our goal reduces to computing the values of µ(A) and δ(A,B) for
all A,B ∈ chd(Rx) such that the total KL-divergence in equation 21 is minimized. By plugging
Eqs.equation 22 andequation 23 into equation 21, we get:

D̄KL(Θ̂
R∥Θf ) =

∑
A∈chd(Rx)

∑
i∈ℓ(A)

[ ∑
j∈ℓ(A)

µ(A)θ̂R,Ai

i,j log

(
µ(A)θ̂R,Ai

i,j (zi + z̄i)

ziθ
f,Ai

i,j

)

+
∑

B∈sib(A)

∑
j∈ℓ(B)

δ(A,B) log

(
(zi + z̄i)δ(A,B)

bi,j

)]

=
∑

A∈chd(Rx)

[
µ(A)

(
D̄KL(Θ̂

R,A∥Θf,A) + |ℓ(A)| logµ(A) +
∑

i∈ℓ(A)

log
(zi + z̄i

zi

))

+
∑

Binsib(A)

(
|ℓ(A)||ℓ(B)|δ(A,B) log δ(A,B)

+ δ(A,B)

[
|ℓ(B)|

∑
i∈ℓ(A)

log(zi + z̄i)−
∑

i∈ℓ(A)

∑
j∈ℓ(B)

log bi,j

])]
(24)

Where D̄KL(Θ̂
R,A∥Θf,A) is the optimal value of the total KL-divergence for the sub-problem

induced by the child node A of Rx. Since Θ̂R is the minimizer of equation 24, the values of µ(A)
and δ(A,B), ∀A,B ∈ chd(Rx) must be chosen such that they minimize equation 24. Furthermore,
each row of the matrix Θ̂R must sum to 1, which results in the following set of constraints on the
values of µ(A) and δ(A,B):

∀i ∈ ℓ(Rx),
∑

j∈ℓ(Rx)

θ̂Ri,j = 1⇒
∑

j∈ℓ(Ai)

θ̂Ri,j +
∑

j∈ℓ(Rx)\ℓ(Ai)

θ̂Ri,j = 1

⇒ µ(Ai)
∑

j∈ℓ(Rx)

θ̂R,Ai

i,j +
∑

B∈sib(Ai)

|ℓ(B)|δ(Ai, B) = 1

⇒ µ(A) +
∑

B∈sib(A)

|ℓ(B)|δ(A,B) = 1, ∀A ∈ chd(Rx) (25)

where the second line is obtained by incorporating equation 23 and the last line uses the fact that the
rows of the restricted matrix Θ̂R,Ai

are already normalized. To optimize equation 24 w.r.t. µ(A) and
δ(A,B), ∀A,B ∈ chd(Rx) while enforcing the constraints in equation 25, we form the Lagrangian
as follows:

L
(
µ(A), δ(A,B), λA;∀A,B ∈ chd(Rx)

)
= D̄KL(Θ̂

R∥Θf )−
∑

A∈chd(Rx)

λA

[
µ(A) +

∑
B∈sib(A)

|ℓ(B)|δ(A,B)− 1

]
(26)

where λA,∀A ∈ chd(Rx) are the Lagrange multipliers. By taking the partial derivatives of the
Lagrangian w.r.t. µ(A) and δ(A,B) and solving for them, we get:

µ(A) = exp

[
1

|ℓ(A)|

(
λA − D̄KL(Θ̂

R,A∥Θf,A) +
∑

i∈ℓ(A)

log
( zi
zi + z̄i

))
− 1

]
,

δ(A,B) = exp

[
1

|ℓ(A)|

(
λA −

1

|ℓ(B)|
∑

i∈ℓ(A)

∑
j∈ℓ(B)

log bi,j −
∑

i∈ℓ(A)

log(zi + z̄i)

)
− 1

]
(27)

Now if we plug equation 27 into the constraints in equation 25, we can solve for λA’s, which can be
further put back into equation 27 to derive the values of µ(A) and δ(A,B) as:

µ(A) =
γ(A)

γ(A) +
∑

C∈sib(A) |ℓ(B)|ζ(A,C)
, δ(A,B) =

ζ(A,B)

γ(A) +
∑

C∈sib(A) |ℓ(B)|ζ(A,C)
(28)
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where

γ(A) = exp

[
1

|ℓ(A)|

( ∑
i∈ℓ(A)

log zi − D̄KL(Θ̂
R,A∥Θf,A)

)]
(29)

ζ(A,B) = exp

[
1

|ℓ(A)||ℓ(B)|
∑

i∈ℓ(A)

∑
j∈ℓ(B)

log bi,j

]
= exp(−ψA→B) (30)

where the last equality directly results from the definition of bi,j and the definition of the interaction
energy between A and B in equation 7. In case Rx is of depth 1 (that is, A is a leaf node), γ(A) is
simply defined to be 0. By plugging these values into equation 24 and doing some algebra, we derive
the optimal value of the total KL-divergence as follows:

D̄KL(Θ̂
R∥Θf ) =

∑
A∈chd(Rx)

[ ∑
i∈ℓ(A)

log(zi+ z̄i)−|ℓ(A)| log
(
γ(A)+

∑
B∈sib(A)

|ℓ(B)|ζ(A,B)

)]
(31)

On the other hand, using equation 29, we can derive γ(Rx) as:

γ(Rx) = exp

[
1

|ℓ(Rx)|

( ∑
i∈ℓ(Rx)

log zi − D̄KL(Θ̂
R∥Θf )

)]
(32)

Now by plugging equation 31 into equation 32, applying equation 30, and taking the logarithm of
both sides, we arrive at:

log γ(Rx) =
∑

A∈chd(Rx)

|ℓ(A)|
|ℓ(Rx)|

log

[
exp

(
log γ(A)

)
+

∑
B∈sib(A)

|ℓ(B)| exp(−ψA→B)

]
(33)

By comparing equation 33 to the definition of the energy of the signal hierarchy in equation 8, it
is clear that our proposed energy function ϕ(·) and − log γ(·) follow the exact same recurrence
dynamic. Furthermore, since the initial values of these two functions at the leaf nodes are both
equal to ∞, we can conclude that γ(A) = exp(−ϕ(A)) for all nodes A in the signal hierarchy
hx. In other words, γ(·) and ζ(·, ·) are respectively the exact same functions as α(·) and β(·, ·) in
equation 10. This further means that the optimal coefficients µ(·) and δ(·, ·) in equation 28 to update
the optimal self-attention matrix recurrence in equation 23 are the exact same coefficients in our
proposed recurrence in equation 9 to compute hierarchical self-attention. Since both methods result in
the same attention matrix for the base case of one-level hierarchy (i.e. the standard Softmax attention),
and also follow the exact same recurrence dynamic, we can conclude that they are equivalent. This
means that our proposed HSA formulation is also optimal in the sense of the total KL-divergence,
which concludes the proof.

G.3 THEOREM 2: THE CORRECTNESS AND THE COMPLEXITY OF ALGORITHMS 1–3

Proof. Before proving the correctness and the complexity of our proposed algorithm, we show the
complexity of directly calculating equation 9. In order to compute ∇qiϕ(Rx), we would need to
first calculate the node energy function ϕ(·) at every node in the signal hierarchy using the recursive
formula in equation 8. For a signal hierarchy with M internal nodes and the maximum b branching
factor, we would have O(M · b) nodes in the hierarchy, at each one of them, we would need to
compute the sum in in equation 8 over their O(b) siblings. This would make the total complexity of
calculating ϕ(·) O(M.b2). This is essentially the complexity of the recursive function in Algorithm
2.

Next, to compute ∇qiϕ(·) from equation 9, we need to traverse the path from the root node to the
leaf node corresponding to qi which has O(logbM) nodes. In each node, we also need to calculate a
sum over the O(b) siblings of that node, which makes the cost of calculating∇qiϕ(·) O(b logbM).
However, since we would need to repeat this calculation for all O(M · b) leaf nodes qi’s, the total
cost of computing HSA would become O(b2.M logbM).

Moving on with the proof, we note that the recurrence relation in equation 9 can be written as:

∇qiϕ(Rx) = exp
(
f(Bi)

)
∇qiϕ(B

i) + g(Bi) (34)
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where

f(Bi) = logµ(Bi) , g(Bi) =
∑

C∈sib(Bi)

|ℓ(C)|δ(Bi, C) · ∇qiψBi→C (35)

and µ(·) and δ(·, ·) are given in equation 19 and equation 20. Furthermore, equation 34 is a first-
order, non-homogeneous recurrence relations with variable coefficients for which we can derive the
following closed-form solution:

∇qiϕ(Rx) =
∑

B∈Rx⇝Li

[
g(B) exp

( ∑
C∈Rx⇝Pa(B)

f(C)

)]
=

∑
B∈Rx⇝Li

[
g(B) exp

(
u
(
Pa(B)

))]
(36)

where

u
(
A
)
=

∑
C∈Rx⇝A

f(C) = f(A) + u
(
Pa(A)

)
, (37)

Rx ⇝ A denotes the set of all nodes on the path from the root to node A excluding the root itself, Li

is the leaf node corresponding to qi and Pa(B) denotes the parent of node B. Furthermore, define:

ϑ(A) ≡
∑

B∈Rx⇝A

[
g(B) exp

(
u
(
Pa(B)

))]
= g(A) exp

(
u
(
Pa(A)

))
+ ϑ

(
Pa(A)

)
(38)

Then it is straightforward to see:

∇qiϕ(Rx) = ϑ(Li) , ∀i ∈ ℓ(Rx) (39)

On the other hand, given that each Q and K variables are normalized via a LayerNorm layer, we can
plug equation 17 into equation 35, to get:

g(A) = −
∑

C∈sib(A)

δ(A,C)

|ℓ(A)|
√
d

∑
j∈ℓ(C)

kj

= − 1

|ℓ(A)|
√
d
[
α(A) +

∑
D∈sib(A) |ℓ(D)|β(A,D)

] ∑
C∈sib(A)

[
β(A,C)

∑
j∈ℓ(C)

kj

]

= − 1

|ℓ(A)|
√
d
[
exp

(
− ϕ(A)

)
+ exp

(
− η(A)

)] ∑
C∈sib(A)

[
|ℓ(C)|β(A,C)ρk(C)

]

= − 1

|ℓ(A)|
√
d
[
exp

(
− ϕ(A)

)
+ exp

(
− η(A)

)] ∑
C∈sib(A)

[
|ℓ(C)| exp(−ψA→C)ρk(C)

]

= −

∑
C∈sib(A) |ℓ(C)| exp

(
εΩ(A)

T εΩ(C)−
√
d+ 1√

d
ρq(A)

T ρk(C)

)
ρk(C)

|ℓ(A)|
√
d
[
exp

(
− ϕ(A)

)
+ exp

(
− η(A)

)] (40)

where the last equality is derived from equation 16, and we have:

η(A) ≡ − log
[ ∑
D∈sib(A)

|ℓ(D)|β(A,D)
]

= − log
( ∑
B∈sib(A)

|ℓ(B)| exp
[
ε(A)T ε(B) +

1√
d
ρq(A)

T ρk(B)−
√
d
])

(41)

and

ρq(A) ≡
1

|ℓ(A)|
∑

j∈ℓ(A)

qj , ρk(A) ≡
1

|ℓ(A)|
∑

j∈ℓ(A)

kj (42)
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Furthermore, we can rewrite f(A) as:

f(A) = logµ(A) = log

[
α(A)

α(A) +
∑

D∈sib(A) |ℓ(D)|β(A,D)

]
= log

[
exp

(
− ϕ(A)

)
exp

(
− ϕ(A)

)
+ exp

(
− η(A)

)]
= log

[
1

1 + exp
(
ϕ(A)− η(A)

)]
= log Sigmoid

[
η(A)− ϕ(A)

]
(43)

Finally, by plugging equation 43 and equation 40 into the recurrence relations in equation 37 and
equation 38, we arrive at Lines 3–4 of Algorithm 3. This means that after completion of Algorithm 3,
we can read off ∇qiϕ(Rx) = ϑ(Li) at the leaf nodes of the hierarchy. This proves the correctness of
our proposed algorithm.

As for the complexity, since Algorithm 2 visits each O(M · b) nodes of the hierarchy once and
performs the summation in Lines 16–18 over the O(b) siblings of each node, the complexity of
Algorithm 2 is O(M · b2), which means the total complexity of computing HSA using our dynamic
programming approach is O(M · b2). And this concludes the proof.

H EXPERIMENTAL SETTINGS

In this appendix, we detail the experimental settings used for the reported experiments in the main
paper.

H.1 DATASETS

Hierarchical Language: For this experiment, we have chosen the text classification problem for the
sentiment analysis task on two datasets: IMDB imd; Maas et al. (2011b), and Elec ele; McAuley &
Leskovec (2013)—for sentiment classification in movie reviews and Amazon electronics product
reviews, respectively. The reason behind choosing these datasets lies in their inclusion of lengthy
texts, which means they can benefit from hierarchical representation. Both datasets have 2 classes.
Table 5 summarizes some basic statistics for these datasets. For the validation set, we have used 10%
of the training set.

# Classes Train Size Test Size Avg. Word/Doc.
IMDB 2 25K 25k 235
Elec 2 25K 25k 108

Table 5: The statistics for the IMDB and Elec datasets used for the sentiment classification task.

Multi-modal News Classification: For this task, we have performed experiments for the news
classification task on N24News dataset Wang et al. (2022), where for each news article not only we
have language and image modalities present, but the text itself consists of multiple sub-modalities, i.e.
headline, abstract, image caption and main body. N24News dataset consists of total of 61, 218 news
stories and 24 total number of classes. The source of the news articles is the New York Times from
2010 to 2020. For training/validation/testing splitting, we use random splitting of ratio 8:1:1 used by
the original paper.

H.2 MODEL ARCHITECTURES

All the competitor models in our experiments follow the same general architectural pattern: an
attention layer, followed by a global pooling layer, followed by a multi-layer Perceptron (MLP).

The attention layer: For our main model, the attention layer is a single-layer, HSA-based transformer
as depicted in Fig. 4. For brevity, we refer to this architecture simply as HSA. For the flattened
self-attention (FSA) baseline, the same attention layer as Fig. 4 is applied, except that the input
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signal hierarchy to the layer is flattened into a one level (simple) signal (For experiments using
the standard transformer layers, see Appendix I). As shown by Proposition 1, a single level signal
hierarchy is mathematically equivalent to the standard Softmax attention mechanism, which means
that we can view FSA representing the standard Softmax attention. For the DeepSet baseline in
the multi-modal experiment, we apply the same architecture as Fig. 4 for the attention layer, except
the attention operation itself is disabled. That is, all the other neural operations in the HTE layer is
applied except for the attention. This effectively means that we individually transform each token in
the signal hierarchy without letting them interact with each other through the attention mechanism.
This operation followed by pooling and MLP layers effectively implements a DeepSet architecture
Zaheer et al. (2017) for combining the token representations in the input signal into a single, fixed
sized vector. Note that in all of our experiments across different models, the attention layer is simply
the HTE layer in Fig. 4 or a variant of it, and as such we can specify the architectural details for
each experiment/model using the same hyper-parameters, as detailed in Table 6. To ensure a fair
comparison, we maintain an equal number of parameters across all models within each experiment.

Experiment Hierarchical Language Multi-modal News Classification
Model FSA HSA Deep Set FSA HSA

# of Parameters 1.2M 1.2M 13.4M 11.8M 11.8M
# of Heads 3 3 3 3 3
HTE Layer Output dim 128 128 512 512 512
Position Embedding dim 768 768 768 768 768
Attention dim 128 128 768 256 256
MLP dim 128 128 512 512 512

Table 6: Configuration of model architectures employed in all experiments/models

The global pooling layer: The purpose of global pooling layer is to aggregate the leaf representation
across the hierarchy into a single, fixed-size vector. We have multiple options for this layer; in our
experiments, we have chosen the global mean pooling.

The MLP: After pooling the representation into a single vector, we apply a 1-hidden layer MLP on
the resulted vector, the dimensions of which are summarized in Table 6.

H.3 TRAINING HYPER-PARAMETERS

Table 7 summarizes the training hyper-parameters used for each experiment. We use the same
hyper-parameters across different baselines for each experiment.

Experiment Hierarchical Language Multi-modal News Classification

Loss Function Standard Cross-Entropy Loss Standard Cross-Entropy Loss
Train Batch Size 64 512
Test Batch Size 64 512
Optimizer AdamW AdamW
Max Tokens for Training 512 512
Learning Rate 2× 10−5 1× 10−4

Learning Rate Scheduler LinearLR LinearLR
# Train Epochs 30 5

Table 7: The training hyperparameters used for each experiment.

I COMPARISON TO THE CLASSICAL TRANSFORMER ARCHITECTURE

The experimental results reported in Sections 5.1 and 5.2 aimed at comparing the performance of our
HSA framework vs. that of the flat attention, where the rest of the architecture aside from the attention
mechanism were the same one proposed in Appendix E. However, a more practical comparison
would be the one between the performance of these two mechanisms within the classical transformer
architecture proposed by Vaswani et al. (2017). To this end, we have conducted experiments where

32



1728
1729
1730
1731
1732
1733
1734
1735
1736
1737
1738
1739
1740
1741
1742
1743
1744
1745
1746
1747
1748
1749
1750
1751
1752
1753
1754
1755
1756
1757
1758
1759
1760
1761
1762
1763
1764
1765
1766
1767
1768
1769
1770
1771
1772
1773
1774
1775
1776
1777
1778
1779
1780
1781

Under review as a conference paper at ICLR 2025

we train from scratch and compare a standard RoBERTa model and a HSA-RoBERTa model (as
proposed in Section 5.3 on two GLUE benchmarks. For HSA-RoBERTa, we simply replace the
standard flat self-attention operation with HSA, while the hierarchy is imposed a fixed four-level
hierarchy where the branching factors from bottom to to are 16, 8, 4, and 2.

Dataset Model Accuracy Precision Recall F1 Score

MRPC RoBERTa 0.8608 0.8872 0.9058 0.8964
HSA-RoBERTa 0.8846 0.9165 0.9093 0.9129

RTE RoBERTa 0.8158 0.7985 0.8167 0.8075
HSA-RoBERTa 0.8158 0.8076 0.8015 0.8045

QQP (after 4 epochs) RoBERTa 0.3681 0.3681 0.5381 0.4371
HSA-RoBERTa 0.9185 0.8764 0.9065 0.8911

Table 8: The comparison of training RoBERTa vs. HSA-RoBERTa from scratch on two GLUE
datasets.

Table 8 shows the results on the evaluation set of each dataset after training. As these results
show, the incorporation of HSA within a standard transformer architecture not only can improve
the computational complexity of self-attention computation, but it can also improve the evaluation
metrics due to the regularization effects of our hierarchical framework. This result is consistent with
the ones in Sections 5.1 and 5.2. Furthermore, for the QQP dataset, we have shown the results just
after 4 epochs; interestingly, these results show that HSA-RoBERTa converges much faster than the
standard RoBERTa model.

J GOING BEYOND SOFTMAX ATTENTION

One of the primary contributions of our work is generalizing Softmax attention from flat signals to
the hierarchical structure of nested signals. This generalization is further confirmed by the theoretical
result of Theorem 1. However, there has been a significant effort in the literature to explore other
forms of attention mechanisms than Softmax attention Child et al. (2019); Correia et al. (2019); Han
et al. (2025); Shen et al. (2021); Zhou et al. (2024). One of the main motivations of departing from the
Softmax attention lies in the fact that Softmax attention induces dense probability distribution over
all tokens. Sparse attention Child et al. (2019); Correia et al. (2019), on the other hand, organically
induces sparse probability distributions over tokens which can greatly improve the interpretability and
computational efficiency of transformer models. A natural question is then whether our hierarchical
derivation can be applied to other forms of attention, in particular the sparse attention. In other words,
can our formalism also generalize sparse attention from flat signals to the hierarchical structure of
nested signals?

J.1 SPARSE ATTENTION AS ENERGY MINIMIZATION

The first step toward generalizing Sparse attention to the hierarchical setting is to formulate the flat
case as an energy minimization problem, much like what we did in Proposition 1 for the Softmax
attention. To this end, we would need to define an appropriate energy function for the sparse attention.
But before that let us define a generic form of energy function that can encompass various forms
probability-based attentions.

Let Q and K be sets of query and key vectors with bounded norms (e.g. induced by LayerNorm)
respectively; we define the generic energy function as:

ϕg(Q,K) = − 1

N

N∑
i=1

ϕgi (zi1, zi2, . . . , ziN ), where zij = qTi kj (44)

Then the gradient of ϕg(Q,K) w.r.t the query token qi is:

∇qiϕ
g = −

N∑
j=1

∂ϕgi
∂zij

· kj = −(∇zϕ
g
i )

TK (45)

where K is the key matrix (as defined in equation 11) and∇zϕ
g
i =

[ ∂ϕg
i

∂zi1
, . . . ,

∂ϕg
i

∂ziN

]T
is the attention

weight vector. In equation 5, we defined ϕgi ’s to be the log-sum-exp function and that led the attention
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weight vector∇zϕ
g
i to be the Softmax function. Now in the general case, if ϕgi ’s are continuous and

strictly convex, we can write (See Blondel et al. (2019) Proposition 1.3):

∇zϕ
g
i (z) = arg max

p∈dom(ϕg∗
i )⊂RN

[
pT z − ϕg∗i (p)

]
(46)

where dom(f) is the domain of function f(·), and ϕg∗i (p) = supz∈dom(ϕg
i )

[
pT z − ϕgi (z)

]
is the

convex conjugate of ϕgi (z). For the log-sum-exp function ϕgi (z) = log
[∑N

j=1 exp(zij)
]
, the convex

conjugate is the negative Shannon Entropy ϕg∗i (p) =
∑N

j=1 pij log pij .

On the other hand, in sparse attention Correia et al. (2019), the attention weight vector∇zϕ
g
i (z) is set

to be the α-entmax function which has the exact same form as equation 46 with ϕg∗i (p) = −HT
α (p),

where

HT
α (p) =

{
1

α(α−1)

∑N
j=1

(
pij − pαij

)
, α ̸= 1

−
∑N

j=1 pij log pij , α = 1
(47)

is the Tsallis continuous family of entropies Tsallis (1988). It is straightforward to show that for
α = 1 (i.e. the Shannon Entropy), the α-entmax function reduces to the Softmax function. However,
as we saw before, we can alternatively derive the Softmax function by first deriving the energy
component ϕg∗i (p) as the log-sum-exp function and then computing its gradient. Now by following
the same process for the general Tsallis entropy, we can derive the equivalent energy component
whose gradient would be the α-entmax function. In particular, by setting ϕg∗i (p) = −HT

α (p) (as
done in the formulation of Sparse attention Correia et al. (2019)), we will have the energy component
ϕgi (z) = [−HT

α (p)]
∗, which can be further derived in closed form as:

ϕgi (z) =
1

α(α− 1)
+

N∑
j=1

y
1/(α−1)
ij

(
zij −

1

α(α− 1)
yij

)
(48)

where
yij = ReLU[(α− 1)zij − τi] (49)

and τi is the Lagrange multiplier corresponding to the
∑N

j=1 pij = 1 constraint. Note that, in
general, τi is a function of all zij’s; that is, τi = τ(zi0, . . . , ziN ). By plugging equation 48 into
equation 44, we arrive at the equivalent energy function for the general α-entmax attention (i.e. the
sparse attention):

ϕg(Q,K) = − 1

N

N∑
i=1

N∑
j=1

y
1/(α−1)
ij

(
zij −

1

α(α− 1)
yij

)
+ C, where zij = qTi kj (50)

J.2 THE HIERARCHICAL GENERALIZATION

Now that we have the energy function for sparse attention in the flat case (equation 50), we can
generalize it to the hierarchical structure of nested signal by following similar recipe as equation 8. In
particular, for node A in the signal hierarchy hx, the hierarchical sparse energy is recursively defined
as:

ϕα(A) = −
∑

B∈chd(A)

|ℓ(B)|
|ℓ(A)|

ϕgB

(
−ϕα(B), log |ℓ(C1)|−ψB→C1 , . . . , log |ℓ(Ck)|−ψB→Ck

)
(51)

where C1, . . . , Ck are the sibling nodes of B, ψB→Ck
is the interaction energy function defined in

equation 7, and the multi-variate function ϕgB has the same functional form as equation 48. Then
equation 8 can be seen as a special case of where α = 1 and ϕgB reduces to the log-sum-exp function.
Given the hierarchical sparse energy, we can derive the hierarchical sparse attention by taking the
gradient of ϕα(Rx) w.r.t to each query vector qi, similar to the derivation in equation 9 for the
Softmax case. We leave further derivation of an efficient algorithm and theoretical optimality for
sparse attention to future work.

Lastly, it should be noted that similar to flat sparse attention, one can also learn the sparsity factor
α via back-propagation in the hierarchical case. This can be further extended to learning different
sparsity patterns for different levels of hierarchy, which can be useful depending on the application.
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K ZERO-SHOT APPROXIMATION OF SELF-ATTENTION: ABLATION STUDY

In this appendix, we further expand on the experimental results for the zero-shot HSA approximation
of RoBERTa presented in the main paper. In particular, we study the effects of approximating different
combination of layers as well as different hierarchical structures for the datasets reported in the main
paper.

K.1 EXPERIMENTAL SETUP

Datasets: We have run experiments on 5 GLUE datasets (SST-2, CoLA, MRPC, RTE and QNLI) as
well as the AGNEWS and IMDB datasets.

Models: For each dataset, we have used the appropriate pre-trained RoBERTa checkpoint and
configuration that has been fine-tuned on the corresponding task. Table 9 lists the checkpoints and
configuration used for each dataset. All of our experiments involve only evaluation of pre-trained
RobERTa without any training of fine-tuning it.

Metrics: We have computed Accuracy, Precision, Recall and F1 Score to measure the accuracy drop
of pre-trained RoBERTa as its various layers are approximated by HSA.

Impacted Layers: As mentioned in the main paper, approximating all self-attention layers of
RoBERTa typically leads to significant zero-shot accuracy drop across all tasks. However, approxi-
mating a subset of layers can introduce more reasonable gap while still benefiting from HSA speed up
in terms of the number of FLOPs. Nevertheless, finding the best layer combination is a combinatorial
problem. To alleviate this issue, instead of examining all different combinations, we only look at
certain combinations based on two empirical observations. In particular, we observed that earlier
layers in the network are typically more sensitive to approximation, whereas the latter ones are more
amenable to it. This observation intuitively makes sense because the sooner approximation takes
place in the network, the higher approximation error accumulates along the network. Moreover,
having consecutive layers approximated typically increases the accuracy gap whereas interleaving
them with regular self-attention layers decreases the gap.

Based on these two observations, in our experiments, we only examine combinations where a start
layer (denoted by SL) and every other layer after that are approximated by HSA. The X-axis for the
bar plots in this section is associated with SL. Also, the right bar in each plot represents the metrics
for the original model without HSA approximation.

Hierarchy: For these experiments we chose to use fixed hierarchies based on non-overlapping
hopping windows rather than semantic hierarchies based on the text structure. The reason behind this
choice is that semantic hierarchies (such as sentences, paragraphs, etc.) are example dependant which
means they would incur different number of FLOPs for different examples. But since our ultimate
goal from this experiment is to reduce the number of flops consistently across the data, we opted to
use fixed hierarchies.

The fixed hierarchies here are characterized by having a fixed branching factor for all the nodes
belonging to the same level of the hierarchy. We then denote such hierarchy by the tuple (A,B,C, ...)
where A is the branching factor at the lowest level of the hierarchy, B is the branching factor for
the next level and so on. Having this notation in place, we have experimented with the following
hierarchies:

1. (2, 2, 2, 2): A hierarchy with low branching factor at all levels.

2. (2, 4, 8, 16): A hierarchy with low branching factor on the bottom and high branching factor
on the top.

3. (7, 7, 7, 7): A hierarchy with high branching factors at all levels.

4. (8, 4, 2) A hierarchy with high branching factor on the bottom and low branching factor on
the top.
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Dataset RoBERTa Configuration Checkpoint
IMDB Large siebert/sentiment-roberta-large-english a

AGNEWS Base cardiffnlp/twitter-roberta-base-sentiment b

SST-2 Base textattack/roberta-base-SST-2 c

CoLA Base textattack/roberta-base-CoLA d

MRPC Base textattack/roberta-base-MRPC e

QNLI Base textattack/roberta-base-QNLI g

RTE Base textattack/roberta-base-RTE h

Table 9: Checkpoints and RoBERTa configurations used for evaluating each task.

ahttps://huggingface.co/siebert/sentiment-roberta-large-english
bhttps://huggingface.co/cardiffnlp/twitter-roberta-base-sentiment
chttps://huggingface.co/textattack/roberta-base-SST-2
dhttps://huggingface.co/textattack/roberta-base-CoLA
ehttps://huggingface.co/textattack/roberta-base-MRPC f

ghttps://huggingface.co/textattack/roberta-base-QNLI
hhttps://huggingface.co/textattack/roberta-base-RTE

K.2 RESULTS

SST-2 Task: As Figure 7 shows, the SST-2 task is relatively robust to the choice of SL (start layer for
HSA approximation), where the accuracy gap widens if SL falls below Layer 5. Also, the choice
of hierarchy is relatively inconsequential except for the narrow hierarchy with low-branching factor
across all its levels, which demonstrates slightly poorer results compared to the rest.
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Figure 7: The accuracy metrics of HSA approximation of self-attention layers in RoBERTa for the
STT-2 task.
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RTE Task: As Figure 8 shows, the RTE task exhibits the same behavior as the SST-2 task with a
major accuracy drop takes place when SL falls below Layer 7. Different hierarchy structures seem to
have similar behavior though.
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Figure 8: The accuracy metrics of HSA approximation of self-attention layers in RoBERTa for the
RTE task.

MRPC Task: As Figure 9 shows, for the MRPC task, the layers with even index seem to be way more
sensitive to HSA approximation than the odd-index layers. Among odd index layers, the accuracy gap
starts to widen for SL below Layer 7. As for hierarchy structures, the structures with low branching
factor on the bottom levels seem to do better than the other two candidates.

QNLI Task: As Figure 10 shows, for the QNLI task, there is a sharp drop of accuracy when SL falls
below Layer 8, whereas for the last four layers the accuracy drop is practically insignificant. This
shows that in this case, the last 5 layers are quite amenable to approximation. As for the hierarchy
structures, they do not exhibit any significant difference for this task.

CoLA Task: As Figure 11 shows, similar to the MRPC task, in CoLA task, the layers with even
index seem to be way more sensitive to HSA approximation than the odd-index layers. However,
unlike the MRPC task, the hierarchy structures with high branching factor on the bottom seem to
significantly perform better than the ones with low branching factor on the bottom.

AGNEWS Task: As Figure 12 shows, for AGNEWS task, we can pretty much start SL at Layer 2
and as long as we approximate every other layer, the accuracy drop in insignificant. As for hierarchy
structures, we have tested only 2 of our structures with this datasets, but did not observe any significant
difference.

IMDB Task: Unlike the previous tasks, for IMDB task, we use RoBERTa-large with 24 layers.
As Figure 13 shows, as long as SL stays above Layer 15, the accuracy drop is insignificant. Also
some layers like Layers 10 and 15 seem to be moresensitive if we start the HSA approximation from
them. As for hierarchical structure, among the two candidate we used for this task, the one with high
branching factor on the bottom seems to do much better.
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Figure 9: The accuracy metrics of HSA approximation of self-attention layers in RoBERTa for the
MRPC task.
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Figure 10: The accuracy metrics of HSA approximation of self-attention layers in RoBERTa for the
QNLI task.
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Figure 11: The accuracy metrics of HSA approximation of self-attention layers in RoBERTa for the
CoLA task.
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Figure 12: The accuracy metrics of HSA approximation of self-attention layers in RoBERTa for the
AGNEWS task.
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Figure 13: The accuracy metrics of HSA approximation of self-attention layers in RoBERTa for the
IMDB task.
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