
000
001
002
003
004
005
006
007
008
009
010
011
012
013
014
015
016
017
018
019
020
021
022
023
024
025
026
027
028
029
030
031
032
033
034
035
036
037
038
039
040
041
042
043
044
045
046
047
048
049
050
051
052
053

Under review as a conference paper at ICLR 2025

HIERARCHICAL SELF-ATTENTION: GENERALIZING
NEURAL ATTENTION MECHANICS TO HIERARCHY

Anonymous authors
Paper under double-blind review

ABSTRACT

Transformers and their attention mechanism have been revolutionary in the field of
Machine Learning. While originally proposed for the language data, they quickly
found their way to the image, video, graph, etc. data modalities with various
signal geometries. Despite this versatility, generalizing the attention mechanism
to scenarios where data is presented at different scales from potentially different
modalities is not straightforward. The attempts to incorporate hierarchy and multi-
modality within transformers are largely based on ad hoc heuristics, which are not
seamlessly generalizable to similar problems with potentially different structures.
To address this problem, in this paper, we take a fundamentally different approach:
we first propose a mathematical construct to represent multi-modal, multi-scale
data. We then mathematically derive the neural attention mechanics for the pro-
posed construct from the first principle of entropy minimization. We show that
the derived formulation is optimal in the sense of being the closest to the standard
Softmax attention while incorporating the inductive biases originating from the
hierarchical/geometric information of the problem. We further propose an effi-
cient algorithm based on dynamic programming to compute our derived attention
mechanism. By incorporating it within transformers, we show that the proposed
hierarchical attention mechanism not only can be employed to train transformer
models in hierarchical/multi-modal settings from scratch, but it can also be used to
inject hierarchical information into classical, pre-trained transformer models post
training, resulting in more efficient models in zero-shot manner.

1 INTRODUCTION

The field of Deep Learning has recently experienced a spectacular breakthrough with the rise of
Large Language Models (LLMs). It is no secret that this success is largely owed to the Transformer
neural architecture (Vaswani et al., 2017) and its self-attention mechanism. Although they were
originally proposed to work with language (Beltagy et al., 2020; Brown et al., 2020; Devlin et al.,
2018; Liu et al., 2019), transformers have found their way to deal with images (Dosovitskiy et al.,
2020; Touvron et al., 2021; Yu et al., 2021), video (Arnab et al., 2021; Bertasius et al.; Li et al., 2022;
Neimark et al., 2021), audio (Borsos et al., 2023; Gong et al., 2021; Koutini et al., 2021; Verma &
Berger, 2021), graphs (Min et al., 2022; Rampášek et al., 2022; Rong et al., 2020; Yun et al., 2019),
groups (Hutchinson et al., 2021; Tai et al., 2019), manifolds (He et al., 2021) and point clouds (Guo
et al., 2021; Zhao et al., 2021) without significantly altering their basic neural attention mechanism.
This is mainly due to the fact that, unlike many other neural architectures, transformers incorporate
data geometry not by architectural priors but by explicit, black-box, position embedding functions,
which can be easily replaced from one domain to another.

Despite this versatility, the information in real world quite often comes in different modalities and at
different scales. In terms of geometry, this means that we deal with problems where each datapoint
may occupy multiple, mutually-inconsistent geometries at potentially different scales. This is indeed
challenging, even for transformers! To address these challenges, various novel (but often heuristic)
neural architectures have been proposed to deal with multi-modal (Deshmukh et al., 2023; Huang
et al., 2020; Kim et al., 2021; Lu et al., 2019a; Prakash et al., 2021; Truong et al., 2021; Zhang &
Zhang, 2020; Zhu et al., 2021) and hierarchical data (Cao et al., 2021; Liu et al., 2021; Pappagari
et al., 2019; Wu et al., 2021; Zhang et al., 2022; Zhao et al., 2022; Zhu & Soricut, 2021).

1

054
055
056
057
058
059
060
061
062
063
064
065
066
067
068
069
070
071
072
073
074
075
076
077
078
079
080
081
082
083
084
085
086
087
088
089
090
091
092
093
094
095
096
097
098
099
100
101
102
103
104
105
106
107

Under review as a conference paper at ICLR 2025

Aside from the heuristic-based nature of many of these empirical architectures, they quite often
suffer from a more practical dilemma. On one hand, many such frameworks tend to partially discard
geometrical or hierarchical information depriving the learning task from valuable domain knowledge
which can significantly reduce the model’s statistical complexity. On the other hand, by incorporating
the full geometrical knowledge of different modalities and their hierarchical structure within these
heuristic frameworks, we often end up with highly problem-specific architectures that are hardly
generalizable to other similar problems.

To address this challenge in a unified and principled way, in this work, we take a radically different
approach. In particular:

• Instead of coming up with yet another heuristic neural architecture right off the bat, we first propose
a mathematical construct called nested signal to formally represent multi-geometry, hierarchical
information. As we show, the proposed formalism enables us to coherently represent different
geometrical domains at different scales while maintaining its generality across different problems.

• In order to define mathematically-sound neural operations on nested signals, we turn to the
attention mechanism. In particular, first we show that the standard Softmax self-attention (Vaswani
et al., 2017) can be mathematically derived from the principle of entropy minimization. Then by
generalizing this principle to nested signals, we derive the hierarchical self-attention (HSA) neural
mechanics which is the generalization of the Softmax attention mechanism for nested signals.

• We further show that the attention weights derived from the HSA are optimal in the sense of being
the closest to flat Softmax attention weights in terms the total KL-divergence, while at the same
time adhering to the hierarchical structure of the data.

• Next, we propose an efficient algorithm based on dynamic programming to calculate the HSA,
that is provably faster than its direct evaluation. By implementing HSA within the transformer
architecture, we empirically show that we are able to train models that can seamlessly incorporate
the hierarchical/multi-modal domain knowledge to arrive at better and more efficient transformers.

• Last but not least, we show that HSA can further replace the standard Softmax self-attention
operation in pre-trained transformers and significantly reduce the number of self-attention FLOPs
while incurring minimal Accuracy drop, in an entirely zero-shot manner.

2 RELATED WORK

Hierarchical models: The notion of hierarchy has played a key role in data representation and
clustering in Machine Learning (Murtagh & Contreras, 2012; Shetty & Singh, 2021). In the context
of transformers, the idea of multi-scale attention has been mainly used to combat the long-context
challenge in language (Huang et al., 2023a; Nawrot et al., 2021; Pappagari et al., 2019; Yang et al.,
2016; Ye et al., 2019), but it has also made its way into vision (Liu et al., 2021; Zhang et al., 2022)
and audio (Yu et al., 2022). Nevertheless, most of these frameworks deal with a single modality
that occupies the same geometry, just at different scales. Our proposed framework, in contrast, can
incorporate an arbitrary number of mutually-inconsistent geometries within its representation of the
multi-scale data. Another related line of work is based on hierarchical matrices (Hackbusch, 1999;
Hackbusch & Khoromskij, 2000) that have been used traditionally for clustering (Thiesson & Kim,
2012) as well as transition matrix approximation (Amizadeh et al., 2012), but more recently for
attention matrix approximation (Zhu & Soricut, 2021).

Multi-modal models: Multi-modality has been vastly explored in Machine Learning (Baltrušaitis
et al., 2018) and more recently within various neural architectures, using various fusion techniques
(Bayoudh et al., 2022; Gao et al., 2020; Guo et al., 2019; Suzuki & Matsuo, 2022). As for multi-modal
transformers (Xu et al., 2023), most frameworks are tailored toward a fixed set of modalities, e.g.
vision-language (Huang et al., 2020; Kim et al., 2021; Lu et al., 2019a; Zhu et al., 2021), audio-visual
(Truong et al., 2021), audio-language (Deshmukh et al., 2023), graph-language (Zhang & Zhang,
2020), vision-pose-audio (Rahman et al., 2021), audio-vision-language (Tsai et al., 2019), etc. The
fusion of different modalities in these frameworks typically takes place via a heuristic operation at
the embedding or the attention stages resulting in distinct architectural variants, which are typically
categorized as (1) single-stream (e.g. (Li et al., 2019)), (2) multi-stream (e.g. (Lu et al., 2019a)),
and (3) hybrid-stream (e.g. (Lin et al., 2020)). However, most of these frameworks either ignore the

2

108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161

Under review as a conference paper at ICLR 2025

geometrical (positional) information for some of the input modalities, or impose artificial restrictions
on input geometries such as alignment.

Geometric Deep Learning: Geometric Deep Learning (Bronstein et al., 2021) studies the invariance
and equivariance properties of deep learning models by introducing the notion of signal and its
geometry which is explicitly modeled via the signal’s domain. We build our framework also based on
the same notion of signal and generalize it further to nested signals which can represent hierarchical,
multi-modal data which potentially encompass multiple domains. Also, most frameworks within
Geometric Deep Learning achieve the desired equivariance properties through the model’s architecture
(e.g. CNNs (Li et al., 2021b), GNNs (Wu et al., 2020), and Group-equivaraint CNNs (Finzi et al.,
2020)). A prominent exception is the LieTransformer (Hutchinson et al., 2021) where the desired
group-equivariance is achieved by explicit modeling of the position information and its separate
similarity computation (as opposed to adding it to the feature vectors). The formulation of the position
information in our framework is in part inspired by the LieTransfomer.

The theoretical foundations of self-attention: Despite its revolutionary success in Deep Learning,
there has been quite little effort to understand the theoretical foundations of self-attention. These
efforts provide various interpretations of self-attention, including the probabilistic view (Fan et al.,
2020; Shim, 2022), the causal view (Rohekar et al., 2024), the structural inference view (Singh &
Buckley, 2023), the dynamical system view (Dutta et al., 2021; Huang et al., 2023b; Lu et al., 2019b),
the statistical mechanical view (Rende et al., 2023), the variational denoising view (Nguyen et al.,
2024), the clustering view (Geshkovski et al., 2024), and the Hopfield network view (Ramsauer et al.,
2020). In this paper, we provide a statistical mechanical perspective to derive self-attention from
the first principle of entropy minimization; in that sense, our interpretation is closely related to the
statistical mechanical, denoising and Hopfiled network views. More importantly, our interpretation
lends itself to straightforward generalization to the hierarchical self-attention mechanism which, as
we show, is both theoretically optimal and efficiently computable.

3 REPRESENTING HIERARCHICAL, MULTI-GEOMETRY DATA

In Geometric Deep Learning, a signal x is defined as the mapping x : Ω→ C, where the set Ω is the
domain of the signal and C is a vector space, typically Rd with d being the channel dimension. For
example, an RGB image is a signal where Ω is the 2D grid and C = R3, i.e. the RGB color space.
Similarly, text can be seen as a signal with Ω being the 1D grid and C a word embedding space. More
niche applications in Geometric Deep Learning Bronstein et al. (2021) extend the notion of signals to
the domain of graphs, gauges, manifolds, etc. by defining the appropriate structure for Ω. We refer
to the set of all such possible domains as D. The elements Ω ∈ D are not necessarily vector spaces
(e.g. 2D grid). In order to numerically handle these spaces, we define a special signal εΩ : Ω→ Rc

for each Ω ∈ D which maps the elements of each domain in D to Rc; we refer to this special signal
as the position embedding. Given εΩ, each signal x defined on Ω is seen as x : εΩ(Ω) → C. In
Appendix B, we generalize the notion of signal to encompass traditional tabular features.

In this section, we introduce the notion of nested signals which is the key modeling tool to represent
multi-modal, hierarchical data. To this end, we first define the set of all simple signals S as the set
of all possible signals defined on all possible domains; that is, S = {x : Ω → C | Ω ∈ D}. Note
that the signals defined on different domains may have different channel dimensions; to make the
channel dimension uniform across different domains, we zero-pad the lower dimensional signals to
the maximum channel dimensionality d across different domains, such that each element of S has the
same channel dimension d regardless of its domain.
Definition 3.1 (Nested Signal). The set of d-dimensional nested signals up to depth ℓ, Nℓ, is
recursively defined as Nℓ =

{
x : Ω → U | Ω ∈ D,U ∈ {Nℓ−1,Rd}

}
, where N0 = Rd.

Furthermore, defineN = Nℓ as ℓ→∞; each element x ∈ N is then referred as a nested signal. The
top-level domain Ω ∈ D of a nested signal x is denoted by r(x).
For example, a website is a nested signal where at the top level, we have webpages defined on the
nodes of a graph domain representing the link structure between the webpages. Each webpage is in
turn another nested signal where at its top level we have an unordered set of textboxes and images
constituting the page. Going one level further, each textbox or image is a (simple) signal assigning
word embeddings or pixel values to the nodes of 1D or 2D grid domains, respectively. Fig. 1(Left)
depicts this example. While in theory, the domains Ω ∈ D can be infinite, in practice, we mostly
deal with nested and simple signals defined on finite Ω’s. In particular, a nested signal x is said to be

3

162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215

Under review as a conference paper at ICLR 2025

finite if the domains Ω’s at all of its nesting levels are finite. Given the set of position embeddings
ε = {εΩ | Ω ∈ D}, a finite nested signal can be represented by a signal hierarchy as defined below.

Definition 3.2 (Signal Hierarchy). For a finite nested signal x, its signal hierarchy hx is a tree with
the root node Rx associated with r(x), the top level domain of x. The children of Rx are defined as
chd(Rx) = {hx(u) | u ∈ r(x)} where x(u) is the value of signal (possibly another nested signal)
at u. If x(u) is a vector instead of a signal, then hx(u) is simply x(u). Furthermore, each child
hx(u) ∈ chd(Rx) is annotated by εr(x)(u), the position embedding vector dictated by its parent node.

We denote the nodes (and equivalently their corresponding sub-trees) in the signal hierarchy hx
by upper-case letters. Any set of sibling nodes in hx is referred as a family. The members of a
family are nested signals (or real vectors for the leaf nodes) that reside on the same domain Ω
and therefore share the same position embedding function εΩ. Furthermore, for A ∈ hx, chd(A),
sib(A) and ℓ(A) represent the set of A’s children, its siblings and the index set of the leaf node
descendants of A, respectively. Two nodes in hx are called unrelated if neither of them is descendant
of the other. For two unrelated nodes A and B, their immediate common ancestor is denoted by
ica(A,B), while their highest distinct ancestors are denoted by A′ and B′, respectively, where we
have A′, B′ ∈ chd(ica(A,B)); i.e., A′ and B′ are always siblings even if A and B are not. See
Appendix A for the notational details as well as a visual demonstration of the tree-related concepts.

Since sibling nodes share the same position embedding function, the relative positional distance (or
similarity) between them is well-defined. More generally, for any two unrelated nodes A,B ∈ hx,
we can form a well-defined positional distance between them by comparing the position embeddings
of A′ and B′ which is well-defined since A′ and B′ are always siblings. The implication of this
construction is indeed powerful as it would enable the signal hierarchy formalism to define meaningful
positional distance between any two unrelated nodes in the hierarchy regardless of their modalities or
signal types. Fig. 1(Right) shows the signal hierarchy representation for our earlier website example.

Figure 1: (Left) A nested signal example for representing a website. (Right) Its signal hierarchy
representation. Different colors encode different types of position embeddings assigned to each node.

4 HIERARCHICAL SELF-ATTENTION

The nested signal formalism and its signal hierarchy representation introduced in the previous section
provide a systematic way to represent hierarchical data that can potentially span across different
modalities and domain structures. However, the question remains what kind of neural architectures
can handle such versatile data structure? To answer this question, we note that for non-hierarchical,
simple signals, the transformer architecture first introduced by Vaswani et al. (2017) allows for a
unified representation learning methodology that can accommodate various signal domains (as long
as the position embedding is available), not to mention its remarkable success in revolutionizing deep
learning. Nevertheless, extending the attention mechanism to nested signals is not straightforward as
the information in the nested signal can come with different signal domains at different scales.

To address this problem, in this section, we first propose a statistical mechanical framework that ele-
gantly derives the classical Softmax attention mechanism from the principle of entropy minimization
when a finite (simple) signal is viewed as a physical system with N particles. By generalizing our
proposed construction to nested systems, we then derive a novel, theoretically-rigorous mechanism
for calculating self-attention within nested signals, which we refer as Hierarchical Self-Attention

4

216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269

Under review as a conference paper at ICLR 2025

(HSA). By its direct construction, the proposed HSA mechanism aims at reducing the total entropy of
the nested system, or equivalently put, increasing information within the learned representation of
the nested signal. We further show that our proposed construction to derive HSA is optimal in the
sense of Kullback-Leibler (KL) divergence from the Softmax attention weights if the hierarchical
structure were to be ignored. This result will subsequently open the door for the application of our
proposed formulation to approximate the inefficient Softmax attention in pre-trained transformers
using the more efficient hierarchical calculations if a hierarchy exists and can be imposed in a given
problem. Finally, we propose an efficient algorithm based on dynamic programming that calculates
HSA for a given signal hierarchy hx in O(M · b2), where M is the number of families in hx and b is
its maximum branching factor (i.e. family size).

4.1 SOFTMAX ATTENTION REVISITED

Let x = {xi ∈ Rd′ | 1 ≤ i ≤ N} be a finite signal with N elements in Rd′
with the corresponding

position embeddings {ei ∈ Rc | 1 ≤ i ≤ N}. To calculate self-attention over x, one needs to define
the set of query variables Q = {qi ∈ Rd | 1 ≤ i ≤ N} and key variables K = {ki ∈ Rd | 1 ≤ i ≤
N}, where qi’s and ki’s are (linear) functions of xi. Then the conditional entropy of Q given K is:

H(Q | K) = −
∫
℘(Q,K) log℘(Q | K)dQdK = −EQ,K

[
log℘(Q | K)

]
(1)

where ℘(Q,K) and ℘(Q | K) are the unknown joint and posterior distributions over Q and K.
While the joint distribution can be approximated using the Monte Carlo method, the posterior can be
approximated by a variational distribution ξ(Q | K), which gives rise to the variational upper-bound
on the conditional entropy:

HUB(Q | K) = −EQ,K

[
log ξ(Q | K)

]
≥ H(Q | K) (2)

We further represent the variational distribution by the Boltzmann distribution, i.e. ξ(Q | K) =
1

Z(K) exp[−ϕ(Q,K)/τ], where ϕ(Q,K), Z(K), and τ are the energy function1, the partition function
and the temperature parameter, respectively. The variational upper-bound then can be written as:

HUB(Q | K) = EQ,K

[
ϕ(Q,K)/τ

]
+ EK

[
log Z(K)

]
(3)

The end goal of representation learning is to transform the input signal (i.e. the query variables Q)
into a "better" representation. A principled way to arrive at a better representation is to modify Q
such that its information content is maximized, or equivalently its entropy is minimized. Since we
cannot directly calculate the entropy, we can work with its variational upper-bound HUB as a proxy.
Then, the entropy minimization approach amounts to gradient descent on HUB w.r.t. each qi:

qi ← qi − λ · ∇qiHUB(Q | K) = qi − λ · EQ,K

[1
τ
∇qiϕ(Q,K)

]
, 1 ≤ i ≤ N (4)

where λ > 0 is the step size.
Proposition 1 (Softmax Attention). For the energy function ϕ(Q,K), defined as:

ϕ(Q,K) = − 1

N

N∑
i=1

log

(
1

N − 1

N∑
j=1,j ̸=i

exp
[−1
2
√
d
∥qi − kj∥2 + eTi ej

])
(5)

if both Q and K variables are normalized using the LayerNorm function Ba et al. (2016), then for
τ = (N

√
d)−1, λ = 1 and sample size of 1, the Eq. equation 4 reduces to:

qi ← qi +

N∑
j=1,j ̸=i

exp(qTi kj/
√
d+ eTi ej)∑N

t=1,t̸=i exp(q
T
i kt/

√
d+ eTi ej)

· kj , 1 ≤ i ≤ N (6)

which is in effect the Softmax attention function via residual connection.

Proof. See Appendix G.1.

Note that equation 6 is similar to the original attention formulation proposed by Vaswani et al.
(2017), except for a few differences: (1) there is no separate value linear projection; the value
projection emerges later as we incorporate learnable step-size (see Appendix C), (2) the LayerNorm
is applied post-linear projection as opposed to pre-normalization in the original formulation, and (3)
the residual addition is applied post-linear projection. In other words, with few minor modifications,
the original Softmax attention operation can be interpreted as maximizing the information content
in the representation. But the real importance of the formulation in equation 4 is that depending on
how we define the energy function, we can arrive at various types of attention mechanisms tailored to
different applications. We use this feature in the next section to derive a hierarchical self-attention
(HSA) mechanism for nested signals.

1Note that the energy function needs to satisfy
∫
exp[−ϕ(Q,K)/τ]dQ < ∞.

5

270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323

Under review as a conference paper at ICLR 2025

4.2 GENERALIZING ATTENTION TO NESTED SIGNALS

We derive a self-attention mechanism for finite nested signals represented via a signal hierarchy tree.
We follow the same recipe as the previous section by defining an appropriate energy function. But
first, for any two unrelated nodes A and B in hx, we define the interaction energy ψA→B :

ψA→B = −εΩ(A′)T εΩ(B
′) +

1

2
√
d · |ℓ(A)| · |ℓ(B)|

∑
i∈ℓ(A)

∑
j∈ℓ(B)

∥qi − kj∥2 (7)

where | · | denotes set cardinality, εΩ(·) is the position embedding dictated by ica(A,B) (i.e. Ω =
r(ica(A,B))), and A′ and B′ are the highest distinct ancestors of A and B, as defined in Section
3. Intuitively speaking, the interaction energy ψA→B captures the dissimilarity between the nested
signals rooted at A and B as a weighted sum of their highest non-common ancestors’ position
dissimilarity (the first term) and the average Euclidean distance between their leaf nodes (the second
term). By calculating energy (dissimilarity) at the subtree level instead of individual leaves, we
inherently encode the inductive bias that the leaf nodes of a subtree (i.e. a nested signal) can be
pooled into a single representative (i.e. the subtree’s root) while roughly maintaining the underlying
semantics. This is referred as scale separation in Geometric Deep Learning Bronstein et al. (2021), a
fundamental prior in dealing with multi-scale physical systems, benefiting us both statistically (by
taming the curse of dimensionality) and computationally (by providing efficient algorithms).

Using the interaction energy definition, now the energy of the signal hierarchy rooted at non-leaf
node A is recursively defined as:

ϕ(A) = −
∑

B∈chd(A)

|ℓ(B)|
|ℓ(A)|

log

[
exp

(
− ϕ(B)

)
+

∑
C∈sib(B)

|ℓ(C)| exp
(
− ψB→C

)]
(8)

For leaf nodes, ϕ(A) is set to∞. ϕ(Rx) is the energy of the whole signal hierarchy hx. Intuitively,
equation 8 states that the energy of a system (a signal hierarchy tree) is the weighted sum of the
energy contribution of its subsystems (immediate subtrees) where the weights are proportional to the
size of each subsystem. The contribution of each subsystem, in turn, is a non-linear combination (via
the weighted log-sum-exp function, which is the addition operation in the log-space) of the energy of
the subsystem itself (the recursion term) and its interactions with its sibling subsystems (the second
term). It is easy to see that for single-level hx (i.e. simple signals), ϕ(Rx) reduces to equation 5.
Having defined the energy function, we can follow the recipe in equation 4 to calculate the HSA for
hx by recursively computing the gradients∇qiϕ(Rx) ∈ Rd for each leaf node qi, i ∈ ℓ(Rx) as:

∇qiϕ(Rx) =
|ℓ(Bi)|
|ℓ(Rx)|

[
α(Bi) · ∇qiϕ(B

i) +
∑

C∈sib(Bi) |ℓ(C)|β(Bi, C) · ∇qiψBi→C

α(Bi) +
∑

C∈sib(Bi) |ℓ(C)|β(Bi, C)

]
(9)

where,
α(Bi) = exp

(
− ϕ(Bi)

)
and β(Bi, C) = exp

(
− ψBi→C

)
(10)

and Bi denotes the child of Rx which contains qi as a leaf. It is not difficult to show that for
the quadratic interaction energy function in equation 7, if both Q and K variables are normalized
beforehand using a LayerNorm layer, then the recurrence in equation 9 can be unrolled and written in
the matrix form (see equation 36 in Appendix G.3):

∇Φ = ΘK, where ∇Φ = [∇q1ϕ(Rx), ...,∇q|ℓ(Rx)|ϕ(Rx)]
T ,K = [k1, ..., k|ℓ(Rx)|]

T (11)

and Θ = [θi,j]|ℓ(Rx)|×|ℓ(Rx)| is the attention matrix; that is, θi,j is the coefficient of the key variable
kj for computing the attention update∇qiϕ(Rx) for the query variable qi in equation 9. However, Θ
is different from classical attention matrix in the sense that many of its entries share the same values.
In particular, for any two sibling nodes A and B in hx, the corresponding entries between the leaves
of A and B form a block in Θ with one value; that is, θi,j = θA,B , ∀i ∈ ℓ(A), j ∈ ℓ(B). In other
words, the attention weight between any leaf node in A and any leaf node in B is approximated by
one value θAB ; we refer to this approximation between the leaves of sibling nodes in hx as the block
constraint which makes the attention matrix a hierarchical matrix Hackbusch (1999); Hackbusch &
Khoromskij (2000). Fig. 2(Left) illustrates the self-attention matrix for a toy example signal hierarchy
with the block constraint. The block constraint is directly administered by the form of the interaction
energy function in equation 7 as well as the signal hierarchy energy recurrence in equation 8.

The block constraint effectively reduces the degrees of freedom for an attention matrix from
O(|ℓ(Rx)|2) = O(M2 · b2) to O(M · b2), where |ℓ(Rx)|, M and b are the total number of leaf nodes,

6

324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377

Under review as a conference paper at ICLR 2025

the number families (i.e. non-leaf nodes) and the maximum branching factor in hx, respectively. With-
out it, we essentially go back to the standard Softmax attention mechanism where the unormalized
attention weights before Softmax are calculated by evaluating the interaction energy function for every
pair of leaf nodes. We refer to this process as flattening a nested signal. Fig 2(Right) shows the self-
attention matrix for the flattened version of our earlier toy example without the block constraint. Flat-
tening is not only computationally costly (by being quadratic in M instead of linear), it may also hurt
the model statistically. Note that by enforcing coarse-grained attention weights through the block con-
straint, we effectively administer a form of regularization guided by the scale separation prior which is
in turn induced from the prior knowledge of the hierarchical structure in the problem. By flattening a
nested signal, we simply discard this prior knowledge which can make the model prone to overfitting.

Figure 2: (Left) The self-attention matrix for a toy
signal hierarchy with the block constraint. Each
contiguous tile here represents one tied value for
the corresponding cells. (Right) The self-attention
matrix for the flattened (or simple) signal without
the block constraint.

It is important to note that the block constraint
by itself merely enforces tied values for the at-
tention weights over the leaves of sibling nodes;
it does not, however, specify what those values
should be. That is, there are infinitely many
attention matrices that adhere to the block con-
straint; our proposed formulation in equation 9
is just one of them. However, as we show
next, our proposed formulation is optimal in
the sense of being the closest approximation
to the standard Softmax attention if the nested
signal were to be treated as a flat, simple signal.
Theorem 1 (The optimality of HSA). Let both
Q and K variables be normalized using the
LayerNorm function. For the given interac-
tion energy function ψ in equation 7, if Θ =
[θi,j]|ℓ(Rx)|×|ℓ(Rx)| is the self-attention matrix
for the nested signal x derived from the pro-
posed gradient recurrence in equation 9 (as depicted by equation 11), then for the temperature
parameter τ =

(
|ℓ(Rx)|

√
d
)−1

, Θ̂ = − 1
τΘ is a stochastic matrix; that is, it is non-negative and we

have Θ̂1 = 1. Moreover, Θ̂ is the closest attention matrix with the block constraint to the classical
Softmax attention matrix for the flattened signal in terms of total KL-divergence; that is,

Θ̂ = arg min
Θ∈B

∑
i∈ℓ(Rx)

DKL(θi,·∥θfi,·) (12)

where B ⊂ R|ℓ(Rx)|×|ℓ(Rx)| is the space of all stochastic attention matrices that admit the block
constraint induced by hx, and θfi,· (∀i ∈ ℓ(Rx)) are the rows of the attention matrix for the flattened
version of the signal:

θfi,j =
exp(−ψi→j)∑

k∈ℓ(Rx),k ̸=i exp(−ψi→k)
, ∀i, j ∈ ℓ(Rx) (13)

Proof. See Appendix G.2.

This result is crucial in the sense that it shows our proposed HSA mechanism for nested signals
formalized by equation 8 and equation 9 is the closest approximation to the classical attention
mechanism while at the same time adhering to the block constraint (induced by the hierarchical
structure of the nested signal), which in turn benefits the model both computationally and statistically.

From the practical perspective, this result has another important implication: if we replace the
interaction energy function ψi→j with the original cosine similarity in transformers (where the
position information is simply added to the signal), our proposed methodology provides the closest
hierarchical approximation of the original Softmax attention. Practically speaking, this means that
if we have access to some form of hierarchical information hx in a problem at inference time, we
can simply replace the self-attention operation in pre-trained transformer-based models by HSA and
arrive at much more efficient calculations without the need for major re-training. Note that the direct
evaluation of the recurrence in equation 9 for all query variables qi still takes O(b2 ·M logbM). In
Appendix D, we prove that the HSA can be computed in O(M · b2) using a dynamic programming
algorithm. Furthermore, we propose a transformer encoder architecture based on the HSA in
Appendix E.

7

378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431

Under review as a conference paper at ICLR 2025

5 EXPERIMENTAL RESULTS

In this section, we present an empirical study aiming at two main goals: (1) showing the capability
of the HSA mechanism in incorporating useful domain hierarchy knowledge into training better
transformer models from scratch, and (2) demonstrating the unique capacity of HSA as post-training
approximation of the Softmax attention in pre-trained transformer models in order to reduce the
self-attention computation FLOPS in a zero-shot manner.

5.1 HIERARCHICAL LANGUAGE

Despite its unimodality, natural language data often comes in a semantically meaningful hierarchy
(e.g. sections, paragraphs, sentences, etc.) which can be seen as granular abstraction of the underlying
semantics in the data. Nonetheless, most transformer-based frameworks ignore this hierarchical
structure which not only discards valuable prior knowledge about the semantics of the text, but
in the long context scenario, it can also result in loss of information due to truncation (which is a
common practice for long sequences in order to manage the computational complexity of the Softmax
attention). HSA avoids truncation for long sequences by effectively reducing the computational
complexity of the attention calculation via incorporating the hierarchical abstraction.

For our empirical assessment, we have chosen the text classification problem for the sentiment
analysis task on two datasets: IMDB (imd; Maas et al., 2011b), and Elec (ele; McAuley & Leskovec,
2013)—for sentiment classification in movie reviews and Amazon electronics product reviews,
respectively (ama). The rationale for choosing these datasets lies in their inclusion of lengthy texts,
which means they can benefit from hierarchical representation. For details, see Appendix H.1.

Signal Hierarchy: We represent each text datapoint in our datasets as a 3-level signal hierarchy:
paragraphs, sentences and tokens. The position embedding at each level is the 1D grid embedding
materialized by random Fourier features (Li et al., 2021a). The tokens form the leaves of each
signal hierarchy and are represented via vector embeddings. We have experimented with two token-
embeddings in our experiments: the simple Word2Vec (wor; Mikolov et al., 2013), and the richer,
transformer-based T5 (t5; Raffel et al., 2020).

Experimental Settings: We have used similar architectures for both the baseline and the HSA, each
amounting to 1.2M trainable parameters. For a fair comparison, we have used the same training
hyper-parameters for both models. See Appendix H for the details of experimental settings.

Dataset Model Word2Vec embedding T5-small embedding
Acc F1 Score Acc F1 Score

IMDB FSA 0.6739± 0.0004 0.6739±0.0004 0.7577±0.0024 0.7577±0.0024
HSA 0.7469±0.0029 0.7468±0.0027 0.8129±0.0010 0.8129±0.0010

Elec FSA 0.7182±0.0001 0.7182±0.0001 0.8212±0.0014 0.8212±0.0014
HSA 0.7549±0.0005 0.7549±0.0005 0.8521±0.0022 0.8521±0.0022

Table 1: The sentiment classification Accuracy/F1 score comparison for the Flat Self-Attention
(FSA), i.e. the Softmax attention, and the Hierarchical Self-Attention (HSA).

HSA vs. Flat Self-Attention: Table 1 depicts the test Accuracy and F1 Score of sentiment classifica-
tion for the two models on the IMDB and Elec datasets. As these results show, HSA consistently
and significantly outperforms the standard Softmax self-attention across the datasets as well as the
token-embeddings. The superiority of HSA over the standard self-attention can be attributed to two
main factors: (1) by incorporating the semantic hierarchical knowledge of the problem within the
attention computation process, HSA effectively employs a form of regularization based on the scale
separation prior that protects it against potential overfitting, and (2) for long input sequences, unlike
the standard self-attention mechanism, HSA can evade truncation of the input sequence by effectively
reducing the memory and the compute footprints of the attention mechanism.

Word2Vec vs. T5 embedding: From Table 1, we also observe that the classification results signifi-
cantly improve for both models by replacing the basic Word2Vec token embedding with the richer
T5 embedding. This is not surprising, but it also shows that our proposed HSA framework can be
incorporated as a (shallow) adaptor on the top of pre-trained foundational models and adapt them for
a new domain. Furthermore, we can see the gap between the HSA and the standard self-attention
intensifies for simpler token embeddings. In other words, where we do not have access to pre-trained

8

432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485

Under review as a conference paper at ICLR 2025

embedding models, the superiority of HSA and its hierarchical inductive bias is even more significant.
This points to the potential significant boost we can gain by training HSA-based, multi-modal founda-
tional models instead of the classical transformers. Due to its demanding computational requirements,
we leave this empirical investigation for future work.

5.2 MULTI-MODAL NEWS CLASSIFICATION

In order to showcase the capabilities of our proposed framework in multi-modal settings, we have
performed experiments for the news classification task on N24News dataset (Wang et al., 2022),
where for each news article not only we have language and image modalities present, but the text
itself consists of multiple sub-modalities, i.e. headline, abstract, image caption and main body.

Model Acc F1 Score
FSA 0.7921± 0.0036 0.7902± 0.0003

DeepSet 0.7578± 0.0096 0.7590± 0.0065
HSA 0.7952±0.0155 0.8091±0.0102

Table 2: The news classification Accuracy/F1
score comparison for the Flat Self-Attention (FSA),
i.e. the Softmax attention, DeepSet(Zaheer et al.,
2017), and the Hierarchical Self-Attention (HSA)
on N24News dataset.

Baselines: For N24News dataset, most ap-
proaches in the literature concatenate a sub-
set of the text sub-modalities and use that as
the representation of the whole article. There
are also a few multi-modal methods that in-
corporate the image modality as well, the best
of which achieves 91% Accuracy and 90% F1
Score using 211M trainable parameters (Wang
et al., 2022), not to mention incorporating other
tricks such as using multiple loss functions to
achieve the SOTA performance. For our experimental evaluation of HSA, however, we would need
to keep these other contributing factors out, and instead compare moderate size models within our
computational budget that are only different in their attention mechanisms. To this end, for our
baseline method, we concatenate headline, abstract and body into one text sequence and use that
to train a classical transformer (realized via one-level signal hierarchy). As the second baseline,
we incorporate a multi-modal model based on the DeepSet architecture (Zaheer et al., 2017) to
incorporate the image modality as well as the text; see Appendix H.2 for details. For all baselines as
well as our HSA-based model, we ensure the number of trainable parameters is around 12M.

Signal Hierarchy: For the HSA-based model, each news article is represented as a signal hierarchy
where at the top level the image modality as well as the text sub-modalities are represented by the
key-value signal type (see Appendix B). The headline, abstract and caption sub-trees are further
divided into tokens in the next level using the 1D Grid signal type; whereas, the body is divided into
paragraphs (again using 1D Grid signal) where each paragraph is treated as a leaf by pooling the
text embedding of the whole paragraph. To embed the text components at the leaves, we have used
e5-base (e5; Wang et al., 2022); whereas, for image leaves, we have used VIT (vit; Dosovitskiy et al.,
2021). Both of these models have shown superior performance in various benchmarks (Muennighoff
et al., 2023; Russakovsky et al., 2015).

Results: Table 2 shows the test accuracy and F1 Score for the three competing methods for the
N24News multi-class classification problem. From these results, we can see that our HSA methodol-
ogy outperforms the baselines and the difference is significant. Interestingly, despite incorporating
the additional modality of image, the performance of DeepSet significantly declines compared to the
vanilla uni-modal, flat attention. This signifies the fact that it is not enough to only incorporate other
information modalities within the model, but also how they are incorporated is equally important
to boost the model’s generalization. In that sense, our proposed nested signal formalism along
with its hierarchical attention mechanism provide a principled methodology to incorporate different
information modalities within a transformer model.

5.3 ZERO-SHOT HIERARCHICAL APPROXIMATION OF SOFTMAX ATTENTION

An important feature of our proposed framework is that Theorem 1 gives us the theoretical basis for
approximating Softmax attention via HSA given an appropriate hierarchical structure. This means
that HSA can seamlessly replace regular Softmax attention after training, and depending on the
task and the original model, the accuracy may not experience significant drop. The main objective
for such replacement post-training is to reduce the number of FLOPs needed for the self-attention
operation. To further examine this idea, we have adopted the classical pre-trained RoBERTa model
(Liu et al., 2019) and have replaced the Softmax self-attention operation in it with HSA, and then

9

486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539

Under review as a conference paper at ICLR 2025

Dataset Original RoBERTa HSA-RoBERTa
Acc↑ Pre↑ Rec↑ FL(M)↓ Acc↑ Pre↑ Rec↑ FL(M)↓

IMDB(264) 0.9558 0.9558 0.9558 214.94 0.9494 0.9501 0.9494 4.32
AGNEWS(54) 0.9469 0.9469 0.9469 8.99 0.9422 0.9423 0.9422 0.8357

CoLA(12) 0.8150 0.8348 0.8017 0.4441 0.7687 0.7608 0.7821 0.1912
SST-2(26) 0.9403 0.9404 0.9402 2.08 0.9025 0.9083 0.9014 0.4132
MRPC(55) 0.9117 0.9006 0.8938 9.33 0.8553 0.8613 0.7963 0.8481
RTE(70) 0.7833 0.7870 0.7796 15.11 0.7400 0.7400 0.7377 1.29

QNLI(38) 0.9267 0.9267 0.9268 4.45 0.5072 0.3398 0.7531 0.5643

Table 3: The FLOPs comparisons for zero-shot HSA approximation of RoBERTa-base layers 7,9,11
and RoBERTa-large layers 16,18,20,22,24 (for IMDB). We have reported MFLOPs per impacted
layers as well as Accuracy (Acc), Precision (Pre) and Recall (Rec). The FLOPs are computed based
on the average sequence length (shown in parentheses) for each dataset.

run it against some benchmark classification datasets. During this experimentation, we made a few
insightful observations. First, in general, the performance drops significantly if we replace Softmax
attention with HSA for all hidden layers of RoBERTa, and some amount of fine-tuning is needed
to regain the original performance. However, zero-shot replacement is still feasible if only a subset
of layers go through HSA replacement. In particular, earlier layers seem to be more sensitive to
HSA approximation while the final layers are more amenable to it. Furthermore, we observed that by
interleaving HSA layers and regular Softmax layers, we can significantly reduce the accuracy gap.

Based on these observations, we applied HSA approximation to layers 7, 9 and 11 in RoBERTa-
base and 16, 18, 20, 22 and 24 in RoBERTa-large. As for the hierarchy, instead of using the
sentence/paragraph/etc. structures in text, we opted to fixed hierarchies generated by non-overlapping
hopping windows on the input text. In particular, we used a four level hierarchy where the layers’
branching factors from top to bottom are 16, 8, 4 and 2. For more experimental results on different
hierarchy structures and different HSA layer combinations, see Appendix K. Table 3 compares
HSA-equipped RoBERTa (henceforth HSA-RoBERTa) and the original RoBERTa in terms of FLOPs
as well as Accuracy on 5 GLUE benchmarks (Wang et al., 2018), IMDB benchmark (Maas et al.,
2011a) and AGNEWS benchmark (Zhang et al., 2015). As these results show HSA layers significantly
reduce the number of FLOPs for attention computation, and depending on the task the accuracy drop
can be minimal. Keep in mind these results are obtained completely zero-shot without any fine-tuning.
Indeed fine-tuning can further close the accuracy gap while maintaining the performance gain by
HSA. This points to another HSA’s strong potential: to be used as a self-attention approximation
technique for long-context problems. We leave the further exploration of this direction to future work.

6 CONCLUSIONS

In this paper, we propose HSA, a novel mathematical framework for generalizing classical Softmax
self-attention mechanism to hierarchical problems that not only occupy multiple scales but may be
also defined on multiple geometries. Unlike many existing work that approach these problems via
heuristic neural architectures, we mathematically derive our formulation from the principle of entropy
minimization given the (nested) data signal is seen as a statistical mechanical system. Given its
strong theoretical and algorithmic properties, we empirically showed that HSA can be used to inject
hierarchical domain knowledge into training of transformer models and hence produce models with
better generalization. We further showed that HSA can be used as a self-attention approximation
technique for pre-trained models to significantly reduce the FLOPs needed for self-attention at the
test time. This opens the door for HSA to be used as a "fast" self-attention technique on long context
data, even after training.

One high-impact future application of HSA is training large-scale foundational models that can
naturally handle multi-modal and hierarchical inputs using the HSA formalism. On the theoretical
side, HSA can be also extended to include non-Softmax attention mechanisms (See Appendix J).
The other important future direction is application of HSA to transformer decoder for hierarchical
auto-regressive generation. This is important specially because it has the potential to boost LLMs in
terms of both generalization (by incorporating hierarchical, multi-modal domain knowledge) and
speed (due to the low-rank nature of HSA computation). Due to its significance, we have laid the
foundations of hierarchical decoding via HSA in Appendix F while leaving details to future work.

10

540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593

Under review as a conference paper at ICLR 2025

REFERENCES

https://snap.stanford.edu/data/web-Amazon.html.

https://huggingface.co/intfloat/e5-base-v2.

https://riejohnson.com/software/elec2.tar.gz.

https://ai.stanford.edu/~amaas/data/sentiment/.

https://huggingface.co/google-t5/t5-small.

https://huggingface.co/google/vit-base-patch16-224.

https://code.google.com/archive/p/word2vec/.

Saeed Amizadeh, Bo Thiesson, and Milos Hauskrecht. Variational dual-tree framework for large-scale
transition matrix approximation. arXiv preprint arXiv:1210.4846, 2012.

Anurag Arnab, Mostafa Dehghani, Georg Heigold, Chen Sun, Mario Lučić, and Cordelia Schmid.
Vivit: A video vision transformer. In Proceedings of the IEEE/CVF international conference on
computer vision, pp. 6836–6846, 2021.

Jimmy Lei Ba, Jamie Ryan Kiros, and Geoffrey E Hinton. Layer normalization. arXiv preprint
arXiv:1607.06450, 2016.

Tadas Baltrušaitis, Chaitanya Ahuja, and Louis-Philippe Morency. Multimodal machine learning:
A survey and taxonomy. IEEE transactions on pattern analysis and machine intelligence, 41(2):
423–443, 2018.

Khaled Bayoudh, Raja Knani, Fayçal Hamdaoui, and Abdellatif Mtibaa. A survey on deep multimodal
learning for computer vision: advances, trends, applications, and datasets. The Visual Computer,
38(8):2939–2970, 2022.

Iz Beltagy, Matthew E Peters, and Arman Cohan. Longformer: The long-document transformer.
arXiv preprint arXiv:2004.05150, 2020.

Gedas Bertasius, Heng Wang, and Lorenzo Torresani. Is space-time attention all you need for video
understanding?

Mathieu Blondel, Andre Martins, and Vlad Niculae. Learning classifiers with fenchel-young losses:
Generalized entropies, margins, and algorithms. In The 22nd International Conference on Artificial
Intelligence and Statistics, pp. 606–615. PMLR, 2019.

Zalán Borsos, Raphaël Marinier, Damien Vincent, Eugene Kharitonov, Olivier Pietquin, Matt Sharifi,
Dominik Roblek, Olivier Teboul, David Grangier, Marco Tagliasacchi, et al. Audiolm: a language
modeling approach to audio generation. IEEE/ACM Transactions on Audio, Speech, and Language
Processing, 2023.

Michael M Bronstein, Joan Bruna, Taco Cohen, and Petar Veličković. Geometric deep learning:
Grids, groups, graphs, geodesics, and gauges. arXiv preprint arXiv:2104.13478, 2021.

Tom Brown, Benjamin Mann, Nick Ryder, Melanie Subbiah, Jared D Kaplan, Prafulla Dhariwal,
Arvind Neelakantan, Pranav Shyam, Girish Sastry, Amanda Askell, et al. Language models are
few-shot learners. Advances in neural information processing systems, 33:1877–1901, 2020.

Ziang Cao, Changhong Fu, Junjie Ye, Bowen Li, and Yiming Li. Hift: Hierarchical feature transformer
for aerial tracking. In Proceedings of the IEEE/CVF international conference on computer vision,
pp. 15457–15466, 2021.

Rewon Child, Scott Gray, Alec Radford, and Ilya Sutskever. Generating long sequences with sparse
transformers. arXiv preprint arXiv:1904.10509, 2019.

Krzysztof Choromanski, Valerii Likhosherstov, David Dohan, Xingyou Song, Andreea Gane, Tamas
Sarlos, Peter Hawkins, Jared Davis, Afroz Mohiuddin, Lukasz Kaiser, et al. Rethinking attention
with performers. arXiv preprint arXiv:2009.14794, 2020.

11

https://snap.stanford.edu/data/web-Amazon.html
https://huggingface.co/intfloat/e5-base-v2
https://riejohnson.com/software/elec2.tar.gz
https://ai.stanford.edu/~amaas/data/sentiment/
https://huggingface.co/google-t5/t5-small
https://huggingface.co/google/vit-base-patch16-224
https://code.google.com/archive/p/word2vec/

594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647

Under review as a conference paper at ICLR 2025

Gonçalo M Correia, Vlad Niculae, and André FT Martins. Adaptively sparse transformers. arXiv
preprint arXiv:1909.00015, 2019.

Soham Deshmukh, Benjamin Elizalde, Rita Singh, and Huaming Wang. Pengi: An audio language
model for audio tasks. Advances in Neural Information Processing Systems, 36:18090–18108,
2023.

Jacob Devlin, Ming-Wei Chang, Kenton Lee, and Kristina Toutanova. Bert: Pre-training of deep
bidirectional transformers for language understanding. arXiv preprint arXiv:1810.04805, 2018.

Alexey Dosovitskiy, Lucas Beyer, Alexander Kolesnikov, Dirk Weissenborn, Xiaohua Zhai, Thomas
Unterthiner, Mostafa Dehghani, Matthias Minderer, Georg Heigold, Sylvain Gelly, et al. An
image is worth 16x16 words: Transformers for image recognition at scale. arXiv preprint
arXiv:2010.11929, 2020.

Alexey Dosovitskiy, Lucas Beyer, Alexander Kolesnikov, Dirk Weissenborn, Xiaohua Zhai, Thomas
Unterthiner, Mostafa Dehghani, Matthias Minderer, Georg Heigold, Sylvain Gelly, Jakob Uszkoreit,
and Neil Houlsby. An image is worth 16x16 words: Transformers for image recognition at scale,
2021.

Subhabrata Dutta, Tanya Gautam, Soumen Chakrabarti, and Tanmoy Chakraborty. Redesigning the
transformer architecture with insights from multi-particle dynamical systems. Advances in Neural
Information Processing Systems, 34:5531–5544, 2021.

Xinjie Fan, Shujian Zhang, Bo Chen, and Mingyuan Zhou. Bayesian attention modules. Advances in
Neural Information Processing Systems, 33:16362–16376, 2020.

Marc Finzi, Samuel Stanton, Pavel Izmailov, and Andrew Gordon Wilson. Generalizing convolutional
neural networks for equivariance to lie groups on arbitrary continuous data. In International
Conference on Machine Learning, pp. 3165–3176. PMLR, 2020.

Jing Gao, Peng Li, Zhikui Chen, and Jianing Zhang. A survey on deep learning for multimodal data
fusion. Neural Computation, 32(5):829–864, 2020.

Borjan Geshkovski, Cyril Letrouit, Yury Polyanskiy, and Philippe Rigollet. The emergence of clusters
in self-attention dynamics. Advances in Neural Information Processing Systems, 36, 2024.

Yuan Gong, Yu-An Chung, and James Glass. Ast: Audio spectrogram transformer. arXiv preprint
arXiv:2104.01778, 2021.

Meng-Hao Guo, Jun-Xiong Cai, Zheng-Ning Liu, Tai-Jiang Mu, Ralph R Martin, and Shi-Min Hu.
Pct: Point cloud transformer. Computational Visual Media, 7:187–199, 2021.

Wenzhong Guo, Jianwen Wang, and Shiping Wang. Deep multimodal representation learning: A
survey. Ieee Access, 7:63373–63394, 2019.

Wolfgang Hackbusch. A sparse matrix arithmetic based on h-matrices. part i: Introduction to
h-matrices. Computing, 62(2):89–108, 1999.

Wolfgang Hackbusch and Boris N Khoromskij. A sparse h-matrix arithmetic. part ii: Application to
multi-dimensional problems. Computing, 64:21–47, 2000.

Dongchen Han, Tianzhu Ye, Yizeng Han, Zhuofan Xia, Siyuan Pan, Pengfei Wan, Shiji Song, and
Gao Huang. Agent attention: On the integration of softmax and linear attention. In European
Conference on Computer Vision, pp. 124–140. Springer, 2025.

Lingshen He, Yiming Dong, Yisen Wang, Dacheng Tao, and Zhouchen Lin. Gauge equivariant
transformer. Advances in Neural Information Processing Systems, 34:27331–27343, 2021.

Yunpeng Huang, Jingwei Xu, Zixu Jiang, Junyu Lai, Zenan Li, Yuan Yao, Taolue Chen, Lijuan Yang,
Zhou Xin, and Xiaoxing Ma. Advancing transformer architecture in long-context large language
models: A comprehensive survey. arXiv preprint arXiv:2311.12351, 2023a.

Zhicheng Huang, Zhaoyang Zeng, Bei Liu, Dongmei Fu, and Jianlong Fu. Pixel-bert: Aligning
image pixels with text by deep multi-modal transformers. arXiv preprint arXiv:2004.00849, 2020.

12

648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701

Under review as a conference paper at ICLR 2025

Zhongzhan Huang, Mingfu Liang, Jinghui Qin, Shanshan Zhong, and Liang Lin. Understanding
self-attention mechanism via dynamical system perspective. In Proceedings of the IEEE/CVF
International Conference on Computer Vision, pp. 1412–1422, 2023b.

Michael J Hutchinson, Charline Le Lan, Sheheryar Zaidi, Emilien Dupont, Yee Whye Teh, and
Hyunjik Kim. Lietransformer: Equivariant self-attention for lie groups. In International Conference
on Machine Learning, pp. 4533–4543. PMLR, 2021.

Angelos Katharopoulos, Apoorv Vyas, Nikolaos Pappas, and François Fleuret. Transformers are rnns:
Fast autoregressive transformers with linear attention. In International conference on machine
learning, pp. 5156–5165. PMLR, 2020.

Wonjae Kim, Bokyung Son, and Ildoo Kim. Vilt: Vision-and-language transformer without convo-
lution or region supervision. In International conference on machine learning, pp. 5583–5594.
PMLR, 2021.

Khaled Koutini, Jan Schlüter, Hamid Eghbal-Zadeh, and Gerhard Widmer. Efficient training of audio
transformers with patchout. arXiv preprint arXiv:2110.05069, 2021.

Kunchang Li, Yali Wang, Peng Gao, Guanglu Song, Yu Liu, Hongsheng Li, and Yu Qiao. Uni-
former: Unified transformer for efficient spatiotemporal representation learning. arXiv preprint
arXiv:2201.04676, 2022.

Liunian Harold Li, Mark Yatskar, Da Yin, Cho-Jui Hsieh, and Kai-Wei Chang. Visualbert: A simple
and performant baseline for vision and language. arXiv preprint arXiv:1908.03557, 2019.

Yang Li, Si Si, Gang Li, Cho-Jui Hsieh, and Samy Bengio. Learnable fourier features for multi-
dimensional spatial positional encoding. Advances in Neural Information Processing Systems, 34:
15816–15829, 2021a.

Zewen Li, Fan Liu, Wenjie Yang, Shouheng Peng, and Jun Zhou. A survey of convolutional neural
networks: analysis, applications, and prospects. IEEE transactions on neural networks and
learning systems, 33(12):6999–7019, 2021b.

Junyang Lin, An Yang, Yichang Zhang, Jie Liu, Jingren Zhou, and Hongxia Yang. Interbert:
Vision-and-language interaction for multi-modal pretraining. arXiv preprint arXiv:2003.13198,
2020.

Yinhan Liu, Myle Ott, Naman Goyal, Jingfei Du, Mandar Joshi, Danqi Chen, Omer Levy, Mike
Lewis, Luke Zettlemoyer, and Veselin Stoyanov. Roberta: A robustly optimized bert pretraining
approach. arXiv preprint arXiv:1907.11692, 2019.

Ze Liu, Yutong Lin, Yue Cao, Han Hu, Yixuan Wei, Zheng Zhang, Stephen Lin, and Baining Guo.
Swin transformer: Hierarchical vision transformer using shifted windows. In Proceedings of the
IEEE/CVF international conference on computer vision, pp. 10012–10022, 2021.

Jiasen Lu, Dhruv Batra, Devi Parikh, and Stefan Lee. Vilbert: Pretraining task-agnostic visiolinguistic
representations for vision-and-language tasks. Advances in neural information processing systems,
32, 2019a.

Yiping Lu, Zhuohan Li, Di He, Zhiqing Sun, Bin Dong, Tao Qin, Liwei Wang, and Tie-Yan Liu.
Understanding and improving transformer from a multi-particle dynamic system point of view.
arXiv preprint arXiv:1906.02762, 2019b.

Andrew L. Maas, Raymond E. Daly, Peter T. Pham, Dan Huang, Andrew Y. Ng, and Christopher
Potts. Learning word vectors for sentiment analysis. In Proceedings of the 49th Annual Meeting
of the Association for Computational Linguistics: Human Language Technologies, pp. 142–
150, Portland, Oregon, USA, June 2011a. Association for Computational Linguistics. URL
http://www.aclweb.org/anthology/P11-1015.

Andrew L. Maas, Raymond E. Daly, Peter T. Pham, Dan Huang, Andrew Y. Ng, and Christopher Potts.
Learning word vectors for sentiment analysis. In Dekang Lin, Yuji Matsumoto, and Rada Mihalcea
(eds.), Proceedings of the 49th Annual Meeting of the Association for Computational Linguistics:
Human Language Technologies, pp. 142–150, Portland, Oregon, USA, June 2011b. Association
for Computational Linguistics. URL https://aclanthology.org/P11-1015.

13

http://www.aclweb.org/anthology/P11-1015
https://aclanthology.org/P11-1015

702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755

Under review as a conference paper at ICLR 2025

Julian McAuley and Jure Leskovec. Hidden factors and hidden topics: understanding rating dimen-
sions with review text. Proceedings of the 7th ACM conference on Recommender systems, 2013.
URL https://api.semanticscholar.org/CorpusID:6440341.

Tomas Mikolov, Kai Chen, Gregory S. Corrado, and Jeffrey Dean. Efficient estimation of word
representations in vector space. In International Conference on Learning Representations, 2013.
URL https://api.semanticscholar.org/CorpusID:5959482.

Erxue Min, Runfa Chen, Yatao Bian, Tingyang Xu, Kangfei Zhao, Wenbing Huang, Peilin Zhao,
Junzhou Huang, Sophia Ananiadou, and Yu Rong. Transformer for graphs: An overview from
architecture perspective. arXiv preprint arXiv:2202.08455, 2022.

Niklas Muennighoff, Nouamane Tazi, Loïc Magne, and Nils Reimers. Mteb: Massive text embedding
benchmark, 2023.

Fionn Murtagh and Pedro Contreras. Algorithms for hierarchical clustering: an overview. Wiley
Interdisciplinary Reviews: Data Mining and Knowledge Discovery, 2(1):86–97, 2012.

Piotr Nawrot, Szymon Tworkowski, Michał Tyrolski, Łukasz Kaiser, Yuhuai Wu, Christian Szegedy,
and Henryk Michalewski. Hierarchical transformers are more efficient language models. arXiv
preprint arXiv:2110.13711, 2021.

Daniel Neimark, Omri Bar, Maya Zohar, and Dotan Asselmann. Video transformer network. In
Proceedings of the IEEE/CVF international conference on computer vision, pp. 3163–3172, 2021.

Tam Nguyen, Tan Nguyen, and Richard Baraniuk. Mitigating over-smoothing in transformers via
regularized nonlocal functionals. Advances in Neural Information Processing Systems, 36, 2024.

Raghavendra Pappagari, Piotr Zelasko, Jesús Villalba, Yishay Carmiel, and Najim Dehak. Hierarchi-
cal transformers for long document classification. In 2019 IEEE automatic speech recognition and
understanding workshop (ASRU), pp. 838–844. IEEE, 2019.

Hao Peng, Nikolaos Pappas, Dani Yogatama, Roy Schwartz, Noah A. Smith, and Lingpeng Kong.
Random feature attention, 2021.

Aditya Prakash, Kashyap Chitta, and Andreas Geiger. Multi-modal fusion transformer for end-to-end
autonomous driving. In Proceedings of the IEEE/CVF conference on computer vision and pattern
recognition, pp. 7077–7087, 2021.

Colin Raffel, Noam Shazeer, Adam Roberts, Katherine Lee, Sharan Narang, Michael Matena,
Yanqi Zhou, Wei Li, and Peter J. Liu. Exploring the limits of transfer learning with a unified
text-to-text transformer. Journal of Machine Learning Research, 21(140):1–67, 2020. URL
http://jmlr.org/papers/v21/20-074.html.

Tanzila Rahman, Mengyu Yang, and Leonid Sigal. Tribert: Human-centric audio-visual representation
learning. Advances in Neural Information Processing Systems, 34:9774–9787, 2021.

Ladislav Rampášek, Michael Galkin, Vijay Prakash Dwivedi, Anh Tuan Luu, Guy Wolf, and Do-
minique Beaini. Recipe for a general, powerful, scalable graph transformer. Advances in Neural
Information Processing Systems, 35:14501–14515, 2022.

Hubert Ramsauer, Bernhard Schäfl, Johannes Lehner, Philipp Seidl, Michael Widrich, Thomas Adler,
Lukas Gruber, Markus Holzleitner, Milena Pavlović, Geir Kjetil Sandve, et al. Hopfield networks
is all you need. arXiv preprint arXiv:2008.02217, 2020.

Riccardo Rende, Federica Gerace, Alessandro Laio, and Sebastian Goldt. Mapping of attention
mechanisms to a generalized potts model. arXiv preprint arXiv:2304.07235, 2023.

Raanan Y Rohekar, Yaniv Gurwicz, and Shami Nisimov. Causal interpretation of self-attention in
pre-trained transformers. Advances in Neural Information Processing Systems, 36, 2024.

Yu Rong, Yatao Bian, Tingyang Xu, Weiyang Xie, Ying Wei, Wenbing Huang, and Junzhou Huang.
Self-supervised graph transformer on large-scale molecular data. Advances in neural information
processing systems, 33:12559–12571, 2020.

14

https://api.semanticscholar.org/CorpusID:6440341
https://api.semanticscholar.org/CorpusID:5959482
http://jmlr.org/papers/v21/20-074.html

756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809

Under review as a conference paper at ICLR 2025

Olga Russakovsky, Jia Deng, Hao Su, Jonathan Krause, Sanjeev Satheesh, Sean Ma, Zhiheng Huang,
Andrej Karpathy, Aditya Khosla, Michael Bernstein, Alexander C. Berg, and Li Fei-Fei. Imagenet
large scale visual recognition challenge, 2015.

Zhuoran Shen, Mingyuan Zhang, Haiyu Zhao, Shuai Yi, and Hongsheng Li. Efficient attention: Atten-
tion with linear complexities. In Proceedings of the IEEE/CVF winter conference on applications
of computer vision, pp. 3531–3539, 2021.

Pranav Shetty and Suraj Singh. Hierarchical clustering: a survey. International Journal of Applied
Research, 7(4):178–181, 2021.

Alexander Shim. A probabilistic interpretation of transformers. arXiv preprint arXiv:2205.01080,
2022.

Ryan Singh and Christopher L Buckley. Attention as implicit structural inference. Advances in
Neural Information Processing Systems, 36:24929–24946, 2023.

Masahiro Suzuki and Yutaka Matsuo. A survey of multimodal deep generative models. Advanced
Robotics, 36(5-6):261–278, 2022.

Kai Sheng Tai, Peter Bailis, and Gregory Valiant. Equivariant transformer networks. In International
Conference on Machine Learning, pp. 6086–6095. PMLR, 2019.

Bo Thiesson and Jingu Kim. Fast variational mode-seeking. In Artificial Intelligence and Statistics,
pp. 1230–1242. PMLR, 2012.

Hugo Touvron, Matthieu Cord, Matthijs Douze, Francisco Massa, Alexandre Sablayrolles, and Hervé
Jégou. Training data-efficient image transformers & distillation through attention. In International
conference on machine learning, pp. 10347–10357. PMLR, 2021.

Thanh-Dat Truong, Chi Nhan Duong, Hoang Anh Pham, Bhiksha Raj, Ngan Le, Khoa Luu, et al. The
right to talk: An audio-visual transformer approach. In Proceedings of the IEEE/CVF International
Conference on Computer Vision, pp. 1105–1114, 2021.

Yao-Hung Hubert Tsai, Shaojie Bai, Paul Pu Liang, J Zico Kolter, Louis-Philippe Morency, and
Ruslan Salakhutdinov. Multimodal transformer for unaligned multimodal language sequences. In
Proceedings of the conference. Association for computational linguistics. Meeting, volume 2019,
pp. 6558. NIH Public Access, 2019.

Constantino Tsallis. Possible generalization of boltzmann-gibbs statistics. Journal of statistical
physics, 52:479–487, 1988.

Ashish Vaswani, Noam Shazeer, Niki Parmar, Jakob Uszkoreit, Llion Jones, Aidan N Gomez, Łukasz
Kaiser, and Illia Polosukhin. Attention is all you need. Advances in neural information processing
systems, 30, 2017.

Prateek Verma and Jonathan Berger. Audio transformers: Transformer architectures for large scale
audio understanding. adieu convolutions. arXiv preprint arXiv:2105.00335, 2021.

Alex Wang, Amanpreet Singh, Julian Michael, Felix Hill, Omer Levy, and Samuel Bowman. GLUE:
A multi-task benchmark and analysis platform for natural language understanding. In Tal Linzen,
Grzegorz Chrupała, and Afra Alishahi (eds.), Proceedings of the 2018 EMNLP Workshop Black-
boxNLP: Analyzing and Interpreting Neural Networks for NLP, pp. 353–355, Brussels, Belgium,
November 2018. Association for Computational Linguistics. doi: 10.18653/v1/W18-5446. URL
https://aclanthology.org/W18-5446.

Zhen Wang, Xu Shan, Xiangxie Zhang, and Jie Yang. N24news: A new dataset for multimodal news
classification, 2022.

Chuhan Wu, Fangzhao Wu, Tao Qi, and Yongfeng Huang. Hi-transformer: Hierarchical interactive
transformer for efficient and effective long document modeling. arXiv preprint arXiv:2106.01040,
2021.

15

https://aclanthology.org/W18-5446

810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863

Under review as a conference paper at ICLR 2025

Zonghan Wu, Shirui Pan, Fengwen Chen, Guodong Long, Chengqi Zhang, and S Yu Philip. A
comprehensive survey on graph neural networks. IEEE transactions on neural networks and
learning systems, 32(1):4–24, 2020.

Peng Xu, Xiatian Zhu, and David A Clifton. Multimodal learning with transformers: A survey. IEEE
Transactions on Pattern Analysis and Machine Intelligence, 2023.

Zichao Yang, Diyi Yang, Chris Dyer, Xiaodong He, Alex Smola, and Eduard Hovy. Hierarchical
attention networks for document classification. In Proceedings of the 2016 conference of the North
American chapter of the association for computational linguistics: human language technologies,
pp. 1480–1489, 2016.

Zihao Ye, Qipeng Guo, Quan Gan, Xipeng Qiu, and Zheng Zhang. Bp-transformer: Modelling
long-range context via binary partitioning. arXiv preprint arXiv:1911.04070, 2019.

Botao Yu, Peiling Lu, Rui Wang, Wei Hu, Xu Tan, Wei Ye, Shikun Zhang, Tao Qin, and Tie-Yan Liu.
Museformer: Transformer with fine-and coarse-grained attention for music generation. Advances
in Neural Information Processing Systems, 35:1376–1388, 2022.

Jiahui Yu, Xin Li, Jing Yu Koh, Han Zhang, Ruoming Pang, James Qin, Alexander Ku, Yuanzhong
Xu, Jason Baldridge, and Yonghui Wu. Vector-quantized image modeling with improved vqgan.
arXiv preprint arXiv:2110.04627, 2021.

Seongjun Yun, Minbyul Jeong, Raehyun Kim, Jaewoo Kang, and Hyunwoo J Kim. Graph transformer
networks. Advances in neural information processing systems, 32, 2019.

Manzil Zaheer, Satwik Kottur, Siamak Ravanbakhsh, Barnabas Poczos, Russ R Salakhut-
dinov, and Alexander J Smola. Deep sets. In I. Guyon, U. Von Luxburg,
S. Bengio, H. Wallach, R. Fergus, S. Vishwanathan, and R. Garnett (eds.), Ad-
vances in Neural Information Processing Systems, volume 30. Curran Associates, Inc.,
2017. URL https://proceedings.neurips.cc/paper_files/paper/2017/
file/f22e4747da1aa27e363d86d40ff442fe-Paper.pdf.

Haopeng Zhang and Jiawei Zhang. Text graph transformer for document classification. In Conference
on empirical methods in natural language processing (EMNLP), 2020.

Xiang Zhang, Junbo Zhao, and Yann LeCun. Character-level convolutional networks for text
classification. In C. Cortes, N. Lawrence, D. Lee, M. Sugiyama, and R. Garnett (eds.),
Advances in Neural Information Processing Systems, volume 28. Curran Associates, Inc.,
2015. URL https://proceedings.neurips.cc/paper_files/paper/2015/
file/250cf8b51c773f3f8dc8b4be867a9a02-Paper.pdf.

Zizhao Zhang, Han Zhang, Long Zhao, Ting Chen, Sercan Ö Arik, and Tomas Pfister. Nested
hierarchical transformer: Towards accurate, data-efficient and interpretable visual understanding.
In Proceedings of the AAAI Conference on Artificial Intelligence, volume 36, pp. 3417–3425, 2022.

Bin Zhao, Maoguo Gong, and Xuelong Li. Hierarchical multimodal transformer to summarize videos.
Neurocomputing, 468:360–369, 2022.

Hengshuang Zhao, Li Jiang, Jiaya Jia, Philip HS Torr, and Vladlen Koltun. Point transformer. In
Proceedings of the IEEE/CVF international conference on computer vision, pp. 16259–16268,
2021.

Shihao Zhou, Duosheng Chen, Jinshan Pan, Jinglei Shi, and Jufeng Yang. Adapt or perish: Adaptive
sparse transformer with attentive feature refinement for image restoration. In Proceedings of the
IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 2952–2963, 2024.

Chen Zhu, Wei Ping, Chaowei Xiao, Mohammad Shoeybi, Tom Goldstein, Anima Anandkumar,
and Bryan Catanzaro. Long-short transformer: Efficient transformers for language and vision.
Advances in neural information processing systems, 34:17723–17736, 2021.

Zhenhai Zhu and Radu Soricut. H-transformer-1d: Fast one-dimensional hierarchical attention for
sequences. arXiv preprint arXiv:2107.11906, 2021.

16

https://proceedings.neurips.cc/paper_files/paper/2017/file/f22e4747da1aa27e363d86d40ff442fe-Paper.pdf
https://proceedings.neurips.cc/paper_files/paper/2017/file/f22e4747da1aa27e363d86d40ff442fe-Paper.pdf
https://proceedings.neurips.cc/paper_files/paper/2015/file/250cf8b51c773f3f8dc8b4be867a9a02-Paper.pdf
https://proceedings.neurips.cc/paper_files/paper/2015/file/250cf8b51c773f3f8dc8b4be867a9a02-Paper.pdf

864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917

Under review as a conference paper at ICLR 2025

A NOTATIONS

Table 4 summarizes our notations in the main paper. Moreover, Fig 3 visually demonstrates some of
our tree-related notations.

Figure 3: The visual demonstration of some of our tree-related notations in the paper.

B GENERALIZING THE NOTION OF SIGNAL

In standard Geometric Deep Learning, signals typically represent data structures in Computer Vision,
Audio Processing, Natural Language Processing and Graph and Manifold Processing. But the
notion off signal is quite versatile and can be generalized to include feature representations in
classical Machine Learning. In particular, we note the special case where the signal domain Ω is a
countable, discrete set with no additional structure. In this case, if the elements of Ω are conceptually
indistinguishable, then any signal x on Ω is said to be defined on an unordered set and subsequently,
the position embedding εΩ maps all the elements of Ω to the constant vector 0. The latter conveys
that there is no positional information associated with the signal. As an example, a vector set can be
seen as a signal defined on an unordered set.

On the other hand, if the elements of Ω are distinguishable, we can define a bijective position
embedding εΩ to carry that information into the position vector space. We refer to signals defined
on such Ω domains as key-value signals. For instance, a tabular feature vector in classical Machine
Learning can be seen as a set of key-value pairs where the keys are the feature names and the values
are the feature values, and hence modeled as a key-value signal. In this case, a text embedding
model can be used to map the feature names into a vector space and regard the results as the position
embeddings of those features. In other words, the notion of signal in our work is quite generic and
encompasses not only the signal types in Geometric Deep Learning but also the classical tabular
feature vectors.

C THE EMERGENCE OF THE VALUE PROJECTION MATRIX

The derived formulation for Softmax attention in equation 6 deviates from the classical Softmax
attention in that it lacks separate value projections, which can be quite restrictive as it significantly

17

918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971

Under review as a conference paper at ICLR 2025

Notation Description
Bold face A vector or a matrix when it is not obvious from the context

0 A column vector of zeros
1 A column vector of ones
x A simple or nested signal

x(u) The value of signal x at position u
Ω The signal domain
C The vector space containing the signal range
d The dimensionality of C, i.e. the channel dimension
D The set of all signal domains present in the problem
εΩ The position embedding function for domain Ω
c The dimensionality of each position embedding
ε The set of all position embedding functions for all domains in D
S The set of all possible simple signals in the problem
Nℓ The set of all possible nested signals up to depth ℓ
N The set of all possible nested signals in the problem
N0 An equivalent notation for C
hx The signal hierarchy representing the finite nested signal x

A,B,C, ... The nodes in the signal hierarchy hx
Li The leaf node in the signal hierarchy hx corresponding to the query variable qi
Rx The root node of the signal hierarchy hx
ℓ(A) The set of indices of the leaf node descendants of node A
chd(A) The children of node A
pa(A) The parent of node A
sib(A) The siblings of node A

ica(A,B) The immediate common ancestors of the unrelated nodes A and B
A′, B′ The highest distinct ancestors of the unrelated nodes A and B
M The number of non-leaf nodes of the signal hierarchy hx
b The maximum branching factor of the signal hierarchy hx
| · | Set cardinality

H(Q | K) The conditional entropy of the query variable Q given the key variable K
ψA→B The (directional) interaction energy between the unrelated nodes A and B
ϕ(A) The energy of node A
∇qiϕ(A) The gradient of the energy of node A wrt the query vector qi
θi,j The (directional) attention weight between query qi and key kj
Θ The attention matrix
B The set of (hierarchical) stochastic matrices respecting the block constraint wrt hx

Table 4: The notations used in the main paper.

reduces the model’s degrees of freedom. Nevertheless, the value projections can be theoretically
injected into our derived formulation by considering learnable step-size for the gradient update in
equation 6. In particular, instead of setting step size to λ = 1, we can let λ =Wv where Wv ∈ Rd×d

is a trainable parameter. By doing so, equation 6 changes to:

qi ← qi +

N∑
j=1,j ̸=i

exp(qTi kj/
√
d+ eTi ej)∑N

t=1,t̸=i exp(q
T
i kt/

√
d+ eTi ej)

·Wvkj , 1 ≤ i ≤ N (14)

By defining vi = Wvkj = WvWkxj , we effectively arrive at separate value projections, where
WvWk can be seen as the value projection matrix used in the standard Softmax attention formulation.

Note that by introducing learning step-size in the form of projection matrix, we effectively project the
direction of the gradient vector into a new direction. So in that sense, equation 14 is no longer a strict
gradient ascent update. In other words, depending on the learned projection matrix Wv and the value
of gradient vector for point qi, we may decrease or even increase the upper-bound on the conditional
entropy. This extra degree of flexibility indeed enables the transformer model to best adapt to the
end task. And therefore, we have adopted separate value projections in our code as well as all of our
reported experiments, similar to the standard transformer architecture.

18

972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025

Under review as a conference paper at ICLR 2025

D EFFICIENT CALCULATION OF HSA

D.1 DYNAMIC PROGRAMMING

Even though our proposed HSA formulation in Eq. equation 9 brings down the degrees of freedom
for the attention matrix to O(M · b2), the naïve implementation of the recurrence in Eq. equation 9
for all query variables qi still takes O(b2 ·M logbM) time. However, we note that the calculation
of ∇qiϕ(Rx) and ∇qjϕ(Rx) for any two leaf nodes i, j ∈ ℓ(Rx) shares some common intermediate
calculations corresponding to the shared segment of the two paths that connect the root node to i
and j. This is indeed the notion of common substructure which is the hallmark of problems that can
be efficiently solved by dynamic programming. To this end, in this section, we propose a dynamic
programming algorithm that computes ∇Φ in Eq. equation 11 in O(M · b2) time by traversing the
signal hierarchy tree in two passes: a bottom-up pass followed by a top-down pass. Essentially, the
former computes the energy function ϕ(·) while the latter calculates the attention vectors∇qiϕ(·) for
all i ∈ ℓ(Rx). Algorithms 1–3 illustrate these steps.

Algorithm 1: Hierarchical Self Attention (HSA)
Input :hx //The signal hierarchy for nested signal x

Output :{∇qiϕ(Rx) ∈ Rd,∀i ∈ ℓ(Rx)}
1 u← − log(|ℓ(Rx)|)
2 ComputeSufficientStats(Rx) //Bottom-up
3 ComputeAttention(Rx, u,0) //Top-down
4 foreach i ∈ ℓ(Rx) do
5 ∇qiϕ(Rx)← ϑ(Li)
6 end
7 return {∇qiϕ(Rx) | i ∈ ℓ(Rx)}

Algorithm 2: The Bottom-up Sufficient Statistics Computation
Input :A ∈ hx //A node in the signal hierarchy
Output :ϕ(A) ∈ R, η(A) ∈ R, ϑ(A) ∈ Rd

1 Function ComputeSufficientStats(A):
2 if A is a leaf then
3 ϕ(A)←∞
4 ρq(A)← q(A) //q(A) is the query at leaf A
5 ρk(A)← k(A) //k(A) is the key at leaf A
6 ρv(A)← v(A) //v(A) is the value at leaf A
7 else
8 foreach C ∈ chd(A) do
9 ComputeSufficientStats(C)

10 end
11 ϕ(A)← −

∑
C∈chd(A)

|ℓ(C)|
|ℓ(A)| · log

[
exp

(
− ϕ(C)

)
+ exp

(
− η(C)

)]
12 ρq(A)← 1

|ℓ(A)|
∑

C∈chd(A) |ℓ(C)|ρq(C)
13 ρk(A)← 1

|ℓ(A)|
∑

C∈chd(A) |ℓ(C)|ρk(C)
14 ρv(A)← 1

|ℓ(A)|
∑

C∈chd(A) |ℓ(C)|ρv(C)
15 end
16 ∀B ∈ sib(A) : ψ′

A→B ← ε(A)T ε(B) + 1√
d
ρq(A)

T ρk(B)−
√
d+ log |ℓ(B)|

17 η(A)← − log
[∑

B∈sib(A) exp(ψ
′
A→B)

]
18 ϑ(A)← exp

(
− η(A)

)∑
B∈sib(A) exp(ψ

′
A→B) · ρv(B)

19 End Function

19

1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079

Under review as a conference paper at ICLR 2025

Algorithm 3: The Top-down Attention Computation

Input :A ∈ hx, u ∈ R, v ∈ Rd

Output :ϑ(A) ∈ Rd //The attention vectors
1 Function ComputeAttention(A, u, v):
2 foreach C ∈ chd(A) do
3 ϑ(C)← v− 1√

d
exp

(
u+ LogSigmoid

[
ϕ(C)− η(C)

])
· ϑ(C)

4 u′ ← u+ LogSigmoid
[
η(C)− ϕ(C)

]
5 ComputeAttention(C, u′, ϑ(C))
6 end
7 End Function

D.2 CORRECTNESS AND COMPLEXITY

First off, it is not hard to show that for the case of flat hierarchy, Algorithms 1–3 reduce to the standard
Softmax attention calculations. In other words, the standard Softmax attention calculation is a special
case of our proposed algorithm here. Showing the correctness and the complexity of Algorithms 1–3
for the general case, however, is more involved, which we achieve through the following theorem.

Theorem 2. For a given signal hierarchy hx, if both query and key variables are normalized via the
LayerNorm function, then Algorithms 1–3 compute {∇qiϕ(Rx) | i ∈ ℓ(Rx)} in Eq. equation 9 in
O(M · b2) based on the interaction energy function defined in Eq. equation 7, where b and M are the
branching factor and the number of families in hx, respectively.

Proof. See Appendix G.3.

Once the attention values are computed using Algorithm 1, the query vector representations at the
leaf nodes can be updated via the residual connection:

qi ← qi − |ℓ(Rx)|
√
d · ∇qiϕ(Rx),∀i ∈ ℓ(Rx) (15)

And that would conclude the HSA operation.

D.3 BLACK-BOX ATTENTION COMPUTATION

It is important to note that Lines 16-18 in Algorithm 2 perform the standard Softmax attention
mechanism on the members of a family that contains node A. In other words, our proposed HSA
algorithm can be seen as a divide-and-conquer algorithm where the attention computation on the
whole sequence (i.e. the hierarchy’s leaves) is broken down into attention computation on the much
smaller families in the hierarchy (aka the sub-problems) via the bottom-up part of the algorithm,
and then these intermediate results (aka the sufficient statistics) are combined through the top-down
part of the algorithm to produce the final self-attention output. From this perspective, if the average
branching factor (i.e. the family size) in the hierarchy is b, then on average, the sub-problem attention
calculation takes O(b) time and memory for each node A, which makes the O(b2) complexity for the
entire family. Then intuitively for the total of M families in the hierarchy, the final computational
complexity comes to O(M · b2). As a special case, for flat hierarchies where there is only M = 1
family of size b = N (i.e. the sequence length), the complexity becomes O(N2).

More importantly, from the practical perspective, the divide-and-conquer view of the proposed
algorithm encapsulates the sub-problem self-attention computation (in Lines 16-18 in Algorithm
2) as a black-box module that can be easily replaced by any exact or approximate function that
computes the standard Softmax attention. This has a significant practical implication, as it allows the
HSA algorithm to invoke any efficient attention computation frameworks in the literature as its base
attention calculation sub-module. For instance, the quadratic factor b2 in O(M · b2) can be further
reduced to linear if one employs one of the many approximation techniques proposed for efficient
computation of Softmax attention Beltagy et al. (2020); Choromanski et al. (2020); Katharopoulos
et al. (2020); Peng et al. (2021) as the black-box sub-problem attention computation module in Lines
16-18 in Algorithm 2.

20

1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133

Under review as a conference paper at ICLR 2025

D.4 GPU IMPLEMENTATION

The Algorithms 1–3 are technically classical tree-traversal algorithms which are typically not fit for
parallel processing on GPU. Indeed, this would introduce a practical challenge for incorporation
of HSA within modern Deep Learning frameworks. To address this challenge, in this section, we
present two major techniques for introducing parallelization both at the node level for one signal
hierarchy as well as at the batch level across multiple signal hierarchies.

First, we note that all the summations in Algorithms 2 and 3 can be done in parallel for different sets
of nodes in hx. In particular, if a summation statement can be parallelized for K nodes of hx, it can
be implemented as a (sparse) matrix by dense vector multiplication W v, where W = [wi,j]K×S is
the sparse coefficient matrix and v = [vi]S×1 contains the values of the input terms. In particular,
wi,j is the weight of the jth term for computing the summed quantity at the ith node (typically 1
or 0). As for the quantities in Algorithms 2 and 3, µk(·), µq(·) and η(·) can be parallelized over
all the nodes in hx; that is, in order to compute each one of these quantities for all nodes of hx,
only one sparse matrix-vector multiplication is needed given the appropriate coefficient matrix. The
computation of ϕ(·) and ϑ(·) is also parallelizable over the nodes belonging to the same depth in hx;
in other words, given the appropriate coefficient matrices, we would need D sparse matrix-vector
multiplications to calculate each one of these quantities for all nodes in hx, where D is the depth of
hx. Since the coefficient matrices in this scheme are highly sparse, we have represented the coefficient
matrices using sparse tensors and used the efficient implementation of sparse matrix by dense vector
multiplication in Pytorch to carry out the tree-based summations in Algorithms 2 and 3.

The other fundamental aspect of parallelization in Deep Learning is batch computation, which
typically boils down to matrix operations for the standard batches of fixed-size tensors. However,
in our scenario, the signal hierarchies in each batch are trees with different structures as well as
potentially different signal types/modalities appearing in arbitrary arrangements for each signal
hierarchy in the batch. This effectively makes the classical batch computation impossible for signal
hierarchies. To address this challenge, we propose a completely different technique for batch
parallelization. As explained above, we already have a method to parallelize the computations within
each signal hierarchy; we can further parallelize the computations across different signal hierarchies
in a batch by making them part of one hierarchy. In particular, we introduce a dummy root node and
make each signal hierarchy in the batch a direct child of it. The position embedding for this dummy
root is set to unordered-set embedding; that is, no position embedding. This way, we end up with only
one, wide signal hierarchy in our batch that is just one level deeper than the deepest signal hierarchy
in the original batch. By performing the parallel version of Algorithms 1–3 (as described above)
on this one "concatenated" signal hierarchy, we effectively compute all the targeted quantities for
all signal hierarchies in the batch at the same time. We refer to this batch processing technique as
breadth-wise tree concatenation.

E HIERARCHICAL TRANSFORMER ENCODER

The proposed HSA mechanism does not introduce any trainable parameters on its own; it is simply an
attention operation. However, similar to classical transformers, we can add trainable linear projections
before performing HSA. This gives rise to the hierarchical transformer encoder (HTE) architecture
which is capable of operating on signal hierarchies representing finite nested signals. Similar to
classical transformers, we also add multiple heads as well as point-wise linear projection of the
output of HSA followed by some non-linearity. The same way the classical transformer layers do
not change the query sequence length or the position embeddings of its tokens, HTE layers do not
alter the structure of the hierarchy tree or its nodes’ positional embeddings2. Figure 4 depicts our
proposed architecture for each HTE layer.

Aside from HSA, HTE is different from classical transformer encoder in two ways. First, the
LayerNorm operation is performed after linear projection as opposed to before it. As mentioned
before, by doing so, the attention operation will minimize a proper energy function which is in turn a
proxy for minimizing the entropy of the representation. Second, unlike simple signals in standard

2Even though, the same position embeddings are fed to each layer, in our implementation, we have designed
a separate linear projection per position embedding type per layer to project the position embeddings before the
HSA operation.

21

1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187

Under review as a conference paper at ICLR 2025

Figure 4: The proposed Hierarchical Transformer Encoder (HTE) layer architecture.

transformers, signal hierarchies can contain different modalities and signal domains within their
different families across the hierarchy. Therefore, using the same linear projection layer for all this
various types of information may be an over-simplification. To this end, our proposed framework
allows different linear projection per the type of input information. For example, the leaf vectors
coming from the language and vision modalities can be transformed using their own separate linear
projection layers. Note that this distinction is only allowed at the linear projection layer; the HSA
operation itself is universal and does not treat different types of information differently. Also, it
is assumed the different types of information in a given problem (including modalities and signal
domains) are a priori known and fixed, even though each signal hierarchy in the input dataset can be
an arbitrary, variable-depth composition of these known types. By making this assumption, we can
know ahead of time how many linear projection layers are needed within each HTE layer.

The HTE layers can be cascaded to form a hierarchical transformer based on the HSA. Furthermore,
different types of pooling operations can be introduced to (gradually) coarsen the hierarchical structure
of the input nested signal. In particular, using a local pooling operation, the leaf nodes of the input
signal hierarchy are either merged together or completely pooled into their parents resulting in a
coarser representation of the underlying nested signal. Furthermore, since the channel dimensionality
d is constant across the hierarchy, global pooling is also well-defined which reduces the whole signal
hierarchy into a single, fixed-size vector of d dimensions (e.g. by taking the average). Depending on
the application, global pooling can also be realized by taking a specific leaf node’s query vector of
the output signal hierarchy (e.g. in per-token classification tasks on uni-modal, hierarchical data).

F HIERARCHICAL AUTO-REGRESSIVE GENERATION

The HSA-based, encoder-only architecture introduced in Appendix E is primarily suitable for
classification and regression applications. However, for auto-regressive generation such as causal
language modeling, we would need to have a decoder. One straightforward approach is to use an
encoder-decoder architecture where the encoder is HSA-based while the decoder is the standard
sequential decoder. In particular, in this scheme, the hierarchical self-attention is only incorporated for
the initial prompt while for the generated text, we simply compute the standard flat attention. While
simple, this solution does not take the full advantage HSA, especially if the generated text allows for
the similar hierarchical structure as the prompt text. For instance, if the hierarchy is built upon the
sentence and paragraph structure of the prompt text, then it is fairly reasonable for the generated text
to have the same hierarchical construct as well. The same can be said when the hierarchy is based on
fixed hopping windows over the text. In such cases, a HSA-based, decoder-only architecture is needed
to incorporate the hierarchical structure of the generated text during auto-regressive generation.

Theoretically speaking, for a HSA-based decoder during auto-regressive generation, we would need
to maintain a dynamic signal hierarchy where every generated token augments the signal hierarchy
with at least one new leaf node and possibly multiple non-leaf nodes. Once the signal hierarchy is
updated, the HSA calculations are, in principle, the same as before. Nevertheless, there are two major
issues here specific to auto-regressive generation. First, unlike the HSA mechanism introduced so far,
due to causal generation of tokens, leaf nodes are only allowed to attend to the other leaf nodes that
have appeared before them; that is, we would need a hierarchical causal masking mechanism. Second,
running the full HSA algorithm for every generated token is inefficient as it would re-compute some

22

1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241

Under review as a conference paper at ICLR 2025

of the sufficient statistics in Algorithm 2, which is clearly redundant. In the following sections, we
address these two problems.

F.1 HIERARCHICAL CAUSAL MASKING

In the standard auto-regressive generation using the self-attention mechanism, in order to prohibit
tokens from attending to the future tokens, one incorporates a causal mask in calculation of the
attention weights via an appropriate lower-triangular mask matrix. However, this straightforward
approach will not work with hierarchical self-attention mechanism because attention weights between
all tokens are not computed simultaneously but rather in hierarchical fashion.

Nevertheless, one can easily show that if the standard causal masking is applied at each level of the
hierarchical attention calculation, at the end, no leaf token will attend to its future tokens (i.e. the
tokens to its right) in the hierarchy. In particular, as explained in Appendix D.3, Lines 16–18 of
Algorithm 2 encapsulate a black-box Softmax self-attention function that is applied for each family
in the hierarchy. For applying hierarchical causal masking, we can simply apply the standard causal
masking within this black-box self-attention calculation. This is equivalent to replacing the sibling
function sib(A) in lines 16–18 of Algorithm 2 with sibL(A) which restricts A’s siblings to the ones
to its left (i.e. previous tokens). This simple black-box causal masking will further propagate through
the hierarchy such that at the end, the leaf nodes will only attend to other leaf nodes that are located
to their left. Figure 5 illustrates this process through a toy example.

Figure 5: An illustration of the proposed Hierarchical Causal Masking scheme for hierarchical
auto-regressive generation.

F.2 HIERARCHICAL CACHING

In standard auto-regressive generation, every generated token merely attends to the tokens seen so far
whose projections are cached via a key-value cache. This makes the attention computation for each
token linear in the (generated + prompt) sequence length. This simple idea, however, is not directly
applicable to the hierarchical case. One important distinction that we need to keep in mind is that
in the hierarchical case, we are not only generating a sequence but also a hierarchy that comes with
it; in other words, the generated sequence is the set of the leaf nodes of a hierarchy that needs to be
maintained and updated as well. As such, any caching mechanism would need to maintain and update

23

1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295

Under review as a conference paper at ICLR 2025

the signal hierarchy and not just its leaf nodes. Note that caching the hierarchy means maintaining its
structure as well as its nodes’ sufficient statistics pre-computed by Algorithm 2.

Nevertheless, during generation, we do not need to keep the entire signal hierarchy. In particular, in
our HSA framework not every leaf node directly attend to every other leaf node; instead, leaf nodes
that are not in the same family only attend to each other at the coarse scale through their highest
distinct ancestors. This means that during generation, a newly generated token (leaf node) only needs
to directly attend to its previously generated leaf siblings and not other leaf nodes. Instead it will
indirectly attend to other leaf nodes en masse by attending to their highest ancestor that is not an
ancestor of the new token. Following this scheme, we would only need to cache a sub-tree of the
original hierarchy that consists of the ancestor line of the latest generated token as well as their
immediate children nodes. We refer to this sub-tree as right-skewed because only the right-most
sibling in each family across the signal hierarchy is allowed to have children. Figure 6(A) illustrates
the maximal right-skewed sub-tree for the toy hierarchy in Figure 6(B).

Once the the right-skewed sub-tree of the signal hierarchy is extracted, we can simply update as
new tokens are generated. However, we have to be careful as not all of the newly generated tokens
are added to the latest family: some new tokens may start a new family via a higher level of the
hierarchy. For example, if the hierarchy for language data is built based upon the sentence and
paragraph structure in the text, a new token is not always going to be part of the latest sentence or
paragraph; it may start a new sentence or even a new paragraph. In such cases, more nodes need
to be added to or deleted from the cache other than the new token’s leaf node. These two cases are
illustrated in Figure 6(C)-(D).

Finally we note that during the entire generation process the hierarchical cache remains a right-skewed
tree which means that the CPU and memory complexity for calculating attention and maintaining
the cache would be O(b logbN) where N is the length of the generated sequence so far and b is
the average branching factor of the hierarchy. This is in stark contrast to the classical key-value
caching where the memory and computation are of O(N) complexity, and hence shows the potential
computational advantage of our hierarchical scheme.

Figure 6: An illustration of the proposed hierarchical caching mechanism for hierarchical auto-
regressive generation: (A) The original signal hierarchy built on the prompt text. (B) The right-skewed
sub-tree of the original hierarchy. (C) The updated hierarchy after generation of a new token that
does not end the latest family. (D) The updated hierarchy after generation of another token that does
end the latest family. The green leaf nodes depict the latest generated tokens in each step.

G PROOFS

G.1 PROPOSITION 1: SOFTMAX ATTENTION

Proof. Since each Q and K variables is normalized via a LayerNorm layer, we have ∥qi∥2 = d and
∥ki∥2 = d, ∀1 ≤ i ≤ N , which would reduce the energy function in equation 5 to:

ϕ(Q,K) =
√
d− 1

N

N∑
i=1

log

(
1

N − 1

N∑
j=1,j ̸=i

exp
[
qTi kj/

√
d
])

24

1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349

Under review as a conference paper at ICLR 2025

By taking the gradient of w.r.t. qi, we get:

∇qiϕ(Q,K) =

N∑
j=1,j ̸=i

exp(qTi kj/
√
d)∑N

t=1,t̸=i exp(q
T
i kt/

√
d)
· kj , 1 ≤ i ≤ N

By plugging∇qiϕ(Q,K) into equation 4 and setting τ = (N
√
d)−1, λ = 1 and the sample size to 1,

we will get the Softmax attention formulation in equation 6.

G.2 THEOREM 1: THE OPTIMALITY OF HSA

First off, since each Q and K variables is normalized via a LayerNorm layer, we have ∥qi∥2 = d and
∥ki∥2 = d, ∀1 ≤ i ≤ N , which would reduce the interaction energy function ψA→B in equation 7
to:

ψA→B = −εΩ(A′)T εΩ(B
′) +
√
d− 1√

d · |ℓ(A)| · |ℓ(B)|

∑
i∈ℓ(A)

∑
j∈ℓ(B)

qTi kj (16)

Then ∇qiψA→B becomes:

∇qiψA→B = − 1√
d · |ℓ(A)| · |ℓ(B)|

∑
j∈ℓ(B)

kj (17)

Proof of stochasticity. Next, we show that Θ̂ = − 1
τΘ is a stochastic matrix where τ =(

|ℓ(Rx)|
√
d
)−1

and Θ = [θi,j]|ℓ(Rx)|×|ℓ(Rx)| is the HSA matrix for the nested signal x in equation 11.

This is equivalent to showing that Θ is a negative matrix whose rows sum to −
(
|ℓ(Rx)|

√
d
)−1

. We
prove the latter by induction on the depth of the signal hierarchy hx.

The base case: Using the equation 17, for a signal hierarchy hx of depth 1 (i.e. a simple signal),
equation 9 reduces to:

∇qiϕ(Rx) = −
1√

d|ℓ(Rx)|

[∑
Lj∈sib(Li)

exp
(
− ψLi→Lj

)∑
Lk∈sib(Li)

exp
(
− ψLk→Lj

) · kj] = Θi.K (18)

where

K = [k1, ..., k|ℓ(Rx)|]
T ,

Θi. =

[− exp
(
− ψLi→Lj

)
√
d|ℓ(Rx)|

∑
Lk∈sib(Li)

exp
(
− ψLk→Lj

)]|ℓ(Rx)|

j=1

is the ith row of Θ, and Li, Lj and Lk are the leaf nodes corresponding to qi, qj and qk, respec-
tively. From equation 18, it is clear that the elements of Θ are all negative and each row sums to
−
(
|ℓ(Rx)|

√
d
)−1

.

The induction step: Now assume that the above statement holds for any Θ matrix derived from a
signal hierarchy up to depth T − 1, we show that it also holds for the signal hierarchy hx of depth T .
To this end, equation 9 can be written as:

∇qiϕ(Rx) =
|ℓ(Bi)|
|ℓ(Rx)|

[
α(Bi) · ∇qiϕ(B

i) +
∑

C∈sib(Bi) |ℓ(C)|β(Bi, C) · ∇qiψBi→C

α(Bi) +
∑

C∈sib(Bi) |ℓ(C)|β(Bi, C)

]
=
|ℓ(Bi)|
|ℓ(Rx)|

[
µ(Bi)∇qiϕ(B

i) +
∑

C∈sib(Bi)

|ℓ(C)|δ(Bi, C)∇qiψBi→C

]
where,

µ(Bi) =
α(Bi)

α(Bi) +
∑

D∈sib(Bi) |ℓ(D)|β(Bi, D)
(19)

δ(Bi, C) =
β(Bi, C)

α(Bi) +
∑

D∈sib(Bi) |ℓ(D)|β(Bi, D)
(20)

25

1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403

Under review as a conference paper at ICLR 2025

and we have µ(Bi) +
∑

C∈sib(Bi) |ℓ(C)|δ(Bi, C) = 1, for all i ∈ ℓ(Rx). On the other hand, since
Bi is a child of the root node Rx, the depth of its corresponding sub-signal hierarchy is inevitably
less than T , and therefore its corresponding energy gradient ∇ϕ(Bi) induces an attention matrix
ΘBi

that is negative with rows that sum to −
(
|ℓ(Bi)|

√
d
)−1

according to the induction hypothesis.
With that in mind, we can write

∇qiϕ(Rx) =
|ℓ(Bi)|
|ℓ(Rx)|

[
µ(Bi)ΘBi

i. KBi

−
∑

C∈sib(Bi)

δ(Bi, C)√
d · |ℓ(Bi)|

∑
j∈ℓ(C)

kj

]
= Θi.K

where ΘBi

i. is the ith row of ΘBi

, KBi

= [kj]j∈ℓ(Bi), and we have:

Θi. = concat

[
|ℓ(Bi)|
|ℓ(Rx)|

µ(Bi)ΘBi

i. ,concat
[
− δ(Bi, C)√

d · |ℓ(Rx)|
1|ℓ(C)|

]
C∈sib(Bi)

]

Then the sum of the elements of the row vector Θi. is given by:

∑
j∈ℓ(Rx)

θi,j =
1

|ℓ(Rx)|

[
|ℓ(Bi)|µ(Bi)

∑
j∈ℓ(Bi)

θB
i

i,j −
∑

C∈sib(Bi)

|ℓ(C)|√
d
δ(Bi, C)

]

=
1

|ℓ(Rx)|

[
− 1√

d
µ(Bi)−

∑
C∈sib(Bi)

|ℓ(C)|√
d
δ(Bi, C)

]

= − 1√
d|ℓ(Rx)|

[
µ(Bi) +

∑
C∈sib(Bi)

|ℓ(C)|δ(Bi, C)

]
= − 1√

d|ℓ(Rx)|

where the second equality comes from the induction hypothesis that
∑

j∈ℓ(Bi) θi,j =

−
(
|ℓ(Bi)|

√
d
)−1

. In other words, ΘRx is negative with rows that sum to −
(
|ℓ(Rx)|

√
d
)−1

, which
in turn, implies that Θ̂ = −

(
|ℓ(Rx)|

√
d
)
Θ is a stochastic matrix.

Before proving the optimality of HSA, we need to show that the KL-divergence admits optimal
sub-structure in our setting. To this end, let ℘ = [pi]

N
i=1 be a categorical distribution over N items

such that
∑N

i=1 pi = 1. Furthermore, let R = {R1, ..., RK} be a K-partition on the index set
I = {1, ..., N} such that

⋃K
j=1Rj = I and Ri ∩Rj = ∅,∀i, j ∈ 1..K, i ̸= j. We say a categorical

distribution ω = [wi]
N
i=1 admits the tie constraint w.r.t. R iff we have wi = wj if ∃Rk ∈ R s.t.

i, j ∈ Rk. We refer to set of all such distributions as WR.

Given a distribution ω ∈ WR and the sub-partition R′ ⊂ R, the projection of ω on R′ is defined
as ω⊥R′ = [wi/h]i∈I(R′) where I(R′) =

⋃
R∈R′ R, and h =

∑
i∈I(R′) wi is the re-normalization

constant. From this definition, it is clear ω⊥R′ is a categorical distribution restricted to the items in
the partitionR′.

Lemma 1 (The optimal sub-structure of the KL-divergence). Let ℘, R and WR be defined as
above; furthermore, let ω∗ ∈WR be the closest categorical distribution in WR to ℘ in terms of the
KL-divergence; that is,

ω∗ = arg min
ω∈WR

DKL(ω∥℘)

Then, for anyR′ ⊂ R, we have:

ω∗
⊥R′ = arg min

ω∈WR′
DKL(ω∥℘⊥R′)

26

1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457

Under review as a conference paper at ICLR 2025

Proof. Let us assume the closest distribution in WR′ to ℘⊥R′ is ω′ that is not equal to ω∗
⊥R′ . Then

we have,

DKL(ω
∗∥℘) =

∑
i∈I(R′)

w∗
i log(w

∗
i /pi) +

∑
i∈I(R\R′)

w∗
i log(w

∗
i /pi)

= h1 log(h1/h2) + h1
∑

i∈I(R′)

w∗
⊥R′i log(w

∗
⊥R′i/p⊥R′i) +

∑
i∈I(R\R′)

w∗
i log(w

∗
i /pi)

> h1 log(h1/h2) + h1
∑

i∈I(R′)

w′
i log(w

′
i/p⊥R′i) +

∑
i∈I(R\R′)

w∗
i log(w

∗
i /pi)

=
∑

i∈I(R′)

h1w
′
i log(h1w

′
i/pi) +

∑
i∈I(R\R′)

w∗
i log(w

∗
i /pi)

= DKL(ω
′′∥℘)

where

ω′′ = [w′′
i]

N
i=1, such that w′′

i =

{
h1w

′
i, for i ∈ I(R′)

w∗
i , for i ∈ I(R \R′)

and h1 =
∑

i∈I(R′) w
∗
i and h2 =

∑
i∈I(R′) pi are the re-normalization coefficients. The inequality

in the above derivation is the direct result of the fact that ω′ is the closest distribution to ℘⊥R′ in
WR′ . This further implies that we just found another distribution ω′′ ∈WR that is closer to ℘ than
ω∗ is. And this contradicts our assumption regarding the optimality of ω∗. Therefore, ω∗

⊥R′ must be
the closest distribution to ℘⊥R′ in WR′ .

Intuitively speaking, Lemma 1 states that any sub-structure of an optimal solution for the KL-
divergence to a target distribution is also optimal. With that, we are now ready to show the optimality
of HSA.

Proof of optimality. We would like to show that the HSA formulation in equation 9 results in a self
attention matrix Θ̂ that minimizes the total KL-divergence in equation 12. In order to do so, we derive
the optimal solution for the total KL-divergence and show that it obeys the recurrence in equation 9.

For a signal hierarchy hx rooted at Rx, let Θ̂R denote the closest HSA matrix in B (the space of
all matrices that admit the block constraint according to the signal hierarchy hx) to the flattened
self-attention matrix Θf described by equation 13. That is,

Θ̂R = arg min
Θ∈B

∑
i∈ℓ(Rx)

DKL(θi,·∥θfi,·) ≡ arg min
Θ∈B

D̄KL(Θ∥Θf) (21)

Since each row of Θ̂R is a categorical distribution, by applying Lemma 1 to the rows of Θ̂R, it is
straightforward to see that the diagonal blocks of Θ̂R corresponding to the children ofRx are also (up
to a re-normalization factor) the closest HSA matrices to the restriction of the flattened self-attention
matrix Θf to the corresponding sub-hierarchies. For the child node A ∈ chd(Rx), the renormalized
restriction of Θf to A is denoted by Θf,A. The elements of Θf are then can be written as:

∀i, j ∈ ℓ(Rx), θ
f
i,j =

{
zi

zi+z̄i
θf,A

i

i,j , if Ai = Aj

bi,j
zi+z̄i

, if Ai ̸= Aj
(22)

where Ai denotes that child of Rx that contains the ith leaf node, bi,j = exp(−ψi→j), zi =∑
j∈ℓ(Ai) bi,j , and z̄i =

∑
j∈ℓ(Rx)\ℓ(Ai) bi,j . Similarly, if we denote the renormalized restriction of

Θ̂R to A by Θ̂R,A, the elements of of Θ̂R are then can be written as:

∀i, j ∈ ℓ(Rx), θ̂
R
i,j =

{
µ(Ai)θ̂R,Ai

i,j , if Ai = Aj

δ(Ai, Aj), if Ai ̸= Aj
(23)

where µ(Ai) and δ(Ai, Aj) are unknown coefficients. Note that unlike equation 22, for the case
of Ai ̸= Aj , we only have one number representing the attention weight between sub-trees Ai

and Aj - i.e. δ(Ai, Aj). This is due to the block constraint being enforced on Θ̂R. Similarly,

27

1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1490
1491
1492
1493
1494
1495
1496
1497
1498
1499
1500
1501
1502
1503
1504
1505
1506
1507
1508
1509
1510
1511

Under review as a conference paper at ICLR 2025

the block constraint requires the renormalization coefficient for every child Ai, i.e. µ(Ai), to be
the same for all the rows k ∈ ℓ(Ai). If we assume we already know the optimal restricted HSA
matrices Θ̂R,A,∀A ∈ chd(Rx), our goal reduces to computing the values of µ(A) and δ(A,B) for
all A,B ∈ chd(Rx) such that the total KL-divergence in equation 21 is minimized. By plugging
Eqs.equation 22 andequation 23 into equation 21, we get:

D̄KL(Θ̂
R∥Θf) =

∑
A∈chd(Rx)

∑
i∈ℓ(A)

[∑
j∈ℓ(A)

µ(A)θ̂R,Ai

i,j log

(
µ(A)θ̂R,Ai

i,j (zi + z̄i)

ziθ
f,Ai

i,j

)

+
∑

B∈sib(A)

∑
j∈ℓ(B)

δ(A,B) log

(
(zi + z̄i)δ(A,B)

bi,j

)]

=
∑

A∈chd(Rx)

[
µ(A)

(
D̄KL(Θ̂

R,A∥Θf,A) + |ℓ(A)| logµ(A) +
∑

i∈ℓ(A)

log
(zi + z̄i

zi

))

+
∑

Binsib(A)

(
|ℓ(A)||ℓ(B)|δ(A,B) log δ(A,B)

+ δ(A,B)

[
|ℓ(B)|

∑
i∈ℓ(A)

log(zi + z̄i)−
∑

i∈ℓ(A)

∑
j∈ℓ(B)

log bi,j

])]
(24)

Where D̄KL(Θ̂
R,A∥Θf,A) is the optimal value of the total KL-divergence for the sub-problem

induced by the child node A of Rx. Since Θ̂R is the minimizer of equation 24, the values of µ(A)
and δ(A,B), ∀A,B ∈ chd(Rx) must be chosen such that they minimize equation 24. Furthermore,
each row of the matrix Θ̂R must sum to 1, which results in the following set of constraints on the
values of µ(A) and δ(A,B):

∀i ∈ ℓ(Rx),
∑

j∈ℓ(Rx)

θ̂Ri,j = 1⇒
∑

j∈ℓ(Ai)

θ̂Ri,j +
∑

j∈ℓ(Rx)\ℓ(Ai)

θ̂Ri,j = 1

⇒ µ(Ai)
∑

j∈ℓ(Rx)

θ̂R,Ai

i,j +
∑

B∈sib(Ai)

|ℓ(B)|δ(Ai, B) = 1

⇒ µ(A) +
∑

B∈sib(A)

|ℓ(B)|δ(A,B) = 1, ∀A ∈ chd(Rx) (25)

where the second line is obtained by incorporating equation 23 and the last line uses the fact that the
rows of the restricted matrix Θ̂R,Ai

are already normalized. To optimize equation 24 w.r.t. µ(A) and
δ(A,B), ∀A,B ∈ chd(Rx) while enforcing the constraints in equation 25, we form the Lagrangian
as follows:

L
(
µ(A), δ(A,B), λA;∀A,B ∈ chd(Rx)

)
= D̄KL(Θ̂

R∥Θf)−
∑

A∈chd(Rx)

λA

[
µ(A) +

∑
B∈sib(A)

|ℓ(B)|δ(A,B)− 1

]
(26)

where λA,∀A ∈ chd(Rx) are the Lagrange multipliers. By taking the partial derivatives of the
Lagrangian w.r.t. µ(A) and δ(A,B) and solving for them, we get:

µ(A) = exp

[
1

|ℓ(A)|

(
λA − D̄KL(Θ̂

R,A∥Θf,A) +
∑

i∈ℓ(A)

log
(zi
zi + z̄i

))
− 1

]
,

δ(A,B) = exp

[
1

|ℓ(A)|

(
λA −

1

|ℓ(B)|
∑

i∈ℓ(A)

∑
j∈ℓ(B)

log bi,j −
∑

i∈ℓ(A)

log(zi + z̄i)

)
− 1

]
(27)

Now if we plug equation 27 into the constraints in equation 25, we can solve for λA’s, which can be
further put back into equation 27 to derive the values of µ(A) and δ(A,B) as:

µ(A) =
γ(A)

γ(A) +
∑

C∈sib(A) |ℓ(B)|ζ(A,C)
, δ(A,B) =

ζ(A,B)

γ(A) +
∑

C∈sib(A) |ℓ(B)|ζ(A,C)
(28)

28

1512
1513
1514
1515
1516
1517
1518
1519
1520
1521
1522
1523
1524
1525
1526
1527
1528
1529
1530
1531
1532
1533
1534
1535
1536
1537
1538
1539
1540
1541
1542
1543
1544
1545
1546
1547
1548
1549
1550
1551
1552
1553
1554
1555
1556
1557
1558
1559
1560
1561
1562
1563
1564
1565

Under review as a conference paper at ICLR 2025

where

γ(A) = exp

[
1

|ℓ(A)|

(∑
i∈ℓ(A)

log zi − D̄KL(Θ̂
R,A∥Θf,A)

)]
(29)

ζ(A,B) = exp

[
1

|ℓ(A)||ℓ(B)|
∑

i∈ℓ(A)

∑
j∈ℓ(B)

log bi,j

]
= exp(−ψA→B) (30)

where the last equality directly results from the definition of bi,j and the definition of the interaction
energy between A and B in equation 7. In case Rx is of depth 1 (that is, A is a leaf node), γ(A) is
simply defined to be 0. By plugging these values into equation 24 and doing some algebra, we derive
the optimal value of the total KL-divergence as follows:

D̄KL(Θ̂
R∥Θf) =

∑
A∈chd(Rx)

[∑
i∈ℓ(A)

log(zi+ z̄i)−|ℓ(A)| log
(
γ(A)+

∑
B∈sib(A)

|ℓ(B)|ζ(A,B)

)]
(31)

On the other hand, using equation 29, we can derive γ(Rx) as:

γ(Rx) = exp

[
1

|ℓ(Rx)|

(∑
i∈ℓ(Rx)

log zi − D̄KL(Θ̂
R∥Θf)

)]
(32)

Now by plugging equation 31 into equation 32, applying equation 30, and taking the logarithm of
both sides, we arrive at:

log γ(Rx) =
∑

A∈chd(Rx)

|ℓ(A)|
|ℓ(Rx)|

log

[
exp

(
log γ(A)

)
+

∑
B∈sib(A)

|ℓ(B)| exp(−ψA→B)

]
(33)

By comparing equation 33 to the definition of the energy of the signal hierarchy in equation 8, it
is clear that our proposed energy function ϕ(·) and − log γ(·) follow the exact same recurrence
dynamic. Furthermore, since the initial values of these two functions at the leaf nodes are both
equal to ∞, we can conclude that γ(A) = exp(−ϕ(A)) for all nodes A in the signal hierarchy
hx. In other words, γ(·) and ζ(·, ·) are respectively the exact same functions as α(·) and β(·, ·) in
equation 10. This further means that the optimal coefficients µ(·) and δ(·, ·) in equation 28 to update
the optimal self-attention matrix recurrence in equation 23 are the exact same coefficients in our
proposed recurrence in equation 9 to compute hierarchical self-attention. Since both methods result in
the same attention matrix for the base case of one-level hierarchy (i.e. the standard Softmax attention),
and also follow the exact same recurrence dynamic, we can conclude that they are equivalent. This
means that our proposed HSA formulation is also optimal in the sense of the total KL-divergence,
which concludes the proof.

G.3 THEOREM 2: THE CORRECTNESS AND THE COMPLEXITY OF ALGORITHMS 1–3

Proof. Before proving the correctness and the complexity of our proposed algorithm, we show the
complexity of directly calculating equation 9. In order to compute ∇qiϕ(Rx), we would need to
first calculate the node energy function ϕ(·) at every node in the signal hierarchy using the recursive
formula in equation 8. For a signal hierarchy with M internal nodes and the maximum b branching
factor, we would have O(M · b) nodes in the hierarchy, at each one of them, we would need to
compute the sum in in equation 8 over their O(b) siblings. This would make the total complexity of
calculating ϕ(·) O(M.b2). This is essentially the complexity of the recursive function in Algorithm
2.

Next, to compute ∇qiϕ(·) from equation 9, we need to traverse the path from the root node to the
leaf node corresponding to qi which has O(logbM) nodes. In each node, we also need to calculate a
sum over the O(b) siblings of that node, which makes the cost of calculating∇qiϕ(·) O(b logbM).
However, since we would need to repeat this calculation for all O(M · b) leaf nodes qi’s, the total
cost of computing HSA would become O(b2.M logbM).

Moving on with the proof, we note that the recurrence relation in equation 9 can be written as:

∇qiϕ(Rx) = exp
(
f(Bi)

)
∇qiϕ(B

i) + g(Bi) (34)

29

1566
1567
1568
1569
1570
1571
1572
1573
1574
1575
1576
1577
1578
1579
1580
1581
1582
1583
1584
1585
1586
1587
1588
1589
1590
1591
1592
1593
1594
1595
1596
1597
1598
1599
1600
1601
1602
1603
1604
1605
1606
1607
1608
1609
1610
1611
1612
1613
1614
1615
1616
1617
1618
1619

Under review as a conference paper at ICLR 2025

where

f(Bi) = logµ(Bi) , g(Bi) =
∑

C∈sib(Bi)

|ℓ(C)|δ(Bi, C) · ∇qiψBi→C (35)

and µ(·) and δ(·, ·) are given in equation 19 and equation 20. Furthermore, equation 34 is a first-
order, non-homogeneous recurrence relations with variable coefficients for which we can derive the
following closed-form solution:

∇qiϕ(Rx) =
∑

B∈Rx⇝Li

[
g(B) exp

(∑
C∈Rx⇝Pa(B)

f(C)

)]
=

∑
B∈Rx⇝Li

[
g(B) exp

(
u
(
Pa(B)

))]
(36)

where

u
(
A
)
=

∑
C∈Rx⇝A

f(C) = f(A) + u
(
Pa(A)

)
, (37)

Rx ⇝ A denotes the set of all nodes on the path from the root to node A excluding the root itself, Li

is the leaf node corresponding to qi and Pa(B) denotes the parent of node B. Furthermore, define:

ϑ(A) ≡
∑

B∈Rx⇝A

[
g(B) exp

(
u
(
Pa(B)

))]
= g(A) exp

(
u
(
Pa(A)

))
+ ϑ

(
Pa(A)

)
(38)

Then it is straightforward to see:

∇qiϕ(Rx) = ϑ(Li) , ∀i ∈ ℓ(Rx) (39)

On the other hand, given that each Q and K variables are normalized via a LayerNorm layer, we can
plug equation 17 into equation 35, to get:

g(A) = −
∑

C∈sib(A)

δ(A,C)

|ℓ(A)|
√
d

∑
j∈ℓ(C)

kj

= − 1

|ℓ(A)|
√
d
[
α(A) +

∑
D∈sib(A) |ℓ(D)|β(A,D)

] ∑
C∈sib(A)

[
β(A,C)

∑
j∈ℓ(C)

kj

]

= − 1

|ℓ(A)|
√
d
[
exp

(
− ϕ(A)

)
+ exp

(
− η(A)

)] ∑
C∈sib(A)

[
|ℓ(C)|β(A,C)ρk(C)

]

= − 1

|ℓ(A)|
√
d
[
exp

(
− ϕ(A)

)
+ exp

(
− η(A)

)] ∑
C∈sib(A)

[
|ℓ(C)| exp(−ψA→C)ρk(C)

]

= −

∑
C∈sib(A) |ℓ(C)| exp

(
εΩ(A)

T εΩ(C)−
√
d+ 1√

d
ρq(A)

T ρk(C)

)
ρk(C)

|ℓ(A)|
√
d
[
exp

(
− ϕ(A)

)
+ exp

(
− η(A)

)] (40)

where the last equality is derived from equation 16, and we have:

η(A) ≡ − log
[∑
D∈sib(A)

|ℓ(D)|β(A,D)
]

= − log
(∑
B∈sib(A)

|ℓ(B)| exp
[
ε(A)T ε(B) +

1√
d
ρq(A)

T ρk(B)−
√
d
])

(41)

and

ρq(A) ≡
1

|ℓ(A)|
∑

j∈ℓ(A)

qj , ρk(A) ≡
1

|ℓ(A)|
∑

j∈ℓ(A)

kj (42)

30

1620
1621
1622
1623
1624
1625
1626
1627
1628
1629
1630
1631
1632
1633
1634
1635
1636
1637
1638
1639
1640
1641
1642
1643
1644
1645
1646
1647
1648
1649
1650
1651
1652
1653
1654
1655
1656
1657
1658
1659
1660
1661
1662
1663
1664
1665
1666
1667
1668
1669
1670
1671
1672
1673

Under review as a conference paper at ICLR 2025

Furthermore, we can rewrite f(A) as:

f(A) = logµ(A) = log

[
α(A)

α(A) +
∑

D∈sib(A) |ℓ(D)|β(A,D)

]
= log

[
exp

(
− ϕ(A)

)
exp

(
− ϕ(A)

)
+ exp

(
− η(A)

)]
= log

[
1

1 + exp
(
ϕ(A)− η(A)

)]
= log Sigmoid

[
η(A)− ϕ(A)

]
(43)

Finally, by plugging equation 43 and equation 40 into the recurrence relations in equation 37 and
equation 38, we arrive at Lines 3–4 of Algorithm 3. This means that after completion of Algorithm 3,
we can read off ∇qiϕ(Rx) = ϑ(Li) at the leaf nodes of the hierarchy. This proves the correctness of
our proposed algorithm.

As for the complexity, since Algorithm 2 visits each O(M · b) nodes of the hierarchy once and
performs the summation in Lines 16–18 over the O(b) siblings of each node, the complexity of
Algorithm 2 is O(M · b2), which means the total complexity of computing HSA using our dynamic
programming approach is O(M · b2). And this concludes the proof.

H EXPERIMENTAL SETTINGS

In this appendix, we detail the experimental settings used for the reported experiments in the main
paper.

H.1 DATASETS

Hierarchical Language: For this experiment, we have chosen the text classification problem for the
sentiment analysis task on two datasets: IMDB imd; Maas et al. (2011b), and Elec ele; McAuley &
Leskovec (2013)—for sentiment classification in movie reviews and Amazon electronics product
reviews, respectively. The reason behind choosing these datasets lies in their inclusion of lengthy
texts, which means they can benefit from hierarchical representation. Both datasets have 2 classes.
Table 5 summarizes some basic statistics for these datasets. For the validation set, we have used 10%
of the training set.

Classes Train Size Test Size Avg. Word/Doc.
IMDB 2 25K 25k 235
Elec 2 25K 25k 108

Table 5: The statistics for the IMDB and Elec datasets used for the sentiment classification task.

Multi-modal News Classification: For this task, we have performed experiments for the news
classification task on N24News dataset Wang et al. (2022), where for each news article not only we
have language and image modalities present, but the text itself consists of multiple sub-modalities, i.e.
headline, abstract, image caption and main body. N24News dataset consists of total of 61, 218 news
stories and 24 total number of classes. The source of the news articles is the New York Times from
2010 to 2020. For training/validation/testing splitting, we use random splitting of ratio 8:1:1 used by
the original paper.

H.2 MODEL ARCHITECTURES

All the competitor models in our experiments follow the same general architectural pattern: an
attention layer, followed by a global pooling layer, followed by a multi-layer Perceptron (MLP).

The attention layer: For our main model, the attention layer is a single-layer, HSA-based transformer
as depicted in Fig. 4. For brevity, we refer to this architecture simply as HSA. For the flattened
self-attention (FSA) baseline, the same attention layer as Fig. 4 is applied, except that the input

31

1674
1675
1676
1677
1678
1679
1680
1681
1682
1683
1684
1685
1686
1687
1688
1689
1690
1691
1692
1693
1694
1695
1696
1697
1698
1699
1700
1701
1702
1703
1704
1705
1706
1707
1708
1709
1710
1711
1712
1713
1714
1715
1716
1717
1718
1719
1720
1721
1722
1723
1724
1725
1726
1727

Under review as a conference paper at ICLR 2025

signal hierarchy to the layer is flattened into a one level (simple) signal (For experiments using
the standard transformer layers, see Appendix I). As shown by Proposition 1, a single level signal
hierarchy is mathematically equivalent to the standard Softmax attention mechanism, which means
that we can view FSA representing the standard Softmax attention. For the DeepSet baseline in
the multi-modal experiment, we apply the same architecture as Fig. 4 for the attention layer, except
the attention operation itself is disabled. That is, all the other neural operations in the HTE layer is
applied except for the attention. This effectively means that we individually transform each token in
the signal hierarchy without letting them interact with each other through the attention mechanism.
This operation followed by pooling and MLP layers effectively implements a DeepSet architecture
Zaheer et al. (2017) for combining the token representations in the input signal into a single, fixed
sized vector. Note that in all of our experiments across different models, the attention layer is simply
the HTE layer in Fig. 4 or a variant of it, and as such we can specify the architectural details for
each experiment/model using the same hyper-parameters, as detailed in Table 6. To ensure a fair
comparison, we maintain an equal number of parameters across all models within each experiment.

Experiment Hierarchical Language Multi-modal News Classification
Model FSA HSA Deep Set FSA HSA

of Parameters 1.2M 1.2M 13.4M 11.8M 11.8M
of Heads 3 3 3 3 3
HTE Layer Output dim 128 128 512 512 512
Position Embedding dim 768 768 768 768 768
Attention dim 128 128 768 256 256
MLP dim 128 128 512 512 512

Table 6: Configuration of model architectures employed in all experiments/models

The global pooling layer: The purpose of global pooling layer is to aggregate the leaf representation
across the hierarchy into a single, fixed-size vector. We have multiple options for this layer; in our
experiments, we have chosen the global mean pooling.

The MLP: After pooling the representation into a single vector, we apply a 1-hidden layer MLP on
the resulted vector, the dimensions of which are summarized in Table 6.

H.3 TRAINING HYPER-PARAMETERS

Table 7 summarizes the training hyper-parameters used for each experiment. We use the same
hyper-parameters across different baselines for each experiment.

Experiment Hierarchical Language Multi-modal News Classification

Loss Function Standard Cross-Entropy Loss Standard Cross-Entropy Loss
Train Batch Size 64 512
Test Batch Size 64 512
Optimizer AdamW AdamW
Max Tokens for Training 512 512
Learning Rate 2× 10−5 1× 10−4

Learning Rate Scheduler LinearLR LinearLR
Train Epochs 30 5

Table 7: The training hyperparameters used for each experiment.

I COMPARISON TO THE CLASSICAL TRANSFORMER ARCHITECTURE

The experimental results reported in Sections 5.1 and 5.2 aimed at comparing the performance of our
HSA framework vs. that of the flat attention, where the rest of the architecture aside from the attention
mechanism were the same one proposed in Appendix E. However, a more practical comparison
would be the one between the performance of these two mechanisms within the classical transformer
architecture proposed by Vaswani et al. (2017). To this end, we have conducted experiments where

32

1728
1729
1730
1731
1732
1733
1734
1735
1736
1737
1738
1739
1740
1741
1742
1743
1744
1745
1746
1747
1748
1749
1750
1751
1752
1753
1754
1755
1756
1757
1758
1759
1760
1761
1762
1763
1764
1765
1766
1767
1768
1769
1770
1771
1772
1773
1774
1775
1776
1777
1778
1779
1780
1781

Under review as a conference paper at ICLR 2025

we train from scratch and compare a standard RoBERTa model and a HSA-RoBERTa model (as
proposed in Section 5.3 on two GLUE benchmarks. For HSA-RoBERTa, we simply replace the
standard flat self-attention operation with HSA, while the hierarchy is imposed a fixed four-level
hierarchy where the branching factors from bottom to to are 16, 8, 4, and 2.

Dataset Model Accuracy Precision Recall F1 Score

MRPC RoBERTa 0.8608 0.8872 0.9058 0.8964
HSA-RoBERTa 0.8846 0.9165 0.9093 0.9129

RTE RoBERTa 0.8158 0.7985 0.8167 0.8075
HSA-RoBERTa 0.8158 0.8076 0.8015 0.8045

QQP (after 4 epochs) RoBERTa 0.3681 0.3681 0.5381 0.4371
HSA-RoBERTa 0.9185 0.8764 0.9065 0.8911

Table 8: The comparison of training RoBERTa vs. HSA-RoBERTa from scratch on two GLUE
datasets.

Table 8 shows the results on the evaluation set of each dataset after training. As these results
show, the incorporation of HSA within a standard transformer architecture not only can improve
the computational complexity of self-attention computation, but it can also improve the evaluation
metrics due to the regularization effects of our hierarchical framework. This result is consistent with
the ones in Sections 5.1 and 5.2. Furthermore, for the QQP dataset, we have shown the results just
after 4 epochs; interestingly, these results show that HSA-RoBERTa converges much faster than the
standard RoBERTa model.

J GOING BEYOND SOFTMAX ATTENTION

One of the primary contributions of our work is generalizing Softmax attention from flat signals to
the hierarchical structure of nested signals. This generalization is further confirmed by the theoretical
result of Theorem 1. However, there has been a significant effort in the literature to explore other
forms of attention mechanisms than Softmax attention Child et al. (2019); Correia et al. (2019); Han
et al. (2025); Shen et al. (2021); Zhou et al. (2024). One of the main motivations of departing from the
Softmax attention lies in the fact that Softmax attention induces dense probability distribution over
all tokens. Sparse attention Child et al. (2019); Correia et al. (2019), on the other hand, organically
induces sparse probability distributions over tokens which can greatly improve the interpretability and
computational efficiency of transformer models. A natural question is then whether our hierarchical
derivation can be applied to other forms of attention, in particular the sparse attention. In other words,
can our formalism also generalize sparse attention from flat signals to the hierarchical structure of
nested signals?

J.1 SPARSE ATTENTION AS ENERGY MINIMIZATION

The first step toward generalizing Sparse attention to the hierarchical setting is to formulate the flat
case as an energy minimization problem, much like what we did in Proposition 1 for the Softmax
attention. To this end, we would need to define an appropriate energy function for the sparse attention.
But before that let us define a generic form of energy function that can encompass various forms
probability-based attentions.

Let Q and K be sets of query and key vectors with bounded norms (e.g. induced by LayerNorm)
respectively; we define the generic energy function as:

ϕg(Q,K) = − 1

N

N∑
i=1

ϕgi (zi1, zi2, . . . , ziN), where zij = qTi kj (44)

Then the gradient of ϕg(Q,K) w.r.t the query token qi is:

∇qiϕ
g = −

N∑
j=1

∂ϕgi
∂zij

· kj = −(∇zϕ
g
i)

TK (45)

where K is the key matrix (as defined in equation 11) and∇zϕ
g
i =

[∂ϕg
i

∂zi1
, . . . ,

∂ϕg
i

∂ziN

]T
is the attention

weight vector. In equation 5, we defined ϕgi ’s to be the log-sum-exp function and that led the attention

33

1782
1783
1784
1785
1786
1787
1788
1789
1790
1791
1792
1793
1794
1795
1796
1797
1798
1799
1800
1801
1802
1803
1804
1805
1806
1807
1808
1809
1810
1811
1812
1813
1814
1815
1816
1817
1818
1819
1820
1821
1822
1823
1824
1825
1826
1827
1828
1829
1830
1831
1832
1833
1834
1835

Under review as a conference paper at ICLR 2025

weight vector∇zϕ
g
i to be the Softmax function. Now in the general case, if ϕgi ’s are continuous and

strictly convex, we can write (See Blondel et al. (2019) Proposition 1.3):

∇zϕ
g
i (z) = arg max

p∈dom(ϕg∗
i)⊂RN

[
pT z − ϕg∗i (p)

]
(46)

where dom(f) is the domain of function f(·), and ϕg∗i (p) = supz∈dom(ϕg
i)

[
pT z − ϕgi (z)

]
is the

convex conjugate of ϕgi (z). For the log-sum-exp function ϕgi (z) = log
[∑N

j=1 exp(zij)
]
, the convex

conjugate is the negative Shannon Entropy ϕg∗i (p) =
∑N

j=1 pij log pij .

On the other hand, in sparse attention Correia et al. (2019), the attention weight vector∇zϕ
g
i (z) is set

to be the α-entmax function which has the exact same form as equation 46 with ϕg∗i (p) = −HT
α (p),

where

HT
α (p) =

{
1

α(α−1)

∑N
j=1

(
pij − pαij

)
, α ̸= 1

−
∑N

j=1 pij log pij , α = 1
(47)

is the Tsallis continuous family of entropies Tsallis (1988). It is straightforward to show that for
α = 1 (i.e. the Shannon Entropy), the α-entmax function reduces to the Softmax function. However,
as we saw before, we can alternatively derive the Softmax function by first deriving the energy
component ϕg∗i (p) as the log-sum-exp function and then computing its gradient. Now by following
the same process for the general Tsallis entropy, we can derive the equivalent energy component
whose gradient would be the α-entmax function. In particular, by setting ϕg∗i (p) = −HT

α (p) (as
done in the formulation of Sparse attention Correia et al. (2019)), we will have the energy component
ϕgi (z) = [−HT

α (p)]
∗, which can be further derived in closed form as:

ϕgi (z) =
1

α(α− 1)
+

N∑
j=1

y
1/(α−1)
ij

(
zij −

1

α(α− 1)
yij

)
(48)

where
yij = ReLU[(α− 1)zij − τi] (49)

and τi is the Lagrange multiplier corresponding to the
∑N

j=1 pij = 1 constraint. Note that, in
general, τi is a function of all zij’s; that is, τi = τ(zi0, . . . , ziN). By plugging equation 48 into
equation 44, we arrive at the equivalent energy function for the general α-entmax attention (i.e. the
sparse attention):

ϕg(Q,K) = − 1

N

N∑
i=1

N∑
j=1

y
1/(α−1)
ij

(
zij −

1

α(α− 1)
yij

)
+ C, where zij = qTi kj (50)

J.2 THE HIERARCHICAL GENERALIZATION

Now that we have the energy function for sparse attention in the flat case (equation 50), we can
generalize it to the hierarchical structure of nested signal by following similar recipe as equation 8. In
particular, for node A in the signal hierarchy hx, the hierarchical sparse energy is recursively defined
as:

ϕα(A) = −
∑

B∈chd(A)

|ℓ(B)|
|ℓ(A)|

ϕgB

(
−ϕα(B), log |ℓ(C1)|−ψB→C1 , . . . , log |ℓ(Ck)|−ψB→Ck

)
(51)

where C1, . . . , Ck are the sibling nodes of B, ψB→Ck
is the interaction energy function defined in

equation 7, and the multi-variate function ϕgB has the same functional form as equation 48. Then
equation 8 can be seen as a special case of where α = 1 and ϕgB reduces to the log-sum-exp function.
Given the hierarchical sparse energy, we can derive the hierarchical sparse attention by taking the
gradient of ϕα(Rx) w.r.t to each query vector qi, similar to the derivation in equation 9 for the
Softmax case. We leave further derivation of an efficient algorithm and theoretical optimality for
sparse attention to future work.

Lastly, it should be noted that similar to flat sparse attention, one can also learn the sparsity factor
α via back-propagation in the hierarchical case. This can be further extended to learning different
sparsity patterns for different levels of hierarchy, which can be useful depending on the application.

34

1836
1837
1838
1839
1840
1841
1842
1843
1844
1845
1846
1847
1848
1849
1850
1851
1852
1853
1854
1855
1856
1857
1858
1859
1860
1861
1862
1863
1864
1865
1866
1867
1868
1869
1870
1871
1872
1873
1874
1875
1876
1877
1878
1879
1880
1881
1882
1883
1884
1885
1886
1887
1888
1889

Under review as a conference paper at ICLR 2025

K ZERO-SHOT APPROXIMATION OF SELF-ATTENTION: ABLATION STUDY

In this appendix, we further expand on the experimental results for the zero-shot HSA approximation
of RoBERTa presented in the main paper. In particular, we study the effects of approximating different
combination of layers as well as different hierarchical structures for the datasets reported in the main
paper.

K.1 EXPERIMENTAL SETUP

Datasets: We have run experiments on 5 GLUE datasets (SST-2, CoLA, MRPC, RTE and QNLI) as
well as the AGNEWS and IMDB datasets.

Models: For each dataset, we have used the appropriate pre-trained RoBERTa checkpoint and
configuration that has been fine-tuned on the corresponding task. Table 9 lists the checkpoints and
configuration used for each dataset. All of our experiments involve only evaluation of pre-trained
RobERTa without any training of fine-tuning it.

Metrics: We have computed Accuracy, Precision, Recall and F1 Score to measure the accuracy drop
of pre-trained RoBERTa as its various layers are approximated by HSA.

Impacted Layers: As mentioned in the main paper, approximating all self-attention layers of
RoBERTa typically leads to significant zero-shot accuracy drop across all tasks. However, approxi-
mating a subset of layers can introduce more reasonable gap while still benefiting from HSA speed up
in terms of the number of FLOPs. Nevertheless, finding the best layer combination is a combinatorial
problem. To alleviate this issue, instead of examining all different combinations, we only look at
certain combinations based on two empirical observations. In particular, we observed that earlier
layers in the network are typically more sensitive to approximation, whereas the latter ones are more
amenable to it. This observation intuitively makes sense because the sooner approximation takes
place in the network, the higher approximation error accumulates along the network. Moreover,
having consecutive layers approximated typically increases the accuracy gap whereas interleaving
them with regular self-attention layers decreases the gap.

Based on these two observations, in our experiments, we only examine combinations where a start
layer (denoted by SL) and every other layer after that are approximated by HSA. The X-axis for the
bar plots in this section is associated with SL. Also, the right bar in each plot represents the metrics
for the original model without HSA approximation.

Hierarchy: For these experiments we chose to use fixed hierarchies based on non-overlapping
hopping windows rather than semantic hierarchies based on the text structure. The reason behind this
choice is that semantic hierarchies (such as sentences, paragraphs, etc.) are example dependant which
means they would incur different number of FLOPs for different examples. But since our ultimate
goal from this experiment is to reduce the number of flops consistently across the data, we opted to
use fixed hierarchies.

The fixed hierarchies here are characterized by having a fixed branching factor for all the nodes
belonging to the same level of the hierarchy. We then denote such hierarchy by the tuple (A,B,C, ...)
where A is the branching factor at the lowest level of the hierarchy, B is the branching factor for
the next level and so on. Having this notation in place, we have experimented with the following
hierarchies:

1. (2, 2, 2, 2): A hierarchy with low branching factor at all levels.

2. (2, 4, 8, 16): A hierarchy with low branching factor on the bottom and high branching factor
on the top.

3. (7, 7, 7, 7): A hierarchy with high branching factors at all levels.

4. (8, 4, 2) A hierarchy with high branching factor on the bottom and low branching factor on
the top.

35

1890
1891
1892
1893
1894
1895
1896
1897
1898
1899
1900
1901
1902
1903
1904
1905
1906
1907
1908
1909
1910
1911
1912
1913
1914
1915
1916
1917
1918
1919
1920
1921
1922
1923
1924
1925
1926
1927
1928
1929
1930
1931
1932
1933
1934
1935
1936
1937
1938
1939
1940
1941
1942
1943

Under review as a conference paper at ICLR 2025

Dataset RoBERTa Configuration Checkpoint
IMDB Large siebert/sentiment-roberta-large-english a

AGNEWS Base cardiffnlp/twitter-roberta-base-sentiment b

SST-2 Base textattack/roberta-base-SST-2 c

CoLA Base textattack/roberta-base-CoLA d

MRPC Base textattack/roberta-base-MRPC e

QNLI Base textattack/roberta-base-QNLI g

RTE Base textattack/roberta-base-RTE h

Table 9: Checkpoints and RoBERTa configurations used for evaluating each task.

ahttps://huggingface.co/siebert/sentiment-roberta-large-english
bhttps://huggingface.co/cardiffnlp/twitter-roberta-base-sentiment
chttps://huggingface.co/textattack/roberta-base-SST-2
dhttps://huggingface.co/textattack/roberta-base-CoLA
ehttps://huggingface.co/textattack/roberta-base-MRPC f

ghttps://huggingface.co/textattack/roberta-base-QNLI
hhttps://huggingface.co/textattack/roberta-base-RTE

K.2 RESULTS

SST-2 Task: As Figure 7 shows, the SST-2 task is relatively robust to the choice of SL (start layer for
HSA approximation), where the accuracy gap widens if SL falls below Layer 5. Also, the choice
of hierarchy is relatively inconsequential except for the narrow hierarchy with low-branching factor
across all its levels, which demonstrates slightly poorer results compared to the rest.

1 2 3 4 5 6 7 8 9 10 11 12 OR
SL

0.0

0.2

0.4

0.6

0.8

1.0

M
et

ric
s

2,2,2,2/sst2
Accuracy F1 Score Precision Recall

1 2 3 4 5 6 7 8 9 10 11 12 OR
SL

0.0

0.2

0.4

0.6

0.8

1.0

M
et

ric
s

2,4,8,16/sst2
Accuracy F1 Score Precision Recall

1 2 3 4 5 6 7 8 9 10 11 12 OR
SL

0.0

0.2

0.4

0.6

0.8

1.0

M
et

ric
s

7,7,7,7/sst2
Accuracy F1 Score Precision Recall

1 2 3 4 5 6 7 8 9 10 11 12 OR
SL

0.0

0.2

0.4

0.6

0.8

1.0

M
et

ric
s

8,4,2/sst2
Accuracy F1 Score Precision Recall

Figure 7: The accuracy metrics of HSA approximation of self-attention layers in RoBERTa for the
STT-2 task.

36

1944
1945
1946
1947
1948
1949
1950
1951
1952
1953
1954
1955
1956
1957
1958
1959
1960
1961
1962
1963
1964
1965
1966
1967
1968
1969
1970
1971
1972
1973
1974
1975
1976
1977
1978
1979
1980
1981
1982
1983
1984
1985
1986
1987
1988
1989
1990
1991
1992
1993
1994
1995
1996
1997

Under review as a conference paper at ICLR 2025

RTE Task: As Figure 8 shows, the RTE task exhibits the same behavior as the SST-2 task with a
major accuracy drop takes place when SL falls below Layer 7. Different hierarchy structures seem to
have similar behavior though.

1 2 3 4 5 6 7 8 9 10 11 12 OR
SL

0.0

0.2

0.4

0.6

0.8

1.0

M
et

ric
s

2,2,2,2/rte
Accuracy F1 Score Precision Recall

1 2 3 4 5 6 7 8 9 10 11 12 OR
SL

0.0

0.2

0.4

0.6

0.8

1.0

M
et

ric
s

2,4,8,16/rte
Accuracy F1 Score Precision Recall

1 2 3 4 5 6 7 8 9 10 11 12 OR
SL

0.0

0.2

0.4

0.6

0.8

1.0

M
et

ric
s

7,7,7,7/rte
Accuracy F1 Score Precision Recall

1 2 3 4 5 6 7 8 9 10 11 12 OR
SL

0.0

0.2

0.4

0.6

0.8

1.0

M
et

ric
s

8,4,2/rte
Accuracy F1 Score Precision Recall

Figure 8: The accuracy metrics of HSA approximation of self-attention layers in RoBERTa for the
RTE task.

MRPC Task: As Figure 9 shows, for the MRPC task, the layers with even index seem to be way more
sensitive to HSA approximation than the odd-index layers. Among odd index layers, the accuracy gap
starts to widen for SL below Layer 7. As for hierarchy structures, the structures with low branching
factor on the bottom levels seem to do better than the other two candidates.

QNLI Task: As Figure 10 shows, for the QNLI task, there is a sharp drop of accuracy when SL falls
below Layer 8, whereas for the last four layers the accuracy drop is practically insignificant. This
shows that in this case, the last 5 layers are quite amenable to approximation. As for the hierarchy
structures, they do not exhibit any significant difference for this task.

CoLA Task: As Figure 11 shows, similar to the MRPC task, in CoLA task, the layers with even
index seem to be way more sensitive to HSA approximation than the odd-index layers. However,
unlike the MRPC task, the hierarchy structures with high branching factor on the bottom seem to
significantly perform better than the ones with low branching factor on the bottom.

AGNEWS Task: As Figure 12 shows, for AGNEWS task, we can pretty much start SL at Layer 2
and as long as we approximate every other layer, the accuracy drop in insignificant. As for hierarchy
structures, we have tested only 2 of our structures with this datasets, but did not observe any significant
difference.

IMDB Task: Unlike the previous tasks, for IMDB task, we use RoBERTa-large with 24 layers.
As Figure 13 shows, as long as SL stays above Layer 15, the accuracy drop is insignificant. Also
some layers like Layers 10 and 15 seem to be moresensitive if we start the HSA approximation from
them. As for hierarchical structure, among the two candidate we used for this task, the one with high
branching factor on the bottom seems to do much better.

37

1998
1999
2000
2001
2002
2003
2004
2005
2006
2007
2008
2009
2010
2011
2012
2013
2014
2015
2016
2017
2018
2019
2020
2021
2022
2023
2024
2025
2026
2027
2028
2029
2030
2031
2032
2033
2034
2035
2036
2037
2038
2039
2040
2041
2042
2043
2044
2045
2046
2047
2048
2049
2050
2051

Under review as a conference paper at ICLR 2025

1 2 3 4 5 6 7 8 9 10 11 12 OR
SL

0.0

0.2

0.4

0.6

0.8

1.0

M
et

ric
s

2,2,2,2/mrpc
Accuracy F1 Score Precision Recall

1 2 3 4 5 6 7 8 9 10 11 12 OR
SL

0.0

0.2

0.4

0.6

0.8

1.0

M
et

ric
s

2,4,8,16/mrpc
Accuracy F1 Score Precision Recall

1 2 3 4 5 6 7 8 9 10 11 12 OR
SL

0.0

0.2

0.4

0.6

0.8

1.0

M
et

ric
s

7,7,7,7/mrpc
Accuracy F1 Score Precision Recall

1 2 3 4 5 6 7 8 9 10 11 12 OR
SL

0.0

0.2

0.4

0.6

0.8

1.0

M
et

ric
s

8,4,2/mrpc
Accuracy F1 Score Precision Recall

Figure 9: The accuracy metrics of HSA approximation of self-attention layers in RoBERTa for the
MRPC task.

38

2052
2053
2054
2055
2056
2057
2058
2059
2060
2061
2062
2063
2064
2065
2066
2067
2068
2069
2070
2071
2072
2073
2074
2075
2076
2077
2078
2079
2080
2081
2082
2083
2084
2085
2086
2087
2088
2089
2090
2091
2092
2093
2094
2095
2096
2097
2098
2099
2100
2101
2102
2103
2104
2105

Under review as a conference paper at ICLR 2025

1 2 3 4 5 6 7 8 9 10 11 12 OR
SL

0.0

0.2

0.4

0.6

0.8

1.0

M
et

ric
s

2,2,2,2/qnli
Accuracy F1 Score Precision Recall

1 2 3 4 5 6 7 8 9 10 11 12 OR
SL

0.0

0.2

0.4

0.6

0.8

1.0

M
et

ric
s

2,4,8,16/qnli
Accuracy F1 Score Precision Recall

1 2 3 4 5 6 7 8 9 10 11 12 OR
SL

0.0

0.2

0.4

0.6

0.8

1.0

M
et

ric
s

7,7,7,7/qnli
Accuracy F1 Score Precision Recall

1 2 3 4 5 6 7 8 9 10 11 12 OR
SL

0.0

0.2

0.4

0.6

0.8

1.0

M
et

ric
s

8,4,2/qnli
Accuracy F1 Score Precision Recall

Figure 10: The accuracy metrics of HSA approximation of self-attention layers in RoBERTa for the
QNLI task.

39

2106
2107
2108
2109
2110
2111
2112
2113
2114
2115
2116
2117
2118
2119
2120
2121
2122
2123
2124
2125
2126
2127
2128
2129
2130
2131
2132
2133
2134
2135
2136
2137
2138
2139
2140
2141
2142
2143
2144
2145
2146
2147
2148
2149
2150
2151
2152
2153
2154
2155
2156
2157
2158
2159

Under review as a conference paper at ICLR 2025

1 2 3 4 5 6 7 8 9 10 11 12 OR
SL

0.0

0.2

0.4

0.6

0.8

1.0

M
et

ric
s

2,2,2,2/cola
Accuracy F1 Score Precision Recall

1 2 3 4 5 6 7 8 9 10 11 12 OR
SL

0.0

0.2

0.4

0.6

0.8

1.0

M
et

ric
s

2,4,8,16/cola
Accuracy F1 Score Precision Recall

1 2 3 4 5 6 7 8 9 10 11 12 OR
SL

0.0

0.2

0.4

0.6

0.8

1.0

M
et

ric
s

7,7,7,7/cola
Accuracy F1 Score Precision Recall

1 2 3 4 5 6 7 8 9 10 11 12 OR
SL

0.0

0.2

0.4

0.6

0.8

1.0

M
et

ric
s

8,4,2/cola
Accuracy F1 Score Precision Recall

Figure 11: The accuracy metrics of HSA approximation of self-attention layers in RoBERTa for the
CoLA task.

40

2160
2161
2162
2163
2164
2165
2166
2167
2168
2169
2170
2171
2172
2173
2174
2175
2176
2177
2178
2179
2180
2181
2182
2183
2184
2185
2186
2187
2188
2189
2190
2191
2192
2193
2194
2195
2196
2197
2198
2199
2200
2201
2202
2203
2204
2205
2206
2207
2208
2209
2210
2211
2212
2213

Under review as a conference paper at ICLR 2025

1 2 3 4 5 6 7 8 9 10 11 12 OR
SL

0.0

0.2

0.4

0.6

0.8

1.0
M

et
ric

s
2,4,8,16/agnews

Accuracy F1 Score Precision Recall

1 2 3 4 5 6 7 8 9 10 11 12 OR
SL

0.0

0.2

0.4

0.6

0.8

1.0

M
et

ric
s

7,7,7,7/agnews
Accuracy F1 Score Precision Recall

Figure 12: The accuracy metrics of HSA approximation of self-attention layers in RoBERTa for the
AGNEWS task.

41

2214
2215
2216
2217
2218
2219
2220
2221
2222
2223
2224
2225
2226
2227
2228
2229
2230
2231
2232
2233
2234
2235
2236
2237
2238
2239
2240
2241
2242
2243
2244
2245
2246
2247
2248
2249
2250
2251
2252
2253
2254
2255
2256
2257
2258
2259
2260
2261
2262
2263
2264
2265
2266
2267

Under review as a conference paper at ICLR 2025

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 OR
SL

0.0

0.2

0.4

0.6

0.8

1.0
M

et
ric

s
2,4,8,16/imdb

Accuracy F1 Score Precision Recall

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 OR
SL

0.0

0.2

0.4

0.6

0.8

1.0

M
et

ric
s

7,7,7,7/imdb
Accuracy F1 Score Precision Recall

Figure 13: The accuracy metrics of HSA approximation of self-attention layers in RoBERTa for the
IMDB task.

42

	Introduction
	Related Work
	Representing Hierarchical, Multi-Geometry Data
	Hierarchical Self-Attention
	Softmax Attention Revisited
	Generalizing Attention to Nested Signals

	Experimental Results
	Hierarchical Language
	Multi-modal News Classification
	Zero-Shot Hierarchical Approximation of Softmax Attention

	Conclusions
	Notations
	Generalizing The Notion of Signal
	The Emergence of The Value Projection Matrix
	Efficient Calculation of HSA
	Dynamic Programming
	Correctness and Complexity
	Black-box Attention Computation
	GPU Implementation

	Hierarchical Transformer Encoder
	Hierarchical Auto-regressive Generation
	Hierarchical Causal Masking
	Hierarchical Caching

	Proofs
	Proposition 1: Softmax Attention
	Theorem 1: The Optimality of HSA
	Theorem 2: The Correctness and The Complexity of Algorithms 1–3

	Experimental Settings
	Datasets
	Model Architectures
	Training Hyper-parameters

	Comparison to The Classical Transformer Architecture
	Going Beyond Softmax Attention
	Sparse Attention as Energy Minimization
	The Hierarchical Generalization

	Zero-shot Approximation of Self-attention: Ablation Study
	Experimental Setup
	Results

