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ABSTRACT

Learning Rate Rewinding (LRR) has been established as a strong variant of Iter-
ative Magnitude Pruning (IMP) to find lottery tickets in deep overparameterized
neural networks. While both iterative pruning schemes couple structure and pa-
rameter learning, understanding how LRR excels in both aspects can bring us
closer to the design of more flexible deep learning algorithms that can optimize
diverse sets of sparse architectures. To this end, we conduct experiments that dis-
entangle the effect of mask learning and parameter optimization and how both
benefit from overparameterization. The ability of LRR to flip parameter signs
early and stay robust to sign perturbations seems to make it not only more effec-
tive in mask identification but also in optimizing diverse sets of masks, including
random ones. In support of this hypothesis, we prove in a simplified single hidden
neuron setting that LRR succeeds in more cases than IMP, as it can escape initially
problematic sign configurations.

1 INTRODUCTION

Overparametrization has been key to the huge success of deep learning (Bubeck et al., 2023;
Neyshabur et al., 2019; Belkin et al., 2019). Adding more trainable parameters to models has shown
to consistently improve performance of deep neural networks over multiple tasks. While it has been
shown that there often exist sparser neural network representations that can achieve competitive per-
formance, they are usually not well trainable by standard neural network optimization approaches
(Evci et al., 2022), which is a major challenge for learning small scale (sparse) neural networks from
scratch to save computational resources.

The Lottery Ticket Hypothesis (LTH) by Frankle & Carbin (2019) is based on an empirical existence
proof that the optimization of at least some sparse neural network architectures is feasible with the
right initialization. According to the LTH, dense, randomly initialized neural networks contain
subnetworks that can be trained in isolation with the same training algorithm that is successful for
the dense networks. A strong version of this hypothesis Ramanujan et al. (2020a); Zhou et al.
(2019), which has also been proven theoretically (Malach et al., 2020; Pensia et al., 2020; Orseau
et al., 2020; Fischer et al., 2021; Burkholz et al.; Burkolz, 2022; da Cunha et al., 2022; Gadhikar
et al., 2023; Ferbach et al., 2023), suggests that the identified initial parameters might be strongly
tied to the identified sparse structure. Related experimental studies and theoretical investigations
support this conjecture (Evci et al., 2022; Paul et al., 2023).

In line with these findings, contemporary pruning algorithms currently address the dual challenge
of structure and parameter learning only jointly. Iterative Magnitude Pruning (IMP) (Frankle &
Carbin, 2019) and successive methods derived from it, like Weight Rewinding (WR) (Frankle et al.,
2020a) and Learning Rate Rewinding (LRR) (Renda et al., 2020; Liu et al., 2021a) follow an iterative
pruning – training procedure that removes a fraction of parameters in every pruning iteration until
a target sparsity is reached. This achieves state-of-the-art neural network sparsification (Paul et al.,
2023), albeit at substantial computational cost.

While this cost can be reduced by starting the pruning procedure from a sparser, randomly pruned
network (Gadhikar et al., 2023), the question remains whether the identification of small sparse neu-
ral network models necessitates training an overparameterized model first. Multiple works attest that
overparameterization aids pruning (Zhang et al., 2021; Chang et al., 2021; Golubeva et al., 2020).
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This suggests that overparameterized optimization obtains information that should be valuable for
the performance of a sparsified model. Conforming with this reasoning, IMP was found less effec-
tive for complex architectures than Weight Rewinding (WR) (Renda et al., 2020), which rewinds
parameters to values that have been obtained by training the dense, overparameterized model for a
few epochs (instead of rewinding to their initial value like IMP). LRR (Renda et al., 2020) com-
pletely gets rid of the weight rewinding step and continues to train a pruned model from its current
state while repeating the same learning rate schedule in every iteration. Eliminating the parameter
rewinding step has enabled LRR to achieve consistent accuracy gains and improve the movement of
parameters away from their initial values (Liu et al., 2021a).

Complimentary to Paul et al. (2023); Liu et al. (2021a), we identify a mechanism that provides LRR
with (provable) optimization advantages that are facilitated by pruning a trained overparameterized
model. First, we gain provable insights into LRR and IMP for a minimal example, i.e., learning a
single hidden ReLU neuron. Our exact solutions to the gradient flow dynamics for high-dimensional
inputs could be of independent interest. The initial overparameterization of the hidden neuron en-
ables learning provably and facilitates the identification of the correct ground truth mask by pruning.
LRR benefits from the robustness of the overparameterized neuron to different parameter initializa-
tions, as it is capable of switching initially problematic parameter sign configurations that would
result in the failure of IMP.

We verify in extensive experiments on standard benchmark data that our theoretical insights capture
a practically relevant phenomenon and that our intuition regarding parameter sign switches also ap-
plies to more complex architectures and tasks. We find that while LRR is able to perform more sign
flips, these happen in early training – pruning iterations, when a higher degree of overparameteriza-
tion is available to facilitate them. In this regime, LRR is also more robust to sign perturbations.

This observation suggests that LRR could define a more reliable parameter training algorithm than
IMP for general masks. However in iterative pruning schemes like IMP and LRR, the mask identi-
fication step is closely coupled with parameter optimization. Changing either of these aspects could
affect the overall performance considerably. For example, learning only the mask (strong lottery
tickets (Ramanujan et al., 2020b)) or learning only the parameters with a random mask (Liu et al.,
2021b; Gadhikar et al., 2023) are unable to achieve the same performance as IMP at high sparsities.
Yet, we carefully disentangle the optimization of parameters and mask learning aspect to show that
LRR achieves more reliable training results for different masks. In addition, it can also identify a
better mask that can sometimes achieve a higher performance than the IMP mask, even when both
are optimized even with IMP.

Contributions. Our main contributions are as follows:

• To analyze the advantages of LRR for parameter optimization and mask identification, we
conduct experiments that disentangle these two aspects and find that the benefits of LRR
are two-fold. (a) LRR often finds a better sparse mask during training and (b) LRR is more
effective in optimizing parameters of a diverse masks (eg: a random mask).

• We experimentally verify that, in comparison with IMP, LRR is more flexible in switching
parameter signs during early pruning iterations, when the network is still overparameter-
ized. It also recovers more reliably from sign perturbations.

• For a univariate single hidden neuron network, we derive closed form solutions of its gra-
dient flow dynamics and compare them with training and pruning an overparameterized
neuron. LRR is provably more likely to converge to a ground truth target while IMP is
more susceptible to failure due to its inability to switch initial problematic weight signs.

1.1 RELATED WORK

Insights into IMP. Paul et al. (2023) attribute the success of IMP to iteratively pruning a small
fraction of parameters in every step which allows consecutively pruned networks to be linearly
mode connected (Frankle et al., 2020a; Paul et al., 2022). This can be achieved by WR if the dense
network is trained for sufficently many epochs. They argue that as long as consecutive networks are
sufficiently close, IMP finds sparse networks that belong to the same linearly mode connected region
of the loss landscape. Evci et al. (2022) similarly claim that IMP finds an initialization that is close
to the pruning solution and within the same basin of attraction. Liu et al. (2021a) similarly show
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that initial and final weights are correlated for IMP. In our experiments we study the WR variant
of IMP, where the dense network has been trained for sufficiently many epochs to obtain the initial
parameters for IMP, but we still find that, in comparison, LRR switches more signs and can achieve
better performance.

The role of sign switches. While Wang et al. (2023) have recently verified the importance of
suitable parameter signs for better training of neural networks in general, they have not analyzed
their impact on neural network sparsification. Zhou et al. (2019) study the weight distributions for
IMP and find that rewinding only parameter signs can be sufficient. Large scale problems, however,
rely on learning signs in early epochs and require a good combination with respective parameter
magnitudes, as discussed by Frankle et al. (2020b) for IMP. These results are still focused on the
IMP learning mechanism and its coupling to the mask learning. In contrast, we show that identifying
good signs (and magnitudes) early enables LRR to not only find a better mask but to also learn more
effectively if the mask identification is independent from the parameter optimization.

Mask optimization. Random sparse masks also qualify as trainable lottery tickets Su et al. (2020);
Ma et al. (2021); Liu et al. (2021b) which suggests that the mask identification can be separated
from parameter optimization upto certain sparsities (Gadhikar et al., 2023). Our experiments isolate
the advantages of LRR on both these aspects.

Training dynamics of overparametrized networks. The training dynamics of overparametrized
networks have been theoretically investigated in multiple works, which frequently employ a bal-
anced initialization (Du et al., 2018) and a related conservation law under gradient flow in their
analysis. Arora et al. (2018; 2019) study deep linear networks in this context, while Du et al. theo-
retically characterizes the gradient flow dynamics of two layer ReLU networks. While they require
a high degree of overparameterization, Boursier et al. (2022) obtains more detailed statements on
the dynamics with a more flexible paramterization but assume orthogonal data input.

Single hidden neuron setting. These results do not directly transfer to the single hidden neuron
case, which has been subject of active research Yehudai & Ohad (2020); Lee et al. (2022a); Vardi
et al. (2021); Oymak & Soltanolkotabi (2019); Soltanolkotabi (2017); Kalan et al. (2019); Frei et al.
(2020); Diakonikolas et al. (2020); Tan & Vershynin (2019); Du et al.. Most works assume that the
outer weight a is fixed, while only the inner weight vector w is learned and mostly study noise free
data. We extend similar results to trainable outer weight and characterize the precise training dy-
namics of an univariate (masked) neuron in closed form. Lee et al. (2022b) study a similar univariate
case but do not consider label noise in their analysis.

Most importantly, similar results have not been deduced and studied under the premise of network
pruning. They enable us to derive a mechanism that gives LRR a provable benefit over IMP, which
is inherited from overparameterized training.

2 THEORETICAL INSIGHTS FOR A SINGLE HIDDEN NEURON NETWORK

Figure 1: (a) Target network. For one dimensional input, learning succeeds when the initial val-
ues w(0), a(0) > 0 are both positive (yellow quadrant), but fails in all other cases (red). (b) For
multidimensional input, IMP identifies the correct mask, but cannot learn the target if the model is
reinitialized to w(2)(0) < 0. (c) LRR identifies the correct mask and is able to inherit the correct
initial sign w(2)(0) > 0 from the trained overparameterized model if a(0)(0) > 0.
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Intuition behind LRR versus IMP. The advantage of IMP is that it was designed to identify lottery
tickets and thus successfully initialize sparse masks (i.e. sparse neural network structures). However,
in order to find such an initialization, we show that the information obtained in earlier pruning
iterations with the aid of overparameterization is valuable in learning better models. Notably, we
find that each pruning iteration transfers key information about parameter signs to the next iteration.
Forgetting this information (due to weight rewinding) means that IMP is challenged to learn the
appropriate parameter signs from scratch in each iteration.

To establish provable insights of this form, we face the theoretical challenge to describe the learning
dynamics of the parameters in response to different initializations. We therefore focus on an example
of minimum complexity that still enables us to isolate a mechanism by which LRR has a higher
chance to succeed in solving a learning task. In doing so, we study a single hidden neuron, 2-layer
neural network under gradient flow dynamics, as visualized in Fig. 1 (a).

For our purpose, we focus on two main aspects: (i) The trainability of the masked neural network
(i.e., a single hidden neuron with d = 1 input), once the sparse mask is identified. (ii) The ability of
LRR to leverage the initial overparameterization (i.e., a single hidden neuron with d > 1 inputs) in
the model to learn appropriate parameter signs.

Regarding (i), we have to distinguish four different initialization scenarios. Only one scenario (yel-
low quadrant in Fig. 1 (a)) leads to accurate learning. LRR is able to inherit this setup from the
trained overparameterized network and succeed (see Fig. 1 (c)) in a case when IMP fails (Fig. 1 (b))
because it rewinds its parameters to an initial problematic setting. To explain these results in detail,
we have to formalize the set-up.

LRR. We focus on comparing Iterative Magnitude Pruning (IMP) and Learning Rate Rewinding
(LRR). Both cases comprise iterative pruning-training cycles. The i-th pruning cycle identifies a bi-
nary mask M (i) ∈ {0, 1}N , which is established by pruning a fraction of neural network parameters
θ(i−1) with the smallest magnitude. A training cycle relearns the remaining parameters θ(i) of the
masked neural network f(x | M(i)θ(i)). The only difference between LRR and IMP is induced by
how each training cycle is initialized (See Fig. 1(b)). In case of LRR, the parameters of the previous
training cycle that were not pruned away are used as initial values of the new training cycle so that
θ(i)(0) = θ(i−1)(tend). Thus, training continues (with a learning rate that is reset to its initial value).

IMP. In case of IMP, each pruning iteration starts from the same initial parameters θ(i)(0) = θ(0)(0)
and parameters learnt in the previous iteration are forgotten. While our theoretical analysis focuses
on IMP, Frankle et al. (2021); Su et al. (2020); Ma et al. (2021) have shown that IMP does not
scale well to larger architectures. Hence, we employ the more successful variant Weight Rewinding
(WR) in our experiments. Here, the parameters are not rewound to their initial values but to the
parameters of the dense network which was trained for a few warm-up epochs θ(i)(0) = θ(0)(k)
Frankle et al. (2020a); Renda et al. (2020). Our theory also applies to this case but we will mostly
discuss rewinding to the initial values for simplicity. From now on we use IMP to refer to IMP in
our theory and WR in our experiments.

Problem set-up. Consider a single hidden neuron network with input x ∈ Rd, given as f(x) :=
aϕ(wx) with the ReLU activation ϕ(x) = max{x, 0} (see Fig. 1). Note that one of the weights
could assume the role of a bias if one of the inputs is constant in all samples, e.g., xi = 1. The task
is to learn a scalar target t(x) = ϕ(x1) only dependent on the first coordinate of x, from which n
noisy training data points Y = t(X1) + ζ are generated (upper case denotes random variables.) For
simplicity, we assume that all input components are independently and identically (iid) distributed
and follow a normal distribution Xi ∼ N (0, I/d), while the noise follows an independent normal
distribution ζ ∼ N (0, σ2). The precise assumptions on the data distributions are not crucial for
our results but clarify our later experimental setting. Based on a training set (xi, yi) for i ∈ [n] =
{1, 2.., n}, learning implies minimizing the mean squared error under gradient flow

L =
1

2n

n∑
i=1

(f(xi)− yi)
2
,

dL
dt

= −∂L
∂a

;
dwi

dt
= − ∂L

∂wi
(∀i ∈ [1, d]), (1)

which resembles the dynamics induced by minimizing L with gradient descent for sufficiently small
learning rates. Note that also higher learning rates and more advanced optimizers like LBFGS
converge to the same values that we derive based on gradient flow for this exemplary problem.
Stochastic Gradient (SGD) would introduce additional batch noise and exaggerate the issue that we
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will discuss for small sample sizes. As gradient flow is sufficient to highlight the mechanism that
we are interested in, we focus our analysis on this case.

To simplify our exposition and to establish closed form solutions, we assume that the parameters are
initialized in a balanced state such that a(0)2 =

∑d
i=1 w

2
i (0), which is preserved through training

(Arora et al., 2018; Du et al.; 2018) so that a(t)2 =
∑d

i=1 w
2
i (t).

2.1 TRAINING DYNAMICS FOR ONE-DIMENSIONAL INPUT (d = 1)

Let us start with the case, in which we have identified the correct mask by pruning away the remain-
ing inputs and we know the ground truth structure of the problem. Studying this one dimensional
case will help us identify typical failure conditions in the learning dynamics and how these failure
conditions are more likely to occur in IMP than LRR. Knowing the correct mask, our model is re-
duced to the one-dimensional input case (d = 1) after pruning, so that f(x) = aϕ(wx), while the
target labels are drawn from y ∼ ϕ(x) + ζ.

Since the ReLU neuron is active only when wx > 0, we have to distinguish all possible initial sign
combinations of w and a to analyze the learning dynamics. The following theorem states our main
result, which is also visualized in Fig. 1 (a).

Theorem 2.1. Let a target t(x) = ϕ(x) and network f(x) = aϕ(wx) be given such that a and w
follow the gradient flow dynamics (1) with a random balanced parameter initialization and suffi-
ciently many samples. If a(0) > 0 and w(0) > 0, f(x) can learn the correct target. In all other
cases (a(0) > 0, w(0) < 0), (a(0) < 0, w(0) > 0) and (a(0) < 0, w(0) < 0) learning fails.

The proof in Appendix A.1 derives the closed form solutions of the learning dynamics of f(x)
under gradient flow for each combination of initial signs. It establishes that training a single neuron
f(x) = aϕ(wx) from scratch to learn the noisy target ϕ(x) + ζ can be expected to fail at least with
probability 3/4 if we choose a standard balanced parameter initialization scheme where either signs
are equally likely to occur for a(0), w(0).

Why should this imply a disadvantage for IMP over LRR? As we will argue next, overparameter-
ization in form of additional independent input dimensions x ∈ Rd can improve substantially the
learning success as the set of samples activated by ReLU becomes less dependent on the initial-
ization of the first element w1(0) of w. Thus training an overparameterized neuron first, enables
LRR and IMP to identify the correct mask. Yet, after reinitialization, IMP is reduced to the failure
case described above with probability 3/4, considering the combination of initial signs of a(0) and
w1(0). In contrast, LRR continues training from the learned parameters. It thus inherits a potential
sign switch from w1(0) < 0 to w1(0) > 0 if a(0) > 0 during training (and pruning) the overparam-
eterized model. Thus, the probability that LRR fails due to a bad initial sign after identifying the
correct mask is reduced to 1/2, as also explained in Fig. 1.

2.2 LEARNING AN OVERPARAMETRIZED NEURON (d > 1)

As we have established the failure cases of the single input case in the previous section, we now
focus on how overparameterization (to d > 1) can help avoid one case and thus aid LRR, while IMP
is unable to benefit from the same.

Multiple works have derived that convergence of the overparameterized model (d > 1) happens
under mild assumptions and with high probability in case of zero noise and Gaussian input data,
suggesting that overparameterization critically aids our original learning problem. For instance,
(Yehudai & Ohad, 2020) have shown that convergence to a target vector v is exponentially fast
∥w(t) − v∥ ≤ ∥w(0) − v∥ exp(−λt), where the convergence rate λ > 0 depends on the angle
between w(0) and w(t) assuming that a(0) = a(t) = 1 is not trainable.

Insight: For our purpose, it is sufficient that the learning dynamics can change the sign of w1(0) < 0
to w1(∞) > 0 if d ≥ 2. This would correspond to the first training round of LRR and IMP.
Furthermore, training the neuron with multiple inputs enables the pruning step to identify the correct
ground truth mask under zero noise, as wk(∞) ≈ 0 for k ̸= 1. Yet, while IMP would restart training
from w1(0) < 0 and fail to learn a parameterization that corresponds to the ground truth, LRR
succeeds, as it starts from w1(∞) > 0.
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These results assume, however, that a(0) = 1 is fixed and not trainable. In the previous section,
we have also identified major training failure points if a(0) < 0. As it turns out, training a single
multivariate neuron does not enable recovery from such a problematic initialization in general.
Lemma 2.2. Assume that a and w follow the gradient flow dynamics induced by Eq. (7) with
Gaussian iid input data, zero noise, and that initially 0 < |a|∥w(0)∥ ≤ 2 and a(0)2 = ∥w(0)∥2.
Then a cannot switch its sign during gradient flow.

This excludes another relevant event that could have given IMP an advantage over LRR. Note that
IMP could succeed while LRR fails, if we start from a promising initialization w1(0) > 0 and
a(0) > 0 but the parameters converge during the first training round to values w1(0) < 0 and
a(0) < 0 that would hamper successful training after pruning. This option is prevented, however,
by the fact that a cannot switch its sign in case of zero noise. We therefore conclude our theoretical
analysis with our main insight.
Theorem 2.3. Assume that a and w follow the gradient flow dynamics induced by Eq. (7) with
Gaussian iid input data, zero noise, and that initially 0 < |a|∥w(0)∥ ≤ 2 and a(0)2 = ∥w(0)∥2.
If w1(0) < 0 and a(0) > 0, LRR attains a lower objective (1) than IMP. In all other cases, LRR
performs at least as well as IMP.

2.3 VERIFYING THEORETICAL INSIGHTS BASED ON SINGLE HIDDEN NEURON NETWORK

Figure 2 (a) empirically validates our theoretical insights for d > 1 and compares LRR and IMP
for each combination of initial signs of a(0), w1(0). A single hidden neuron network with input
dimension d = 10 and random balanced Gaussian initialization is trained with LBFGS to minimize
the objective function 1 for a noisy target (σ2 = 0.01). Averages and 0.95 confidence intervals over
10 runs for each case are shown. In each run, we prune and train over 3 levels for 1000 epochs each,
while removing the same fraction of parameters in each level to achieve a target sparsity of 90% so
that only one single input remains. In line with the theory, we find that IMP is only successful in the
case a(0) > 0 and w1(0) > 0, while LRR succeeds as long as a(0) > 0.

3 EXPERIMENTS

Our first objective is to analyze whether our theoretical intuition that LRR is more flexible in learning
advantageous sign configurations transfers to more complex tasks related to standard benchmarks.
Different from the simplified one hidden neuron setting, LRR and IMP also identify different masks.
Thus, our second objective is to disentangle the impact of the different learning mechanisms and
potential sign flips on both, the mask learning and the parameter optimization given a fixed mask.

To this end, we perform experiments on CIFAR10, CIFAR100 (Krizhevsky, 2009) and Tiny Ima-
geNet (Le & Yang, 2015) with ResNet18 or ResNet50 with IMP and LRR that start from the same
initializations. Table 1 in the appendix describes the details of the setup. To strengthen the IMP
baseline, we in fact study WR and thus rewind the parameters to values that we have obtained after
a sufficiently high number of training epochs of the dense model, which is in line with successfully
obtaining matching networks as found by Paul et al. (2023).

LRR modifications. Different from our theoretical investigations, we have to take more complex
factors into account that influence the training process like learning rate schedules and batch nor-
malization (BN). We found that the originally proposed training schedule of LRR can suffer from
diminishing BN weights that impair training stability on larger scale problems like CIFAR100 and
Tiny ImageNet (see Fig. 4 and Fig. 11 in the appendix). To avoid this issue, we propose to rewind
BN parameters when the mask is decoupled from parameter optimization. In all our experiments, we
introduce warmup after each pruning iteration, which increases the flexibility of LRR to optimize
different masks as well as improves baseline performance (see Fig. 8 in appendix). Fig. 4 (c, d)
provides an example where these modifications make LRR competitive with IMP on the IMP mask.

We start our investigations with observations regarding the performance of LRR and IMP in differ-
ent learning scenarios before we isolate potential mechanisms that govern these observations like
sign flips and network overparameterization. Our experiments establish and confirm that LRR out-
performs IMP on all our benchmarks. Does this performance boost result from an improved mask
identification or stronger parameter optimization?
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Figure 2: (a) IMP and LRR for a single hidden neuron network. (b, c) Mask randomization for (b)
CIFAR10 and (c) CIFAR100. (d) LRR optimizes the IMP mask more effectively on Tiny ImageNet.

LRR identifies a better mask. Even though the mask identification of IMP is coupled to its training
procedure, Fig. 3 (a, b) show that the mask that has been identified by LRR also achieves a higher
performance than the IMP mask on CIFAR10 when its parameters are optimized with IMP. Similar
improvements are observed on CIFAR100 (Fig. 3 (c, d)) except at high sparsities (> 95%) where
the coupling of the mask and parameter optimization is more relevant.
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Figure 3: The sparse mask learnt by LRR is superior and the performance of IMP is improved in
combination with the LRR mask on (a, b) CIFAR10 and (c, d) CIFAR100.

LRR is more flexible in optimizing different masks. According to Fig. 4(a, b), training LRR with
the IMP mask (blue curve) is able to improve over IMP for CIFAR10. While the original LRR is
less competitive for learning with the IMP mask on CIFAR100, LRR with BN parameter rewinding
after each pruning iteration outperforms IMP both on CIFAR10 and CIFAR100 even at high spar-
sities. Similar results for Tiny ImageNet are presented in Fig. 2(d). Yet, are IMP and LRR masks
sufficiently diverse? Since IMP and LRR masks are identified based on a similar magnitude based
pruning criterion, the other mask and parameter initialization might still carry relevant information
for the respective optimization task. In order to completely decouple the sparse mask from the pa-
rameter optimization and the initialization, we also study the LRR and IMP parameter optimization
on a random mask.
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Figure 4: LRR improves parameter optimization within the mask learnt by IMP for (a, b) CIFAR10
and (c, d) CIFAR100.

Random Masks. For the same randomly pruned mask with balanced sparsity ratios (Gadhikar et al.,
2023) and identical initialization, we compare training from initial values (IMP-rand) or training
from the values obtained by the previous training–pruning iteration (LRR-rand) (see Fig. 2(b, c)).
Rewinding the BN parameters assists gradual random pruning and improves optimization, thus,
LRR-rand (rewind BN) outperforms IMP-rand. This confirms that LRR seems to employ a more
flexible parameter optimization approach irrespective of task specific masks.
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Our theoretical insights align with the observation that LRR learns network parameters more reliably
than IMP. The main mechanism that strengthens LRR in our toy model is the fact that it inherits
parameter signs that are identified by training an overparameterized model that is sufficiently flexible
to correct initially problematic weight signs. To investigate whether a similar mechanism supports
LRR also in a more complex setting, we study the sign flip dynamics.

Figure 5: (top) The pruning iteration at which the parameter signs do not change anymore for LRR
(purple) is much earlier than IMP (orange). (bottom) The number of times a parameter switches
sign over pruning iterations (a) CIFAR10 (b) CIFAR100 and (c) Tiny ImageNet.

LRR enables early and stable sign switches. Fig. 4 confirms that LRR corrects initial signs pri-
marily in earlier iterations when the mask is denser and the model more overparameterized. More-
over, the signs also stabilize early and remain largely constant for the subsequent pruning iterations
(Fig. 5). Learnt parameters at consecutive sparsity levels in LRR tend to share the same sign in later
iterations, but IMP must align initial signs in each pruning iteration, leading to unstable, back and
forth flipping of learnt signs across sparsity levels. Overall, LRR changes more signs than IMP at
lower sparsities on CIFAR10, yet, the effect is more pronounced in larger networks for CIFAR100
and Tiny ImageNet, where IMP fails to identify stable sign configurations even at high sparsities (see
also Fig. 13 in appendix). These results apply to settings where the mask and parameter learning is
coupled. Constraining both IMP and LRR to the same mask, LRR also appears to be more flexible
and is able to improve performance by learning a larger fraction of parameter signs earlier than IMP
(see Fig. 5(b)). For random masks, generally more unstable sign flips occur due to the fact that the
mask and parameter values are not aligned well. Yet, LRR appears to be more stable and is able to
flip more signs overall (Fig. 14 (a, b) in appendix). Even with the improved LRR mask, IMP seems
unable to perform effective sign switches (Fig. 14 (c, d) in appendix).

Yet, maybe the LRR optimization can simply tolerate more sign switches? Furthermore, is LRR only
able to switch signs in early training rounds due to the higher overparameterization of the networks?
To answer these questions and learn more about the causal connection between sign switches and
learning, next we study the effect of sign perturbations.
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Figure 6: 30% signs in each layer are flipped randomly at 20% sparsity for LRR and IMP (dotted)
on (a, b) CIFAR10 and (c, d) CIFAR100. Solid lines denote baselines.

LRR recovers from random sign perturbations. In order to characterize the effect of correct
parameter signs on mask identification, we randomly perturb signs at different levels of sparsity
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for both LRR and IMP. Sign perturbation at a low sparsity has little effect on CIFAR10 and both
LRR and IMP are able to recover achieving baseline accuracy (Fig. 6(a, b)). For the more complex
CIFAR100 dataset, signs have a stronger influence on masks and neither LRR nor IMP can fully
recover to baseline performance. However, LRR is still able to achieve a higher performance than
the IMP baseline, but IMP struggles after perturbing initial signs, as the mask does not fit to its
initialization (Fig. 6(c, d)).

Fig. 7(a,b) shows results for perturbing a larger fraction of signs at much higher sparsity, i.e., 83%.
LRR is able to recover over IMP at later sparsities on CIFAR10. Interestingly, on CIFAR100, LRR
suffers more than IMP from the sign perturbation potentially due to a lack of overparameterization
at high sparsity. LRR recovers slowly but still achieves baseline performance beyond 95% sparsity.
The performance of subsequent masks obtained after perturbing signs reaffirms that parameter signs
strongly influence the quality of the mask identification and LRR is capable of rearranging signs in
order to find a better mask and optimize the corresponding parameters effectively. Yet, LRR requires
training time and initial overparameterization to be effective.

The interplay of magnitude and signs. Recent analyses of IMP (Frankle et al., 2020b; Zhou et al.,
2019) have found that signs that are learnt at later iterations are more informative and initializing
with them improves IMP. In line with this insight, Fig. 7(c) highlights that rewinding only weight
amplitude while maintaining the learnt signs improves over IMP. Yet, according to Frankle et al.
(2020b) the combination with learned weight magnitudes can further strengthen the approach. Our
next results imply that the magnitudes might be more relevant for the actual mask learning than
the parameter optimization. We find that the learnt signs and the LRR mask contain most of the
relevant information. Fig. 7(c) confirms that if we initialize IMP with the LRR signs and restrict it
to the LRR mask, we can match the performance of LRR despite rewinding the weight magnitudes
in every iteration. These results imply that a major drawback of IMP as a parameter optimization
procedure could be that it forgets crucial sign information during weight rewinding.
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Figure 7: 80% signs in each layer are flipped randomly at 83% sparsity for LRR and IMP (dashed)
on (a) CIFAR10 and (b) CIFAR100. Rewinding only magnitudes while using the initial weights of
IMP with the learnt LRR masks and signs on (c) CIFAR10 and (d) CIFAR100.

4 CONCLUSIONS

Learning Rate Rewinding (LRR), Iterative Magnitude Pruning (IMP) and Weight Rewinding (WR)
present cornerstones in our efforts to identify lottery tickets and sparsify neural networks, but the
reasons for their successes and limitations are not well understood. To deepen our insights into their
inner workings, we have highlighted a mechanism that gives LRR a competitive edge in structure
learning and parameter optimization.

In a simplified single hidden neuron model, LRR provably recovers from initially problematic sign
configurations by inheriting the signs from a trained overparameterized model, which is more robust
to different initializations. This main theoretical insight also applies to more complex learning set-
tings, as we show in experiments on standard benchmark data. Accordingly, LRR is more flexible
in switching signs during early pruning–training iterations by utilizing the still available overparam-
eterization. As a consequence, LRR identifies not only highly performant masks. More importantly,
it can also optimize parameters effectively given diverse sets of masks. In future, we envision that
insights into the underlying mechanisms like ours could inspire the development of more efficient
sparse training algorithms that can optimize sparse networks from scratch.
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A APPENDIX

A.1 PROOFS: ONE DIMENSIONAL INPUT

Theorem A.1. Let a target function t(x) = ϕ(x) and network f(x) = aϕ(wx) be given such that
a and w follow the gradient flow dynamics induced by Eq. (1) with a random balanced parameter
initialization and sufficiently many samples. If a(0) > 0 and w(0) > 0, f(x) can learn the correct
target. In all other cases (a(0) > 0, w(0) < 0), (a(0) < 0, w(0) > 0) and (a(0) < 0, w(0) < 0)
learning fails.

Proof: The derivatives of the parameters (a,w) with respect to the loss are given by

∂L
∂a

= − 1

n

n∑
i=1

(yi − aϕ(wxi))ϕ(wxi);
∂L
∂w

= − 1

n

n∑
i=1

(yi − aϕ(wxi)) axi1(wxi>0), (2)

which induce the following ODEs under gradient flow:

ȧ = −aw2C1 + wC2, ẇ = −wa2C1 + aC2, (3)

where C1 = 1
n

∑
i∈I x2

i and C2 = 1
n

∑
i∈I(xiϕ(xi) + ζixi). Note that C1 and C2 can change over

time, as they depend on the potentially changing set I(t) that comprises all samples on which the
neuron is switched on: I(t) := {i|wi(t)xi > 0}.

To solve this set of ODEs, we have to dinstinguish multiple cases. For all of them, we have a2(t) =
w2(t). Thus, both parameters can pass through zero only together and potentially switch their sign
only in this case. If w(t) does not switch its sign during training, C1 and C2 remain constant, we
know that a(t) = sign(a(0))|w(t)| and we can focus on solving the dynamic equation for w at
least until a potential sign switch. Replacing a(t) = sign(a(0))|w(t)| in the ODE for w leads to
ẇ = −w3C1 +wC̃2 with C̃2 = C2 sign(a(0)) sign(w(0)). As this ODE is of Bernoulli form, it has
a closed form solution. Note that generally C1 ≥ 0. If C1 = 0, nothing happens and our function
remains a constant 0. Otherwise, we have

w(t) =

√
C̃2w(0) exp(2C̃2t)√

C̃2 − C1w(0)2
√

C1w(0)2 exp(4C̃2t)

C̃2−C1w(0)2
+ 1

, if C̃2 > 0, (4)

w(t) =
sign(w(0))

√
−C̃2

exp
(
−2C̃2t

)(
C1 − C̃2/w2(0)

)
− C1

, if C̃2 < 0, and (5)

w(t) =
w(0)√

2C1w2(0)t+ 1
if C̃2 = 0. (6)

which can be easily verified by differentiation. Note that these equations only hold until w(t) passes
through 0. If that happens at t0, C1 and C2 actually change and we have to modify the above
equations. Technically, if w(t0) = 0, the gradient flow dynamics halt because C1(t0) = 0 and
C2(t0) = 0. Yet, in a noisy learning setting with discrete step sizes, it is not impossible that
parameters switch their sign. In this case, a new dynamics start from the switching point t0 on a time
scale t̃ = t− t0− ϵ that continues from the previously found parameters w(t̃ = 0) = w(t = t0+ ϵ).
We now develop an intuition of what this means for our learning problem, by differentiating the
problem into different cases based on initial parameter signs.

Correct initial sign. If we start with the correct signs w(0) > 0 and a(0) > 0 as the target, then
our neuron has no problem to learn the right parameters given enough samples. w(0) > 0 implies
that I = {i|xi > 0} so that C2 = 1/n

∑
i∈I(xiϕ(xi) + ζixi) = 1/n

∑
i∈I x2

i + 1/n
∑

i∈I ζixi.
According to the law of large numbers, limn→∞ C2 = E(ϕ(X)21) + E(ϕ(X)1ζ) = 1/(2d) > 0 and
limn→∞ C1 = E(ϕ(X)21) = 1/(2d) almost surely. Also for finite samples, we likely have C2 > 0,
as we will make more precise later. Thus, C̃2 = sign(w(0)a(0))C2 = C2 > 0 and w converges

to w(∞) =
√
C̃2/C1 = 1 without passing through 0. Also a(∞) = sign(a(0))|w(∞)| = 1

corresponds to the correct target value.
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Case w(0) > 0 but a(0) < 0. Since I is defined as above, our initial constants C1 and C2 are
identical. Yet, C̃2 = −C2 < 0 changes its sign, which has a considerable impact on the learning
dynamics. As a(0) has started with the wrong sign, the gradient dynamics try to rectify it and send
w(t) to 0 in the process, as a(t) would need to pass through 0 to switch its sign. Thus, learning fails.
In case of finite samples, C̃2 is subject to noise. If C̃2 < 0, a and w still converge to 0. However,

if C̃2 > 0 because of substantial noise, w would converge to a positive value w(∞) =
√
C̃2/C1,

while a(∞) = −
√

C̃2/C1 < 0, which would not align at all with the target ϕ(x).

Case w(0) < 0. This case is bound to fail regardless of the sign of a(0), if the noise is not helping
with a sign switch. The reason is that the neuron is initially switched on only on the negative samples
I = {i|xi < 0}, for which the true labels are zero. In consequence, C2 = 1/n

∑
i∈I(xiϕ(xi) +

ζixi) = 1/n
∑

i∈I ζixi and limn→∞ C2 = E(−ϕ(−X)1ζ) = 0 almost surely. Thus, the training
data provides an incentive for a and w to converge to 0 without passing through 0 in between. Also
for finite samples, we have C̃2 = −a(0)/n

∑
i∈I ζixi > 0 with probability 1/2. In this case, w will

converge to a negative value sign(w0)
√
C̃2/C1. If C̃2 < 0, then both w and a converge to 0 without

the opportunity to change the sign with a too large discrete gradient step.

Finite sample considerations. Interestingly, the number of samples and the noise level do not
really influence the (failed) learning outcome in case of a negative initial weight w(0) < 0. The
case w(0) > 0, a(0) < 0 is not able to learn a model that can come close to the ground truth target.
Thus, only the potential success case w(0) > 0 and a(0) > 0 depends meaningfully on the data
and its signal to noise ratio, as our set-up reduces to an overparameterized linear regression problem
with outcome a(∞) = w(∞) =

√
C2/C1 if C2 > 0. (Note that C2 < 0 would imply such high

noise that the learning could also not be regarded successful, as a(∞) = w(∞) = 0.) The sample
complexity of learning the parameters is the only part that depends on distribution assumptions
regarding the input and noise. The effective regression parameter a(∞)w(∞) = C2/C1 = 1 +
(
∑

i∈I ζixi)/(
∑

i∈I x2
i ) depends in the usual way on the noise, but requires double the number

of samples as a normal regression problem, as in approximately half of the cases, the neuron is
switched off.

A.2 PROOFS: OVERPARAMETERIZED INPUT (d > 1)

In the following section, we prove our main theorem that allows us to conclude that LRR has a
higher chance to succeed in learning a single univariate neuron than IMP.

Learning an overparameterized multivariate neuron f(x) = aϕ(wTx) for x ∈ Rd corresponds to a
more complex set of coupled gradient flow ODEs, if d > 1.

ẇ = −a2C1w + aC2, ȧ = −awTC1w +C2
Tw,

with C1 =
1

n

∑
i∈I

xixi
T , C2 =

1

n

∑
i∈I

yixi,
(7)

where the dynamic set I is again defined as the set of samples on which the neuron is activated so
that I = {i | wT

i xi > 0}. The main difference to the previous one-dimensional case is that this
set is initially not determined by w1(0). Even in case of a problematic initialization w1(0) < 0, the
neuron can learn a better model because of c2,1 > 0.

We cannot expect to derive the gradient flow dynamics for this problem in closed form, as C1 and C2

depend on w in complicated nonlinear ways. However, the structure of a solution is apparent, as the
problem corresponds to an overparameterized linear regression problem given I. Lee et al. (2022a)
have discussed the solutions to this general problem in case of positive input and fixed, non-trainable
a. Assuming balancedness a2 = ∥w∥2, our solution must also be of the form w = β/

√
∥β∥ and

a = sign(a)
√

∥β∥, where β = X+y is the mean squared error minimizer and X = (xi,k)ik ∈
R|I|×d corresponds to the data matrix on the active samples. Under conditions that enable successful
optimization, we obtain β ≈ v = (1, 0, ...)T .

Yet, there are still several issues that can arise during training as the set I changes with w. Solving
the set of ODEs is generally a hard problem, even though several variants have been well studied
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Yehudai & Ohad (2020); Lee et al. (2022a); Vardi et al. (2021;?); Oymak & Soltanolkotabi (2019);
Soltanolkotabi (2017); Kalan et al. (2019); Frei et al. (2020); Diakonikolas et al. (2020); Tan &
Vershynin (2019); Du et al.. Most works assume that the outer weight is fixed a(0) = a(t) = 1 and
only the inner weight vector w is learned Yehudai & Ohad (2020); Lee et al. (2022a); Vardi et al.
(2021). Only (Boursier et al., 2022) considers trainable a but excludes the single hidden neuron
case and is restricted to orthogonal inputs. Furthermore, the noise is usually considered to be 0. In
the large sample setting, this assumption would be well justified, as the noise contribution to C2

approaches 0. However, to guarantee convergence, additional assumptions on the data generating
process are still required, as Yehudai & Ohad (2020) have pointed out with a counter example that
for a given parameter initialization method (in form of a product distribution) there exist a data
distribution for which gradient flow (or SGD or GD) does not converge with probability at least
1 − exp(−d/4). Vardi et al. (2021) have furthermore shown that if we also want to learn biases
(which would be the case if one of our data input components is constant 1), a uniform initial weight
distribution could lead to failed learning results with probability close to 1/2.

Recall that three scenarios prevent IMP from succeeding in learning our target ϕ(x1): a) a(0) < 0,
w1(0) > 0, b) a(0) < 0, w1(0) < 0, and (c) a(0) > 0 and w1(0) < 0. LRR cannot succeed in case
of (a) and (b) as well, because a cannot switch its sign to a(∞) > 0 during training, as the following
lemma states.

Statement (Restated Lemma 2.2). Assume that a and w follow the gradient flow dynamics induced
by Eq. (7) with Gaussian iid input data, zero noise, and that initially 0 < |a|∥w(0)∥ ≤ 2 and
a(0)2 = ∥w(0)∥2. Then a cannot switch its sign during gradient flow.

Proof. This statement follows immediately from the balancedness property. To switch its sign, a(t)
would need to pass through zero. Thus, let us assume there exists a time point t0 > 0 so that
a(t0) = 0. Since a(t)2 = ∥w(t)∥2 for the complete dynamics, this implies that ∥w(t0)∥2 = 0. As
this switches of the neuron, C1(t0) = C2(t0) = 0 so that ȧ(t0) = 0 and ẇk(t0) = 0. It follows
that a(t) = 0 and ∥w(t)∥2 = 0 for all t ≥ t0 so that no sign switch occurs.

Note that for finite, relatively high learning rates, it could be possible that a neuron switches its sign
because it never switches off completely and instead overshoots 0 with a large enough gradient step.
In most cases, this would provide LRR with an advantage. Because if a problematic initialization
with a(0) < 0 could be mitigated by training so that a(∞) > 0, LRR would benefit but not IMP.
The only scenario in favor for IMP would be the case that the initialization is advantageous so that
a(0) > 0 and w1(0) > 0 but becomes problematic during training so that a(∞) < 0. This, however,
would require such high noise that also training an univariate neuron from scratch could not result
in a good model. It is therefore an irrelevant (and unlikely) case and does not impact our main
conclusions, which are restated below for convenience.

Statement (Restated Theorem 2.3). Assume that a and w follow the gradient flow dynamics induced
by Eq. (7) with Gaussian iid input data, zero noise, and that initially 0 < |a|∥w(0)∥ ≤ 2 and
a(0)2 = ∥w(0)∥2. If w1(0) < 0 and a(0) > 0, LRR attains a lower objective (1) than IMP. In all
other cases, LRR performs at least as well as IMP.

Proof. According to Lemma 2.2, a(0) ≤ 0 implies a(∞) ≤ 0 so that neither IMP nor LRR can
succeed to learn the correct univariate target neuron after pruning. We can therefore focus our
analysis on the case a(∞) > 0. Note that this implies that a(t) = ∥w(t)∥ because a does not switch
its sign.

Both IMP and LRR rely on the first overparameterized training cycle to result in a successful mask
identification, which requires |w1| >> |wi| for any i ̸= 1. Otherwise, both approaches (IMP and
LRR) would fail. Hypothetically, it could be possible that |w1(∞)| >> |wi(∞)| while w1(∞) < 0,
which would not correspond to a successful training round, since w(∞) ̸= (1, 0, 0, ...) but would
result in a correct mask identification. This case would be interesting, as it would allow IMP to
succeed if w1(0) > 0 while LRR could not, as it would start training an univariate neuron from
w1(∞) < 0. However, note that the derivative of w would be nonzero in this case. Thus, there
exists no stationary point with the property w1(∞) < 0.

In consequence, only cases of successful training offer interesting instances to compare IMP and
LRR. For our argument, it would be sufficient to show that learning a multivariate neuron is suc-
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cessful with nonzero probability and argue that LRR succeeds while IMP fails in some of these
cases. Yet, we can derive a much stronger statement by using and adapting Theorem 6.4 by Yehudai
and Shamir (Yehudai & Ohad, 2020) and prove that learning is generally successful for reasonable
initializations.

Learning a single neuron. We define z(t) = a(t)w(t). Note that z has therefore norm
∥z∥ = ∥w∥2 and its direction coincides with the one of w, as z/∥z∥ = w/∥w∥. In case
of successful training, we expect z(t) → v for t → ∞, where v is a general target vec-
tor. In our case, we assume v = (1, 0, 0, ...). Our main goal is to bound the time derivative
δ/δt∥z(t) − v∥2 = 2 ⟨ż(t), z(t)− v⟩ ≤ −λ∥z(t) − v∥2 for a λ > 0. Grönwall’s inequality
would then imply that ∥z(t)−v∥2 ≤ ∥z(0)−v(0)∥2 exp(−λt) and hence z(t) → v exponentially
fast.

In contrast to (Yehudai & Ohad, 2020), the derivative ż(t) = aẇ + ȧw consists of two parts that
we have to control separately.

It is easy to see based on Eq. (7) that the time derivative of w(t) fulfills:

⟨aẇ, z − v⟩ =− a2
1

n

∑
i∈I,vT xi>0

⟨xi, z − v⟩2 (8)

− a2
1

n

∑
i∈I,vT xi≤0

⟨xi, z − v⟩ ⟨xi, z⟩ (9)

=− a2∥z − v∥2 1
n

∑
i∈I,vT xi>0

∥xi∥2 cos (φ(xi, z − v))
2 (10)

− a2
1

n

∑
i∈I,vT xi≤0

⟨xi, z⟩2 − a2
1

n

∑
i∈I,vT xi≤0

⟨xi,−v⟩ (11)

≤ −a2∥z − v∥2λ1 = −λ1∥z∥∥z − v∥2 ≥ −λ0∥z − v∥2, (12)

where we dropped the term (11) because it is negative. (Note that all involved factors are positive
because −vTxi ≥ 0.) Furthermore, we have λ1 = 1/n

∑
i∈I,vT xi>0 ∥xi∥2 cos (φ(xi, z − v))

2
>

0 with high probability with respect to the data distribution according to Lemma B1 by Yehudai
and Shamir (Yehudai & Ohad, 2020). Similarly, the proof of Thm. 5.3 by (Yehudai & Ohad, 2020)
argues why a2 = ∥z∥ > 0 is bounded from below, which allows us to integrate its lower bound into
the constant λ0.

The second term of ż is not considered by (Yehudai & Ohad, 2020), as they assume that a is not
trainable. We get:

⟨ȧw, z − v⟩ =ȧ ⟨w, z − v⟩ ≤ 0. (13)

The last inequality can be deduced by distinguishing two cases. If ⟨w, z − v⟩ > 0, then ȧ < 0. If
⟨w, z − v⟩ < 0, then ȧ > 0. This follows from the fact that

ȧ = −∥w∥3 1
n

∑
i∈I

〈
w

∥w∥
, xi

〉
+

1

n

∑
i∈I,vT xi>0

⟨v, xi⟩ ⟨w, xi⟩ (14)

and that ⟨w, z − v⟩ = ∥w∥3 − ⟨w,v⟩ = ∥w∥3 − w1. On average with respect to the data, we thus
receive Eq. (13). Note that the normal case is that ⟨w, z − v⟩ > 0, as this holds initially with high
probability and it remains intact during training.

Combining Eq. (12) and Eq. (13) completes our argument, since

δ∥z(t)− v∥2

δt
= 2 ⟨ż(t), z(t)− v⟩ ≤ −λ∥z(t)− v∥2 (15)

for a λ > 0. Grönwall’s inequality leads to ∥z(t) − v∥2 ≤ ∥z(0) − v(0)∥2 exp(−λt) and hence
z(t) → v exponentially fast.

LRR outperforms IMP. If training the overparameterized neuron is successful with a(0) > 0 and
a(∞) > 0 as discussed previously, then w

(1)
1 (∞) = 1 > 0. After pruning, LRR has to train an
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univariate neuron with the initial condition w
(2)
1 (0) = w

(1)
1 (∞) > 0, which converges to the correct

ground truth model. However, if w(1)
1 (0) < 0, IMP has to start training from w

(2)
1 (0) = w

(1)
1 (0) < 0,

which leads to a wrong model estimate, as discussed in Section 2.1.

A.3 EXPERIMENTAL DETAILS

Dataset CIFAR10 CIFAR100 Tiny ImageNet ImageNet
Model ResNet18 ResNet50 ResNet50 ResNet50
Epochs 150 150 150 90

LR 0.1 0.1 0.1 0.1
Scheduler cosine-warmup step-warmup step-warmup step-warmup
Batch Size 256 256 256 256

Warmup Epochs 50 10 50 10
Optimizer SGD SGD SGD SGD

Weight Decay 1e-4 1e-3 1e-3 1e-4
Momentum 0.9 0.9 0.9 0.9

Init Kaiming Normal Kaiming Normal Kaiming Normal Kaiming Normal

Table 1: Experimental Setup

Image Classification Tasks. Table 1 details our experimental setup. In each pruning iteration, we
keep 80% of the currently remaining parameters of highest magnitude (Frankle & Carbin, 2019).

Warmup Epochs. Each training run of a dense network starts with warmup epochs with a linearly
increasing learning rate from upto 0.1. Weights are rewound to their values after warmup in case of
IMP (i.e. similar to WR). We ensure that each run of IMP and LRR has an identical rewind point
(after warmup epochs).

The learning rate schedules we found to achieve the best performance in our experiments as con-
firmed in Figure 8 and 9:

Figure 8: Comparing LR schedules on CIFAR100.

(i) cosine-warmup: Learning rate is increased linearly to 0.1 for the first 10 epochs, followed by a
cosine lr schedule for the remaining 140 epochs.

(ii) step-warmup: Learning rate is increased linearly to 0.1 for the first 10 epochs, followed by a
step lr schedule for the remaining 140 epochs with learning multiplied by a factor of 0.1 at epochs
60 and 120.

(iii) ImageNet: For ImageNet, we use a constant learning rate of 0.01 during the warmup phase.
The learning rate is reduced by a factor of 10 every 30 epochs after the warmup phase, starting from
0.1.

In case of random pruning we randomly remove parameters in each layer in order to maintain a
balanced layerwise sparsity ratio (Gadhikar et al., 2023) i.e. every layer has an equal number of
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Figure 9: Comparing LR schedules on CIFAR10.

nonzero parameters. Each run is repeated thrice and we report the mean and 95% confidence interval
of these runs. All experiments are performed on a Nvidia A100 GPU. Our code is built on the work
of (Kusupati et al., 2020).

A.4 ADDITIONAL RESULTS

BN parameter distributions: We plot the layer wise distributions of the learnable scaling parameter
γ for our experiments. The distributions are similar on CIFAR10 (Figure 10) with most values being
positive in every layer for IMP, LRR and LRR with IMP mask. Hence, rewinding BN parameters
also finds similar distributions.

However, the rewinding BN improves performance of LRR with IMP mask on CIFAR100 (See
Fig. 4). This can be attributed to the reducing the number of neurons (channels) where γ = 0
(eg: Layer 22, 23 in CIFAR100 Fig. 11). We find that this is is necessary in deeper layers to aid
signal propagation and hence we propose rewinding BN parameters to aid LRR when the mask is
decoupled from the optimization.
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Figure 10: Layer wise distributions of BN parameter (γ) on CIFAR10 ResNet18 at Sparsity 96%.

Interplay of magnitude and signs on CIFAR100. On CIFAR100 too, the signs and mask learnt by
LRR contain majority of the information required while training. When using the mask and signs
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Figure 11: Layer wise distributions of BN parameter (γ) on CIFAR100 ResNet50 at Sparsity 96%.

learnt by LRR and only rewinding weight magnitudes, we match the performance of LRR (see Fig.
12).
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Figure 12: (a) For CIFAR100 we compare rewinding only magnitudes to using the initial weights of
IMP with the learnt LRR masks and signs.

Overall sign flips for LRR vs IMP. As verified experimentally, LRR enables more sign flips early
in training. This can also be confirmed by measuring the total number of sign flips from initial
signs to learnt signs at each sparsity level for both LRR and IMP. We plot the difference between the
number of sign flips enabled by LRR and IMP at each pruning iteration in Figure 13. Early sparsities
show a large positive difference between the number of signs flipped by LRR and IMP, showing the
ability of LRR to enable more sign flips.

LRR enables early sign switches for parameter optimization. Figure 14(a, b) shows for a ran-
domized mask, LRR-rand enables a larger fraction of signs to switch earlier in training than IMP-
rand in spite of unstable sign flips due to a randomized mask which does not align with parameter
values. On the other hand, the ability to switch signs still lacks in IMP in spite of training with an
improved LRR mask as shown in Figure 14(c, d) highlighting that the weight rewinding step leads
to loss of sign information.

LRR enables early sign switches on ImageNet. We report results on ImageNet in Figure 15 (a)
for a ResNet50. We find that our insights translate to the large scale setting as well. To support our
hypothesis of the importance of learnt signs, we show that using the initial weight magnitudes of
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Figure 13: (a) Difference between number of sign slips between initial weights and weights at each
sparsity level enabled by LRR and IMP. Positive differences indicate that LRR enables more sign
flips than IMP.

Figure 14: (top) The pruning iteration at which the parameter signs do not change anymore and
(bottom) the number of times a parameter switches sign over pruning iterations, with a random mask
for (a) CIFAR10 and (b) CIFAR100 and with an LRR mask for (c) CIFAR10 and (d) CIFAR100.
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Figure 15: (a) Comparison of LRR vs IMP for a ResNet50 on ImageNet . (b) Histograms of the
pruning iteration at which the parameter signs do not change anymore for ImageNet.

IMP with the mask learnt by LRR and the weight signs learnt by LRR, we are still able to match the
performance of LRR (blue curve). Figure 15 (b) confirms that LRR enables early sign switches by
the third prune-train iteration while IMP struggles to perform sign switches.

Impact of pruning criteria. In order to highlight that different pruning criteria can benefit from
initial overparameterization with continued training in comparison with weight rewinding, we re-
port results for pruning iteratively with Synflow (Tanaka et al., 2020) and SNIP (Lee et al., 2019).
Although, these criteria have been proposed for pruning at initialization, we use them iteratively
following the same prune-train procedure as LRR and IMP. Although LRR and IMP are used in the
context of magnitude pruning, we use the same terms followed by the pruning criterion to differen-
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tiate between training with learning rate rewinding (LRR (synflow/snip)) and training with weight
rewinding (IMP (synflow/snip)). For eg: IMP (synflow) indicates that each prune - train iteration
prunes weights based on the Synflow criterion and rewinds the nonzero weights back to their initial
values.

Figure 16 supports our hypothesis that for different pruning criteria, like Synflow and SNIP, contin-
ued training benefits from initial overparameterization by enabling better sign switchyoes. The blue
curve confirms that as long as the mask and sign learnt by LRR (synflow/snip) is used, we can match
the performance of LRR (synflow/snip) denoted by the purple curve for any weight magnitude ((IMP
init + LRR mask + LRR sign (snip/synflow)).
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Figure 16: Effect of pruning criteria (a) Synflow and (b) SNIP with iterative pruning. LRR (syn-
flow/snip) denotes iterative pruning with learning rate rewinding after every pruning step and IMP
(synflow/snip) denotes iterative pruning with weight rewinding after every pruning step with the
respective pruning criterion for a ResNet18 on CIFAR10. Dotted lines indicate baseline results of
IMP and LRR using magnitude as the pruning criteria.

CIFAR10 on VGG16. We also report results for a VGG16 model with Batch Normalization (Si-
monyan & Zisserman, 2015) on CIFAR10. Figure 17(a) shows that LRR improves over IMP and
that its signs and mask contain sufficient information to match the performance of LRR (see blue
curve). Figure 17(b) further confirms that LRR enables early sign switches compared to IMP, sup-
porting our hypothesis that LRR gains performance due to its ability to effectively switch signs in
early iterations.
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Figure 17: (a) Comparison of LRR versus IMP for a VGG16 model on CIFAR10. (b) Histogram of
the pruning iteration at which the parameter signs do not change anymore.

Impact of overparameterization on single hidden neuron network. We show that increasing
overparameterization in the input dimension d for the single hidden neuron network defined in Sec-
tion 2 aids LRR. We follow the same experimental setup as Section 2.3. In the case when d = 1,
LRR and IMP are equally likely to succeed for the case where a(0) > 0, w1(0) > 0 (see Figure
18(a)). If we increase d > 1, we find that LRR is now able to leverage the overparameterized model
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in the early pruning iterations to flip initial bad signs and succeed more often than IMP (see Figure
18(b), (c), (d)) as long as a(0) > 0.
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Figure 18: Effect of increasing input overparameterization (measured by the input dimension (d) for
the single hidden neuron network. Without overparameterization (a) d = 1 and with overparameter-
ization (b) d = 2 (c) d = 5 (d) d = 10.
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