
000
001
002
003
004
005
006
007
008
009
010
011
012
013
014
015
016
017
018
019
020
021
022
023
024
025
026
027
028
029
030
031
032
033
034
035
036
037
038
039
040
041
042
043
044
045
046
047
048
049
050
051
052
053

Under review as a conference paper at ICLR 2025

SAME ACCURACY, TWICE AS FAST:
CONTINUAL LEARNING SURPASSES RETRAINING FROM
SCRATCH

Anonymous authors
Paper under double-blind review

ABSTRACT

Continual learning aims to enable models to adapt to new datasets without losing
performance on previously learned data, often assuming prior data is no longer
available. However, in many practical scenarios, both old and new data are acces-
sible. In such cases, good performance on both datasets is typically achieved by
abandoning the model trained on the previous data and re-training a new model
from scratch on both datasets. This training from scratch is computationally ex-
pensive. In contrast, methods that leverage the previously trained model are wor-
thy of investigation as they could significantly reduce computational costs. Our
evaluation framework quantifies the computational savings of such methods while
maintaining or exceeding the performance of training from scratch. We iden-
tify key optimization aspects – initialization, regularization, data selection, and
hyper-parameters – that can each contribute to reducing computational costs. For
each aspect, we propose effective first-step methods that already yield substantial
computational savings. By combining these methods, we achieve up to 2.7x re-
ductions in computation time across various computer vision tasks, highlighting
the potential for further advancements in this area.

1 INTRODUCTION

In modern deep learning, the available data tends to expand and evolve over time, often resulting in
a model already trained on a large dataset (‘old data’) to be further adapted to perform well also on a
new, smaller dataset (‘new data’). This new data typically introduces slightly different distributions,
such as additional classes, new domains, or corner cases. A common approach is to retrain the
model from scratch using both the old and new datasets, but as model and dataset sizes increase, it
becomes computationally expensive. This highlights the need for more efficient methods that can
continuously train models without the cost of full retraining.

A large part of continual learning research has tried to approach this problem in a resource-
constrained setting, aiming to reach the highest possible performance on both old and new data
under some constraints (Verwimp et al., 2024). Such constraints can lead to suboptimal perfor-
mance, in part due to catastrophic forgetting (French, 1999). In e.g. industry applications, it is often
undesirable to sacrifice performance to save computational costs, and retraining from a randomly
initialized model (‘from scratch’) is preferred over using older models (Huyen, 2022). This is a
wasteful approach; there is a model available that performs well on the old data, so why not use
it? In practice, it has been shown to be difficult to continue to train previously trained models, even
without storage constraints on past examples (Ash & Adams, 2020).

In this paper, we focus on the cost of training a model on new data, when a model that performs well
on the old data is available. The cost of training this old model is treated as a sunk cost (Kahneman
& Tversky, 1972), its training happened in the past and the price for this training has already been
paid. In contrast, future costs can be reduced or mitigated, and we show that using old models can
be an effective way of doing so. Typically, in computational problems there is both a memory and
computational aspect, but when models get large, the computational cost tends to outweigh memory
costs. For example, the hard disks to store ImageNet21k are about 50 times cheaper than training a
large vision transformer on the same data once (see Appendix A.1 for details of this estimate).

1

054
055
056
057
058
059
060
061
062
063
064
065
066
067
068
069
070
071
072
073
074
075
076
077
078
079
080
081
082
083
084
085
086
087
088
089
090
091
092
093
094
095
096
097
098
099
100
101
102
103
104
105
106
107

Under review as a conference paper at ICLR 2025

0.0 1.0 2.0 3.0 4.0
0.55

0.60

0.65

0.70

Te
st

 A
cc

ur
ac

y

Iterations

100%
99%

95%

Ours
Naive solution
Scratch

x2.7 faster

x2.3 faster
x2 faster

Figure 1: Test accuracy on CIFAR100 (70+30) with a model pre-trained on 70 classes. The ‘scratch’
method starts from random initialization, while the ‘naive’ approach uses the pre-trained model
without modification. ‘Ours’ modifies the optimization process (see Section 3) and matches the
scratch performance with 2.7× lower computational cost.

While there are good reasons to work in memory-restricted settings (Verwimp et al., 2024), in this
paper the focus is on reducing the computational cost when new data becomes available. Particularly,
we investigate techniques that can make a difference when an old model is available, instead of
general optimization techniques like e.g. mixed precision calculations (Micikevicius et al., 2018).

Instead of the wasteful from-scratch approach, we propose to focus on continuous solutions, which
leverage the existing model when new data is available. The simplest of these solutions is to con-
tinue training the model on the full dataset, using the previous model’s weights for initialization.
While this solution uses pre-trained initialization, it converges at a similar speed and often under-
performs compared to training from scratch, offering little computational gain. Figure 1 illustrates
the limitations of this naive approach.

Here, we introduce an evaluation framework to measure the computational gain of continuous meth-
ods. In this framework, we assume access to a previously trained model on the old data, and both the
entire new and the old datasets. The goal is to improve the efficiency and accuracy by leveraging this
previously trained model, compared to training from scratch on the entire dataset, as well as naive
continuous training. We measure the advantage of an approach by the reduction in computational
cost required to reach the same accuracy, on the full dataset, as a model trained from scratch.

In Section 3, we start from the canonical SGD update rule and show that all of its aspects – the
initialization, the objective function, the sampling process, and the hyper-parameters – can signif-
icantly reduce computational costs. We outline and evaluate several strategies – inspired by the
literature – that act on these aspects. Each of them presents a promising avenue for future research
to accelerate the convergence of continuous models. In Section 4, we show that while these methods
individually reduce computational costs, their effects are to some extent complementary; combining
them yields even greater reductions. Finally, we further demonstrate that these methods improve
training efficiency across a variety of image classification datasets, multi-task settings, and domain
incremental scenarios, highlighting the robustness and potential of our method to reduce the com-
putational burden of re-training machine learning models.

1.1 OUR CONTRIBUTION

• We propose a novel continual learning evaluation framework, allowing models full access
to previous data and measuring their computational cost rather than only their accuracy.
This approach shifts the research focus towards more practical, real-world challenges.

• We discuss the different areas in the optimization process that can be explored to accelerate
convergence. Each area is broad enough to be the focus of a different method.

• For each area, we introduce a first-step method based on the literature, which already sig-
nificantly enhances the learning speed of continual models.

• We demonstrate that improvements in these areas are complementary, meaning advance-
ments in one area do not preclude further gains in others.

• Through an empirical study, we show that our combined methods consistently accelerate
convergence across multiple datasets and tasks.

2

108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161

Under review as a conference paper at ICLR 2025

1.2 RELATED WORK

Continual learning. Continual learning concerns cases where data is not available all at once (see
e.g. (De Lange et al., 2021; Wang et al., 2024) for surveys). Most studies have focused on settings
with strong constraints on the amount of old data that can be stored (Verwimp et al., 2024). Replay
methods (Chaudhry et al., 2019; Buzzega et al., 2020) aim to use this stored data as effectively as
possible. However, even with replay mechanisms, learning new data often leads to (catastrophic)
forgetting of previously learned examples. Other approaches modify the model architectures (e.g.
Yan et al., 2021) and regularization losses (e.g. Li & Hoiem, 2017) to reduce forgetting. In contrast,
some works have looked at settings where computational cost is restricted rather than memory costs.
In these cases, standard replay outperforms other methods (Prabhu et al., 2023). Later works (Smith
et al., 2024; Harun et al., 2023) improved replay techniques in these settings. Our work, however,
imposes no memory restrictions and instead focuses on accelerating the learning compared to models
trained from scratch, a challenge that is in some cases harder than outperforming standard replay on
a continuous model, see Section 3.1.

Faster optimization. At its core, machine learning involves solving a challenging and compu-
tationally expensive optimization problem, and many approaches have been proposed to stream-
line this process (Sun et al., 2019). First-order methods, such as stochastic gradient descent
(SGD)(Robbins & Monro, 1951), are the most widely used, where the full gradient is typically
approximated using small batches. However, SGD can suffer from slow convergence, especially in
high-variance settings(Johnson & Zhang, 2013), which can be mitigated by techniques like Nesterov
momentum (Sutskever et al., 2013). Adaptive approaches such as AdaGrad (Duchi et al., 2011) and
Adam (Kingma, 2014) help by adjusting the learning rate dynamically, though explicit learning rate
scheduling often enhances their performance (Loshchilov & Hutter, 2022; Smith & Topin, 2019).
Second-order methods, despite their promise, are hampered by the computational expense of esti-
mating the Hessian (Martens, 2016). Goyal et al. (2017) also highlights the intricate relationship
between batch size and learning rate in neural network optimization. Additionally, regularization
techniques like batch normalization (Ioffe & Szegedy, 2015) and weight normalization (Salimans &
Kingma, 2016) can further improve convergence. These considerations become especially impor-
tant when optimizing from a pre-trained model, as is the case in this work, rather than from random
initialization (Narkhede et al., 2022).

Warm start. Starting from non-random initialization is most commonly used in transfer learning,
where a pre-trained model (typically on ImageNet) serves as a starting point to kick-start training
downstream tasks (Zhuang et al., 2020). Contrary to our work, these works are often not concerned
with performance on the pre-training (i.e. old) data. While beneficial, pre-training may hurt down-
stream performance (Zoph et al., 2020). This may be explained by a loss of plasticity in trained
networks (Dohare et al., 2024; Abbas et al., 2023). Ash & Adams (2020) showed that when con-
tinuously training on the same data source, lower performance is reached than when starting from
scratch. Gupta et al. (2023); Parmar et al. (2024) study how to continually pre-train NLP models
which is strongly related to our setting. They examine learning rate scheduling but do not consider
loss of plasticity, regularization, and data selection as done in this paper.

2 PROBLEM DESCRIPTION

We consider the following setup: an existing dataset, denoted as Dold = (Xold,Yold), where Xold

represents the input examples and Yold the corresponding labels. A model fold : Xold → Yold, has
already been trained on this dataset. We are then provided with a new data, Dnew = (Xnew,Ynew),
which may include new classes. The objective is to get a model f : (Xold ∪ Xnew) → (Yold ∪
Ynew) that performs well on both the new and the old datasets, D = Dold ∪ Dnew, with minimal
computational cost.

To ensure a fair comparison between models, we use the same architecture when comparing the
computation costs of different training methods. This, and keeping a fixed batch size, allows us to
quantify computational cost through the number of training iterations. Let f i represent the model f
after i training iterations. We define the speed s of a model f in achieving a target accuracy, a, as

3

162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215

Under review as a conference paper at ICLR 2025

the first iteration in which f reached or surpassed that accuracy. Formally:

s(f, a) = min
i

i ∈ N :
1

|D|

|D|∑
j

1[f i(xj) = yj] ≥ a

 (1)

We use the relative speed-up Lr when comparing the performance of different models against a
baseline model. The baseline model fscratch is trained from scratch on the combined dataset D and
achieves an accuracy of ascratch. Then we can define Lr as:

Lr(f, fscratch) =
s(fscratch, ascratch)

s(f, r/100 · ascratch)
(2)

or the relative number of iterations that a model f requires to reach the same (L100) or a fraction of
(e.g. L99) the final accuracy of a model trained from scratch. For instance, L99 = 2 would indicate
that model f attains an accuracy of 0.99 · ascratch with a 2 times lower computational cost than was
required to train the full model from scratch to attain ascratch, or equivalently, half the number of
iterations. To reduce notation complexity, we will simply use Lr in the remainder of the paper when
the models can be inferred from context. Note that this measure only works when each iteration has
the same computational cost, but the idea can easily be extended to when this is not the case.

2.1 IMPLEMENTATION DETAILS

Datasets. We conducted experiments on a variety of image classification datasets, includ-
ing CIFAR-10 (Krizhevsky et al., 2009), CIFAR-100, subsets of ImageNet (ImageNet-100 and
ImageNet-200) (Deng et al., 2009), and Adaptiope (Ringwald & Stiefelhagen, 2021). For continu-
ous training, each dataset was divided into disjoint subsets, and training proceeded in a cumulative
manner. For example, in CIFAR-100 (80+10+10), classes are split into three groups: 80 classes,
followed by 10, and 10. The model was trained sequentially, first on the 80 classes, then on the
combined 80 + 10, and finally on all 100 classes. Class splits were randomized, where the specific
seeds are available in the attached code.

Training and baselines. Unless otherwise specified, we used ResNet-18 with a cosine annealing
scheduler (Loshchilov & Hutter, 2016), the Adam optimizer, and a learning rate of 0.001. All models
are trained with standard cropping and horizontal flipping augmentations. Additional model and
hyperparameter details can be found in the attached code and Appendix A.2. The scratch baseline
indicates a model that is trained from a random initialization on both old and new data together. The
naive baseline represents a continuous model that simply continues training from the old model,
without any modification.

Experimental details. Every experiment shown in this paper is repeated five times. The results
shown are the averages of these experiments, accompanied by their standard error in plots. The
results presented are always obtained by using the combined test sets of the old and the new datasets.

3 METHOD

In deep learning, optimization is typically performed using variants of stochastic gradient descent,
where model parameters θi are updated by subtracting an estimate of the gradient of the objective
function, based on a small batch of samples. The standard minibatch SGD update rule is:

θi+1 = θi −
η

N

∑
j∈Bi

∇L(θi, (xj , yj)) (3)

where η is the learning rate, L is the objective function, and Bi a batch of N examples sampled
from the full dataset D. All components of this update – model initialization (θ0), batch composi-
tion, learning rate adjustments, and modifications to the objective function – play a critical role in
the optimization trajectory and convergence speed. For other optimizers like e.g. Adam (Kingma,

4

216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269

Under review as a conference paper at ICLR 2025

0.0 1.0 2.0 3.0 4.0
0.55

0.60

0.65

0.70

Te
st

 A
cc

ur
ac

y

Iterations

100%
99%

95%

Shrink & Perturb
Naive
Scratch

Figure 2: Initialization. Naive continuous train-
ing is slower and less accurate than retrain-
ing from scratch. Re-introducing plasticity with
shrink-and-perturb improves both speed and ac-
curacy, surpassing scratch training.

0.0 1.0 2.0 3.0 4.0
0.55

0.60

0.65

0.70

Te
st

 A
cc

ur
ac

y

Iterations

100%
99%

95%

L2-init
L2
Scratch + L2-init

Figure 3: Objective function. Regularizing the
objective function with L2-losses is beneficial in
both from scratch and continuous learning, yet
the latter outperforms the former when using L2-
init regularization.

2014), the simple average here would be replaced by a momentum-based average, but the idea re-
mains the same. In the following sections, we explore how each of these elements can significantly
accelerate continuous model training. CIFAR-100 (70+30) serves as a case study for comparing
various strategies.

3.1 INITIALIZATION

When training models from scratch, careful random initialization offers several advantageous prop-
erties (Narkhede et al., 2022). However, during continuous training, many of these advantages are
lost as training does not start from a random set of weights. Several works have shown that this
potentially leads to reduced plasticity, i.e. not being able to learn new information as fast and ac-
curately as a model trained from scratch (Ash & Adams, 2020; Dohare et al., 2023). This issue is
similarly observed in continuous training, as shown in Figure 2. The naive benchmark is both worse
and converges slower than retraining from scratch.

To restore plasticity during warm-start training without distribution shifts, Ash & Adams (2020) in-
troduced the ‘shrink and perturb’ method. Rather than using the previously trained model’s weights
directly, the weights are shrunk by a factor α and combined with a small portion of randomly ini-
tialized parameters θrandom. The resulting initialization θinit is computed as:

θinit = αθold + βθrandom (4)

In our experiments, we used α = 0.4 and β = 0.001 without tuning, as proposed by the origi-
nal authors. However, a broad range of α and β values yielded qualitatively similar results (see
Appendix A.3). In Figure 2, we compare ResNet-18 models trained continuously on CIFAR-100
(70+30) with and without the shrink-and-perturb method. The results show that re-introducing plas-
ticity can not only accelerate convergence but also potentially improve final accuracy compared to
both scratch training and continuous training without it.

3.2 OBJECTIVE FUNCTION AND REGULARIZATION

An alternative approach to tackle the reduced plasticity problem is to prevent it from arising in the
first place by changing the objective function L. Dohare et al. (2023) proposed maintaining plasticity
through continual backpropagation, while Kumar et al. (2023) introduced a simplified version that
uses an L2 regularizer towards the initial random weights θ0, rather than towards the origin as is
typically done in L2 regularization. In our setting, this involves modifying the objective function L
to include this L2-init regularizer:

Lreg(θi, (xj , yj)) = L(θi, (xj , yj)) + λ∥θi − θ0∥2 (5)

5

270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323

Under review as a conference paper at ICLR 2025

0.0 1.0 2.0 3.0 4.0
0.55

0.60

0.65

0.70

Te
st

 A
cc

ur
ac

y

Easy / hard sampling
Old / new sampling

Scratch
Naive

Iterations

100%
99%

95%

Figure 4: Batch composition. ‘Old / new’ sam-
pling balances old and new examples in each
batch, unlike the naive baseline, which uses pro-
portional sampling. ‘Easy / hard’ sampling re-
duces the inclusion of the easiest and hardest old
examples, significantly improving performance.
(Naive and ’old/new’ results nearly overlap.)

0.0 1.0 2.0 3.0 4.0
0.55

0.60

0.65

0.70

Te
st

 A
cc

ur
ac

y

Iterations

100%
99%

95%

1/4 iterations
2/4 iterations
3/4 iterations
4/4 iterations
Scratch

Figure 5: Hyperparameters. Shortening the
learning rate scheduler allows for faster conver-
gence but at the cost of lower final accuracy. On
its own, changing the scheduler does not reach
the required accuracy, yet when combined with
the other aspects, it becomes important (see Sec-
tion 4.1)

In our experiments, we used λ = 0.01 without tuning, as proposed by the original authors. However,
a broad range of λ values yielded qualitatively similar results (see Appendix A.4). In Figure 3, we
train ResNet-18 models on CIFAR-100 (70+30) and compared the results of models trained from
scratch with those trained continuously, both with the L2-init regularizer. The results indicate that
adding this regularization term accelerates the convergence of the continuously trained models, more
so than it improves models trained from scratch. Since regularization can also benefit models trained
from scratch, we use this baseline here, as well as the more standard L2 regularization (i.e. θ0 = 0)
which is not as effective as L2-init regularization.

3.3 BATCH COMPOSITION

Estimating the full gradient of a dataset is expensive in the deep learning case, as many iterations
are required to reach a good solution. To overcome this, minibatches containing a small part of the
entire dataset are used to estimate the gradient. Typically, examples are sampled from the full dataset
with uniform probability. In continual learning, it is a common practice to balance examples from
old and new data in a batch (Rolnick et al., 2019), which either increases or decreases the sampling
probability of old data depending on whether there is either more or less old than new data.

In Figure 4, we show that having an equal number of new and old examples (‘old / new sampling’)
does not improve the results compared to the naive approach, which balances old and new examples
in a batch according to their ratio in the full dataset (i.e. 70% old examples and 30% new ones
in this example). Katharopoulos & Fleuret (2018) show that the optimal sampling distribution is
proportional to the gradient norms of the individual examples. In Appendix A.7, we show that at the
very start of training the gradient norms of the old examples are indeed smaller, but after about 100
iterations, there is no noticeable difference on the class level, which explains the results.

While the ratio of old and new examples does not have an immediate effect, not all data in the replay
memory is equally useful. Often in continual learning, access to the old dataset Dold is limited
to a small fraction. In our case, the replay memory has infinite capacity. We build on the work
of Hacohen & Tuytelaars (2024), who propose a sampling strategy that reduces the importance of
very easy and very difficult examples in the memory. More formally, they define learning speed ls
of a sample xj as the epoch e in which sample is classified correctly:

ls(xj , yj) =
1

E

E∑
i=1

1[f i(x) = y] (6)

with E the total number of epochs and f i the model at epoch i.

The learning speed is used to order the old examples from easy to hard, given that the necessary
information is recorded during training of the old model (For more details, see Appendix A.5).

6

324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377

Under review as a conference paper at ICLR 2025

Using this order, we reduce the sampling probability of the 10% easiest and highest examples to
one-tenth of the other examples. In the easy examples, there is no information left, and the hardest
ones are never learned, and thus as useful. The results in Figure 4 show that this approach (‘easy /
hard sampling’) is helpful and speeds up training in the continuous case. In Appendix A.5 we show
that this is robust to the exact hyperparameters and that, while sacrificing some convergence speed,
the easiest and hardest examples can be removed entirely.

3.4 LEARNING RATE SCHEDULING

The learning rate controls the step size in stochastic gradient descent, directly influencing conver-
gence speed. In deep learning, the learning rate typically starts high to allow faster progress toward
optimal solutions and decreases gradually to avoid overshooting (Zeiler, 2012). Common schedul-
ing strategies include ‘multistep’ scheduling (Zagoruyko & Komodakis, 2016), which reduces the
learning rate at set intervals, and cosine annealing (Loshchilov & Hutter, 2017), which decays it
more smoothly over time.

When training a model continuously, since the model is already trained on parts of the data, a
more aggressive learning rate scheduling can accelerate convergence. While the learning rate still
needs to decrease over time, this can happen more rapidly over fewer iterations, as the model has
already learned key information. As shown in Figure 15 in the Appendix, the loss curve for the
continuous model reaches a plateau much faster compared to scratch training, indicating that the
model approaches a local optimum more quickly. This supports the need for a faster reduction in
the learning rate (Zeiler, 2012).

We train ResNet-18 models on CIFAR-100 (70+30 split), using different lengths of cosine learning
rate schedulers. The most aggressive scheduler used only 25% of the total iterations, while others
used 50% and 75%. The learning curves, depicting the mean test errors from these experiments,
are shown in Figure 5. The results indicate that more aggressive schedulers lead to faster conver-
gence of the continuous model to a performance level comparable to the scratch solution. However,
overly aggressive scheduling hurts the final performance, as the networks fail to achieve 100% of
the scratch model’s final accuracy. On its own, reducing the learning length is not helpful, yet when
combined with the other aspects, it becomes important (See Section 4.1). Similar qualitative re-
sults were observed with multistep scheduling, see Appendix A.6. For the remainder of this paper,
any adjustments to the learning rate scheduler for specific methods are explicitly mentioned, and a
comparison to the unmodified variant is provided.

4 RESULTS

In the previous section, we explored several key aspects of SGD optimization, and each can serve as
the foundation for methods that reduce the computational cost of continuous training. By leveraging
insights from various works in the literature, we proposed a method for each aspect, demonstrating
the effectiveness of each method individually.

In this section, we begin by showing that these methods are complementary, with their combina-
tion further accelerating convergence beyond what is achieved by applying them separately. We
show that although the same techniques can lead to better convergence when training from scratch,
the benefit is larger in the continuous setting. We then extend this combined approach to various
datasets, scenarios, and data splits, demonstrating its applicability across image classification tasks.

4.1 ABLATIONS

In the previous section, we introduced several methods aimed at speeding up the convergence of
continuous models, each targeting a different aspect of the optimization process. We now examine
whether these improvements are complementary or if the benefits of one method negate the effec-
tiveness of others. Table 1 presents results from training five ResNet-18 models and compares all
combinations. While not fully cumulative, each combination offers benefits, either in convergence
speed or in final accuracy. Additionally, we applied the same techniques to a model trained from
scratch, to rule out the possibility that the techniques are only improving overall learning capabilities.

7

378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431

Under review as a conference paper at ICLR 2025

Table 1: Ablation results of the four different aspects studied in Section 3 under ‘continuous’ on
CIFAR100 (70+30). All speed-ups are relative to the model trained from scratch without any mod-
ification, ‘/’ indicates the required accuracy was not reached. Each of the aspects individually es-
tablishes a speed-up, and combining them improves the results further, albeit not fully cumulative.
On the right hand side of the table, ‘scratch’ shows the result of a model trained from scratch using
the same techniques. Some of them improve the training speed, but to a lesser extent than in the
continuous case.

Continuous Scratch
Initialization Regularization Data Scheduler Max Acc L99 L100 Max Acc L99 L100

65.26 / / 65.92 ×1.33 ×1.00

✓ 66.43 ×1.49 ×1.20 65.06 / /
✓ 68.60 ×1.94 ×1.66 67.90 ×1.69 ×1.51

✓ 66.65 ×1.60 ×1.31 66.61 ×1.54 ×1.31
×0.25 64.15 / / 63.72 / /

✓ ✓ 68.91 ×2.19 ×1.82 68.01 ×1.75 ×1.54
✓ ✓ 66.76 ×2.92 ×2.53 66.61 ×1.54 ×1.31

✓ ✓ 68.86 ×1.96 ×1.69 68.30 ×1.67 ×1.49
✓ ✓ ✓ 69.47 ×2.19 ×1.84 68.31 ×1.69 ×1.52
✓ ✓ ✓ ×0.25 68.26 ×5.73 ×5.32 63.74 / /

The results show that while some optimization aspects have an effect on the scratch models as well
(most notably regularization), their influence is always stronger in the continuous case. This is
especially clear when shortening the learning rate scheduler, which allows the continuous model to
learn faster, yet greatly reduces the final accuracy of the from-scratch model. These results indicate
that the proposed techniques are effective in leveraging the benefits of having a model trained on
the old data available. Future research targeting different aspects of the continuous learning process
could yield further gains in training speed, as multiple optimization strategies can be effectively
integrated to speed up the learning.

4.2 MULTIPLE TASKS

We used CIFAR100 (70+30) as a case study in Section 3, adding 30 new classes. In many continual
learning scenarios, new data is not only added once, but repeatedly. In Figure 6 we show that
applying the same aspects on consecutive tasks continues to work as in the one-task case. For each
task, we also train a model from scratch on all classes available up to this point. In Figure 6, the
yellow dots indicate when the continuous model reaches the same performance (L100) as the from-
scratch model for that task. For every task L100 > 1 and gets progressively larger, indicating that
the continuous model benefits more than it has trained for longer in the past.

These results highlight an important insight: in total, the continuous models have trained for more
iterations than the models that are trained from scratch, which also explains why their final accuracy
may surpass that of training from scratch. However, when accumulating past costs, the total cost of
the continuous model is significantly lower than the sum of costs for models trained from scratch
for every task.

4.3 DOMAIN ADAPTATION

All previous experiments had new classes in the ‘new’ data, often referred to as class-incremental
learning in continual learning (De Lange et al., 2021). Here, we use the Adaptiope dataset (Ringwald
& Stiefelhagen, 2021) to show that our method also works when new data contains no new classes,
but the same classes from a different domain. In particular, the ‘old’ data consists of 123 categories
of product images from a shopping website and the ‘new’ data are real-life images of the same
products captured by users. The objective is to achieve strong performance across both domains,
ideally with faster convergence than re-training the model from scratch on both datasets.

Figure 7 shows how our method outperforms both training from scratch and the naive continuous
approach when including a new domain. The relative speed-up compared to the naive baselines is
smaller than in the class-incremental case, but the final accuracy is considerably improved.

8

432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485

Under review as a conference paper at ICLR 2025

T0 T1 T2 T3 T4 T5 T6 T7 T8 T9
Tasks

0.2

0.4

0.6

0.8

Te
st

 A
cc

ur
ac

y

Figure 6: Test accuracy on the full CIFAR-
100 when training a continuous model with our
method on CIFAR100 (50 +

∑10
i=1 5). Yellow

dots mark the L100 iteration, where the continu-
ous model outperforms the from-scratch model.
The shaded area indicates maximum possible
performance based on data availability (e.g., 55%
during the first task 50 + 5).

0.0 1.0 2.0 3.0 4.0
0.65

0.70

0.75

0.80

Te
st

 A
cc

ur
ac

y

Iterations

100%
99%

95%

Ours
Naive
Scratch

Figure 7: Domain adaptation results using the
Adaptiope dataset. The ‘old’ data contains prod-
uct images, the ‘new’ data has real life images.
The test accuracy is on both domains. Although
naively continuing to train is nearly as fast as our
method in this setting, our final test accuracy is
considerably higher.

Table 2: Results of our method across various datasets and splits. We report final test accuracy and
relative speedup to reach similar performance compared to the scratch solution. The multiplier after
the algorithm name indicates learning rate scheduling aggressiveness (e.g., Ours (×0.5) means the
minimum learning rate is achieved at half the iterations of Ours (×1)). ‘/’ indicates that the accuracy
level was not reached. Table (a) presents results on different datasets, while Table (b) provides an
in-depth analysis of CIFAR-100 with various class splits.

(a) More image classification benchmarks

Dataset Algorithm Max Acc L99 L100

CIFAR10
(8+2)

Scratch 83.32 ×1.55 ×1
Continuous 81.37 / /
Ours (×1) 83.95 ×1.83 ×1.29
Ours (×0.5) 84.33 ×3.61 ×2.92

Adaptiope-PI
(100+23)

Scratch 74.59 ×1.14 ×1
Continuous 74.93 ×1.17 1.02
Ours (×1) 77.51 ×1.55 ×1.42
Ours (×0.5) 76.75 ×2.36 ×2.24

ImageNet-100
(80+20)

Scratch 62.34 ×1.18 ×1
Continuous 62.21 ×1.23 /
Ours (×1) 67.41 ×2.16 ×1.97
Ours (×0.5) 66.26 ×3.39 ×3.09

ImageNet-200
(180+20)

Scratch 55.16 ×1.18 ×1
Continuous 53.5 / /
Ours (×1) 59.62 ×1.69 ×1.64
Ours (×0.5) 58.54 ×2.84 ×2.75

(b) Different ratios of old and new classes.

Dataset Algorithm Max Acc L99 L100

CIFAR100 Scratch + L2-init 67.90 ×1.29 ×1.00
Scratch (×0.5) 67.14 / /

90+10
Ours (×1.0) 69.42 ×1.56 ×1.41
Ours (×0.5) 69.07 ×2.95 ×2.65
Ours (×0.25) 68.42 ×5.05 ×4.47

70+30
Ours (×1.0) 69.47 ×1.61 ×1.45
Ours (×0.5) 68.77 ×2.84 ×2.56
Ours (×0.25) 68.26 ×4.74 ×4.34

50+50
Ours (×1.0) 69.09 ×1.50 ×1.35
Ours (×0.5) 68.42 ×2.70 ×2.37
Ours (×0.25) 67.57 ×4.34 /

30+70
Ours (×1.0) 68.81 ×1.49 ×1.31
Ours (×0.5) 68.10 ×2.56 ×2.30
Ours (×0.25) 66.93 / /

4.4 OTHER DATASETS AND SCENARIOS

In Section 3, we demonstrated the effectiveness of each method using the CIFAR-100 (70+30)
dataset for consistency across experiments. Table 2a extends these results to a range of datasets, in-
cluding CIFAR-10, ImageNet-100, ImageNet-200, and the product images of Adaptiope. For each
dataset, we compare the performance of models trained from scratch, a naive continuous model,
and a continuous model using our full method. We report the relative speed-up to reach 99% and
100% of the scratch-trained model’s accuracy, along with the final accuracy. Across all the different
datasets we tested, our method consistently enhances the speed of convergence both for the L99 and
L100 cases, often also surpassing the final accuracy of the scratch model.

Table 2b presents results for different class split ratios, including CIFAR-100 splits of (90+10),
(70+30), (50+50), and (30+70). Our methods consistently accelerate training, with speed-up being
more significant when the second data split is smaller. This aligns with intuition: when the ini-

9

486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539

Under review as a conference paper at ICLR 2025

tial ‘old’ data is larger, the old model already has more knowledge, requiring fewer updates when
exposed to new data, compared to training from scratch, which treats both splits equally.

5 CONCLUSION

Throughout this paper, we have shown that the computational cost that is paid to train models on old
data should not be treated as something that is lost, but rather as a starting point for further training
whenever new data becomes available. We studied the four main components of the traditional SGD
update rule – initialization, objective function, data selection and hyperparameters – and showed that
each of them individually can contribute to faster convergence on old and new data combined when
starting from an old model. These aspects are thoroughly tested to be robust and effective across a
wide range of scenarios. Our proposals should be seen as starting points to work further towards
solutions that are even more effective in re-using old models, and saving computational costs across
the board in machine learning development and applications.

REFERENCES

Zaheer Abbas, Rosie Zhao, Joseph Modayil, Adam White, and Marlos C Machado. Loss of plasticity
in continual deep reinforcement learning. In Conference on Lifelong Learning Agents, pp. 620–
636. PMLR, 2023.

Jordan Ash and Ryan P Adams. On warm-starting neural network training. Advances in neural
information processing systems, 33:3884–3894, 2020.

Pietro Buzzega, Matteo Boschini, Angelo Porrello, Davide Abati, and Simone Calderara. Dark ex-
perience for general continual learning: a strong, simple baseline. Advances in neural information
processing systems, 33:15920–15930, 2020.

Arslan Chaudhry, Marcus Rohrbach, Mohamed Elhoseiny, Thalaiyasingam Ajanthan, P Dokania,
P Torr, and M Ranzato. Continual learning with tiny episodic memories. In Workshop on Multi-
Task and Lifelong Reinforcement Learning, 2019.

Matthias De Lange, Rahaf Aljundi, Marc Masana, Sarah Parisot, Xu Jia, Aleš Leonardis, Gregory
Slabaugh, and Tinne Tuytelaars. A continual learning survey: Defying forgetting in classification
tasks. IEEE transactions on pattern analysis and machine intelligence, 44(7):3366–3385, 2021.

Jia Deng, Wei Dong, Richard Socher, Li-Jia Li, Kai Li, and Li Fei-Fei. Imagenet: A large-scale hi-
erarchical image database. In 2009 IEEE conference on computer vision and pattern recognition,
pp. 248–255. Ieee, 2009.

Shibhansh Dohare, J Fernando Hernandez-Garcia, Parash Rahman, A Rupam Mahmood, and
Richard S Sutton. Maintaining plasticity in deep continual learning. arXiv preprint
arXiv:2306.13812, 2023.

Shibhansh Dohare, J Fernando Hernandez-Garcia, Qingfeng Lan, Parash Rahman, A Rupam Mah-
mood, and Richard S Sutton. Loss of plasticity in deep continual learning. Nature, 632(8026):
768–774, 2024.

John Duchi, Elad Hazan, and Yoram Singer. Adaptive subgradient methods for online learning and
stochastic optimization. Journal of machine learning research, 12(7), 2011.

Robert M French. Catastrophic forgetting in connectionist networks. Trends in cognitive sciences,
3(4):128–135, 1999.

Google. Pricing — Cloud Storage — Google Cloud — cloud.google.com. https://cloud.
google.com/storage/pricing, 2024a. [Accessed 01-10-2024].

Google. GPU pricing — Compute Engine: Virtual Machines (VMs) —no Google Cloud —
cloud.google.com. https://cloud.google.com/compute/gpus-pricing, 2024b.
[Accessed 01-10-2024].

10

https://cloud.google.com/storage/pricing
https://cloud.google.com/storage/pricing
https://cloud.google.com/compute/gpus-pricing

540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593

Under review as a conference paper at ICLR 2025

Priya Goyal, Piotr Dollár, Ross Girshick, Pieter Noordhuis, Lukasz Wesolowski, Aapo Kyrola, An-
drew Tulloch, Yangqing Jia, and Kaiming He. Accurate, large minibatch sgd: Training imagenet
in 1 hour. arXiv preprint arXiv:1706.02677, 2017.

Kshitij Gupta, Benjamin Thérien, Adam Ibrahim, Mats Leon Richter, Quentin Gregory Anthony,
Eugene Belilovsky, Irina Rish, and Timothée Lesort. Continual pre-training of large language
models: How to re-warm your model? In Workshop on Efficient Systems for Foundation Models
@ ICML2023, 2023. URL https://openreview.net/forum?id=pg7PUJe0Tl.

Guy Hacohen and Tinne Tuytelaars. Forgetting order of continual learning: Examples that are
learned first are forgotten last. arXiv preprint arXiv:2406.09935, 2024.

Md Yousuf Harun, Jhair Gallardo, Junyu Chen, and Christopher Kanan. Grasp: a rehearsal policy
for efficient online continual learning. arXiv preprint arXiv:2308.13646, 2023.

Chip Huyen. Real-time machine learning: challenges and solu-
tions, Jan 2022. URL https://huyenchip.com/2022/01/02/
real-time-machine-learning-challenges-and-solutions.html#
towards-continual-learning. Online; accessed 29-August-2024.

Sergey Ioffe and Christian Szegedy. Batch normalization: Accelerating deep network training by
reducing internal covariate shift. CoRR, abs/1502.03167, 2015. URL http://arxiv.org/
abs/1502.03167.

Rie Johnson and Tong Zhang. Accelerating stochastic gradient descent using predictive variance
reduction. Advances in neural information processing systems, 26, 2013.

Daniel Kahneman and Amos Tversky. Subjective probability: A judgment of representativeness.
Cognitive psychology, 3(3):430–454, 1972.

Angelos Katharopoulos and François Fleuret. Not all samples are created equal: Deep learning with
importance sampling. In International conference on machine learning, pp. 2525–2534. PMLR,
2018.

Diederik P Kingma. Adam: A method for stochastic optimization. arXiv preprint arXiv:1412.6980,
2014.

Alex Krizhevsky, Geoffrey Hinton, et al. Learning multiple layers of features from tiny images.
Technical Report, 2009.

Saurabh Kumar, Henrik Marklund, and Benjamin Van Roy. Maintaining plasticity in continual learn-
ing via regenerative regularization. In Proceedings of The 3th Conference on Lifelong Learning
Agents, 2023.

Zhizhong Li and Derek Hoiem. Learning without forgetting. IEEE transactions on pattern analysis
and machine intelligence, 40(12):2935–2947, 2017.

Ilya Loshchilov and Frank Hutter. Sgdr: Stochastic gradient descent with warm restarts. arXiv
preprint arXiv:1608.03983, 2016.

Ilya Loshchilov and Frank Hutter. SGDR: Stochastic gradient descent with warm restarts. In In-
ternational Conference on Learning Representations, 2017. URL https://openreview.
net/forum?id=Skq89Scxx.

Ilya Loshchilov and Frank Hutter. Sgdr: Stochastic gradient descent with warm restarts. In Interna-
tional Conference on Learning Representations, 2022.

James Martens. Second-order optimization for neural networks. University of Toronto (Canada),
2016.

John C McCallum. Price and performance changes of computer tech-
nology with time. https://ourworldindata.org/grapher/
historical-cost-of-computer-memory-and-storage, 2023.

11

https://openreview.net/forum?id=pg7PUJe0Tl
https://huyenchip.com/2022/01/02/real-time-machine-learning-challenges-and-solutions.html#towards-continual-learning
https://huyenchip.com/2022/01/02/real-time-machine-learning-challenges-and-solutions.html#towards-continual-learning
https://huyenchip.com/2022/01/02/real-time-machine-learning-challenges-and-solutions.html#towards-continual-learning
http://arxiv.org/abs/1502.03167
http://arxiv.org/abs/1502.03167
https://openreview.net/forum?id=Skq89Scxx
https://openreview.net/forum?id=Skq89Scxx
https://ourworldindata.org/grapher/historical-cost-of-computer-memory-and-storage
https://ourworldindata.org/grapher/historical-cost-of-computer-memory-and-storage

594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647

Under review as a conference paper at ICLR 2025

Paulius Micikevicius, Sharan Narang, Jonah Alben, Gregory Diamos, Erich Elsen, David Garcia,
Boris Ginsburg, Michael Houston, Oleksii Kuchaiev, Ganesh Venkatesh, and Hao Wu. Mixed
precision training. In International Conference on Learning Representations, 2018. URL
https://openreview.net/forum?id=r1gs9JgRZ.

Meenal V Narkhede, Prashant P Bartakke, and Mukul S Sutaone. A review on weight initialization
strategies for neural networks. Artificial intelligence review, 55(1):291–322, 2022.

Nvidia. NVIDIA A100 GPUs Power the Modern Data Center — nvidia.com. https://www.
nvidia.com/en-us/data-center/a100/, 2024. [Accessed 01-10-2024].

Jupinder Parmar, Sanjev Satheesh, Mostofa Patwary, Mohammad Shoeybi, and Bryan Catanzaro.
Reuse, don’t retrain: A recipe for continued pretraining of language models. arXiv preprint
arXiv:2407.07263, 2024.

Ameya Prabhu, Hasan Abed Al Kader Hammoud, Puneet K Dokania, Philip HS Torr, Ser-Nam Lim,
Bernard Ghanem, and Adel Bibi. Computationally budgeted continual learning: What does mat-
ter? In Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition,
pp. 3698–3707, 2023.

Tobias Ringwald and Rainer Stiefelhagen. Adaptiope: A modern benchmark for unsupervised do-
main adaptation. In Proceedings of the IEEE/CVF winter conference on applications of computer
vision, pp. 101–110, 2021.

Maxime Rio. Tech Insights: A behind-the-scenes look at rolling out new GPU resources
for NZ researchers — nesi.org.nz. https://www.nesi.org.nz/case-studies/
tech-insights-behind-scenes-look-rolling-out-new-gpu-resources-nz-researchers,
2023. [Accessed 01-10-2024].

Herbert Robbins and Sutton Monro. A stochastic approximation method. The annals of mathemati-
cal statistics, pp. 400–407, 1951.

David Rolnick, Arun Ahuja, Jonathan Schwarz, Timothy Lillicrap, and Gregory Wayne. Experience
replay for continual learning. Advances in neural information processing systems, 32, 2019.

Tim Salimans and Durk P Kingma. Weight normalization: A simple reparameterization to accelerate
training of deep neural networks. Advances in neural information processing systems, 29, 2016.

James Seale Smith, Lazar Valkov, Shaunak Halbe, Vyshnavi Gutta, Rogerio Feris, Zsolt Kira,
and Leonid Karlinsky. Adaptive memory replay for continual learning. In Proceedings of the
IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 3605–3615, 2024.

Leslie N Smith and Nicholay Topin. Super-convergence: Very fast training of neural networks using
large learning rates. In Artificial intelligence and machine learning for multi-domain operations
applications, volume 11006, pp. 369–386. SPIE, 2019.

Shiliang Sun, Zehui Cao, Han Zhu, and Jing Zhao. A survey of optimization methods from a
machine learning perspective. IEEE transactions on cybernetics, 50(8):3668–3681, 2019.

Ilya Sutskever, James Martens, George Dahl, and Geoffrey Hinton. On the importance of initial-
ization and momentum in deep learning. In International conference on machine learning, pp.
1139–1147. PMLR, 2013.

A Vaswani. Attention is all you need. Advances in Neural Information Processing Systems, 2017.

Eli Verwimp, Rahaf Aljundi, Shai Ben-David, Matthias Bethge, Andrea Cossu, Alexander Gepperth,
Tyler L Hayes, Eyke Hüllermeier, Christopher Kanan, Dhireesha Kudithipudi, et al. Continual
learning: Applications and the road forward. Transactions on Machine Learning Research, 2024.

Liyuan Wang, Xingxing Zhang, Hang Su, and Jun Zhu. A comprehensive survey of continual
learning: theory, method and application. IEEE Transactions on Pattern Analysis and Machine
Intelligence, 2024.

12

https://openreview.net/forum?id=r1gs9JgRZ
https://www.nvidia.com/en-us/data-center/a100/
https://www.nvidia.com/en-us/data-center/a100/
https://www.nesi.org.nz/case-studies/tech-insights-behind-scenes-look-rolling-out-new-gpu-resources-nz-researchers
https://www.nesi.org.nz/case-studies/tech-insights-behind-scenes-look-rolling-out-new-gpu-resources-nz-researchers

648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701

Under review as a conference paper at ICLR 2025

Shipeng Yan, Jiangwei Xie, and Xuming He. Der: Dynamically expandable representation for class
incremental learning. In Proceedings of the IEEE/CVF conference on computer vision and pattern
recognition, pp. 3014–3023, 2021.

Sergey Zagoruyko and Nikos Komodakis. Wide residual networks. arXiv preprint
arXiv:1605.07146, 2016.

Matthew D Zeiler. Adadelta: an adaptive learning rate method. arXiv preprint arXiv:1212.5701,
2012.

Fuzhen Zhuang, Zhiyuan Qi, Keyu Duan, Dongbo Xi, Yongchun Zhu, Hengshu Zhu, Hui Xiong,
and Qing He. A comprehensive survey on transfer learning. Proceedings of the IEEE, 109(1):
43–76, 2020.

Barret Zoph, Golnaz Ghiasi, Tsung-Yi Lin, Yin Cui, Hanxiao Liu, Ekin Dogus Cubuk, and Quoc Le.
Rethinking pre-training and self-training. Advances in neural information processing systems, 33:
3833–3845, 2020.

A APPENDIX

A.1 COST ESTIMATION

To train a machine learning model there is both a memory (storage) and compute cost. Here we will
work out an example for training a Vision Transformer (ViT) (Vaswani, 2017) on ImageNet 21k.
This dataset is about 1.13 terabytes. Cloud storage for common providers averages around 0.023$
per GB each month, which would be around 30.13$ per month (Google, 2024a). However, local
storage is much cheaper than cloud storage. Today hard disk storage is about 11$ per TB (McCallum,
2023), which can last for 10 years or more.

ViT models were trained on 8 Nividia P100 gpus for 3.5 days (Vaswani, 2017), which cost $1.46
per hour on Google Cloud, which would be $981 in total for the entire training (Google, 2024b).
Buying the GPUs would be much more expensive, with prices for a single A100 GPU above
$10.000 (Nvidia, 2024). Modern A100 GPUs are about 3.5 times faster on real-life work loads (Rio,
2023), but more expensive to rent. At 4$4.05 per hour, the total price would still be $777.5.

A.2 HYPERPARAMETERS

Unless specified otherwise, all experiments are trained with the Adam optimizer (Kingma, 2014),
with default settings of β1 = 0.9, β2 = 0.999 and no weight decay. The starting learning rate is
equal to 0.001 and the batch size is consistently 128 in all experiments. Unless specified differently,
a cosine scheduler is used where the minimal learning rate 1e− 6 is reached after 39.100 iterations,
which is equal to 50 epochs using the complete CIFAR100 dataset. All experiments use cropping
and random horizontal flip augmentations.

A.3 INITIALIZATION

Figure 8 shows different values of α in the shrink and perturb update rule. In genreal, shrinking
more gives better results, although it slows down learning results at the start of learning. Shrinking
enough is necessary and not doing so may lead to suboptimal accuracies because of loss of plasticity.
In Figure 9 different values of β are tested, which add various levels of noise to the initialization.
There is no visible effect of the size of this parameter, which is roughly in line with (Ash & Adams,
2020).

13

702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755

Under review as a conference paper at ICLR 2025

0.0 1.0 2.0 3.0 4.0

Iterations

0.55

0.60

0.65

0.70

Te
st

 A
cc

ur
ac

y
𝛼=0.1
𝛼=0.3
𝛼=0.5
𝛼=0.7
𝛼=0.9
Naive
Scratch

Figure 8: Grid test of the α (shrink) hyperparam-
eter in the shrink and perturb update rule.

0.0 1.0 2.0 3.0 4.0

Iterations

0.55

0.60

0.65

0.70

Te
st

 A
cc

ur
ac

y

β=0.001
β=0.01
β=0.1
Naive
Scratch

Figure 9: Grid test of the β (perturb) hyperpa-
rameter in the shrink and perturb update rule

A.4 REGULARIZATION

Figure 10 shows the influence of the λ parameter in the L2-init regularization, which controls the
strength of the regularization. A too low value will not have any effect, while setting this value too
high, will lead to slower than necessary learning speeds.

0.0 1.0 2.0 3.0 4.0

Iterations

0.55

0.60

0.65

0.70

Te
st

 A
cc

ur
ac

y λ=0.001
λ=0.01
λ=0.1
Naive
Scratch

Figure 10: Ablation of the λ parameter in the L2-init regularization.

A.5 BATCH COMPOSITION

Figure 11 shows how fast examples are learned during the first task of CIFAR100 (70+30). The
x-axis shows the epochs, while each row indicates a single sample. The examples on the bottom are
green almost from the start of training, these are the ones that are very easy: the model almost has
no difficulty learning them, which also means they do not carry a lot of information. The ones on the
top are almost completely red: they are never learned. These examples are equally not very useful:
they are so hard the model can not learn them anyway (which may be a result of bad labeling, bad
images etc.).

In Figure 12, we ablate two of the parameters of the ‘easy / hard’ sampling process. c indicates
what proportion of the easy and hard examples is influenced. e.g. c = 0.2 means that 20% procent
of the examples is affected, or the 10% easiest and the 10% hardest. r indicates the probability
that the easy and hard examples are sampled in a batch, relative to the examples in the middle. e.g.
with r = 0.1, an easy or hard example is 10 times less likely to be in a minibatch. The result with
r = 0 shows that we can even get rid of these examples, reducing the memory requirements for
this method. When r = 0, this becomes the method proposed by (Hacohen & Tuytelaars, 2024), on
which this idea is based.

14

756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809

Under review as a conference paper at ICLR 2025

0 10 20 30 40

Correct Wrong

Cuto�s

Epochs

Ex
am

pl
es

 (
ea

sy

 h
ar

d)

Figure 11: How fast examples are learned dur-
ing the initial learning phase of training on the
old data of CIFAR100 70+30 (i.e. the first 70
classes). Some examples are almost learned in-
stantly (bottom), others never (top). The cutoffs
indicate both the 10% easiest and hardest exam-
ples.

0.0 1.0 2.0 3.0 4.0
0.55

0.60

0.65

0.70

Te
st

 A
cc

ur
ac

y

c = 0.2, r = 0.0
c = 0.2, r = 0.1
c = 0
Scratch: c = 0.2, r = 0.1
Scratch: c = 0

Iterations

100%
99%

95%

Figure 12: Test accuracy of CIFAR100 on the
70 + 30 benchmark. Removing the easiest and
hardest examples (r = 0) barely has an influence.
Sampling them with a low probability (r = 0.1)
allows to learn a little faster on the continuous
model, without such an effect on the from scratch
model.

A.6 SCHEDULERS

Figure 13 shows an experiment on CIFAR100 (70+30), with a multistep learning rate scheduler
(which reduces the learning rate by a fixed factor at fixed steps) rather than a cosine learning rate
scheduler. This scheduler reaches the same conclusion, although in this case the iterations where the
scheduler kicks in has a much larger influence than in the cosine scheduler case. In the continuous
case, the learning rate is kept too high for too long, preventing the model to learn the last details,
while the from scratch model is still learning.

0.0 0.5 1.0 1.5 2.0

Iterations

0.55

0.60

0.65

0.70

Te
st

 A
cc

ur
ac

y

Ours
Naive
Scratch

Figure 13: When using multi-step schedulers the qualitative result stays the same, although cosine
schedulers are better suited to this task of continuous learning.

A.7 GRADIENT NORMS

Figure 14 shows the average gradient norm of examples of old and new data in the CIFAR100
(70+30) baseline during training of the naive baseline. While at the very start the gradient of new
data is considerably higher, this difference has completely disappeared after more than 100 itera-
tions, which is nearly immediately considering 40.000 iterations in total. This explains mostly why
it is not useful to oversample new data, which would indicate that new data is more important to
learn than remembering the old data, which is not the goal.

15

810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863

Under review as a conference paper at ICLR 2025

1 10 20 40 80 160 320 640

Iterations

0

50

100

G
ra

di
en

t
n

or
m

Old data
New data

Figure 14: Gradient norms of ‘old’ and ‘new’ data during training of the naive baseline on CI-
FAR100 (70+30).

A.8 LOSS PLATEAU

Figure 15 shows how the loss of the naive solution plateaus earlier than when training from scratch,
thus allowing to schedule learning rates earlier. However, it is not because such a loss plateau is
reached that the final result will be better, it merely indicates that the results won’t get any better
when training longer than from the point the plateau is reached. In fact, as can be seen in Figure 15,
the loss starts to increase again as overfitting takes place. In this sense, it might even be necessary
to schedule early enough to obtain the best possible results.

0.0 1.0 2.0

Loss plateau reached

0

1

2

3

4

Te
st

 L
os

s

Naive solution
Scratch

Iterations

Figure 15: The continuous naive baseline loss plateaus earlier than that of the from scratch baseline.

16

	Introduction
	Our contribution
	Related Work

	Problem Description
	Implementation details

	Method
	Initialization
	Objective function and regularization
	Batch composition
	Learning rate scheduling

	Results
	Ablations
	Multiple tasks
	Domain adaptation
	Other datasets and scenarios

	Conclusion
	Appendix
	Cost estimation
	Hyperparameters
	Initialization
	Regularization
	Batch composition
	Schedulers
	Gradient Norms
	Loss plateau

