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Abstract

Thanks in part to the availability of copious
annotated resources for some entity categories,
existing studies have achieved superior perfor-
mance in multimodal named entity recognition
(MNER). However, in the real-world scenario,
it is infeasible to enumerate all entity categories
in advance. Therefore, in this paper, we formu-
late a new few-shot multimodal named entity
recognition (FewMNER) task, which aims to
effectively locate and identify named entities
for a text-image pair only using a small num-
ber of labeled examples. Further, we explore
the merit of in-context learning (ICL) and pro-
pose a novel framework to deal with FewM-
NER, where three points are taken into account:
i.e., converting visual modality, selecting use-
ful examples, and designing an effective task
demonstration. Specifically, we first employ an
image caption model to convert images into tex-
tual descriptions, enabling large language mod-
els to absorb information from visual modality.
Then, we use the ranking of the sum of similar-
ity rankings from both text and image modali-
ties to select k-nearest examples, which form
a demonstration context. Finally, we utilize
the MNER definition and the meaning of each
entity category as effective instruction. Exten-
sive experimental results demonstrate that our
framework outperforms baselines under several
few-shot settings.

1 Introduction

Multimodal Named Entity Recognition (MNER)
aims to identify named entities of different cate-
gories from the text with extra image assistance.
Consider the example in Figure 1(a), we need
to recognize three named entities from the text,
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I love [Alibaba]PER.

[Lee Brice]PER in
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a]LOC !

Barcelona Crowned 2016 La Liga
Champions , Suarez Sink …

{'PER': [], 'LOC': [],                             
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{'PER': ['Suarez'], 'LOC': [],                
'ORG': ['Barcelona', 'La Liga'], 'MISC': []}

The World Cup is
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world .
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(b) 2-shot MNER task.

Figure 1: Illustration of MNER and 2-shot MNER tasks.

"Suarez" (PER), "Barcelona" and "La Liga" (ORG),
to finish the MNER task. Most existing methods
commonly employ pre-trained models followed
by fine-tuning to accomplish the MNER task and
achieve superior performance (Lu et al., 2018; Yu
et al., 2020; Zhang et al., 2021; Chen et al., 2022b).
In terms of existing research efforts, their supe-
rior performance generally relies on sufficient an-
notated data, which is time-consuming and labor-
intensive. In addition, in practice, entity categories
will continue to emerge rather than remain fixed.
Therefore, it is impractical to define all entity cate-
gories in advance.

To address these issues, motivated by the few-
shot Named Entity Recognition (FewNER) task
that involves learning unseen entity categories from
a small number of labeled examples (Fritzler et al.,
2019), we extend the MNER task to the few-shot
field, named the few-shot multimodal named entity
recognition (FewMNER) task, which aims to locate
and identify named entities for a text-image pair
only using a small number of labeled examples. As
illustrated in Figure 1(b), the 2-shot MNER task



aims to accomplish the MNER task based on two
labeled text-image pair examples.

Further, to address the FewMNER task, we
propose leveraging the powerful in-context learn-
ing (ICL) capability of the large language model
(LLM). Specifically, we argue that this paradigm
can provide a promising direction for solving the
FewMNER task by learning from a few examples
in context without training. However, there are
three problems while solving FewMNER using the
in-context learning paradigm: (i) For the FewM-
NER task, each sample is represented by textual
and visual modalities, while the input of LLM is
limited to natural language. Thus, we first require
seeking ways to convert visual modality into natu-
ral language form. (ii) The key to performing ICL
is to select a few examples to form a demonstra-
tion context. Although there are some example
selection studies (Chen et al., 2022a; Min et al.,
2022) targeting text classification tasks, selecting
some useful examples for ICL in multimodal sce-
narios has not been approached. (iii) In addition,
good demonstration designing precisely is essential
to obtain satisfactory performance. Unlike simple
classification tasks, the task instruction and output
format of MNER need to be constructed according
to the extractive nature.

To apply ICL to solve the FewMNER task,
we propose corresponding solutions to the above-
mentioned problems. First, we employ an image
caption model (Wang et al., 2022a) to generate
textual descriptions from images, which not only
converts images into natural language form but also
aligns image features into the text space. Second,
for selecting examples, we design an efficient sort-
ing algorithm based on image and text similarity
ranks, which can mitigate the similarity bias caused
by different modality models. Then, we utilize this
algorithm to select top-k examples with the high-
est similarity to the current test sample. Third, the
demonstration design consists of two parts: instruc-
tion construction and demonstration construction
(Dong et al., 2023). The former aims to inform
LLM about the current task. To provide more de-
tailed information, we add the description of entity
category meaning to the instruction. The latter is
to define the demonstration template and order se-
lected examples into the demonstration template.
For the demonstration template, it consists of three
components: image description, sentence, and
output, where output is the label information.

Then, we pack selected top-k examples into the
demonstration template in ascending order of sim-
ilarity rank, such that the most similar example
is nearest to the current test sample. Finally, we
concatenate instruction, demonstration, and the test
sample as the input and feed it into LLM to obtain
the prediction output.

The contributions of this paper are as follows:

• We are the first to extend the MNER task to
the few-shot field and explore the potential of
the in-context learning paradigm for this task.

• To adapt the in-context learning paradigm to
the FewMNER task, we address three related
problems and propose a framework to accom-
plish this task.

• Through comparison with previous competi-
tive methods, our framework exhibits a signif-
icant advantage in this task. We also conduct
extensive analysis experiments to reveal the
impact of various factors on its performance
and provide novel insights for future research.

2 Related Work

2.1 Multimodal Named Entity Recognition

Multimodal Named Entity Recognition (MNER)
aims to discover named entities in the unstructured
text and classify them into pre-defined types with
the help of an auxiliary image. Existing studies
could be divided into two categories: cross-modal
interaction-based methods and image conversion-
based methods. The former tends to carry out cross-
modal interaction using an attention mechanism
and to combine textual representation with image
representation for MNER. For example, some stud-
ies (Lu et al., 2018; Moon et al., 2018; Zhang et al.,
2018) first applied LSTM and CNN to extract text
and image features, respectively. Then attention
is adopted to fuse two modal features to derive
textual representation in order to complete entity
labeling. In addition to modeling the interaction
between text and images, a few studies (Chen et al.,
2022b; Zhang et al., 2021) leveraged the semantic
correlation between tokens and object regions to
derive the final token representations for MNER.
The latter (Chen et al., 2021; Wang et al., 2022b)
first aims at converting images and extracting tex-
tualized information from them such as captions
in order to align image features to the text space.
Then this textualized information derived from an
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Figure 2: The architecture of our framework on the 2-shot MNER task.

image is concatenated with the input text to yield
the final token representation for completion entity
recognition. Despite their promising results, they
generally depend on a large amount of annotated
data, which is inadequate in generalizing the abil-
ity to locate and identify entities to unseen entity
categories.

2.2 In-Context Learning

With the scaling of the pre-trained model from
110M parameters (Devlin et al., 2019) to over 500B
parameters (Smith et al., 2022), the ability of the
model has been greatly improved, especially the
understanding ability, fluency, and quality of gener-
ation. Many studies have demonstrated that large
language models (LLMs) have shown an in-context
learning ability (Brown et al., 2020), which is learn-
ing from a few context examples without training.
Although various LLMs (e.g., GPT-3, ChatGPT)
have been trained, they are all closed-source and
only accessible internally or via paid API services.
How to effectively utilize the in-context learning
ability of LLMs is an important question. Recently,
some studies (Sun et al., 2022; Hu et al., 2022;
Zhang et al., 2022) treat LLMs as a service and
utilize the in-context learning ability to finish the
few-shot and even zero-shot tasks.

3 Methodology

3.1 Task Definition

Given a text t and its correlated image v as input,
the fewMNER task only applies a small number of

labeled examples to detect a series of entities in t
and classify them into pre-defined categories.

Following most existing in-context learning
work (Dong et al., 2023), we formulate this task
as a generation task. A large language model
M takes a generation sequence of the maximum
score as prediction output conditioning on the
context C. For the k-shot MNER task, C con-
tains instruction I and k examples, where C =
{I, s (v1, t1, y1) , . . . , s (vk, tk, yk)}, s is demon-
stration template and {y1, . . . , yk} is a set of free
text phrases as the label. Therefore, for the given
test sample x = {v, t}, the prediction output ŷ can
be expressed as:

ŷ = maxPM(y | C, x). (1)

3.2 Overall Architecture
Figure 2 illustrates the overall architecture of our
framework for the 2-shot MNER task, which con-
tains three main components: (1) Retrieve example
module, which utilizes k-nearest neighbors of text
and image to select examples. (2) Demonstration
designing module, which includes instruction con-
struct and demonstration construct. (3) Predict
module, which applies a large language model to
generate prediction results without training.

3.3 Retrieve Example Module
Previous works (Rubin et al., 2022; Liu et al., 2022)
have demonstrated that selecting similar examples
to the current test sample can enhance the perfor-
mance of LLM. However, these methods only con-



sider textual similarity scores, which are insuffi-
cient for the FewMNER task due to the multimodal
nature of FewMNER. Besides, different modal-
ity models introduce bias (i.e., different similarity
score distributions for text and image (Peng et al.,
2018)). To this end, we propose an efficient se-
lection method based on text and image similarity
ranks, which can mitigate the bias described above.

3.3.1 Image Similarity Rank
Given an test image vtest and candidate set D,
where D contains N text-image pair and D =
{(v1, t1), (v2, t2), ..., (vN , tN )}. We first adopt the
pre-trained vision model ViT (Dosovitskiy et al.,
2021) to obtain the representation of the whole im-
age, including test image vtest and candidate image
set Dv = {v1, v2, ..., vN}:

Hv = ViT(vtest), (2)

V = ViT(Dv), (3)

where Hv ∈ Rdh is the image representation of
vtest and V ∈ RN×dh is the embedding matrix of
Dv. Then, we calculate the cosine similarity of
the test image representation Hv and the image
representation of the whole candidate set V, and
record the rank of each candidate image set Dv.

Sv = Cosine(Hv,V), (4)

Rv = Rank(Sv), (5)

where Sv ∈ RN , Rv ∈ RN and Ri
v ∈ [1, N ].

3.3.2 Text Similarity Rank
Given a test text ttest, we first utilize the pre-
trained language model such as MiniLM (Wang
et al., 2020) as text extractor to map text ttest and
candidate text set Dt = {t1, t2, ..., tN} into a dw-
dimensional embedding:

Ht = MiniLM(ttest), (6)

T = MiniLM(Dt), (7)

where Ht ∈ Rdw is the sentence representation of
ttest and T ∈ RN×dw is the embedding matrix of
Dt. Then, we calculate the cosine similarity of the
test text representation Ht and the text representa-
tion of the whole candidate set T, and record the
rank of each candidate text set Dt.

St = Cosine(Ht,T), (8)

Rt = Rank(St), (9)

where St ∈ RN and Rt ∈ RN and Ri
t ∈ [1, N ].

3.3.3 Sorting Based on Both Similarity Ranks
According to the similarity rank results of image
and text modalities Rv and Rt, we sum two rank-
ings and sort them to get the final ranking result.

R = Rank(Rv +Rt), (10)

where R ∈ RN and Ri ∈ [1, N ]. Compared with
sorting based on the sum of image and text similar-
ity scores, sorting based on both similarity ranks
considers the bias introduced by different modality
pre-trained models. Through analyzing the distribu-
tion of image similarity scores Sv and text similar-
ity scores St, we observe that the image similarity
scores are generally higher than the text similarity
scores. Sorting based on both similarity ranks can
effectively address this issue. Finally, we take top-
k examples with the highest similarity ranking as
selected examples.

σ = Top-K(R), (11)

where σ are the indices of top-k similarity ranking,
and σ={σ1, ..., σk}.

3.4 Demonstration Designing Module
Following the in-context learning paradigm (Dong
et al., 2023), it consists of two parts: instruction
construction and demonstration construction.

3.4.1 Instruction Construction
We use the definition of the MNER task as the in-
struction, which helps LLM understand the current
task and is shown as follows:
You are a smart and intelligent Multimodal
Named Entity Recognition (MNER) system. I
will provide you the definition of the entities you
need to extract, the sentence from where your
extract the entities, the image description from
image associated with sentence and the output
format with examples.

To provide more detailed information for LLM,
we describe the meaning of each entity category as
follows:
1.PERSON: Short name or full name of a per-
son from any geographic region; 2.ORGANI-
ZATION: An organized group of people with a
particular purpose, such as a business or a gov-
ernment department; 3.LOCATION: Names of
any geographic location, like cities, countries,
continents, districts, etc; 4.MISCELLANEOUS:
Name entities that do not belong to the previous
three groups PERSON, ORGANIZATION, and
LOCATION.

Finally, we concatenate the task and entity cate-
gory definitions as instruction I.

I = {task definition, category definition}. (12)



3.4.2 Demonstration Construction
As shown in the demonstration designing module
in Figure 2, the demonstration template contains
image description, sentence, and output. To
obtain the image description, we employ the
OFA model (Wang et al., 2022a) to convert images
into text captions. The sentence is the original
text input. The output is initially constructed by
concatenating the entity and the category, taking
the test sample in Figure 2 as an example, the initial
output is "World Cup is miscellaneous.". However,
this leads to disordered outputs, such as predicting
categories that are not among the four predefined
ones, despite the instruction specifying them. To
address this issue, we adopt a dictionary-based for-
mat that explicitly defines the output structure as
{"PER": [], "ORG": [], "LOC": [], "MISC": []}. We
find that this approach effectively standardizes the
output format1.

Finally, the top-k selected examples are fed into
the demonstration template in ascending order such
that the most similar example is nearest to the cur-
rent test sample.

D = {s(Dσk
v ,Dσk

t ,Dσk
y ), ..., s(Dσ1

v ,Dσ1
t ,Dσ1

y )}.
(13)

3.5 Predict module
Given the instruction and demonstration, we con-
catenate them into the whole context C. Then, we
feed context C and test sample {vtest, ttest} into
LLM and select the most probable generated se-
quence as the predicted output.

C = {I,D}, (14)

ŷ = maxPLLM(y | C, s(vtest, ttest)). (15)

Finally, we decode the prediction output ŷ into a
list according to the dictionary format and complete
the k-shot MNER task.

4 Experiment

4.1 Dataset
We conduct experiments on two public multi-
modal named entity recognition (MNER) bench-
mark datasets, Twitter2015 and Twitter2017. Two
MNER datasets are constructed by (Yu et al., 2020).
Each example consists of a text and an associated
image in the two MNER datasets. The statistics of
two MNER datasets are shown in Table 1.

1To support this statement, we perform experiments com-
paring the two different output formats (detailed results in
Appendix A.1).

Entity Type Twitter2015 Twitter2017
Train Dev Test Train Dev Test

Person 2,217 552 1,816 2,943 626 621
Location 2,091 522 1,697 731 173 178
Organization 928 247 839 1,674 375 395
Miscellaneous 940 225 726 701 150 157
Total 6,167 1,546 5,078 6,049 1,324 1,351
Num of Tweets 4,000 1,000 3,257 3,373 723 723

Table 1: Statistics of two MNER datasets.

4.2 Experimental Settings

We randomly select 10, 50, 100, and all examples
from the training set of two MNER datasets, respec-
tively, and denote them as D10, D50, D100, and
Dall sets. In this paper, we compare fine-tuning
and few-shot methods with our framework. For
fine-tuning methods, we utilize examples of the en-
tire set to train models. For few-shot methods, we
apply examples of the entire set as the train support
and query sets and construct 4-way k-shot setting
for training. Here, the support and query sets of
few-shot baselines used for training and inference
have the same entity categories. For our frame-
work, we select the k examples from the entire set
to perform the k-shot MNER task without training.

4.3 Model Settings

For the feature extraction model, we employ clip-
vit-base-patch322 and all-MiniLM-L6-v23 to em-
bed each image and text as a 512-dimensional and
768-dimensional embedding, respectively. For the
image caption process, we employ the ofa-image-
caption-coco-large-en4 model to generate image
description. For LLM, we choose the gpt-3.5-turbo
(i.e., ChatGPT) as the backbone of our framework.

4.4 Comparison Models

For fine-tuning methods, we adopt the following
baselines: (1) UMT (Yu et al., 2020), which em-
ploys a transformer layer with a multimodal in-
teraction module to capture the inter-modality dy-
namics between tokens and images for MNER; (2)
UMGF (Zhang et al., 2021), which applies a unified
multimodal graph approach to capture semantic re-
lationships between tokens and visual objects and
performs entity labeling; (3) HVPNeT (Chen et al.,
2022b), which utilizes a hierarchical visual prefix
fusion network for the visual-enhanced entity; (4)

2https://huggingface.co/openai/
clip-vit-base-patch32

3https://huggingface.co/sentence-transformers/
all-MiniLM-L6-v2

4https://modelscope.cn/models/damo/ofa_
image-caption_coco_large_en

https://huggingface.co/openai/clip-vit-base-patch32
https://huggingface.co/openai/clip-vit-base-patch32
https://huggingface.co/sentence-transformers/all-MiniLM-L6-v2
https://huggingface.co/sentence-transformers/all-MiniLM-L6-v2
https://modelscope.cn/models/damo/ofa_image-caption_coco_large_en
https://modelscope.cn/models/damo/ofa_image-caption_coco_large_en


Setting Method
D10 D50 D100 Dall

P(%) R(%) F1(%) P(%) R(%) F1(%) P(%) R(%) F1(%) P(%) R(%) F1(%)
Twitter2015

FT

UMT 1.47 0.54 0.79 41.10 39.12 40.09 48.63 57.42 52.66 71.67 75.23 73.41
UMGF 0.95 2.29 1.34 45.84 41.08 43.33 48.18 56.15 51.86 74.49 75.21 74.85
HVPNeT 29.55 15.31 20.17 56.12 42.64 48.46 59.96 56.06 57.94 73.87 76.82 75.32
DebiasCL 0.98 7.65 1.74 43.97 36.54 39.91 51.30 49.60 50.44 74.45 76.13 75.28

2-shot
ProtoBERT - - - 32.35 51.45 41.20 35.67 53.36 42.75 - - -
StructShot - - - 35.61 40.51 37.89 31.40 39.42 34.94 - - -
Ours 45.03 63.72 52.76 46.39 63.82 53.73 45.96 64.95 53.83 47.73 65.25 55.13

4-shot
ProtoBERT - - - 32.40 53.04 40.23 35.63 56.34 43.64 - - -
StructShot - - - 30.26 37.20 33.34 26.66 35.13 30.14 - - -
Ours 47.36 65.01 54.80 48.87 65.87 56.11 47.58 65.73 55.20 50.21 68.28 57.86

8-shot
ProtoBERT - - - 32.31 54.75 40.62 35.38 58.37 44.04 - - -
StructShot - - - 32.39 39.78 35.70 24.81 32.04 27.78 - - -
Ours 50.44 64.39 56.57 49.94 64.13 56.15 48.72 64.35 55.45 51.24 67.20 58.14

Twitter2017

FT

UMT 5.13 3.03 3.81 56.14 58.18 57.14 62.70 65.58 64.11 85.28 85.34 85.31
UMGF 1.41 2.00 1.65 58.30 54.81 56.50 65.09 64.94 65.01 86.54 84.50 85.51
HVPNeT 35.44 31.90 33.58 61.56 55.96 58.63 66.21 64.10 65.14 85.84 87.93 86.87
DebiasCL 1.93 12.85 3.36 50.40 35.20 41.45 70.48 65.36 67.83 87.59 86.11 86.84

2-shot
ProtoBERT - - - 42.51 58.99 49.39 48.91 63.58 55.28 - - -
StructShot - - - 41.51 50.68 45.63 49.66 57.12 53.12 - - -
Ours 61.30 72.09 66.26 62.40 71.72 66.74 64.79 73.43 68.84 65.82 74.54 69.91

4-shot
ProtoBERT - - - 42.50 61.56 50.27 49.32 66.37 56.58 - - -
StructShot - - - 40.40 50.47 44.72 47.26 56.26 51.35 - - -
Ours 64.08 74.46 68.88 65.58 74.46 69.74 66.05 76.46 70.87 67.27 77.28 71.92

8-shot
ProtoBERT - - - 37.35 59.75 49.67 50.48 66.73 57.47 - - -
StructShot - - - 42.09 53.17 46.98 47.66 55.13 51.10 - - -
Ours 65.33 73.35 69.11 66.76 73.58 70.00 69.24 77.13 72.97 69.00 78.09 73.26

Table 2: Main experiment results to compare fine-tuning and few-shot baselines with our framework in 2-shot,
4-shot, and 8-shot settings on D10, D50, D100, and Dall sets of Twitter2015 and Twitter2017 datasets. FT denotes
the fine-tuning method. For D10 set, results with - due to 4-way 2/4/8-shot setting more than number of D10 set.
For Dall set, few-shot methods are similar to fine-tuning methods. Therefore, we use "-" to indicate that this is not
a valid few-shot setting. To ensure the reliability of few-shot baselines, the results of ProtoBERT and StructShot are
the average results of 100 runs.

DebiasCL (Zhang et al., 2023), which proposes
a de-bias contrastive learning-based approach for
MNER and studies modality alignment enhanced
by cross-modal contrastive learning.

For the few-shot methods, we apply the follow-
ing baselines: (1) ProtoBERT (Ding et al., 2021),
which employs a prototypical network with a back-
bone of BERT encoder; (2) StructShot (Yang
and Katiyar, 2020), which uses token-level nearest
neighbor classification and structured inference.

4.5 Main Results
We report the main experimental results in Table 2
and draw the following conclusions.

(1) Our framework significantly outperforms the
fine-tuning methods on D10, D50 and D100 sets
(except for HVPNeT on D100 set of Twitter2015).
For example, in terms of F1, our framework
outperforms UMT by 55.78% and 65.30%, UMGF
by 55.23% and 67.46%, HVPNeT by 36.40% and
35.53%, and DebiasCL by 54.83% and 65.75% on
D10 set of two MNER datasets. These show that

our framework effectively exploits the in-context
learning potential of large language models.

(2) Compared with few-shot baselines such
as ProtoBERT and StructShot, our framework
achieves the best results in all few-shot settings
(i.e., 2-shot, 4-shot, and 8-shot). This indicates that
methods based on in-context learning are prefer-
able in the FewMNER task, and thus exploring
congenial methods based on in-context learning
can lead to improved performance in this task.

(3) We observe that the performance of our
framework improves as the size of D increases.
This is because a larger retrieval set provides more
opportunities for the test sample to find similar
examples.

(4) Our framework still lags behind the fine-
tuning methods under the Dall set.

4.6 Ablation Study
To analyze the impact of instruction and demon-
stration on the performance of our framework, we
conduct ablation experiments and report detailed



Methods
Twitter2015 Twitter2017

2-shot 4-shot 2-shot 4-shot
P(%) R(%) F1(%) P(%) R(%) F1(%) P(%) R(%) F1(%) P(%) R(%) F1(%)

Ours 46.39 63.82 53.73 48.87 65.87 56.11 62.40 71.72 66.74 65.58 74.46 69.74
w/o I 45.46 63.17 52.88 48.50 64.33 55.30 60.55 71.58 65.60 65.39 73.58 69.24
w/o D 43.35 40.01 41.61 43.35 40.01 41.61 63.44 53.29 57.92 63.44 53.29 57.92
w/ score 46.47 63.68 53.73 46.78 64.07 54.08 62.55 70.10 66.11 64.42 69.95 67.07

Table 3: Ablation study in 2-shot and 4-shot settings on D50 set. I and D denote instruction and demonstration,
respectively. w/ score indicates that examples are selected based on the sum of image and text similarity scores.

Modality
Twitter2015 Twitter2017

Single Type (F1) Overall Single Type (F1) Overall
PER LOC ORG MISC P(%) R(%) F1(%) PER LOC ORG MISC P(%) R(%) F1(%)

single 77.06 67.08 39.86 17.48 47.45 66.85 55.50 88.96 72.34 67.27 18.18 64.29 74.39 68.98
multi 77.33 65.91 38.54 20.21 48.87 65.87 56.11 89.50 71.26 66.23 17.33 65.58 74.46 69.74

Table 4: Different modalities in 4-shot setting on D50 set.

Methods
Twitter2015 Twitter2017

P(%) R(%) F1(%) P(%) R(%) F1(%)
random 47.46 64.54 54.70 64.21 73.58 68.58
dissimilar 47.08 64.56 54.46 61.84 71.13 66.16
similar 48.87 65.87 56.11 65.58 74.46 69.74

Table 5: Different selecting example methods in 4-shot
setting on D50 set.

results in Table 3. The results reveal that our frame-
work achieves the best performance when combin-
ing instruction and demonstration, which suggests
that both components are beneficial. Compared
with removing instruction, removing demonstration
leads to more performance degradation. This shows
that the demonstration is crucial for our framework.

Furthermore, we also conduct ablation experi-
ments on the way of selecting examples. Sorting
based on the sum of image and text similarity ranks
outperforms sorting based on the sum of image
and text similarity scores (i.e., w/ score). This is
because the latter does not account for the bias
introduced by different modality models.

4.7 Analysis

Image Modality Analysis. To explore the ef-
fect of image description on the FewMNER task,
we conduct experiments with single-modality (i.e.,
text) and multi-modality (i.e., text and image) and
show results in Table 4. For a fair comparison, both
settings use the same instruction and demonstra-
tion, but the single-modality setting discards the
image description. We observe that the multi-
modality setting outperforms the single-modality
setting, especially on the PER category. The reason
is that the image caption model tends to generate
sentences related to people, which provide useful
cues for identifying PER category entities.

Methods
Twitter2015 Twitter2017

P(%) R(%) F1(%) P(%) R(%) F1(%)
descending 48.61 65.29 55.73 65.14 74.98 69.71
random 48.43 65.42 55.66 65.49 74.32 69.62
ascending 48.87 65.87 56.11 65.58 74.46 69.74

Table 6: Different sorting example methods in 4-shot
setting on D50 set.

Different Examples Analysis. To analyze the
impact of different examples, we compare three
methods of examples selection (i.e., similar, dis-
similar, and random) in the 4-shot setting on D50

set. The similar method selects examples that have
the highest similarity to the test sample, while the
dissimilar method selects examples that have the
lowest similarity. The random method selects ex-
amples uniformly at random. The results are shown
in Table 5. We observe that the similar method
achieves the best performance, followed by the ran-
dom method, and the dissimilar method performs
the worst. This indicates that selecting similar ex-
amples to form the demonstration is beneficial for
the FewMNER task.

Impact of Examples Sort. To investigate the im-
pact of example sort on performance, we utilize the
same examples to compare three methods of sort-
ing (i.e., ascending, descending, and random) in the
4-shot setting on D50 set. The results are shown in
Table 6. The ascending sort method, which places
the most similar example nearest to the current
test sample, outperforms the other methods. This
suggests that ascending sort examples by their sim-
ilarity can improve performance. The reason is
that the most similar example can provide more
relevant information for the current prediction.

Impact of the Number of Examples. To explore
the impact of the number of examples on perfor-



Setting
PER LOC ORG MISC Overall

P(%) R(%) F1(%) P(%) R(%) F1(%) P(%) R(%) F1(%) P(%) R(%) F1(%) F1(%)
Twitter2015

2-shot 70.84 79.45 74.90 66.37 64.99 65.67 24.96 61.03 35.43 14.42 24.86 18.26 53.73
4-shot 72.67 82.63 77.33 66.67 65.16 65.91 27.30 65.55 38.54 16.65 25.69 20.21 56.11
8-shot 72.14 80.71 76.18 66.99 64.70 65.82 27.79 63.53 38.67 16.68 21.69 18.86 56.15

Twitter2017
2-shot 90.75 83.74 87.10 69.66 69.66 69.66 56.87 74.43 64.47 10.88 19.75 14.03 66.74
4-shot 92.01 87.12 89.50 72.94 69.66 71.26 57.84 77.47 66.23 14.17 22.29 17.33 69.74
8-shot 92.44 84.70 88.40 70.17 71.35 70.75 59.53 77.47 67.33 15.56 22.29 18.32 70.00

Table 7: The detail metric (i.e., P, R, and F1) for four categories in 2-shot, 4-shot, and 8-shot settings on D50 set.

Setting
Twitter2015 Twitter2017

Np B.(%)↓ Ncb C.(%)↓ F1(%)↑ Np B.(%)↓ Ncb C.(%)↓ F1(%)↑
2-shot 7038 45.15 3860 15.41 53.73 1553 28.59 1109 12.62 66.74
4-shot 6896 42.92 3936 14.38 56.11 1534 25.55 1142 11.91 69.74
8-shot 6570 41.35 3853 14.85 56.15 1489 23.50 1139 12.73 70.00

Table 8: Analysis of the wrong predictions in 2-shot, 4-shot, and 8-shot settings on D50 set. Np, B., Ncb, and C.
denote the number of predictions, proportion of boundary errors, correct number of boundaries, and proportion of
category errors on the FewMNER task, respectively.

Setting
Twitter2015 Twitter2017

P(%) R(%) F1(%) P(%) R(%) F1(%)
0-shot 43.35 40.01 41.61 63.44 53.29 57.92
2-shot 46.39 63.82 53.73 62.40 71.72 66.74
4-shot 48.87 65.87 56.11 65.58 74.46 68.74
8-shot 49.94 64.13 56.15 66.76 73.58 70.00
16-shot 50.83 64.86 56.99 68.04 74.69 71.21
32-shot 49.35 64.50 55.92 69.31 74.38 71.76

Table 9: Different shot settings on D50 set.

mance, we conduct experiments with different the
number of examples (i.e., 0, 2, 4, 8, 16, 32-shot)
on D50 set and show results in Table 9. On the
Twitter2017 dataset, we observe that the F1 gener-
ally increases with the number of examples, and
our framework achieves the best score with 32 ex-
amples. Comparing 0-shot with 32-shot, the latter
outperforms the former by 13.84% in F1.

Recently, some works have attempted to explain
the ICL capability of LLMs. Dai et al. (2023) in-
terprets language models as meta-optimizers and
views ICL as a form of implicit fine-tuning. This is
consistent with our findings that more examples can
enhance the performance, as more examples lead
to more optimization steps. On the Twitter2015
dataset, we observe a similar trend as on the Twit-
ter2017 dataset, but our framework achieves the
best score with 16 examples. The reason is that
increasing the number of examples may introduce
more dissimilar examples. These fluctuations indi-
cate that more examples can have a positive effect
on performance if they are sufficiently similar.

Error analysis. In this section, we aim to an-
alyze the factors that affect the performance of
our framework. As shown in Table 7, we report

the performance of four categories in 2-shot, 4-
shot, and 8-shot settings on D50 set. We find that
our framework performs poorly on MISC category,
which is significantly lower than PER, LOC, and ORG
categories. The reason is that MISC is a miscella-
neous category, defined as name entities that do
not belong to the previous three categories. The
annotation of MISC category entities depends on
the preference of annotators. Relying only on the
in-context learning ability of LLM and a few exam-
ples is not sufficient to learn this preference.

Moreover, we analyze the boundary error and
category error and perform a detailed analysis of
wrong predictions. We classify wrong predictions
into two types: boundary errors and category er-
rors5. We count the number of errors for each cate-
gory and report results in Table 8. We observe that
increasing the number of examples significantly
reduces boundary errors. Specifically, comparing
2-shot with 8-shot, the latter reduces the proportion
of boundary errors by 3.80% and 5.09% on two
datasets, respectively. Besides, increasing the num-
ber of examples does not reduce category errors.
This is an interesting finding and demonstrates that
more examples mainly improve the boundary abil-
ity of ICL, rather than category ability.

5 Conclusion

In this paper, we formulate multimodal named en-
tity recognition as a few-shot learning problem,

5When the predicted entity is boundary-misspecified, we
classify it as a boundary error. When the boundary of the
entity is completely correct, but the category is incorrectly
identified, we classify it as a category error.



named few-shot multimodal named entity recog-
nition (FewMNER), to extend entity detection to
unseen entity categories. To tackle FewMNER, we
propose a framework based on in-context learning
by addressing three problems. Experimental results
show that our framework outperforms baselines in
several few-shot settings. Moreover, we conduct
analysis experiments and find that selecting simi-
lar examples, sorting them in ascending order, and
using more examples improve the performance of
in-context learning. We also perform error analysis
and observe that increasing the number of exam-
ples reduces boundary errors but not category er-
rors. These results provide novel insights for future
work on the FewMNER task.

Limitations

Although the proposed framework significantly out-
performs several strong baselines on the FewM-
NER task, it suffers from the following limitations:

• In the case of using the full amount of data,
our framework still lags behind fine-tuning
methods. We can utilize some data to domain
fine-tune LLM before applying our frame-
work, which may further improve the perfor-
mance of in-context learning on the FewM-
NER task. This is a direction for future ef-
forts.

• Unfortunately, due to API limitations, we are
unable to obtain results from the more pow-
erful GPT4 model, which has a multimodal
function. Further experiments and analysis
are required.

We believe that addressing the above limitations
can further improve the performance of our frame-
work.
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A Appendix

A.1 Impact of Different Output Format

Methods
Twitter-2015

P(%) R(%) F1(%)
sentence 51.10 51.84 51.47
dictionary 48.87 65.87 56.11

Table 10: Impact of different output format in 4-shot
setting on D50 set of Twitter-2015.

Methods
Twitter-2017

P(%) R(%) F1(%)
sentence 61.41 61.73 61.57
dictionary 65.58 74.46 69.74

Table 11: Impact of different output format in 4-shot
setting on D50 set of Twitter-2017.

To explore the influence of different output
formats, we perform experiments comparing
dictionary-based output format and sentence-based
output format and show results in Table 10-11.
We can obverse that compared with the sentence-
based output format, the dictionary-based output
format achieves 4.64% and 8.17% higher F1 in
4-shot setting on D50 set of Twitter2015 and Twit-
ter2017 datasets, respectively, which demonstrates
the dictionary-based output format is more suitable
for in-context learning paradigm on ChatGPT. Per-
haps this is related to the pre-training of ChatGPT
on code, as this code-like output format is more
comprehensible for ChatGPT.
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Replace Proportion
Twitter2015 Twitter2017

P(%) R(%) F1(%) P(%) R(%) F1(%)
0% 56.43 61.10 58.67 72.51 71.06 71.78

10% 56.32 60.85 58.50 70.87 70.76 70.81
50% 52.88 58.97 55.76 67.05 68.39 67.72
100% 51.39 58.54 54.73 61.65 61.88 61.77

Table 12: Different labels replace proportion in 4-shot setting on D50 set. Note that the results presented here differ
from the main experiment of paper due to OpenAI updating ChatGPT.

A.2 Perturbation Analysis
We conduct a perturbation analysis to examine the
effect of label noise on in-context learning. We
randomly replace different proportions of labels
with other labels in the examples and measure the
impact of label noise on the F1 score of our frame-
work. The results are shown in Table 12. As ex-
pected, the F1 score decreases as the label replace-
ment ratio increases. When all the example labels
are replaced (i.e., 100%), the F1 score drops by
3.94% and 10.01% on two datasets, respectively.
However, the F1 score does not drop to zero even
when all the example labels are replaced, which
indicates that the LLM has a strong intrinsic abil-
ity for this task and is not completely lost by the
examples.

A.3 Analyze Our Framework from Task
Perspective

We here provide an analysis of why our framework
performs well from the perspective of the FewM-
NER task. First, we model the FewMNER task
as a generative task, which is more direct than the
baseline methods that model the MNER task as a
sequence labeling task. Sequence labeling meth-
ods not only require fine-grained prediction but
also need to learn the association between differ-
ent labels. Second, our framework utilizes image
caption as a bridge to alleviate the gap between
image modality and text modality, which can skip
the process of information interaction between dif-
ferent modalities. Third, the four category con-
cepts of people, location, organization, and miscel-
laneous in FewMNER tasks can be understood by
LLM. Our framework can be readily adapted to the
task objectives. For these reasons, our framework
achieves good performance on the FewMNER task
under the condition of small samples.


