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ABSTRACT

Generative adversarial networks (GANs) are known to face model misspecification
when learning disconnected distributions. Indeed, continuous mapping from a uni-
modal latent distribution to a disconnected one is impossible, so GANs necessarily
generate samples outside of the support of the target distribution. In this paper,
we make the connection between the performance of GANs and their latent space
configuration. In particular, we raise the following question: what is the latent
space partition that minimizes the measure of out-of-manifold samples? Building
on a recent result of geometric measure theory, we prove a sufficient condition
for GANs to be optimal when the dimension of the latent space is larger than the
number of modes. In particular, we show the optimality of generators that structure
their latent space as a ‘simplicial cluster’ - a Voronoi partition where centers are
equally distant. We derive both an upper and a lower bound on the optimal preci-
sion of GANs learning disconnected manifolds. Interestingly, these two bounds
have the same order of decrease:

√
logm, m being the number of modes. Finally,

we perform several experiments to exhibit the geometry of the latent space and
experimentally show that GANs have a geometry with similar properties to the
theoretical one.

1 INTRODUCTION

GANs (Goodfellow et al., 2014), a family of deep generative models, have shown great capacities
to generate photorealistic images (Karras et al., 2019). State-of-the-art models, like StyleGAN
(Karras et al., 2019) or TransformerGAN (Jiang et al., 2021), show empirical benefits from relying
on overparametrized networks with high-dimensional latent spaces. Besides, manipulating the latent
representation of a GAN is also helpful for diverse tasks such as image editing (Shen et al., 2020; Wu
et al., 2021) or unsupervised learning of image segmentation (Abdal et al., 2021). However, there is
still a poor theoretical understanding of how GANs organize their latent space. We argue that this is a
crucial step in better apprehending the behavior of GANs.

To better understand GANs, the setting of disconnected distributions learning is enlightening. Ex-
perimental and theoretical works (Khayatkhoei et al., 2018; Tanielian et al., 2020) have shown a
fundamental limitation of GANs when dealing with such distributions. Since the distribution modeled
by GANs is connected, some areas of GANs’ support are necessarily mapped outside the true data
distribution. When covering modes of a disconnected distribution, GANs try to minimize the measure
of the generated distribution lying outside the true modes (e.g. the purple area on the right of Figure
1). In other words, GANs need to minimize the measure of the borders between the modes in the
latent space. Considering a Gaussian latent space, minimizing this measure is closely linked to the
field of Gaussian isoperimetric inequalities (Ledoux, 1996). This field aims at deriving the partitions
that decompose a Gaussian space with a minimal Gaussian-weighted perimeter. We argue that the
optimal partitions derived in Gaussian isoperimetric inequalities cast a light on the structure of the
latent space of GANs. Most notably, a recent result (Milman and Neeman, 2022) shows that, as long
as the number of components m in the partition and the number of dimensions d of the Gaussian
space are such that m ≤ d + 1, the optimal partition is a ‘simplicial cluster’: a Voronoi diagram
obtained from the cells of equidistant points (see left of Figure 1 for m = 3 and d = 3).

In this paper, we apply this result to the field of GANs and show, both experimentally and theoretically,
that GANs with ‘simplicial cluster’ latent space minimize out-of-distribution generated samples. We
draw the connection between GANs and Gaussian isoperimetric inequalities by using the precision
metric (Sajjadi et al., 2018; Kynkäänniemi et al., 2019), which quantifies the portion of generated

1



Under review as a conference paper at ICLR 2023

Figure 1: Illustration of the ability of GANs to find an optimal configuration in the latent space. On
the left, the propeller shape is a partition of 3D Gaussian space with the smallest Gaussian-weighted
perimeter (Figure from Heilman et al. (2013)). On the right, we show the 3D Gaussian latent space of
a GAN trained on three classes of MNIST. Each area colored in blue, green, or red maps samples in
one of the three classes. In purple, we observe the samples that are classified with low confidence.
We see that the partition reached by the GAN (right) is close to optimality (left), since the latent space
partition is similar to the intersection of the propeller on a sphere.

points that support the target distribution. We show that GANs with a latent space organized as a
simplicial cluster reach optimal precision levels and derive both an upper and a lower bound on the
precision of such GANs. Experimentally, we show that the GANs with higher performances tend to
organize their latent space as simplicial clusters. To summarize, our contributions are the following:

• We are the first to import the latest results from Gaussian isoperimetric inequalities by
(Milman and Neeman, 2022) to the study and understanding of GANs. We use it to show
that the latent space structure has major implications on the precision of GANs.

• We derive a new theoretical analysis, stating both an upper bound and a lower bound on the
precision of GANs. We show that GANs with latent space organized as a simplicial cluster
have an optimal precision whose lower bound decrease in the same order as the upper bound:√

logm, where m is the number of modes.

• Experimentally, we show that GANs tend to structure their latent space as ‘simplicial clusters’
on image datasets. First, we explore two properties of the latent space: linear separability
and convexity of classes. Then, we play with the latent space dimension and highlight
how it impacts the performance of GANs. Finally, we show that overparametrization helps
approaching the optimal structure and improving GANs performance.

2 RELATED WORK

2.1 NOTATION

Data. We assume that the target distribution µ? is defined on Euclidean space RD (potentially a
high-dimensional space), equipped with the Euclidean norm ‖ · ‖. We denote Sµ? the support of
this unknown distribution µ?. In practice, however, we only have access to a finite collection of
i.i.d. observations X1, . . . ,Xm distributed according to µ?. Thus, for the remainder of the article, we
let µm be the empirical measure based on X1, . . . ,Xm.

Generative model. We consider GL the set of L-Lipschitz continuous functions from the latent
space Rd to the high-dimensional space RD. Each generator aims at producing realistic samples.
The latent space distribution defined on Rd is supposed to be Gaussian and is noted γ . Thus, each
candidate distribution is the push forward between γ and a generator G and is noted as G]γ .

This Lipschitzness assumption on GL is reasonable since Virmaux and Scaman (2018) has shown
and presented an algorithm that upper-bounds the Lipschitz constant of any deep neural network. In
practice, one can enforce the Lipschitzness of generator functions by clipping the neural networks’
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parameters (Arjovsky et al., 2017), penalizing the discriminative functions’ gradient (Gulrajani et al.,
2017; Kodali et al., 2017; Wei et al., 2018; Zhou et al., 2019), or penalizing the spectral norms
(Miyato et al., 2018). Note that some large-scale generators such as SAGAN (Zhang et al., 2019) and
BigGAN (Brock et al., 2019) also make use of spectral normalization for the generator.

2.2 GANS AND DISCONNECTED DISTRIBUTIONS

A significant flaw of GANs (Goodfellow et al., 2014) is their difficulty in learning multi-modal
distributions. This phenomenon has been analyzed by Khayatkhoei et al. (2018) and Tanielian et al.
(2020). The problem comes from this fundamental trade-off: GANs can either cover all modes and
generate out-of-manifold samples or generate only good quality samples and neglect some modes
(mode collapse). Some methods have proposed ways to train disconnected generators (Khayatkhoei
et al., 2018; Gurumurthy et al., 2017), but with little benefits compared to single overparametrized
generators with rejection mechanisms (Tanielian et al., 2020; Azadi et al., 2018).

Empirically, different works give intuition on the latent space structure of GANs. Karras et al.
(2019) show that binary attributes are linearly separable in the Gaussian latent space and even better
separated in an intermediate latent space. Shen et al. (2020) stress that face attributes are separated by
hyperplanes, and edit images only by moving in the latent space orthogonally to these hyperplanes.
Arvanitidis et al. (2018) and Chen et al. (2018a) view the latent space of generative models with a
Riemannian perspective and define a metric tensor using the generator’s Jacobian to find the shortest
paths on the data manifold.

However, these findings might not be sufficient for a clear understanding of the required geometry of
the latent space. For instance, Karras et al. (2019) use a very large latent space dimension (R512),
while Sauer et al. (2022) argue that the optimal latent space dimension is close to the intrinsic
dimension of images (R64 for ImageNet). Tanielian et al. (2020) stress the relevance of this problem
by showing that the precision of GANs can converge to 0 when the number of modes or the distance
between them increases. In this paper, we make a step towards a better understanding of the behavior
of GANs and expose an optimal latent space configuration when the number of modes m and the
dimension of the latent space d are such that m≤ d +1.

2.3 EVALUATING GANS

When learning disconnected manifolds, Sajjadi et al. (2018) illustrated the need for new measures that
simultaneously evaluate the quality (Precision), and the diversity (Recall) of the generated samples.
Kynkäänniemi et al. (2019) highlighted an important drawback of this PR metric: it cannot correctly
interpret situations when large numbers of samples are packed together. They propose an Improved
PR metric based on the non-parametric estimation of manifolds to correct this.

Improved PR metric: Informally, for a generator G, precision (αG) quantifies the proportion
of generated samples that can be approximated with true samples, while recall (βG) measures the
proportion of true samples that can be approximated with generated ones. Applying this to GANs,
using the target distribution µ? and modeled distribution G]γ , the Improved PR metric was shown,
by Tanielian et al. (2020, Theorem 1), to be asymptotically equivalent to:

α
n
G →n→∞

αG = G]γ
(
Sµ?
)

and β
n
G →n→∞

βG = µ
?
(
SG]γ

)
, (1)

where Sµ? denotes the support of µ?. More recently, Naeem et al. (2020) have shown that the
Improved PR metric (Kynkäänniemi et al., 2019) is not robust to outlier samples of both the target
and the generated distribution. To correct this and fix the overestimation of the manifold around real
outliers, Naeem et al. (2020) propose the Density/Coverage metric.

Density/Coverage: Instead of counting how many fake samples belong to a real sample neighbor-
hood, density counts how many real sample neighborhoods contain a generated sample. On the other
hand, coverage counts the number of real sample neighborhoods that contain at least one fake sample.

In the next section, we will use the notion of precision and recall defined in (1). Using this definition
allows us to circumvent the non-parametric estimators involved in the existing metrics (Kynkäänniemi
et al., 2019; Naeem et al., 2020).
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3 DETERMINING OPTIMAL PRECISION IN GANS

We want to better understand the latent space of GANs and stress which GANs have the highest
precision under specific constraints. GANs are push-forward distributions of a unimodal (connected)
Gaussian distribution γ and a continuous function parameterized by G. Consequently, the modeled
generative distribution G]γ will have connected support.

When learning a target distribution µ? with disconnected manifolds, GANs necessarily map fake
data points out of the true manifold. This leads us to the following question: given that a generator
samples data points in each of the distinct modes, what can be its maximum precision? To begin with,
let’s assume a target distribution µ? composed of m disconnected modes.

Assumption 1 (Disconnected manifolds). The target distribution µ? lays on m equally measured
spheres Mi, i ∈ [1,m] of radius r, each located at equal distance D (with D/2 >> r).

The use of Assumption 1 is reasonable. First, on many real-world datasets, data is correctly balanced
in between the different modes. The equal distance assumption can be justified from the concentration
of distances in high-dimensional spaces: centers of modes will be approximately at equal distance
(Beyer et al., 1999; Aggarwal et al., 2001). It has also been shown that embeddings of deep neural
networks trained for classification tend to collapse around means that are equidistant to one another
(Kothapalli et al., 2022). This could thus pave the way for a new analysis where the chosen distance
is no longer the euclidean distance in RD but a distance in the feature space of the generator or any
pre-trained classifier. We also further discuss how this assumption could be relaxed. For the rest
of the paper, let us define the set of well-balanced generators that maps equally data points to the
different modes of the data distribution:

Definition 1. A generator G is well-balanced, if for all i ∈ [1,m], G]γ(M1) = . . .= G]γ(Mm).

Considering well-balanced generators is also fair since many empirical improvements such as
WGAN-GP (Gulrajani et al., 2017) or BigBiGAN (Donahue and Simonyan, 2019) have significantly
decreased the mode collapse. GANs generate diverse output distribution on datasets such as CIFAR10,
CIFAR100, and ImageNet. To validate the use of well-balanced generators, we ran a small experiment
and evaluate the proportion of each class generated by GANs on MNIST and CIFAR10. On MNIST,
the minimal proportion of a class is 9.2 and the maximal 10.9, while it is respectively 8.3 and 11.9
on CIFAR10 (in %). The variance/mean ratio is equal to 0.03 for MNIST and 0.22 for CIFAR10.

3.1 PRECISION AND THE ASSOCIATED PARTITION

Now that the prerequisites for both the data and the model have been given, we propose to define
our approach. We create the connection between the set of generators from Rd to RD and the set
of partitions in the latent space. In particular, for each given partition in Rd , there exists a set of
associated generators defined as follows:

Definition 2. For a given partition A = {A1, . . . ,Am} on Rd , we say that G is associated to A if:

for all i ∈ [1,m], for all z ∈ Ai, i = argmin
j∈[1,m]

d(G(z),M j), where d(X ,M j) = min
y∈Mi
‖X− y‖.

It is clear that each given generator is associated with a unique partition in the latent space. Moreover,
the geometry of the partition partly explains its behavior and performance. We are interested
in maximizing the precision of generative models. Any point in the intersection of two cells
Ai ∩A j,(i, j) ∈ [1,m]2 is at equal distance of Mi and M j and thus does not belong to any of these
modes (since D/2 >> r). Besides, due to the generator’s Lipschitzness, there is a small neighborhood
of the boundary such that any points in this neighborhood will be mapped out of the target manifold.
This region in the latent space thus reduces the precision. For a given ε > 0, we now define the
epsilon-boundary of the partition A as follows:

Definition 3. For a given partition A = {A1, . . . ,Am} of Rd and a given ε ∈R?
+, we denote ∂ εA

the epsilon-boundary of A , defined as follows:

∂
εA =

m⋃
i=1

(
∪ j 6=i A j

)ε\
(
∪ j 6=i A j

)
,
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where Aε corresponds to the ε-extension of set A. To better understand the link between the precision
of a generator αG and its associated partition A , we state the following lemma:
Lemma 1. Assume that Assumption 1 is satisfied and A be a partition in Rd . Then, any generator
G ∈ GL associated with A verifies:

αG 6 1− γ(∂ εminA ), where εmin = D/L. (2)

Interestingly, this result holds independently of the partition A . This result highlights that the
geometry of the partition gives an upper-bound on the precision of the generator. Consequently, to
properly determine this bound on the precision levels of generative models, one might be interested in
determining the measure of this epsilon-boundary ∂ εA . Furthermore, to exhibit generative models
with optimal precision levels, one must look at partitions with the smallest epsilon-boundary measures
γ(∂ εA ). This is tightly connected to the theoretical field of Gaussian isoperimetric inequalities.

3.2 OPTIMALITY IN GANS

Isoperimetric inequalities link the measure of sets with their perimeters. More specifically, isoperi-
metric inequalities highlight minimizers of the perimeter for a fixed measure, e.g. the sphere in
an euclidean space with a given Lebesgue measure. Gaussian isoperimetric inequalities study a
similar problem in Gaussian space. Borell (1975) and Sudakov and Tsirel’son (1978) show that in a
finite-dimensional Gaussian space, among all sets of a given measure, half-spaces have a minimum
Gaussian perimeter. More formally, for any Borel set A in Rd and a half-space H, if we have
γ(A)> γ(H), then γ(Aε)> γ(Hε) for any ε > 0, where Aε denotes the ε-extension of the set A.

The Gaussian multi-bubble conjecture was formulated when looking for a way to partition the
Gaussian space in m parts and with the least-weighted boundary. It was recently proved by Milman
and Neeman (2022) who showed that the best way to split a Gaussian space Rd in m clusters of equal
measure, with 2 6 m 6 d + 1, is by using ‘simplicial clusters’ obtained as the Voronoi cells of m
equidistant points in Rd . Convex geometry theory tells us that each cell is a convex cone, whose
borders are hyperplanes going through the origin of Rd . We note A ? any partition corresponding to
this optimal configuration, see Figure 1.

The aim of the present paper is to leverage this result to better understand the behaviour of GANs.
We argue that in the case where m 6 d+1, optimal models in levels of precision are closely linked to
the optimal partitions A ? derived in the Gaussian Multi-Bubble conjecture (Milman and Neeman,
2022). Besides, using results on the Gaussian boundary measure of those sets (Schechtman, 2012),
we can also derive an upper-bound on the maximal precision of generative models, as follows:
Theorem 1 (Upper-bounding the precision). Assume that Assumption 1 is satisfied and m 6 d+1.
For any δ > 0, if L is large enough, then for any well-balanced generator G ∈ GL, we have:

αG 6 1− γ(∂ εminA ?)+δ .

In particular, there exists L with L > D
√

log(m), such that for any well-balanced generator G ∈ GL:

αG 6 1− εmin
√

logm e−3/2, where εmin = D/L. (3)

Theorem 1 links the precision of well-balanced generators with the optimal partition from Milman
and Neeman (2022). In particular, result in (3) gives an interesting insight when training GANs on
a finite number of modes. Tanielian et al. (2020, Theorem 3) showed a similar result but for the
asymptotic case when the number of modes increases:

αG
m→∞

6 e−
1
8 ε2

mine−εmin
√

log(m)/2 (4)

For εmin
√

log(m) = o(1) both (3) and (4) have the same behaviour w.r.t. to the number of modes.
Now, to further show the usefulness of A ?, we prove the following theorem:
Theorem 2 (Lower-bounding the precision). Assume that Assumption 1 is satisfied and m 6 d+1.
For any δ > 0, there exists C large enough and L>D

√
m
√

π log(Cm), and a well-balanced generator
G? ∈ GL associated with A ? such that for any other well-balanced generator G ∈ GL, we have:

αG? > αG−δ . (5)
Moreover, if m≤ d:

αG? > 1− εmax
√

π log(Cm) where εmax =
D
√

m
L

. (6)
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A2 A3

A1
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Latent space Output space

M2 M3
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Figure 2: An optimal generator maps a 2D latent space to a 2D output space with three modes
(M1,M2,M3). The latent space has an optimal ‘simplicial cluster’ geometry. In the latent space, all
the ε-boundaries intersect each other in the gray circle, which is mapped in the output space in the
convex hull of the three modes.

This theorem, which proof is delayed to Appendix, shows that the set of generators associated with
A ? contains optimal generators w.r.t. precision. More importantly, it shows that when L is large
enough, the bound in (3) may be tight, as it is almost reached by optimal generators defined in
Theorem 2. An example of such optimal generators for the 2D case is given in Figure 2. This specific
generator memorizes the dataset, since all samples are mapped to one of the center of the modes
Mi, i ∈ [1,m], except for those in ε-boundaries. It is not clear however, whether those are the only
generators with optimal precision. We see that when the number of modes is less than the number of
dimensions in the latent space, the only factor that impacts the precision is the number of modes.

What if modes are not equally distant? This assumption is needed for the definition of a well-
balanced generator as the one proposed in Figure 2. In R2 for example, if there is no assumption at
all on the location of the modes, there might not be any well-balanced generators associated with the
optimal partition A ?. As shown in Figure 3, the latent space configuration obtained by the GANs on
3 aligned data points (right) is made of two parallel hyperplanes, much different from A ? defined by
Milman and Neeman (2022) (left).

Figure 3: GANs training with 3 equidistant modes and 3 (almost) aligned modes. The first and third
figure show the data points in the output space. The second and fourth stress the boundaries in the
latent space using heatmaps of the norm of the gradient of the generator.

What if the dimension m > d + 1? This setting is much more complex. First, Assumption 1 is
no longer valid, since one cannot find m points equally distant from one another. Second, the result
from Milman and Neeman (2022) is no longer valid and the optimal partition of the Gaussian space
in m equal cells is unknown. In this generalized context, GANs could hint at the optimal partition
geometry. We show in Figure 4 examples when training a GAN from R2 to Rm with m equidistant
target points in Rm. This could give some insights on how to divide the Gaussian space into m
equitable areas with least Gaussian-weighted perimeter.

4 EXPERIMENTS: UNDERSTANDING THE LATENT SPACE OF GANS

In the following experiments, we validate our theoretical analysis and derive insights for GANs
trained on toy and image datasets. We verify if the latent space geometry of GANs has similar
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Figure 4: Extending the multi-bubble conjecture when m > d +1. We plot the partition of the R2

latent space of a GAN that maps to m equidistant points in Rm, from m = 3 (left) to m = 12 (right).
Each colored cell maps to a distinct data point in the output space.

properties than the minimizers of the Gaussian isoperimetric inequality (Milman and Neeman, 2022),
and compute a series of experiments on the latent space of GANs to better understand its properties.

In all the following experiments, we train WGANs with gradient penalty (Arjovsky et al., 2017;
Gulrajani et al., 2017). For mixture of Gaussians, generator and discriminator are MLP networks.
For MNIST (LeCun et al., 1998), both the generator and discriminator are standard convolutional
architectures. On CIFAR-10 and CIFAR-100 datasets (Krizhevsky et al., 2009), we use a Resnet-
based (He et al., 2016) convolutional architecture with self-modulation in the generator (Chen et al.,
2018b), and the transformer-based architecture from Jiang et al. (2021). To evaluate the performance
of GANs, we use both the precision (Kynkäänniemi et al., 2019), the FID (Heusel et al., 2017), and
the density/coverage (Naeem et al., 2020). As recommended by recent works (Naeem et al., 2020;
Kynkäänniemi et al., 2022), we use a dataset-specific classifier to extract image features instead of an
ImageNet pre-trained classifier, and thus refer to the FID as FD for Fréchet Distance. Implementation
details are given in Appendix and code is provided in Supplementary Material.

4.1 LINEAR SEPARABILITY AND CONVEXITY

Milman and Neeman (2022) show that the optimal configuration in the latent space is obtained as the
Voronoi cells of m equidistant points in Rd , if m≤ d+1. This means that if GANs reach this optimal
configuration, each of the cells must be convex polytopes and thus verify the following properties:
1) each cell has ‘flat’ sides, and are bounded exclusively by faces; 2) each cell is convex. In the
following experiments, we study whether GANs’ latent spaces feature these two properties.

Are classes linearly separable in the latent space of GANs? To verify this, we leverage a labeled
dataset and investigate if a simple linear model (e.g., multinomial logistic regression) can map from
latent space to label space. If cells in the latent space are bounded by hyperplanes, the linear model is
expected to be a good predictor of a generated sample’s label.

We consider a labeled dataset of samples with a fixed number of classes. Gθ is a pre-trained generator,
and Cφ a pre-trained classifier considered as an oracle. Using Gθ and Cφ , we construct a dataset
of latent vectors z ∈Rd and their associated labels y =Cφ (Gθ (z)). On CIFAR-10/100, similarly to
Razavi et al. (2019), only data points with above a confidence threshold are accepted. This dataset
is later split into 100k training points and 10k test points. The mapping from latent vectors z to
their labels y is learned by a multinomial logistic regression. We report the test-set results in Table 1
under the column LogReg Accuracy. This accuracy reaches 90% on MNIST and 70% on CIFAR-10.
Interestingly, there is also a correlation between the linear separability of the latent space and the
precision metric, which validates the optimality of the simplicial cluster partition.

Are classes convex in the latent space of GANs? In this experiment, we draw two random
latent vectors z0 and z1 that belong to the same class. Then, we generate linear interpolations
zε = εz0 + (1− ε)z1 and verify if these new samples belong to the same class as z0 and z1, i.e.
whether Cφ (Gθ (zε)) equals to Cφ (Gθ (z0)). We report the mean accuracy of this experiment in Table
1 under the column Convex Accuracy. Again, the higher the precision, the ‘more convex’ each cell in
the latent space seems to be. For a qualitative evaluation, we show this phenomenon in Figure 5 and
stress that linear interpolations conserve the image class.
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Dataset Architecture Latent dim Precision LogReg Acc. Convex Acc.
100 Gauss. MLP 100 75.5 78.5 87.2
MNIST CNN 64 93.2 90.4 98.7
CIFAR-10 ResNet 64 75.6 65.3 75.2
CIFAR-10 Transformer 256 79.5 70.7 84.3
CIFAR-100 ResNet 64 65.9 34.4 47.1
CIFAR-100 Transformer 64 70.1 26.5 42.3

Table 1: In this experiment, we verify 1) if the latent spaces of GANs are linearly separable (LogReg
Accuracy); 2) if each cell of the latent space is convex. (Convex Accuracy). In par with Theorem 1,
the higher the precision is, the more each cell in the latent space is linearly separable and convex.
The architecture Transformer refers to the TransGAN model from Jiang et al. (2021).

Figure 5: Illustration of convexity of classes in the latent space of GANs trained on CIFAR-10.
Visual inspection confirms that latent linear interpolations between two samples of the same class
most often conserve the class.

Impact of the latent space dimension. Now, we evaluate the impact of the latent space dimension
on MNIST, CIFAR10 and CIFAR100 datasets. To do so, we vary the number of latent dimensions d
from 2 to 128 for each given dataset. In Figure 6, we exhibit two phases in the performance of GANs
when changing the number of latent dimensions: first, when d is below a dataset-specific threshold,
the precision of the model falls when reducing the number of latent dimensions. When d is above
this threshold, the precision becomes constant, and increasing the number of latent dimensions does
not bring any apparent improvement. This threshold is a function of the complexity of the dataset
and its number of modes. We observe from Figure 6, that the more complex the dataset, the more it
requires a large latent space for high precision levels. This is coherent with the theoretical results,
where the precision decreases w.r.t. to the number of modes in

√
log(m) when m 6 d +1.

Disentangling the manifold dimension. As discussed in Roth et al. (2017), two different problems
can arise when training GANs: i) dimensional misspecification where the true and modeled distri-
butions do not have density functions w.r.t. the same base measure, and ii) density misspecification,
where GANs try to fit a disconnected manifold with a unimodal disitribution. To isolate the density
misspecification studied in the current paper, we train a conditional GAN with a low-dimensional
latent space Rd (e.g. R5 in our setting), so that the dimension of the generated manifold is at most 5.
We later collect a dataset of synthetic generated samples Synthetic CIFAR-10, and train unconditional
GANs by varying the dimension of the latent space. Figure 6 shows both the Synthetic CIFAR-10
and the standard CIFAR-10 converge to the same limits for FD, Precision and Density, showing that
with large latent space dimensions, the density misspecification seems to be the main issue to cope
with. A synthetic experiment showing the importance of density misspecification over dimensional
misspecification is available in appendix.

Impact of overparametrization. Balaji et al. (2020) already showed the importance of GANs’
overparametrization in both their convergence and performance. Knowing that, we study whether
overparametrization can help GANs obtain the optimal geometry of latent space. In Table 2, we
vary the width of ResNet generators, and highlight that overparametrized GANs better fit the target
distribution. More importantly, we observe that overparametrization helps achieving better linear
separability of their latent space, as shown by LogReg Accuracy.
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Figure 6: Performance of GANs w.r.t. the number of modes and latent space dimensions on image
datasets. Left, the FD gets lower with increased latent dimension. Center and right, precision and
density improve when the latent dimension increases and saturates from a threshold.

Dataset Width LogReg Convex FD Prec. Dens. Cov.
Acc. Acc.

CIFAR- 32 53.4 ± 0.5 61.1 ± 0.3 447.9 ± 15.6 63.8 ± 0.7 52.9 ± 1.3 73.0 ± 1.0
10 64 60.7 ± 0.5 72.1 ± 0.6 154.3 ± 10.8 72.1 ± 0.4 69.4 ± 1.5 82.9 ± 0.7

128 63.4 ± 0.4 73.1 ± 0.6 94.5 ± 11.4 74.9 ± 1.0 74.2 ± 2.3 85.7 ± 1.0
256 65.0 ± 0.4 75.4 ± 0.4 75.8 ± 8.6 75.6 ± 0.4 76.9 ± 1.3 87.5 ± 0.8
512 65.3 ± 0.6 75.2 ± 0.7 70.8 ± 6.0 76.6 ± 1.0 77.5 ± 2.2 87.0 ± 0.6

CIFAR- 32 20.3 ± 0.1 28.1 ± 0.5 462.3 ± 15.1 49.3 ± 0.6 37.9 ± 1.6 69.5 ± 1.6
100 64 23.7 ± 0.9 33.4 ± 0.5 286.4 ± 10.4 58.7 ± 0.7 49.4 ± 1.4 78.7 ± 1.6

128 28.4 ± 0.3 39.1 ± 0.7 139.1 ± 11.8 65.6 ± 0.7 64.3 ± 2.3 85.9 ± 0.7
256 32.2 ± 0.5 45.1 ± 0.6 117.4 ± 8.2 66.0 ± 0.9 64.6 ± 1.8 86.4 ± 0.5
512 34.4 ± 0.5 47.1 ± 0.5 115.3 ± 9.0 65.9 ± 0.5 64.3 ± 1.4 85.9 ± 0.5

Table 2: Overparametrization study: for a latent dimension equal to 64, we vary the width of the
generator (confidence intervals computed on 10 checkpoints). Increasing the capacity of GANs
tend to structure their latent space in simplicial clusters (better LogReg accuracy) and improve their
performance on precision, density and coverage.

5 CONCLUSION

This paper aims to make a step toward a better understanding of GANs learning disconnected
distributions. When the latent space dimension is large enough, we present an optimal latent space
geometry of GANs: ‘simplicial clusters’, a Voronoi partition where each cell is a convex cone. We
further show experimentally that GANs with sufficient latent capacity tend to respect this optimal
geometry. We believe that our analysis can foster exciting research on GANs, with both theoretical and
practical impacts. For example, understanding the optimal latent space’s geometry could help design
semi-supervised or transfer algorithms from GANs. Also, it could inspire new neural architectures
with a bias for this ‘simplicial cluster’ partitioning of the latent space. Finally, let us note that our
results could potentially be extended to other types of generative models with Gaussian latent space
and, thus, would allow a better understanding of their properties. To adapt our analysis for variational
auto-encoders or diffusion models, one would need to adapt our results to a stochastic generator. This
could be an exciting follow-up of our work.

Limitations. We showed the existence of optimal generators and have shown experimentally that
overparametrization plays a key role. However, a limitation of our work is that we could not prove
their uniqueness. This is linked to partitions with the lowest ε-boundaries measures in the Gaussian
space, which is a complex, unknown result. A second limitation is that the derived optimal generators
are not valid in the case m > d+1, because the minimizers of Gaussian isoperimetric inequalities are
not known in this case.

Potential negative societal impacts. This work is mainly about understanding the behavior of
deep generative models. Thus, it may lead to practical improvements in this technology and increase
its potential negative impacts, such as deepfakes (Fallis, 2020).
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A IMPLEMENTATION DETAILS

Table 3: GANs training details on MNIST

Operation Kernel Strides Feature Maps Activation

Generator G(z)
z∼ N(0, I) dim(z)
Fully Connected 7×7×128
Convolution 3×3 1×1 7×7×64 LReLU
Convolution 3×3 1×1 7×7×64 LReLU
Nearest Up Sample 14×14×64
Convolution 3×3 1×1 14×14×32 LReLU
Convolution 3×3 1×1 14×14×32 LReLU
Nearest Up Sample 14×14×32
Convolution 3×3 1×1 28×28×16 LReLU
Convolution 3×3 1×1 28×28×1 Tanh

D(x) 28×28×1
Convolution 4×4 2×2 14×14×512 LReLU
Convolution 3×3 1×1 14×14×512 LReLU
Convolution 4×4 2×2 7×7×512 LReLU
Convolution 3×3 1×1 7×7×512 LReLU
Fully Connected 1 -

Batch size 256
Leaky ReLU slope 0.2
Gradient Penalty weight 10
Learning Rate Discriminator 1×10−4

Learning Rate Generator 5×10−5

Disciminator steps 2
Optimizer Adam β1 : 0.5 β2 : 0.5

Training. We use the Wasserstein loss with gradient-penalty on interpolations of fake and real data.
At each iteration, the discriminator is trained 2 steps and the generator 1 step with Adam optimizer.
The batch size is 256. The learning rate of the discriminator is two times larger (Heusel et al., 2017),
i.e. 5×10−5 for the generator and 1×10−4 for the discriminator. GANs are trained for 80k steps
on MNIST and for 100k steps on CIFAR datasets. Architectures of generator and discriminator are
described in Table 3 and Table 4.

Evaluation. Features are extracted with a classifier with simple architecture (convolutions, relu
activation, no batch normalization). The classifier is trained on each dataset with cross-entropy loss.
Weights of the classifiers are given in the code. For evaluation metrics, we follow the setting proposed
by the authors. For FID (Heusel et al., 2017), we use 50k real images and 50k fake images. For
precision, recall, density and coverage (Kynkäänniemi et al., 2019; Naeem et al., 2020), we use
10k real images and 10k fake images with nearest-k= 5. Full results of the study on latent space
dimension are presented in Table 5.

We also share the code for a better reproducibility.

GPUs. For all datasets, the training of GANs was run on NVIDIA TESLA V100 GPUs (16 GB).
The training of a GAN for 100k steps on CIFAR takes around 30 hours.
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Table 4: GANs training details on CIFAR datasets. BN stands for batch-normalization.

Conditional
Operation Kernel Strides Feature Maps BN (Chen et al., 2018b) Activation

Generator G(z)
z∼ N(0, Id) 128
Fully Connected 4×4×128 -
ResBlock [3×3]×2 1×1 4×4×128 Y ReLU
Nearest Up Sample 8×8×128 -
ResBlock [3×3]×2 1×1 8×8×128 Y ReLU
Nearest Up Sample 16×16×128 -
ResBlock [3×3]×2 1×1 16×16×128 Y ReLU
Nearest Up Sample 32×32×128 -
Convolution 3×3 1×1 32×32×3 - Tanh

Discriminator D(x) 32×32×3
ResBlock [3×3]×2 1×1 32×32×256 - ReLU
AvgPool 2×2 1×1 16×16×256 -
ResBlock [3×3]×2 1×1 16×16×256 - ReLU
AvgPool 2×2 1×1 8×8×256 -
ResBlock [3×3]×2 1×1 8×8×256 - ReLU
ResBlock [3×3]×2 1×1 8×8×256 - ReLU
Mean spatial pooling - - 256 -
Fully Connected 1 - -

Batch size 256
Gradient Penalty weight 10
Learning Rate Discriminator 1×10−4

Learning Rate Generator 5×10−5

Discriminator steps 2
Optimizer Adam β1 = 0. β2 = 0.999
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Dataset L. Dim. Acc. FD Prec. Rec. Dens. Cov.
MNIST 2 44.3 ± 2.5 112.3 ± 22.6 2.9 ± 1.0 89.1 ± 2.0 0.9 ± 0.3 2.1 ± 0.5

4 59.4 ± 0.7 36.4 ± 9.3 75.7 ± 1.8 91.5 ± 0.5 47.9 ± 2.2 66.0 ± 2.0
6 83.9 ± 0.4 15.4 ± 3.0 90.0 ± 0.7 92.4 ± 0.7 76.3 ± 2.0 85.8 ± 0.4
8 84.7 ± 0.4 18.2 ± 3.4 91.1 ± 0.7 92.3 ± 0.5 81.3 ± 2.2 87.1 ± 0.8

10 86.7 ± 0.4 10.7 ± 2.6 93.3 ± 0.5 91.5 ± 0.5 89.0 ± 2.2 89.8 ± 0.7
12 87.4 ± 0.4 7.2 ± 1.6 94.6 ± 0.5 91.5 ± 0.5 94.3 ± 2.0 91.8 ± 0.7
16 86.9 ± 0.4 11.0 ± 1.0 93.8 ± 0.3 91.8 ± 0.6 92.2 ± 0.9 90.7 ± 0.5
32 90.3 ± 0.4 10.4 ± 1.6 93.6 ± 0.3 91.6 ± 0.7 91.8 ± 1.7 90.3 ± 0.6
64 90.4 ± 0.3 13.3 ± 2.6 93.2 ± 0.4 92.3 ± 0.5 90.1 ± 2.0 90.2 ± 0.8

128 87.0 ± 0.4 11.0 ± 2.3 93.6 ± 0.3 91.8 ± 0.4 91.6 ± 1.5 90.4 ± 0.7
CIFAR-10 2 22.7 ± 1.7 450.5 ± 25.6 5.9 ± 0.7 83.9 ± 1.0 1.8 ± 0.2 4.1 ± 0.4

5 35.3 ± 0.5 183.1 ± 10.7 64.0 ± 0.6 82.6 ± 0.6 51.8 ± 1.0 74.8 ± 0.7
10 52.5 ± 0.3 117.6 ± 7.2 71.2 ± 0.4 82.3 ± 0.5 65.6 ± 1.1 82.3 ± 0.7
30 64.2 ± 0.5 89.8 ± 7.0 75.1 ± 0.7 81.4 ± 0.8 76.0 ± 1.8 85.9 ± 0.8

128 64.1 ± 0.5 81.3 ± 10.7 75.6 ± 0.5 81.8 ± 0.5 76.2 ± 1.6 86.7 ± 0.6
Synthetic 2 25.0 ± 3.0 175.9 ± 19.6 7.9 ± 0.8 78.3 ± 1.2 2.4 ± 0.3 5.1 ± 0.7
CIFAR-10 5 35.3 ± 0.5 183.1 ± 10.7 64.0 ± 0.6 82.6 ± 0.6 51.8 ± 1.0 74.8 ± 0.7

10 48.3 ± 0.6 131.7 ± 28.5 58.8 ± 4.0 78.2 ± 1.0 59.0 ± 6.2 74.6 ± 3.7
30 57.3 ± 0.9 57.7 ± 11.1 73.6 ± 2.0 76.7 ± 0.8 79.3 ± 5.4 90.4 ± 1.3

128 55.7 ± 1.0 79.0 ± 12.4 71.3 ± 2.9 77.7 ± 1.6 71.4 ± 8.1 84.2 ± 6.3
CIFAR-100 2 12.1 ± 1.2 912.4 ± 125.8 1.7 ± 0.3 86.2 ± 0.9 0.5 ± 0.1 0.9 ± 0.1

5 11.1 ± 0.3 244.9 ± 8.7 49.5 ± 0.8 81.9 ± 0.3 34.9 ± 0.9 64.4 ± 1.2
10 21.7 ± 0.3 220.2 ± 10.2 57.7 ± 0.7 81.6 ± 0.7 47.7 ± 1.3 76.9 ± 1.0
30 27.3 ± 0.4 198.7 ± 14.8 61.2 ± 0.6 80.7 ± 0.6 54.6 ± 1.4 81.7 ± 0.9
64 28.4 ± 0.3 139.1 ± 11.8 65.6 ± 0.7 79.5 ± 0.6 64.3 ± 2.3 85.9 ± 0.7

128 26.7 ± 0.5 191.9 ± 10.7 61.7 ± 0.8 80.2 ± 0.8 56.4 ± 1.2 82.5 ± 1.0

Table 5: Performance of GANs when varying latent space dimension. Confidence intervals are
computed on 10 checkpoints of the same training. See main paper for curves of precision and FID
with regard to the latent space dimension.
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B TECHNICAL RESULTS

B.1 PROOF OF LEMMA 1

We want to show that generator G ∈ G A
L is such that αG 6 1− γ(∂ εminA ), where

∂
εminA =

m⋃
i=1

(
∪ j 6=i A j

)εmin\
(
∪ j 6=i A j

)
,

Proof by contradiction.

Assume a generator G such that there exists z ∈ ∂ εminA and i ∈ [1,m] such that G(z) ∈Mi. Since G
is associated with A , we have using Definition 2, that there exists z′ and j ∈ [1,m], j 6= i such that
‖z− z′‖< εmin/2 and j = argmin

k∈[1,m]

‖G(z′)−Mk‖. Thus, we have:

‖G(z)−G(z′)‖> d(G(z′),Mi),

> d(Mi,Mi)/2,
> Dmin/2.

And,
‖G(z)−G(z′)‖
‖z− z′‖

> Dmin/εmin,

> L.

This contradicts G being in G A
L .

B.2 PROOF OF THEOREM 1

Proving that: for m 6 d + 1, for any δ > 0, if L is large enough, then, for any well-balanced
G∈ GL, we have αG 6 1−γ(∂ εminA ?)+δ . Let G be a well-balanced generator and A the partition
associated with G. Let us first define the gaussian boundary measure Pγ of a partition A of Rd . For
partitions with smooth boundaries, it coincides with the (d−1)-dimensional gaussian measure of the
boundary, defined as follows:

Pγ(A ) = liminfε→0
γ(∂ εA )− γ(A )√

2/πε

Moreover, for sets with smooth boundaries, we have from Federer (1969, Theorem 3.2.29):

liminfε→0
γ(∂ εA )− γ(A )√

2/πε
= limε→0

γ(∂ εA )− γ(A )√
2/πε

Let us denote A ?, the optimal partition defined in Milman and Neeman (2022), based on simplicial
clusters. A? is a standard partition where γ(A?

1) = . . . = γ(A?
m) for all i, and ∑i γ(Ai) = 1. By the

multi-bubble theorem (Milman and Neeman, 2022), simplicial clusters (such as A ?) are the unique
minimizers of the gaussian isoperimetric problem, thus:

Pγ(A
?)6 Pγ(A )

limε→0
γ(∂ εA ?)

ε
6 limε→0

γ(∂ εA )

ε

LA 6 LA ?

where LA = limε→0
γ(∂ ε A ?)

ε
and LA ? = limε→0

γ(∂ ε A ?)
ε

.

Then, for any δ > 0, there exists ε ′ > 0 such that, for any ε < ε ′,

|γ(∂
εA ?)

ε
−LA ? |< δ , |γ(∂

εA )

ε
−LA |< δ and LA ? 6 LA

Thus, for any δ > 0, there exists ε ′ > 0 such that, for any ε < ε ′,

γ(∂ εA ?)6 γ(∂ εA )+2δε (7)
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Besides, we know that
αG 6 1− γ(∂ εminA )

Consequently, we have that:

αG 6 1− γ(∂ εminA )

6 1− γ(∂ εminA ?)+2δεmin using (7).

We conclude by choosing L big enough such that εmin is strictly smaller than δ

δ/2 .

Second part of Theorem 1. Let L,D be such that L > D
√

log(m). Let’s prove that for any well-
balanced generator G ∈ GL, we have:

αG 6 1− εmin
√

logm e−3/2.

Using the method from Schechtman (2012), we have the measure of the border of cell i:

γ

((
∪ j 6=i A j

)ε\
(
∪ j 6=i A j

))
>

1√
2π

∫ t+ε

t
e−s2/2ds, where t is such that

1√
2π

∫
∞

t
e−s2/2ds = 1/m,

>
ε√
2π

e−(t+ε)2/2,

>
ε
√

logm
m

e−εt−ε2/2 (using
√

logm≤ t ≤
√

2logm),

>
ε
√

logm
m

e−ε
√

logm−ε2/2.

Thus:

γ(∂ εminA ) =
m

∑
i=1

γ

((
∪ j 6=i A j

)ε\
(
∪ j 6=i A j

))
> εmin

√
logm e−εmin

√
logm−ε2

min/2.

Thus, we have

αG 6 1− γ(∂ εminA ),

6 1− εmin
√

logm e−εmin
√

logm−ε2
min/2.

Moreover, using εmin =
D
L and L > D

√
logm, so we get εmin

√
logm 6 1:

αG 6 1− εmin
√

logm e−3/2.

B.3 PROOF OF THEOREM 2

For a given partition A , and a target distribution µ? with m disconnected components Mi, i ∈ [1,m],
we defined Xi, i ∈ [1,m] a set of sampled data points such that for all i ∈ [1,m], we have Xi ∈Mi. Now,
we define G?

ε with ε > 0, a generative model such that:

G?
ε(z) = ∑

i∈Sz

wi(z) Xi, with wi(z) =
d(z,(Aε

i )
{)

∑ j∈Sz d(z,(Aε
j )
{)

(8)

where d(z,A) = mina∈A ‖z− a‖, and Sz = { j ∈ [1,n] such that z ∈ Aε
j} denotes the set of cell-

extensions the point z belongs to. We can see that G?
ε]γ memorizes the dataset since every z

close to the center of the cell Ai such that |Sz| = 1 verifies G?
ε(z) = Xi. An illustration is given in

Figure 2.

To be more precise, all samples are mapped to one of the center of the modes Xi, i ∈ [1,m], except for
those in ε-boundaries. When z belongs to the intersection of two ε-boundaries, Gε(z) is a simple
linear combination of 2 points. It is only when |Sz|> 3 that more complex samples are generated. A
simple illustration of G?

ε for d = 2 and m = 3 is given in Figure 2. Interestingly, one can also show
that the image of G?

ε is equal to the convex hull of the diracs Xi, i ∈ [1,m]. In particular, there exists a
particularly interesting neighborhood ν of 0 where G?

ε(ν) is equal to the whole convex hull of the
points Xi, i ∈ [1,m].
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Proof that G?
ε is well-balanced. We recall that a generator is well-balanced if we have G]γ(M1) =

. . .= G]γ(Mm). By construction (8), we have that for any i ∈ [1,m]

‖G?
ε(z)−Xi‖= ‖∑

k 6=i
wk(Xk−Xi)‖,

= D× (1−wi).

So, for any z ∈ Ai, we have that

i = argmin
j∈[1,m] w j

= argmin
j∈[1,m] ‖G(z)−X j‖

Thus G?
ε is associated with the optimal partition A ?, .

Besides, for a given radius r of the different modes, since everything is symmetrical, we have
that γ({z ∈ Rd ,‖G(z)−X1‖ 6 r} = . . . = γ({z ∈ Rd ,‖G(z)−Xm‖ 6 r}. Thus, the generator is
well-balanced.

Proof that G?
εmax is in GL. To begin with, we have Rd = ∂ εA

⋃(
Rd \∂ εA

)
.

Rd \∂
εA =

m⋃
i=1

Ai\
(
(∪ j 6=iA j)

ε ∩Ai
)
,

and, we know that for each i ∈ [1,m], G?
ε(z) is constant and thus L-Lipschitz.

Now,

∂
εA =

m⋃
i=1

(
∪ j 6=i A j

)ε\
(
∪ j 6=i A j

)
=

⋃
S∈P([1,m])
card(S)>2

⋂
i∈S

Aε
i .

Now, let S ∈ P([1,m]) with card(S) = k > 2. Let z,z′ ∈ S2. Let α = (α1, . . . ,αm) and β =
(β1, . . . ,βm) be two vectors, both in Rm, such that for all i ∈ [1,m]:

αi =
d(z,(Aε

i )
{)

∑ j∈Az d(z,(Aε
j )
{)

and βi =
d(z′,(Aε

i )
{)

∑ j∈Az d(z′,(Aε
j )
{)

We have that

‖G(z)−G(z′)‖= ‖(1−∑
i 6=1

αi)X1− (1−∑
i6=1

βi)X1 +∑
i6=1

αiXi−∑
i 6=1

βiXi‖

= ‖∑
i 6=1

(αi−βi)(X1−Xi)‖

6 max
(i, j)∈[1,m]2

‖Xi−X j‖ ‖α−β‖,

6 max
(i, j)∈[1,m]2

‖Xi−X j‖ ‖h(z)−h(z′)‖,

where h is the function from Rd →Rm defined as:

h(z) = (
d(z,(Aε

1)
{)

∑i∈Az d(z,(Aε
i )

{)
, . . . ,

d(z,(Aε
m)

{)

∑i∈Az d(z,(Aε
i )

{)
).

We can write h = f ◦g with f the function defined from Rd →Rm by

f (z) =
(

d(z,(Aε
1)

{), . . . ,d(z,(Aε
k)

{)
)
,

and g the function defined on Rm \{0} by

g(z) =
z
‖z‖1
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We have that f is a
√

m-Lipschitz functions (given that z 7→ d(z,(Aε
m)

{) is 1-Lipschitz). Besides, we
know that outside the ball Bε(0), the function g is (1/ε)-Lipschitz.

Using the convexity of function z 7→ ∑ j∈Az d(z,(Aε
j )) (as a sum of convex functions), we can show

that for all z ∈ Az, we have that f (z) 6 (m− 1)ε and f (z) is not Bε(0). Finally, the function h is√
m

ε
-Lipschitz.

Thus, we have that:

‖G?
ε(z)−G?

ε(z
′)‖6 D

√
m

ε
‖z− z′‖,

with D = ‖Xi−X j‖,(i, j) ∈ [1,m]2, i 6= j. Consequently, by noting εmax =
D
√

m
L , we have :

‖G?
εmax(z)−G?

εmax(z
′)‖6 L‖z− z′‖.

We can now conclude on the Lipschitzness of G? on Rd .

Proving that: for m 6 d + 1, for any δ > 0, if L is large enough, then, for any well-balanced
G ∈ GL, we have αG?

εmax
> αG−δ . From the proof of Theorem 1, we have that for any δ > 0, there

exists εmin such that:

αG 6 1− γ(∂ εminA )

6 1− γ(∂ εminA ?)+2δεmin using (7).

Now, by construction of G?
εmax , we have that

αG?
εmax

> 1− γ(∂ εmaxA ?).

Consequently,

αG 6 1− γ(∂ εminA ?)+2δεmax + γ(∂ εmaxA ?)− γ(∂ εmaxA ?)

6 αG?
ε
+2δεmax + γ(∂ εmaxA ?)− γ(∂ εminA ?)

6 αG?
ε
+2δεmax + γ(∂ εmaxA ?)−2LA ?εmax− γ(∂ εminA ?)+2LA ?εmin +2LA ?(εmax− εmin)

6 αG?
ε
+4δεmax +2LA ?εmax,

6 αG?
ε
+ εmax(4δ +2LA ?).

We conclude by choosing L big enough such that εmax is strictly smaller than δ

4δ+2LA ?
.

Proving the second part of Theorem 2. The precision of G?
ε is thus such that:

αG?
εmax

> 1− γ(∂ εmaxA ).

However, since ∂ εA ⊂
⋃n

i=1 Aε
i , we have that for any ε

γ(∂ εA )6
n

∑
i=1

γ(Aε
i ).

Using results from Schechtman (2012, Proposition 1), when m≤ d, there exists C large enough, such
that

γ(Aεmax
i )6

εmax

m

(√
π log(Cm)

)
.

Thus, we have
αG?

εmax
> 1− εmax

√
π log(Cm),

To have αG?
εmax

> 0, we must have εmax 6 1/
√

π log(Cm). This is the case since we have

εmax = D
√

m/L and L > D
√

m
√

π log(Cm).
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C ADDITIONAL RESULT

Impact of the number of modes. To illustrate the results from Theorem 1 and Theorem 2, we
propose to vary the number of modes of the data distribution. On real-world data, the number of
modes is set but usually unknown, and removing/adding classes as a proxy for modes usually does
not give insightful results since some classes can be much more complex than others. We thus use
a synthetic setting, where we can easily control both the number of modes and their complexity.
Figure 7 stresses that as the number of modes increase, the precision decrease. Interestingly, using
large latent space dimension can relieve the problem, even if the latent space dimension is clearly
below that of the target. Recall the two problems that arise when training GANs: i) dimensional
misspecification where the true and modeled distributions do not have density functions w.r.t. the
same base measure, and ii) density misspecification, where GANs try to fit a disconnected manifold
with a unimodal disitribution. From the results we conclude that:

• With very low latent space dimensions, both problems i) and ii) have to be addressed and
this leads to poor precision as the number of modes increases.

• With larger latent space dimensions, the problem i) is less of a burden even when there is a
clear dimensional misspecification and thus the GANs’ performance is more tied to problem
ii).

Figure 7: Training on a mixture of Gausians in R100 with varying number of modes and varying
latent space dimension. The bigger the number of modes, the lower the precision. Increasing the
latent space dimension helps up to a limit depending on the number of modes.
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