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ABSTRACT

Graph Neural Networks (GNNs) have been drawing significant attention to the
power of representation learning on graphs. Recent works developed frameworks
to train very deep GNNs. Such works show impressive results in tasks like point
cloud learning and protein interaction prediction. In this work, we study the per-
formance of such deep models in large-scale graph datasets from the Open Graph
Benchmark (OGB). In particular, we look at the effect of adequately choosing
an aggregation function and its effect on final performance. Common choices of
aggregation are mean, max, and sum. It has been shown that GNNs are sensitive
to such aggregations when applied to different datasets. We systematically study
this point on large-scale graphs and propose to alleviate it by introducing a novel
Generalized Aggregation Function. Proposed aggregation functions extend beyond
the commonly used ones. The generalized aggregation functions are fully differen-
tiable, and thus their parameters can be learned in an end-to-end fashion. We show
that deep residual GNNs equipped with generalized aggregation functions achieve
state-of-the-art results in several benchmarks from OGB across tasks and domains.

1 INTRODUCTION

The rise of availability of non-Euclidean data (Bronstein et al., 2017) has recently shed interest into
the topic of Graph Neural Networks (GNNs). GNNs provide powerful deep learning architectures
for unstructured data, like point clouds and graphs. GNNs have already proven to be valuable in
several applications including predicting individual relations in social networks (Tang & Liu, 2009),
modelling proteins for drug discovery (Zitnik & Leskovec, 2017; Wale et al., 2008), enhancing
predictions of recommendation engines (Monti et al., 2017b; Ying et al., 2018), and efficiently
segmenting large point clouds (Wang et al., 2019; Li et al., 2019).

Graph convolutions in GNNs are based on the notion of message passing (Gilmer et al., 2017).
To compute a new node feature at each GNN layer, information is aggregated from the node and
its connected neighbors. Given the nature of graphs, aggregation functions must be permutation
invariant. This property guarantees invariance/equivariance to isomorphic graphs (Battaglia et al.,
2018; Xu et al., 2019b; Maron et al., 2019a). Popular choices for aggregation functions are mean
(Kipf & Welling, 2016), max (Hamilton et al., 2017), and sum (Xu et al., 2019b). Recent works
suggest different aggregations have different performance impact depending on the task. For example,
mean and sum perform better in some node classification tasks such as classifying article subjects
and detecting community (Xu et al., 2019b), while max is favorable for dealing with 3D point clouds
(Qi et al., 2017; Wang et al., 2019). Despite sum is theoretically proven more powerful than mean
and max with respect to graph isomorphism, it does not yield consistently better results on different
datasets. The mechanisms to choose a suitable aggregation function are unclear. Most works rely on
manual twists to choose aggregation functions.

In this work, we explore approaches to go beyond vanilla aggregation functions. In particular, we look
at the effect of aggregation functions in performance. We unify aggregation functions by proposing a
novel Generalized Aggregation Function (Figure 1) suited for graph convolutions. We show how our
function covers all commonly used aggregations (mean, max, and sum), and its parameters can be
tuned to learn customized functions for different tasks. Our novel aggregation is fully differentiable
and can be learned in an end-to-end fashion in a deep GNN framework. In our experiments, we show
the performance of baseline aggregations in various large-scale graph datasets. We then introduce our
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Figure 1: Illustration of Generalized Message Aggregation Functions

generalized aggregation and observe improved performance with the correct choice of aggregation
parameters. Finally, we demonstrate how learning the parameters of our generalized aggregation,
in an end-to-end fashion, leads to state-of-the-art performance in several OGB benchmarks. Our
analysis indicates the choice of suitable aggregations is imperative to the performance of different
tasks. A differentiable generalized aggregation function ensures the correct aggregation is used for
each learning scenario.

We summarize our contributions as two-fold: (1) We propose a novel Generalized Aggregation
Function. This new function is suitable for GNNs, as it enjoys a permutation invariant property. We
show how our generalized aggregation covers commonly used functions such as mean, max, and
sum in graph convolutions. We show its parameters can be tuned to improve performance on diverse
graph learning tasks. Since this new function is fully differentiable, we show how its parameters can
be learned in an end-to-end fashion. (2) We run extensive experiments on seven datasets from the
Open Graph Benchmark (OGB). Our results show that combining pre-activated residual connections
with our generalized aggregation network achieves state-of-the-art in several of these benchmarks.

2 RELATED WORK

Graph Convolutional Networks (GNNs). GNN algorithms can be divided into two categories:
spectral-based and spatial-based. Based on spectral graph theory, Bruna et al. (2013) firstly developed
graph convolutions using the Fourier basis of a given graph in the spectral domain. Later, many
methods proposed to apply improvements, extensions, and approximations on spectral-based GNNs
(Kipf & Welling, 2016; Defferrard et al., 2016; Henaff et al., 2015; Levie et al., 2018; Li et al., 2018;
Wu et al., 2019). Spatial-based GNNs (Scarselli et al., 2008; Hamilton et al., 2017; Monti et al.,
2017a; Niepert et al., 2016; Gao et al., 2018; Xu et al., 2019b; Veličković et al., 2018) define graph
convolution operations directly on the graph by aggregating information from neighbor nodes. Many
sampling methods (Hamilton et al., 2017; Chen et al., 2018a;b; Li et al., 2018; Chiang et al., 2019;
Zeng et al., 2020) have also been proposed to scale up GNNs on large-scale graphs.
Deep GNNs. Despite the rapid and fruitful progress of GNNs, most prior works employ shallow
GNNs. Several works attempt different ways of training deeper GNNs (Rahimi et al., 2018; Xu et al.,
2018). However, all these approaches are limited to 10 layers of depth, after which GNN performance
would degrade because of vanishing gradient and over-smoothing (Li et al., 2018). Inspired by the
merits of training deep CNN-based networks (He et al., 2016a; Huang et al., 2017; Yu & Koltun,
2016), DeepGCNs (Li et al., 2019; 2021) propose to train very deep GNNs (56 layers) by adapting
residual connections, dense connections and dilated convolutions to GNNs. DeepGCN variants
achieve state-of-the art results on S3DIS point cloud semantic segmentation (Armeni et al., 2017)
and the PPI dataset. Many recent works focus on further addressing this phenomenon (Klicpera et al.,
2019; Rong et al., 2020; Zhao & Akoglu, 2020; Chen et al., 2020; Gong et al., 2020; Rossi et al.,
2020). In particular, Klicpera et al. (2019) propose a PageRank-based message passing mechanism
involving the root node in the loop. Alternatively, DropEdge (Rong et al., 2020) randomly removes
edges from the graph, and PairNorm (Zhao & Akoglu, 2020) develops a novel normalization layer.
We find that the choice of aggregation functions also plays an important role in training deep GNNs.
In this work, we thoroughly study the importance of aggregation functions in training deep GNNs.
Aggregation Functions for GNNs. GNNs update a node’s feature vector by aggregating feature
information from its neighbors in the graph. Many different neighborhood aggregation functions
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that possess a permutation invariant property have been proposed (Hamilton et al., 2017; Veličković
et al., 2018; Xu et al., 2019b). Specifically, Hamilton et al. (2017) examine mean, max, and LSTM
aggregators, and they empirically find that max and LSTM achieve the best performance. Graph
attention networks (GATs) (Veličković et al., 2018) employ the attention mechanism (Bahdanau et al.,
2015) to obtain different and trainable weights for neighbor nodes by learning the attention between
their feature vectors and that of the central node. Xu et al. (2019b) propose a Graph Isomorphism
Network (GIN) with a sum aggregation and show its discriminative power is as powerful as Weisfeiler-
Lehman (WL) test (Weisfeiler & Lehman, 1968). Corso et al. (2020) propose PNA by combining
multiple aggregators with degree-scalers. In this work, we propose generalized message aggregation
functions, a new family of aggregation functions, that generalizes vanilla aggregators including mean,
max and sum. With the nature of differentiablity and continuity, generalized message aggregation
functions provide a new perspective for designing GNN architectures.

3 REPRESENTATION LEARNING ON GRAPHS

Graph Representation. A graph G is usually defined as a tuple of two sets G = (V, E), where
V = { v1, v2, ..., vN } and E ⊆ V × V are the sets of vertices and edges, respectively. If an edge
eij = (vi, vj) ∈ E for an undirected graph, eij is an edge connecting vertices vi and vj ; for a directed
graph, eij is an edge directed from vi to vj . Usually, a vertex v and an edge e in the graph are
associated with vertex features hv ∈ RD and edge features he ∈ RC respectively.1

GNNs for Learning Graph Representation. We define a general graph representation learning
operator F , which takes as input a graph G and outputs a transformed graph G′, i.e. G′ = F(G).
The features or even the topology of the graph can be learned or updated after the transformation F .
Typical graph representation learning operators usually learn latent features or representations for
graphs such as DeepWalk (Perozzi et al., 2014), Planetoid (Yang et al., 2016), Node2Vec (Grover
& Leskovec, 2016), Chebyshev graph CNN (Defferrard et al., 2016), GCN (Kipf & Welling, 2016),
Neural Message Passing Network (MPNN) (Gilmer et al., 2017), GraphSage (Hamilton et al., 2017),
GAT (Veličković et al., 2018) and GIN (Xu et al., 2019b). In this work, we focus on the GNN
family and its message passing framework (Gilmer et al., 2017; Battaglia et al., 2018). To be specific,
message passing based on the GNN operator F operating on vertex v ∈ V at the l-th layer is defined
as follows:

m(l)
vu = ρ(l)(h(l)

v ,h
(l)
u ,h

(l)
evu

), ∀u ∈ N (v) (1)

m(l)
v = ζ(l)({m(l)

vu | u ∈ N (v) }) (2)

h(l+1)
v = φ(l)(h(l)

v ,m
(l)
v ), (3)

where ρ(l), ζ(l), and φ(l) are all learnable or differentiable functions for message construction,
message aggregation, and vertex update at the l-th layer, respectively. For simplicity, we only
consider the case where vertex features are updated at each layer. It is straightforward to extend
it to edge features. Message construction function ρ(l) is applied to vertex features h

(l)
v of v, its

neighbor’s features h(l)
u , and the corresponding edge features hevu to construct an individual message

m
(l)
vu for each neighbor u ∈ N (v). Message aggregation function ζ(l) is commonly a permutation

invariant set function that takes as input a countable unordered message set {m(l)
vu | u ∈ N (v) },

where m
(l)
vu ∈ RD, and outputs a reduced or aggregated message m

(l)
v ∈ RD. The permutation

invariance of ζ(l) guarantees the invariance/equivariance to isomorphic graphs (Battaglia et al., 2018).
ζ(l) can simply be a symmetric function such as mean (Kipf & Welling, 2016), max (Hamilton et al.,
2017), or sum (Xu et al., 2019b). Vertex update function φ(l) combines the original vertex features
h
(l)
v and the aggregated message m

(l)
v to obtain the transformed vertex features h(l+1)

v .

4 BEYOND MEAN, MAX, AND SUM AGGREGATION FUNCTIONS

Property 1 (Graph Isomorphic Equivariance). If a message aggregation function ζ is permutation
invariant to the message set {mvu | u ∈ N (v) }, then the message passing based GNN operator

1In some cases, vertex features or edge features are absent.
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F is equivariant to graph isomorphism, i.e. for any isomorphic graphs G1 and G2 = σ ? G1,
F(G2) = σ ? F(G1), where ? denotes applying a permutation operator σ on graphs.

The invariance and equivariance properties on sets or GNNs have been discussed in many recent
works. Zaheer et al. (2017) propose DeepSets based on permutation invariance and equivariance
to deal with sets as inputs. Maron et al. (2019c) show the universality of invariant GNNs to any
continuous invariant function. Keriven & Peyré (2019) further extend it to the equivariant case. Maron
et al. (2019b) compose networks by proposing invariant or equivariant linear layers and show that
their models are as powerful as any MPNN (Gilmer et al., 2017). In this work, we study permutation
invariant functions of GNNs, which enjoy these proven properties.

4.1 GENERALIZED MESSAGE AGGREGATION FUNCTIONS

To embrace the properties of invariance and equivariance (Property 1), many works in the graph
learning field tend to use simple permutation invariant functions like mean (Kipf & Welling, 2016),
max (Hamilton et al., 2017) and sum (Xu et al., 2019b). Inspired by the Weisfeiler-Lehman (WL)
graph isomorphism test (Weisfeiler & Lehman, 1968), Xu et al. (2019b) propose a theoretical
framework and analyze the representational power of GNNs with mean, max and sum aggregators.
Although mean and max aggregators are proven to be less powerful than sum according to the WL
test in (Xu et al., 2019b), they are found to be quite effective in the tasks of node classification (Kipf
& Welling, 2016; Hamilton et al., 2017) and 3D point cloud processing (Qi et al., 2017; Wang et al.,
2019) To go beyond these simple aggregation functions and study their characteristics, we define
generalized aggregation functions in the following.

Definition 2 (Generalized Message Aggregation Functions). We define a generalized message
aggregation function ζz(·) as a function that is parameterized by a continuous variable z to produce
a family of permutation invariant set functions, i.e. ∀z, ζz(·) is permutation invariant to the order of
messages in the set {mvu | u ∈ N (v) }.

In order to subsume the popular mean and max aggregations into the generalized space, we further
define generalized mean-max aggregation parameterized by a scalar for message aggregation.

Definition 3 (Generalized Mean-Max Aggregation). If there exists a pair of x say x1, x2 such that for
any message set limx→x1

ζx(·) = Mean(·) 2 and limx→x2
ζx(·) = Max(·), then ζx(·) is a generalized

mean-max aggregation function.

The nice properties of generalized mean-max aggregation functions can be summarized as follows:
(1) they provide a large family of permutation invariant aggregation functions; (2) they are continuous
and differentiable in x and are potentially learnable; (3) it is possible to interpolate between x1
and x2 to find a better aggregator than mean and max for a given task. To empirically validate
these properties, we propose two families of generalized mean-max aggregation functions based on
Definition 3, namely SoftMax aggregation and PowerMean aggregation.

Proposition 4 (SoftMax Aggregation). Given any message set {mvu | u ∈ N (v) }, mvu ∈ RD,
SoftMax_Aggβ(·) is a generalized mean-max aggregation function, where SoftMax_Aggβ(·) =∑

u∈N (v)
exp(βmvu)∑

i∈N(v) exp(βmvi)
·mvu. Here β is a continuous variable called an inverse temperature.

The SoftMax function with a temperature has been studied in many machine learning areas, e.g.
Energy-Based Learning (LeCun et al., 2006), Knowledge Distillation (Hinton et al., 2015) and Rein-
forcement Learning (Gao & Pavel, 2017). Here, for low inverse temperatures β, SoftMax_Aggβ(·)
behaves like a mean aggregation. For high inverse temperatures, it approaches a max aggregation.
Formally, limβ→0SoftMax_Aggβ(·) = Mean(·) and limβ→∞SoftMax_Aggβ(·) = Max(·). It can
be regarded as a weighted summation that depends on the inverse temperature β and the values of the
elements themselves. The full proof of Proposition 4 is in the Appendix.

Proposition 5 (PowerMean Aggregation). Given any message set {mvu | u ∈ N (v) }, mvu ∈ RD+ ,
PowerMean_Aggp(·) is a generalized mean-max aggregation function, where PowerMean_Aggp(·) =
( 1

|N (v)|
∑
u∈N (v) m

p
vu)

1/p. Here, p is a non-zero, continuous variable denoting the p-th power.

2Mean(·) denotes the arithmetic mean.
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Quasi-arithmetic mean (Kolmogorov & Castelnuovo, 1930) was proposed to unify the family of
mean functions. Power mean is one member of the Quasi-arithmetic mean family. It is a generalized
mean function that includes harmonic mean, geometric mean, arithmetic mean, and quadratic mean.
The main difference between Proposition 4 and 5 is that Proposition 5 only holds when message
features are all positive, i.e. mvu ∈ RD+ . In particular, we have PowerMean_Aggp=1(·) = Mean(·)
and limp→∞PowerMean_Aggp(·) = Max(·). PowerMean_Aggp(·) becomes the harmonic or the
geometric mean aggregation when p = −1 or p→ 0, respectively. See the Appendix for the proof.

To enhance expressive power according to the WL test (Xu et al., 2019b), we generalize the function
space to cover the sum aggregator by introducing another control variable on the degree of vertices.
Proposition 6 (Generalized Mean-Max-Sum Aggregation). Given any generalized mean-max aggre-
gation function ζx(·), we can generalize the function to cover sum by combining it with the degree of
vertices. For instance, by introducing a variable y, we can compose a generalized mean-max-sum
aggregation function as

∣∣N (v)
∣∣y · ζx(·). We can observe that the function becomes a Sum aggre-

gation when ζx(·) is a Mean aggregation and y = 1. By composing with SoftMax aggregation
and PowerMean aggregation, we obtain SoftMaxSum_Agg(β,y)(·) and PowerMeanSum_Agg(p,y)(·)
aggregation functions, respectively.

4.2 GENERALIZED AGGREGATION NETWORKS (GEN)

Generalized Message Passing Layer. Based on the Propositions above, we construct a simple
message passing based GNN network that satisfies the conditions in Proposition 4 and 5. The key idea
is to keep all the message features to be positive, so that generalized mean-max aggregation functions
(SoftMax_Aggβ(·) and PowerMean_Aggp(·)) can be applied. We define the message construction
function ρ(l) as follows:

m(l)
vu = ρ(l)(h(l)

v ,h
(l)
u ,h

(l)
evu

) = ReLU(h(l)
u + 1(h(l)

evu
6= None) · h(l)

evu
) + ε, ∀u ∈ N (v) (4)

where ReLU(·) is a rectified linear unit (Nair & Hinton, 2010) that outputs values to be greater or equal
to zero, 1(·) is an indicator function being 1 when edge features exist otherwise 0, and ε is a small pos-
itive constant chosen to be 10−7. As the conditions are satisfied, we can choose the message aggrega-
tion function ζ(l)(·) to be either SoftMax_Aggβ(·), PowerMean_Aggp(·), SoftMaxSum_Agg(β,y)(·),
or PowerMeanSum_Agg(p,y)(·). As for the vertex update function φ(l), we use a simple multi-layer

perceptron, where φ(l) = MLP(h(l)
v +m

(l)
v ).

Skip Connections and Normalization. Skip connections and normalization techniques are impor-
tant to train deep GNNs. Li et al. (2019) propose residual GNN blocks with components following
the ordering: GraphConv → Normalization → ReLU → Addition. He et al. (2016b) studied the
effect of ordering of ResNet components in CNNs, showing its importance. As recommended in
their paper, the output range of the residual function should be (−∞,+∞). Activation functions
such as ReLU before addition may impede the representational power of deep models. Therefore,
we adopt a pre-activation variant of residual connections for GNNs, which follows the ordering:
Normalization → ReLU → GraphConv → Addition. Empirically, we find that the pre-activation
version performs better. In our architectures, normalization methods such as BatchNorm (Ioffe &
Szegedy, 2015) or LayerNorm (Ba et al., 2016) are applied to normalize vertex features.

5 EXPERIMENTS

We propose GENeralized Aggregation Networks (GEN) equipped with generalized message aggrega-
tors. To evaluate the effectiveness of these aggregators, we perform extensive experiments on the
Open Graph Benchmark (OGB) (Hu et al., 2020), which includes a diverse set of challenging and
large-scale tasks and datasets. We first conduct a comprehensive ablation study on the task of node
property prediction on ogbn-proteins and ogbn-arxiv datasets. Then, we apply our GEN framework
on the node property prediction dataset (ogbn-products), three graph property prediction datasets
(ogbg-molhiv, ogbg-molpcba and ogbg-ppa), and one link property prediction dataset (ogbl-collab).

5.1 EXPERIMENTAL SETUP

ResGCN+. The PlainGCN model stacks GCNs from 3 layers to 112 layers without skip connections.
Each GCN layer uses the same message passing operator as in GEN except the aggregation function is
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replaced by Sum(·), Mean(·), or Max(·) aggregation. LayerNorm or BatchNorm is used in every layer
before the ReLU activation function. Similar to Li et al. (2019), we construct the ResGCN model by
adding residual connections to PlainGCN following the ordering: GraphGonv→ Normalization→
ReLU→ Addition. We further present a pre-activation version of ResGCN by changing the order of
components in residual blocks to Normalization→ ReLU→ GraphGonv→ Addition. We denote
this as ResGCN+ to differentiate it from ResGCN.
ResGEN. The ResGEN models are designed using the message passing functions described in
Section 4.2. The only difference between ResGEN and ResGCN+ is that generalized message
aggregators are used instead of Sum(·), Mean(·), or Max(·). For simplicity, we study generalized
mean-max aggregators (i.e. SoftMax_Aggβ(·) and PowerMean_Aggp(·)) which are parameterized
by only one scalar. To explore the characteristics of the generalized message aggregators, we
initialize them with different hyper-parameters. Here, we initialize the values of β to 10n, where
n ∈ {−3,−2,−1, 0, 1, 2, 3, 4} and p to {−1, 10−3, 1, 2, 3, 4, 5, 10}.
DyResGEN. In contrast to ResGEN, DyResGEN learns variables β, p or y dynamically for every
layer at every gradient descent step. By learning these variables, we avoid the need to painstakingly
search for the best hyper-parameters. In doing so, DyResGEN can learn aggregation functions that
adapt to the training process and the dataset. We study the potential of learning these variables for
our proposed aggregators: SoftMax_Aggβ(·), PowerMean_Aggp(·), SoftMaxSum_Agg(β,y)(·), and
PowerMeanSum_Agg(p,y)(·).
Datasets. Traditional graph datasets have been shown limited and unable to provide reliable evalua-
tion and rigorous comparison among methods (Hu et al., 2020; Dwivedi et al., 2020). Reasons include
their small-scale nature, non-negligible duplication or leakage rates, unrealistic data splits, etc. Con-
sequently, we conduct our experiments on the recently released datasets of Open Graph Benchmark
(OGB) (Hu et al., 2020), which overcome the main drawbacks of commonly used datasets and thus
are much more realistic and challenging. OGB datasets cover a variety of real-world applications and
span several important domains ranging from social and information networks to biological networks,
molecular graphs, and knowledge graphs. They also span a variety of prediction tasks at the level of
nodes, graphs, and links/edges. In this work, experiments are performed on three OGB datasets for
node property prediction, three OGB datasets for graph property prediction, and one OGB dataset
for link property prediction. We introduce these seven datasets briefly in Appendix. More detailed
information about OGB datasets can be found in (Hu et al., 2020).
Implementation Details. We first perform ablation studies on the ogbn-proteins and ogbn-arxiv
datasets. Then, we evaluate our model on the other datasets and compare the performances with
state-of-the-art (SOTA) methods. Since the ogbn-proteins dataset is very dense and comparably
large, full-batch training is infeasible when considering very deep GCNs. We simply apply a random
partition to generate batches for both mini-batch training and test. We set the number of partitions to
10 for training and 5 for test, and we set the batch size to 1 subgraph. In comparison, the ogbn-arxiv
dataset is relatively small, so we conduct experiments via full batch training and test in this case.

5.2 ANALYSES AND ABLATION STUDIES

Depth & Residual connections. We conduct an ablation study on ogbn-protein to show the effect
of pre-activation residual connections. Experiments in Figure 2 show that residual connections
significantly improve the training dynamic of deep GCN models on ogbn-proteins. PlainGCN
without skip connections suffers from vanishing gradient and does not gain any improvement from
increasing depth. More prominent gains can be observed in ResGCN+ compared to ResGCN as
models go deeper. Notably, ResGCN+ reaches smallest training loss with 112 layers.This validates
the effectiveness of pre-activation residual connections. Note that all models in this ablation study
use the Max aggregation function.
Effect of Aggregators in Training Deep GNNs. Although pre-activation residual connections
alleviate the effect of vanishing gradients and enable the training of deep GCNs (see Appendix 5.2),
the choice of aggregation function is crucial to performance. In Figure 3, we study how vanilla
aggregators (i.e. Sum(·), Mean(·) and Max(·)) behave on ogbn-proteins and ogbn-arxiv. We find
that the aggregators perform inconsistently among different datasets and cause significant gaps in
performance. For instance, Max(·) outperforms the other two by a large margin (∼ 1%) for all
network depths on ogbn-proteins, but reaches unsatisfactory results (< 70%) and even becomes
worse with depth increasing on ogbn-arxiv. Mean(·) performs the worst on ogbn-proteins, but
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Figure 2: Training losses of ResGCN+ and ResGCN, PlainGCN
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Figure 3: Vanilla aggregators perform differently and inconsistently on different datasets. e.g.
while Mean(·) performing the worst on obgn-protein, it achieves the best accuracy among all the
vanilla aggregators on obgn-arxiv. The Max(·) achieves superb results on obgn-proteins but the worst
resutls on obgn-arxiv. Our proposed generalized aggregator (PowerMeanSum) achieves consistently
promising results across different datasets.

the best (72.31%) with 28 layers on ogbn-arxiv. To address this issue, we propose differentiable
generalized aggregtion functions which can be learned to be adaptive to different datasets. We
also explore the characteristics ResGEN with generalized message aggregators SoftMax_Agg(·)
and PowerMean_Agg(·) by tuning the parameters β and p. Results show that better generalized
mean-max aggregators exist beyond mean and max. Please refer to the Appendix for more details.

Table 1: Ablation studies of aggregators on the ogbn-proteins dataset. Proposed generalized
message aggregators with learnable parameters outperforms the fixed parameters version as well as
the vanilla aggregators overall.

Aggregation Sum Mean Max SoftMax SoftMaxSum PowerMean PowerMeanSum

#Layers - - - Fixed Learned Fixed Learned Fixed Learned Fixed Learned

3 82.67 79.69 83.47 81.69 83.42 83.06 83.55 78.52 82.25 81.70 83.71
7 83.00 80.84 84.65 83.85 84.81 84.71 84.73 81.02 84.14 83.23 84.62
14 83.33 82.25 85.16 84.39 85.29 84.77 85.06 82.45 85.04 83.96 84.83
28 83.98 83.28 85.26 85.08 85.51 85.64 85.69 82.58 85.04 84.59 85.96
56 84.48 83.52 86.05 85.76 86.12 85.63 85.73 83.49 85.27 85.37 85.81

112 85.33 83.40 85.94 85.77 86.15 86.11 86.13 83.92 85.60 85.71 86.01

avg. 83.80 82.16 85.09 84.42 85.22 84.99 85.15 82.00 84.56 84.09 85.16

Learning Dynamic Aggregators. Trying out every possible aggregator or searching hyper-
parameters is computationally expensive and time consuming. Therefore, we propose DyResGEN
to explore the potential of learning dynamic aggregators by learning the parameters β, p, and even
y within GEN. Table 1 reports the results of learning β, β&y, p and p&y for SoftMax_Agg(·),
SoftMaxSum_Agg(·), PowerMean_Agg(·) and PowerMeanSum_Agg(·) respectively. In practice, y
is bounded from 0 to 1 by a Sigmoid function. In all experiments, we initialize the values of β, p
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to 1 and y to 0.5 at the beginning of training. In order to show the improvement of the learning
process, we also ablate experiments with fixed initial values. We denote aggregators with fixed initial
values as Fixed and learned aggregators as Learned. We see that learning these variables consistently
boosts the average performances of all the learned aggregators compared to the fixed initialized
counterparts, which shows the effectiveness of learning adaptive aggregators. In particular, when β is
learned, DyResGEN-SoftMax achieves 86.15% at 112 layers. We observe that DyResGEN-SoftMax
outperforms the best ResGEN-SoftMax (β = 104) in terms of the average performance (85.22%
v.s. 85.17%). Interesting, we find generalizing the sum aggregation with PowerMean significantly
improve the average performance from 84.56% to 85.16%. In practice, we find SoftMax_Agg and
PowerMeanSum_Agg performs better.
Learning SoftMax_Agg on More Datasets. In Figure 3 and Table 1 we show that proposed gen-
eralized message aggregators outperforms the vanilla ones in node property prediction datasets
(ogbn-protein and ogbn-arxiv). Here, Table 2 presents more ablations to show the benefit of gen-
eralized message aggregators on the graph property prediction dataset (ogbg-molhiv) and the link
property prediction datast (ogbl-collab). SoftMax_Aggβ(·) with learnable β achieves better perfor-
mance compared to the same models using vanilla aggregators.

Table 2: Ablations of SoftMax_Agg against the vanilla ones
on ogbg-molhiv and ogbl-collab.

ROC-AUC Sum Mean Max SoftMax
ogbg-molhiv 76.84 ± 0.86 77.53 ± 1.59 78.71 ± 1.40 78.87 ± 1.24
Hits@50 Sum Mean Max SoftMax
ogbl-collab 42.55 ± 1.29 51.08 ± 0.62 51.75 ± 0.76 52.73 ± 0.47

Analysis of DyResGEN. We
provide more analysis on the
learning dynamic of DyRes-
GEN. The experimental results
of DyResGEN in this section
are obtained on ogbn-proteins
dataset. We visualize the learning
dynamic of learnable parameters
β, p and s of 112-layer DyRes-
GEN with SoftMaxSum_Agg(β,y)(·) aggregator and PowerMeanSum_Agg(p,y)(·) aggregator re-
spectively. Learnable parameters β and p are initialized as 1 and y are initialized as 0.5. Dropout
with a rate of 0.1 is used for each layer to prevent over-fitting. The learning curves of parameters
of SoftMaxSum_Agg are shown in Figure 4a. We observe that both β and y change dynamically
during the training. The β and y parameters of some layers tend to be stable after 1000 training
epochs. Exceptionally, the 1-st layer learns a β increasingly from 1 to 3.3 which learns a smaller
y ≈ 0.1 which make SoftMaxSum_Agg(β,y)(·) behave more like a Max aggregation at the 1-th layer.
PowerMeanSum_Aggp(·) aggregator also demonstrates a similar phenomena on learning y in Figure
4b. The learned y of the 1-st layer and the last layer trends to be smaller than the initial value.
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Figure 4: Learning curves of 112-layer DyResGEN with SoftMaxSum and PowerMeanSum

5.3 COMPARISON WITH SOTA

In this section, we apply the proposed GENeralized Aggregation Networks (GEN) with SoftMax
aggregators to seven OGB datasets (ogbn-proteins, ogbn-arxiv, ogbn-products, ogbg-molhiv, ogbg-
molpcba, ogbg-ppa and ogbl-collab) across various tasks of node classification, link prediction, and
graph classification in Table 3. We apply our GEN models to the mentioned seven OGB datasets
and compare results with the published GNN methods with official implementation posted on OGB
Learderboard (See Table 3). The methods include Deepwalk (Perozzi et al., 2014), GCN (Kipf &
Welling, 2016), GraphSAGE (Hamilton et al., 2017), GIN (Xu et al., 2019b), GIN or GCN with
virtual nodes, JKNet (Xu et al., 2019a), GaAN (Zhang et al., 2018), GatedGCN (Bresson & Laurent,
2018), GAT (Veličković et al., 2018), HIMP (Fey et al., 2020), GCNII (Ming Chen et al., 2020),
DAGNN (Liu et al., 2020a), GraphZoom (Deng et al., 2020), GeniePath-BS (Liu et al., 2020b) and
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PNA (Corso et al., 2020). The provided results on each dataset are obtained by averaging the results
from 10 independent runs. It is clear that our proposed GNN models outperform SOTA on all four
datasets. In particular, our models significantly outperform previous SOTA methods on ogbn-proteins
and ogbg-ppa by 7.91% and 6.75%, respectively. In terms of the performance on ogbn-arxiv, our
model is better than JKNet, DAGNN but slight worse than GCNII. However, GCNII uses 4 times
more parameters compared to our model (491,176 (Ours) vs. 2,148,648 (GCNII)). We try to adapt the
official implementation of GCNII to ogbn-products but get out-of-memory error due to the high GPU
memory consumption of GCNII. A comparison of ResGEN (SoftMax) vs. GAT w/ skip connections
is shown on ogbn-products. ResGEN outputforms GAT w/ skip connections by 2.19% with only
33% number of parameters (253,743 (Ours) vs. 751,574 (GAT)). Notably, our method is the only one
that shows promising results across various tasks and domains. More experimental details including
datasets, hyper-parameters and implementation can be found in the Appendix.

Table 3: Comparisons with SOTA on seven OGB datasets. * denotes that virtual nodes are used.

GraphSAGE GCN GaAN GeniePath-BS Ours
ogbn-proteins 77.68 ± 0.20 72.51 ± 0.35 78.03 ± 0.73 78.25 ± 0.35 86.16 ± 0.16

GraphSAGE GCN GaAN GCNII JKNet DAGNN
ogbn-arxiv 71.49 ± 0.27 71.74 ± 0.29 71.97 ± 0.24 72.74 ± 0.16 72.19 ± 0.21 72.09 ± 0.25 72.32 ± 0.27

GraphSAGE GCN ClusterGCN GraphSAINT GAT GraphZoom
ogbn-products 78.29 ± 0.16 75.64 ± 0.21 78.97 ± 0.33 80.27 ± 0.26 79.45 ± 0.59 74.06 ± 0.26 81.64 ± 0.30

GIN GCN GIN* GCN* HIMP PNA
ogbg-molhiv 75.58 ± 1.40 76.06 ± 0.97 77.07 ± 1.49 75.99 ± 1.19 78.80 ± 0.82 79.05 ± 1.32 78.87 ± 1.24
ogbg-molpcba 22.66 ± 0.28 20.20 ± 0.24 27.03 ± 0.23 24.24 ± 0.34 28.38 ± 0.35 27.81 ± 0.38*
ogbg-ppa 68.92 ± 1.00 68.39 ± 0.84 70.37 ± 1.07 68.57 ± 0.61 77.12 ± 0.71

GraphSAGE GCN DeepWalk
ogbl-collab 48.10 ± 0.81 44.75 ± 1.07 50.37 ± 0.34 52.73 ± 0.47

Ablation on small models. In the Table 3, we show deep GNNs equipping with our aggregators can
outperform the state-of-the-art methods. However, deep GNNs use more parameters than the shallow
ones. Here, for a more fair comparison, we conduct an ablation study on the ogbn-proteins dataset by
reducing the number of parameters of our model. Our original model has 64 hidden channels and 112
layers and uses SoftMax aggregators. We further create two compact models with fewer parameters
than GCN and GraphSAGE by reducing the hidden sizes and the number of layers. Ours (Small-1)
has 32 hidden channels and 14 layers. Ours (Small-2) has 16 hidden channels and 56 layers. Table 4
shows that our compact models still outperform GCN and GraphSAGE by a large margin (>5%).

6 CONCLUSION AND FUTURE WORK

Table 4: Ablation on Model Sizes on ogbn-proteins.

Model Params Test ROC-AUC
GCN 96,880 72.51 ± 0.35
GraphSAGE 193,136 77.68 ± 0.20
Ours (Original) 2,374,568 86.16 ± 0.16
Ours (Small-1) 80,446 83.50 ± 0.30
Ours (Small-2) 82,888 82.69 ± 0.21

In this work, we identified the choice of
aggregation functions is crucial to the
performance of deep GNNs. We then
proposed a differentiable generalized
message aggregation function, which de-
fines a family of permutation invariant
aggregators. Systematic analysis and ex-
periments show that our proposed func-
tion can yield better generalized aggrega-
tors that not only cover the widely used
mean, max and sum but also go beyond them. We insert our generalized message aggregation func-
tions into the proposed pre-activation residual GCN network and present GENeralized Aggregation
Network (GEN). Empirically, we show the effectiveness of training our proposed deep GEN models,
whereby we set a new SOTA on several datasets of the challenging Open Graph Benchmark. We
believe the definition of such a generalized aggregation function provides a new view to the design of
aggregation functions for GNNs. Here we discuss some interesting directions as follows: (1) Can
we learn the parameters of generalized aggregation functions with a mete-learning method such as
MAML (Finn et al., 2017)? (2) What is the expressive power generalized mean-max-sum aggregation
functions with respect to Weisfeiler-Lehman test (Xu et al., 2019b)? (3) Can we design Principal
Neighbourhood Aggregation (PNA) (Corso et al., 2020) by combining multiple learnable aggregators
of generalized aggregation functions?
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A EXPLORING GENERALIZED MESSAGE AGGREGATORS

In Table 5 (a) & (b), we examine SoftMax_Aggβ(·) and PowerMean_Aggp(·) aggregators on ogbn-
proteins by manually tuning the parameters β and p, respectively. Their performance are measured
by test ROC-AUC. Since both are generalized mean-max aggregations, they can theoretically per-
form at least as good as Mean(·) and Max(·) through interpolation. For instance, with 112 layers,
SoftMax_Agg(·) performs similarly to Mean(·) (82.20% vs. 82.16%) when β = 10−3. As β in-
creases to 102, it achieves slightly better performance than Max(·). Remarkably, 112-layer ResGEN
with SoftMax_Agg(·) reaches 86.38% and 86.30% ROC-AUC when β = 10 and β = 104 respec-
tively. For PowerMean_Agg(·), we find that it reaches almost the same ROC-AUC as Mean when
p = 1 (arithmetic mean). We also observe that all other orders of mean except p = 10−3 (akin to
geometric mean) achieve better performance than the arithmetic mean. PowerMean_Agg(·) with
p = 10 reaches the best ROC-AUC at 86.31% with 112 layers. However, due to some numerical
issues in PyTorch (Paszke et al., 2019), we are not able to use larger p. These results empirically
validate the discussion on existence of better generalized mean-max aggregators beyond mean and
max in Section 4.1.

Table 5: Exploring the characteristics of Generalized Message Aggregators. Proposed
SoftMax_Agg(·) and PowerMean_Agg(·) can approximate vanilla aggregators (Mean(·) or Max(·))
with corresponding parameters. SoftMax_Agg(·) and PowerMean_Agg(·) also go beyond Mean(·)
and Max(·) through interpolation and have potentials to achieve better performance. Results reported
by measuring test ROC-AUC on the ogbn-protein dataset. Note that due to some numerical issues in
PyTorch, we are not able to use larger p for PowerMean_Agg.

(a) Mean SoftMax Max

#Layers - 10−3 10−2 10−1 1 10 102 103 104 -

3 79.69 79.69 78.90 77.80 81.69 83.24 83.16 83.07 83.21 83.47
7 80.84 80.81 80.71 79.83 83.85 83.98 84.66 84.60 84.68 84.65
14 82.25 82.44 82.14 81.24 84.39 85.13 84.96 84.99 84.85 85.16
28 83.28 83.13 82.47 81.78 85.08 85.07 85.35 85.80 85.82 85.26
56 83.52 83.62 83.45 82.86 85.76 85.97 86.20 85.98 86.19 86.05

112 83.40 83.50 83.61 83.16 85.77 86.38 86.27 86.27 86.30 85.94

avg. 82.16 82.20 81.88 81.11 84.42 84.96 85.10 85.12 85.17 85.09

(b) Mean PowerMean Max

#Layers - −1 10−3 1 2 3 4 5 10 -

3 79.69 82.34 81.06 78.52 80.23 82.01 81.61 82.89 82.89 83.47
7 80.84 83.36 81.08 81.02 83.49 83.67 84.82 84.54 84.50 84.65
14 82.25 83.73 80.64 82.45 84.15 84.48 84.64 85.00 85.08 85.16
28 83.28 84.56 80.92 82.58 84.16 85.20 85.87 85.34 85.76 85.26
56 83.52 84.46 80.93 83.49 85.04 85.68 85.90 85.64 85.74 86.05

112 83.40 85.13 81.10 83.92 85.47 85.70 86.01 86.09 86.31 85.94

avg. 82.16 83.93 80.95 82.00 83.76 84.46 84.81 84.92 85.05 85.09
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B MORE ANALYSIS ON THE LEARNING DYNAMIC

We have visualized the learning dynamic of SoftMaxSum_Agg(β,y)(·) aggregator and
PowerMeanSum_Agg(p,y)(·) aggregator in Figure 4. Here we provide analysis on the learning dy-
namic of the other two proposed generalized aggregators SoftMax_Agg(β) and PowerMean_Agg(p)
in Figure 5a and Figure 5b, respectively. One can observe that the β of SoftMax_Agg in the 1-st layer
learns to increase. Therefore, the aggregator for the first layer behaves like a max aggregation. The
large difference between the 1-st layer and other layers shows that our proposed aggregator learns to
adapt how to aggregate local information for each layer in the network. From Figure 5b, the p of
PowerMean_Agg tends to learn to be larger than 1 except the first layer.

(a) SoftMax_Agg(β)(·) (b) PowerMean_Agg(p)(·)

Figure 5: Learning curves of 112-layer DyResGEN with SoftMax and PowerMean

C DETAILED COMPARISON WITH SOTA

Due to the limit of space, the number of parameters of each model is not included in Table 3. Here,
we include them in Table 6. Our proposed model achieves state-of-the-art or on par performance on
each dataset with a moderate size of model parameters.

Table 6: Comparisons with SOTA on seven OGB datasets. * denotes that virtual nodes are used.

ogbn-proteins GraphSAGE GCN GaAN GeniePath-BS Ours (Small-1) Ours (Small-2) Ours
test ROC-AUC 77.68 ± 0.20 72.51 ± 0.35 78.03 ± 0.73 78.25 ± 0.35 83.50 ± 0.30 82.69 ± 0.21 86.16 ± 0.16
model params. 193,136 96,880 - 316,754 80,446 82,888 2,374,568

ogbn-arxiv GraphSAGE GCN GaAN GCNII JKNet DAGNN
test acc. 71.49 ± 0.27 71.74 ± 0.29 71.97 ± 0.24 72.74 ± 0.16 72.19 ± 0.21 72.09 ± 0.25 72.32 ± 0.27
model params. 218,664 110,120 1,471,506 2,148,648 89,000 43,857 491,176

ogbn-products GraphSAGE GCN ClusterGCN GraphSAINT GAT GraphZoom
val acc. 78.29 ± 0.16 75.64 ± 0.21 78.97 ± 0.33 80.27 ± 0.26 79.45 ± 0.59 74.06 ± 0.26 81.64 ± 0.30
model params. 206,895 103,727 206,895 206,895 751,574 120,251,183 253,743

GIN GCN GIN* GCN* HIMP PNA
ogbg-molhiv 75.58 ± 1.40 76.06 ± 0.97 77.07 ± 1.49 75.99 ± 1.19 78.80 ± 0.82 79.05 ± 1.32 78.87 ± 1.24
model params 1,885,206 527,701 3,336,306 1,978,801 153,029 326,081 531,976
ogbg-molpcba 22.66 ± 0.28 20.20 ± 0.24 27.03 ± 0.23 24.24 ± 0.34 28.38 ± 0.35 27.81 ± 0.38*
model params 1,923,433 565,928 3,374,533 2,017,028 6,550,839 5,550,208
ogbg-ppa 68.92 ± 1.00 68.39 ± 0.84 70.37 ± 1.07 68.57 ± 0.61 77.12 ± 0.71
model params 1,836,942 479,437 3,288,042 1,930,537 2,336,421

ogbl-collab GraphSAGE GCN DeepWalk
test hits@50 48.10 ± 0.81 44.75 ± 1.07 50.37 ± 0.34 52.73 ± 0.47
model params 460,289 296,449 61,390,187 117,383

D DISCUSSION ON NETWORK DEPTH

Depth & Normalization. In our experiments, we find normalization techniques play a crucial role in
training deep GCNs. Without normalization, the training of deep network may suffer from vanishing
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gradient or exploding gradient problem. We apply normalization methods such as BatchNorm
(Ioffe & Szegedy, 2015) or LayerNorm (Ba et al., 2016) to normalize vertex features. In addition
to this, we also propose a message normalization (MsgNorm) layer to normalize features on the
message level, which can significantly boost the performance of networks with under-performing
aggregation functions. The main idea of MsgNorm is to normalize the features of the aggregated
message m(l)

v ∈ RD by combining them with other features during the vertex update phase. Suppose
we apply the MsgNorm to a simple vertex update function MLP(h(l)

v +m
(l)
v ). The vertex update

function becomes as follows:

h(l+1)
v = φ(l)(h(l)

v ,m
(l)
v ) = MLP(h(l)

v + s · ‖h(l)
v ‖2 ·

m
(l)
v

‖m(l)
v ‖2

) (5)

where MLP(·) is a multi-layer perceptron and s is a learnable scaling factor. The aggregated message
m

(l)
v is first normalized by its `2 norm and then scaled by the `2 norm of h(l)

v by a factor of s. In
practice, we set the scaling factor s to be a learnable scalar with an initialized value of 1. Note
that when s = ‖m(l)

v ‖2/‖h(l)
v ‖2, the vertex update function reduces to the original form. In our

experiment, we find MsgNorm boosts performance of under-performing aggregation functions such
as mean and PowerMean on ogbn-proteins more than 1%. However, we do not see any significant
gain on well-performing aggregation functions such as SoftMax, SoftMaxSum and PowerMeanSum.
We leave this for our future investigation.
Depth & Width. In order to gain a larger representational capacity, we can either increase depth
or width of networks. In this work, we focus on the depth instead of the width since it is more
challenging to train a deeper graph neural network compared to a wider one because of vanishing
gradient (Li et al., 2019) and over-smoothing (Li et al., 2018) problems. Deeper neural networks can
learn to extract higher-level features. However, given a certain budget of parameters and computation,
a well-designed wider networks can be more accurate and efficient than a deep networks. The
trade-off of depth and width have already studied in CNNs (Zagoruyko & Komodakis, 2016). We
believe that it is also important to study the width of GCNs to reduce the computational overhead.
Depth & Receptive Field & Diameter. There are lots of discussion on whether depth can help
for graph neural networks. In our experiments, we find that graph neural networks can gain better
performance with proper skip connections, normalization and aggregation functions. A interesting
discussion by Rossi et al. (2020) argues that the receptive field of graph neural networks with a
few layers can cover the entire graph since most of graph data are ‘small-world’ graphs with small
diameter. Depth may be harmful for graph neural networks. In our experiment, we observe a different
phenomenon. For instance, ogbn-proteins dataset with a relatively small diameter as 9 can gain
improvement with more than 100 layers. However, what is the optimal depth and for what certain
kind of graphs depth help more are still mysteries.

E PROOF FOR PROPOSITION 4

Proof. Suppose we have N =
∣∣N (v)

∣∣. We denote the message set as M = {m1, ...,mN },
mi ∈ RD. We first show for any message set, SoftMax_Aggβ(M) =

∑N
j=1

exp(βmj)∑N
i=1 exp(βmi)

·
mj satisfies Definition 2 . Let ρ denotes a permutation on the message set M. ∀β ∈ R, for
any ρ ?M = {mρ(1), ...,mρ(N) }, it is obvious that

∑ρ(N)
i=ρ(1) exp(βmi) =

∑N
i=1 exp(βmi) and∑ρ(N)

j=ρ(1) exp(βmj) ·mj =
∑N
j=1 exp(βmj) ·mj since the Sum function is a permutation invariant

function. Thus, we have SoftMax_Aggβ(M) = SoftMax_Aggβ(ρ?M). SoftMax_Aggβ(·) satisfies
Definition 2. We now prove SoftMax_Aggβ(·) satisfies Definition 3, i.e. limβ→0SoftMax_Aggβ(·) =
Mean(·) and limβ→∞SoftMax_Aggβ(·) = Max(·). For the k-th dimension, we have input message

features as {m(k)
1 , ...,m

(k)
N }. limβ→0SoftMax_Aggβ({m

(k)
1 , ...,m

(k)
N }) =

∑N
j=1

exp(βm(k)
j )∑N

i=1 exp(βm(k)
i )
·

m
(k)
j =

∑N
j=1

1
N ·m

(k)
j = 1

N

∑N
j=1 ·m

(k)
j = Mean({m(k)

1 , ...,m
(k)
N }). Suppose we have c elements
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that are equal to the maximum value m∗. When β →∞, we have:

exp(βm(k)
j )∑N

i=1 exp(βm(k)
i )

=
1∑N

i=1 exp(β(m(k)
i −m

(k)
j ))

=

{
1/c for m(k)

j = m∗

0 for m(k)
j < m∗

(6)

We obtain limβ→∞SoftMax_Aggβ({m
(k)
1 , ...,m

(k)
N }) = c· 1c ·m

∗ = m∗ = Max({m(k)
1 , ...,m

(k)
N }).

It is obvious that the conclusions above generalize to all the dimensions. Therefore, SoftMax_Aggβ(·)
is a generalized mean-max aggregation function.

F PROOF FOR PROPOSITION 5

Proof. Suppose we have N =
∣∣N (v)

∣∣. We denote the message set as M = {m1, ...,mN },
mi ∈ RD+ . We have PowerMean_Aggp(M) = ( 1

N

∑N
i=1 m

p
i )

1/p, p 6= 0. Clearly, for any per-
mutation ρ ? M = {mρ(1), ...,mρ(N) }, PowerMean_Aggp(ρ ? M) = PowerMean_Aggp(M).
Hence, PowerMean_Aggp(·) satisfies Definition 2. Then we prove PowerMean_Aggp(·) satis-
fies Definition 3 i.e. PowerMean_Aggp=1 (·) = Mean(·) and limp→∞PowerMean_Aggp(·) =

Max(·). For the k-th dimension, we have input message features as {m(k)
1 , ...,m

(k)
N }.

PowerMean_Aggp=1({m
(k)
1 , ...,m

(k)
N }) = 1

N

∑N
i=1 ·m

(k)
i = Mean({m(k)

1 , ...,m
(k)
N }). Assume

we have c elements that are equal to the maximum value m∗. When p→∞, we have:

limp→∞PowerMean_Aggp({m
(k)
1 , ...,m

(k)
N }) (7)

= (
1

N

N∑
i=1

(m
(k)
i )p)1/p = (

1

N
(m∗)p

N∑
i=1

(
m

(k)
i

m∗
)p)1/p (8)

= (
c

N
(m∗)p)1/p

m∗>0
==== m∗ (9)

We have limp→∞PowerMean_Aggp({m
(k)
1 , ...,m

(k)
N }) = m∗ = Max({m(k)

1 , ...,m
(k)
N }). The

conclusions above hold for all the dimensions. Thus, PowerMean_Aggp(·) is a generalized mean-
max aggregation function.

G EXPERIMENTAL DETAILS

G.1 DETAILS OF DATASETS

In this section, we provide the experimental details of the seven OGB datasets.
Node Property Prediction. Three chosen datasets are dealing with protein-protein association
networks (ogbn-proteins), paper citation networks (ogbn-arxiv) and co-purchasing network (ogbn-
products). Ogbn-proteins is an undirected, weighted, and typed (according to species) graph con-
taining 132, 534 nodes and 39, 561, 252 edges. All edges come with 8-dimensional features and
each node has an 8-dimensional one-hot feature indicating which species the corresponding protein
comes from. Ogbn-arxiv consists of 169, 343 nodes and 1, 166, 243 directed edges. Each node
is an arxiv paper represented by a 128-dimensional features and each directed edge indicates the
citation direction. As an Amazon products co-purchasing network, ogbn-products is an undirected
and unweighted graph which is formed by 2, 449, 029 nodes and 61, 859, 140 edges where nodes
are products sold in Amazon that are represented by 100-dimensional features, and edges indicate
that the connected nodes are co-purchased. For ogbn-proteins, the prediction task is multi-label and
ROC-AUC is used as the evaluation metric. For ogbn-arxiv and ogbn-products, their prediction tasks
are both multi-class and evaluated by accuracy.
Graph Property Prediction. Here, we consider three datasets, two of which deals with molecular
graphs (ogbg-molhiv and ogbg-molpcba) and the other is biological subgraphs (ogbg-ppa). Ogbg-
molhiv has 41, 127 subgraphs and ogbg-molpcba is much bigger which contains 437, 929 subgraphs.
For ogbg-ppa, it consists of 158, 100 subgraphs and each subgraph is much denser in comparison to
the other two datasets. The tasks of ogbg-molhiv and ogbg-molpcba are both binary classification

17



Under review as a conference paper at ICLR 2022

while the prediction task of ogbg-ppa is multi-class classification. The former two are evaluated by
the ROC-AUC and Average Precision (AP) metric separately. Accuracy is used to assess ogbg-ppa.
Link Property Prediction. We select ogbl-collab, an author collaboration network consisting
of 235, 868 nodes and 1, 285, 465 edges for link prediction task. Each node in the graph comes
with a 128-dimensional feature vector representing an author and edges indicate the collaboration
between authors. The task is to predict the future author collaboration relationships given the past
collaborations. Each true collaboration is ranked among a set of 100, 000 randomly-sampled negative
collaborations, and the ratio of positive edges that are ranked at K-place or above (Hits@k, k is 50
here) is counted as the evaluation metric.

G.2 DETAILS OF RESULTS AND IMPLEMENTATION

For a fair comparison with SOTA methods, we provide results on each dataset by averaging the
results from 10 independent runs. We provide the details of the model configuration on each dataset.
All models are implemented based on PyTorch Geometric (Fey & Lenssen, 2019) and all experiments
are performed on a single NVIDIA V100 32GB.
ogbn-proteins. For both ogbn-proteins and ogbg-ppa, there is no node feature provided. We initialize
the features of nodes through aggregating the features of their connected edges by a Sum aggregation,
i.e. xi =

∑
j∈N (i) ei,j , where xi denotes the initialized node features and ei,j denotes the input edge

features. We train a 112-layer DyResGEN with SoftMax_Aggβ(·) aggregator. A hidden channel size
of 64 is used. A layer normalization and a dropout with a rate of 0.1 are used for each layer. We train
the model for 2000 epochs with an Adam optimizer with a learning rate of 0.001.
ogbn-arxiv. We train a 28-layer ResGEN model with SoftMax_Aggβ(·) aggregator where β is fixed
as 0.1. We convert this directed graph into undirected and add self-loop. Full batch training and test
are applied. A batch normalization is used for each layer. The hidden channel size is 128. We apply a
dropout with a rate of 0.5 for each layer. An Adam optimizer with a learning rate of 0.001 is used to
train the model for 2000 epochs.
ogbn-products. A 14-layer ResGEN model with SoftMax_Aggβ(·) aggregator where β is fixed as
0.1 is trained for ogbn-products with self-loop added. We apply mini-batch training scenario by
randomly partitioning the graph into 10 subgraphs and do full-batch test. For each layer, a batch
normalization is used. The hidden channel size is 128. We apply a dropout with a rate of 0.5 for each
layer. An Adam optimizer with a learning rate of 0.001 is used to train the model for 1000 epochs.
ogbg-molhiv. We train a 7-layer DyResGEN model with
SoftMax_Aggβ(·) aggregator where β is learnable. A batch normalization is used for each layer. We
set the hidden channel size as 256. A dropout with a rate of 0.2 is used for each layer. An Adam
optimizer with a learning rate of 0.0001 are used to train the model for 300 epochs.
ogbg-molpcba. A 14-layer ResGEN model with SoftMax_Aggβ(·) aggregator where β is fixed as
0.1 is trained. In addition, the original model performs message passing over augmented graphs with
virtual nodes added. A batch normalization is used for each layer. We set the hidden channel size as
256. A dropout with a rate of 0.5 is used for each layer. An Adam optimizer with a learning rate of
0.01 are used to train the model for 300 epochs.
ogbg-ppa. We initialize the node features via a Sum aggregation. We train a 28-layer ResGEN model
with SoftMax_Aggβ(·) aggregator where β is fixed as 0.01. We apply a layer normalization for each
layer. The hidden channel size is set as 128. A dropout with a rate of 0.5 is used for each layer. We
use an Adam optimizer with a learning rate of 0.01 to train the model for 200 epochs.
ogbl-collab. The whole model used to train on link prediction task consists of two parts: a 7-
layer DyResGEN model with SoftMax_Aggβ(·) aggregator where β is learnable and a 3-layer link
predictor model. A batch normalization is used for each layer in DyResGEN model. We set the
hidden channel size as 128. An Adam optimizer with a learning rate of 0.001 are used to train the
model for 400 epochs.
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