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Abstract

Symbolic regression aims to find interpretable analytical ex-
pressions by searching over mathematical formula spaces to
capture underlying system behavior, particularly in scientific
modeling governed by physical laws. However, traditional
methods lack mechanisms for extracting structured physical
priors from time series observations, making it difficult to
capture symbolic expressions that reflect the system’s global
behavior. In this work, we propose a structure-aware sym-
bolic regression framework—StruSR—that leverages trained
Physics-Informed Neural Networks (PINNs) to extract lo-
cally structured physical priors from time series data. By per-
forming local Taylor expansions on the outputs of the trained
PINN, we obtain derivative-based structural information to
guide symbolic expression evolution. To assess the impor-
tance of expression components, we introduce a masking-
based attribution mechanism that quantifies each subtree’s
contribution to structural alignment and physical residual re-
duction. These sensitivity scores steer mutation and crossover
operations within genetic programming, preserving substruc-
tures with high physical or structural significance while selec-
tively modifying less informative components. A hybrid fit-
ness function jointly minimizes physics residuals and Taylor
coefficient mismatch, ensuring consistency with both the gov-
erning equations and the local analytical behavior encoded by
the PINN. Experiments on benchmark PDE systems demon-
strate that StruSR improves convergence speed, structural fi-
delity, and expression interpretability compared to conven-
tional baselines, offering a principled paradigm for physics-
grounded symbolic discovery.

Introduction
In physical field simulations, partial differential equations
(PDEs) are employed to model the spatiotemporal evolu-
tion of physical quantities, where the time series [38, 22, 39,
19, 40, 45, 43, 29] at specific spatial locations reflect the
system’s dynamic characteristics; symbolic regression, by
searching for the underlying analytical structure of the gov-
erning PDEs, enables interpretable and generalizable model-
ing of complex physical systems. Symbolic regression (SR)
aims to discover closed-form mathematical expressions that
describe the underlying relationships in data. With the rapid
advancement of deep learning [16, 11, 9, 12, 15, 10, 42,
14, 8, 13, 21, 20], numerous new methods have emerged
for solving partial differential equations. Unlike black-box

Figure 1: Overview of the proposed Taylor-structure-guided
symbolic regression framework. From the left, a popula-
tion of symbolic expressions is maintained and each expres-
sion is decomposed into subtrees. Masking individual sub-
trees allows evaluating their contributions to physics resid-
ual loss (Lphys) and Taylor-based structural loss (LTaylor),
the latter derived from local Taylor coefficients extracted
from a Physics-Informed Neural Network (PINN) trained on
PDE data. Sensitivity scores computed from these loss varia-
tions guide crossover and mutation in genetic programming,
preserving structurally and physically important subexpres-
sions. The symbolic regression process iterates with popula-
tion updates until convergence or stopping criteria are met.

models such as deep neural networks, SR offers human-
interpretable outputs, making it particularly valuable in sci-
entific modeling and systems governed by physical laws. In
recent years, symbolic regression has seen renewed interest
through integration with neural architectures and evolution-
ary algorithms, yet a persistent challenge remains: how to
guide the search toward expressions that are not only accu-
rate but also structurally aligned with physical principles.

Most existing SR methods focus on data fitting accu-
racy, often overlooking whether the discovered expression
reflects the correct physical structure. This shortcoming be-
comes especially pronounced in the context of discovering
governing equations or partial differential equations (PDEs),
where expressions must satisfy physical constraints and ex-
hibit meaningful derivative behavior. While PINNs [30] of-
fer a promising way to approximate solutions to differen-



tial equations by embedding physics into training objectives,
their outputs are inherently non-symbolic and lack direct in-
terpretability.

To address this gap, we propose a novel framework that
leverages the structural insights encoded in trained PINNs
to guide the symbolic regression process. The key idea of
our approach is to leverage the local Taylor expansions of a
trained PINN solution as structural “ground truth“ for guid-
ing symbolic expression discovery. By comparing the Taylor
coefficients of candidate expressions against those extracted
from the PINN, we can quantitatively assess structural simi-
larity in a manner that is both principled and robust. This al-
lows us to inject domain knowledge—derived from a contin-
uous, differentiable, and physically meaningful PINN repre-
sentation—into the symbolic search process in a principled
way.

From a deeper perspective, a trained PINN should not
be regarded merely as a numerical predictor for PDE so-
lutions—it acts as a global encoder of physical struc-
ture. Through minimizing residuals of differential operators
across the entire domain, PINNs embed physical consis-
tency into the learned parameter space. Although the ana-
lytic solution remains hidden within the black-box network,
its local structure can be made accessible via automatic dif-
ferentiation. This gives rise to local Taylor expansions of the
form:

TPINN(x;x0) =

K∑
k=0

u(k)(x0)

k!
(x− x0)

k, (1)

which serve as a physically informed, differentiable surro-
gate for the unknown ground-truth expression. Although the
local Taylor expansions do not equate to the analytic solu-
tion, they provide a locally valid proxy that respects both
the governing PDE and the global data distribution. From
this view, the Taylor expansion becomes a conceptual and
computational bridge—connecting the numeric expressivity
of PINNs with the symbolic abstraction of SR.

In contrast to direct derivative estimation from discrete
data, which is highly sensitive to noise and lacks structural
context, Taylor coefficients extracted from PINNs are glob-
ally consistent and physically grounded. This makes them
especially suitable as guiding signals during symbolic evo-
lution, where preserving critical structural components is es-
sential for interpretability and convergence.

Building on this insight, we introduce a masking-based at-
tribution mechanism that evaluates the contribution of each
expression subtree to both the structural and physical fi-
delity of the model. These sensitivity scores are then used
to inform the mutation and crossover strategies within a
genetic programming (GP) framework. Substructures that
align closely with the PINN-derived Taylor pattern are pre-
served, while those with low structural or physical impor-
tance are prioritized for modification. In addition, a hybrid
fitness function combines physical residual loss with Taylor-
based structural loss to jointly optimize both physical con-
sistency and symbolic alignment.

Our approach transforms symbolic regression from a
purely heuristic or data-driven procedure into a physics-

guided, structurally-informed discovery process. Experi-
ments on benchmark PDEs demonstrate that our method im-
proves convergence speed, reduces overfitting, and produces
symbolic expressions that are more consistent with the gov-
erning equations. Moreover, our framework offers a flexible
plug-in mechanism for incorporating PINN knowledge into
symbolic search, opening the door to new forms of hybrid
neuro-symbolic modeling.

In summary, this work makes the following contributions:

• Proposes a novel framework that leverages local Taylor
expansions extracted from Physics-Informed Neural Net-
works (PINNs) as structured, derivative-based priors to
guide symbolic expression discovery through both ini-
tialization and loss alignment.

• Introduces a dual-sensitivity attribution mechanism that
quantifies the physical and structural importance of sym-
bolic subtrees, enabling fine-grained evaluation and evo-
lution control.

• Integrates sensitivity-aware mutation and crossover
strategies into genetic programming, along with a com-
posite objective function that jointly optimizes for phys-
ical consistency and structural fidelity.

This fusion of PINN-informed priors and symbolic re-
gression paves the way for more interpretable, physically
meaningful machine-discovered models in scientific com-
puting and data-driven equation discovery.

Related Work
Partial Differential Equations (PDEs) are fundamental tools
for modeling continuous processes in natural and engi-
neering systems. Existing methods for solving PDEs can
be broadly categorized into two families: numerical dis-
cretization approaches, such as Finite Difference Methods
(FDM)[31, 36, 35] and Finite Element Methods (FEM)[6,
32, 28], which aim to approximate numerical solutions with
high precision; and analytical modeling approaches, partic-
ularly Symbolic Regression (SR), which seeks to discover
explicit mathematical expressions that reveal the underlying
physical laws, offering high interpretability and structural
transferability[34, 25, 27]

Traditional symbolic regression methods are mostly based
on Genetic Programming (GP), which evolves expression
trees to fit data[26]. Representative works such as Eu-
reqa [7], GPTree [1] have demonstrated strong expressive-
ness in physical modeling and equation discovery tasks.
However, these methods typically lack structural awareness
and do not incorporate structural attribution mechanisms or
modeling priors, often resulting in overly complex, physi-
cally implausible, or poorly convergent expressions. In re-
cent years, approaches like RAG-SR [44] NetGP [2], HD-
TLGP [3], SP-GPSR [4] and PhySO [33] have attempted to
combine gradient-based optimization with neural guidance
to enhance search efficiency. Nonetheless, they largely re-
main within a “structure-blind” search paradigm and fail to
incorporate physical constraints effectively.

In parallel, neural networks have made significant
progress in the numerical solution of PDEs. Physics-



Informed Neural Networks (PINNs)[30], in particular, em-
bed PDE residuals into the loss function, enabling the
network to learn continuous solutions under unsuper-
vised or weakly supervised settings. A series of follow-up
works, including DeepRitz[41], Galerkin PINNs[37], and
XPINN[18], have improved the modeling of solution accu-
racy, boundary conditions, and generalization. Despite their
success, these methods remain fundamentally black-box ap-
proximators and cannot generate explicit, interpretable sym-
bolic expressions or reusable structural information.

In recent years, several studies have attempted to bridge
PDE solvers (especially PINNs) with symbolic modeling,
aiming toward more interpretable and transparent analytical
modeling pipelines[5]. A representative direction is to use
PINNs to generate training data and then perform symbolic
regression using differentiable program architectures, as
in [24]. Another approach embeds symbolic branches (e.g.,
sin, exp) directly into the network architecture, trained un-
der physics constraints—e.g., Physics-Informed Symbolic
Networks (PISN) [23]. Alternatively, some methods fit hid-
den differential components inside PINNs and then apply
symbolic regression (e.g., AI-Feynman) to extract inter-
pretable formulas [34]. These methods demonstrate the po-
tential of combining symbolic expressiveness with PDE so-
lution accuracy, yet most remain focused on final expression
output or symbolic embedding, without structural attribution
or controllable symbolic evolution.

In the field of symbolic regression, TaylorGP [17] is a
representative method that incorporates structural guidance
mechanisms. It performs Taylor expansions at multiple sam-
pling points of the target function to extract local structural
attributes such as variable separability, parity, and mono-
tonicity. These structural cues are then used to guide the ini-
tialization of symbolic expressions and constrain evolution-
ary operations such as mutation and crossover. The method
shows preliminary success in improving structural control,
demonstrating the positive role of structural information in
symbolic modeling. However, TaylorGP lacks a dynamic at-
tribution mechanism and global consistency modeling ca-
pability, and it is not suitable for PDE settings where only
equation-based constraints are available.

To address these limitations, we propose StruSR—a struc-
turally guided symbolic modeling framework that, for the
first time, leverages PDE numerical solvers (PINNs) as
structure information extractors rather than direct solvers.
Trained over global data and physical constraints, PINNs
produce smooth solutions that exhibit global consistency.
The Taylor expansion derived from such solutions, though
local in form, reflects structural characteristics under global
constraints, providing a physically consistent and globally
coherent structural prior. Furthermore, StruSR introduces a
structure-sensitive attribution mechanism based on masked
gradients to identify key substructures and guide symbolic
mutation and crossover at fine granularity. This enables a
transition from expression-level to structure-level guidance.
StruSR effectively integrates the advantages of numerical
and symbolic modeling, demonstrating strong performance
in PDE-driven symbolic expression recovery tasks.

Algorithm 1: Structure-Guided Symbolic Regres-
sion via PINN Taylor Expansion

Input:
Trained PINN model u(x), Collocation points {xi}N

i=1, Differential
operator N [·], Taylor order K = 5, Population size P , mutation rate pmut,
crossover rate pcross, Structural weight λ, sensitivity balance β.
Output:

Best symbolic expression f∗(x)

1 Initialize population G = {f1, f2, . . . , fP } with random symbolic
expressions;

2 Compute PINN Taylor expansions {T(u)(x; xi)}N
i=1 at collocation

points;
3 while termination criteria not met do
4 foreach expression f ∈ G do
5 Compute structural loss LTaylor(f ; xi);
6 Compute physics loss Lphys(f) = 1

N

∑N
i=1(N [f ](xi))

2;
7 Evaluate fitness: F(f) = Lphys(f) + λ · LTaylor(f);
8 foreach subtree sj of f do
9 Construct masked expression f−sj

(x) by replacing sj

with constant 1;
10 Compute sensitivity scores:;
11 ∆struct

j = LTaylor(f−sj
) − LTaylor(f);

12 ∆res
j = MSE(N [f−sj

]) − MSE(N [f ]);

13 ∆total
j = β · ∆res

j + (1 − β) · ∆struct
j ;

14 Select parents from G based on fitness;
15 foreach parent pair (fA, fB) do
16 if rand() < pcross then
17 Sample sA from fA using a sensitivity-based probability

distribution;
18 Sample sB from fB ;
19 Swap sA and sB to create offspring;

20 foreach offspring f do
21 if rand() < pmut then
22 Sample sj using a sensitivity-based probability distribution;
23 Replace sj with a random subtree from the symbol library;

24 Update population G;

25 return expression f∗(x) = argminf F(f)

Algorithm Description. This algorithm aims to integrate
the local Taylor expansion structure derived from a Physics-
Informed Neural Network (PINN) into the genetic program-
ming (GP) process for symbolic regression, thereby enhanc-
ing the physical consistency and structural interpretability
of the generated expressions. The core idea is to introduce
a dual sensitivity evaluation mechanism—based on both
structural alignment and residual fidelity—during the evolu-
tion process, enabling fine-grained guidance over substruc-
tures in candidate expressions.

As illustrated in Fig. 1, a pre-trained PINN model is used
to extract K-order Taylor expansions (default K = 5) at
multiple anchor points {x(i)

0 } sampled from the domain.
These expansions encode the local derivative behavior of the
target differential equation around each point, collectively
providing a structurally consistent and physically grounded
reference for guiding symbolic expression discovery.

The evolution begins with a population of randomly ini-
tialized symbolic expressions. For each candidate expres-



sion, two key losses are computed: (1) the physics residual
loss Lphys, which quantifies the mean squared residual when
the expression is substituted into the target differential op-
erator N [·] across all collocation points; and (2) the struc-
ture loss LTaylor, measuring the squared difference between
the Taylor coefficients of the expression and the PINN ex-
pansion. These two metrics are jointly incorporated into a
hybrid fitness function F(f) that reflects both physical cor-
rectness and structural alignment.

To assess the local significance of each subcomponent, we
introduce a masking attribution mechanism. For each sub-
tree sj in a symbolic expression f(x), we temporarily mask
it by replacing it with a neutral constant (e.g., 1), forming a
masked expression f−sj (x). The changes in structure loss
and physics residual due to this masking are recorded as
structural sensitivity ∆struct

j and residual sensitivity ∆res
j , re-

spectively. A total sensitivity score ∆total
j is computed via

weighted summation controlled by hyperparameter β, re-
flecting the joint importance of subtree sj with respect to
both structural and physical objectives.

During genetic operations, sensitivity scores define a
probability distribution that guides both crossover and muta-
tion, balancing structural preservation with search diversity.
For crossover, each parent pair (fA, fB) samples a subtree
sA from fA using this sensitivity-based distribution, giv-
ing higher selection probability to less critical regions, and
swaps it with a subtree sB from fB . This reduces the risk of
disrupting key structures while maintaining exploration. For
mutation, a subtree sj is sampled from the same sensitivity-
based distribution and replaced with a randomly generated
subtree from the symbol library, allowing mutations to oc-
cur mainly in non-critical parts while preserving structurally
important components.

The evolutionary process repeats until convergence or
other termination criteria are met. At each generation, ex-
pressions are evaluated by a hybrid fitness function that bal-
ances physics residual fidelity and structural alignment. The
best-performing expression f∗(x) is finally selected as the
solution.

Methodology
We propose a structure-aware symbolic regression frame-
work that integrates structural priors extracted from Physics-
Informed Neural Networks (PINNs) into the evolutionary
process of Genetic Programming (GP). At the heart of this
approach lies the use of local Taylor expansions derived
from PINNs as a source of ground-truth structural guidance.
This mechanism promotes the discovery of symbolic expres-
sions that are not only accurate with respect to data but also
structurally aligned with underlying physical principles.

Let u(x) denote a trained PINN model that approximates
the solution to a target equation. Around a selected reference
point x0, we extract a K-order Taylor expansion:

T(u)(x;x0) =

K∑
k=0

u(k)(x0)

k!
(x− x0)

k (2)

Here, u(k)(x0) denotes the k-th derivative of u(x) evalu-
ated at x0, and k! is the factorial normalization. Likewise,

a candidate symbolic expression f(x) can be expanded in
the same manner. The structure loss is then defined as the
mean squared error between the Taylor coefficients of f(x)
and u(x):

LTaylor(f ;x0) =

K∑
k=0

(
f (k)(x0)

k!
− u(k)(x0)

k!

)2

(3)

This loss function provides a robust and interpretable mea-
sure of structural alignment. Since Taylor expansions are
naturally ordered by monomial degree (x − x0)

k, struc-
tural information is encoded directly in the coefficient vec-
tor. When a derivative term is theoretically absent in f(x), its
corresponding coefficient should ideally be zero. However,
due to numerical estimation errors, such coefficients are of-
ten small but non-zero. We set the Taylor expansion order
K = 5 to balance expressiveness and numerical stability:
lower orders may underfit local structure, while higher or-
ders are prone to derivative noise and overfitting.

To identify which subtrees in a symbolic expression con-
tribute most to the structure and data fidelity, we introduce
a masking attribution mechanism. For each subtree sj in a
candidate expression f(x), we construct a masked version
f−sj (x) by replacing sj with a neutral constant (e.g., 1). We
then evaluate two forms of sensitivity:

Structural sensitivity quantifies the change in structure
loss after masking:

∆struct
j = LTaylor(f−sj ;xi)− LTaylor(f ;xi). (4)

We define the Taylor structure loss LTaylor at point xi as:

LTaylor(f ;xi) =

K∑
k=0

(
f (k)(xi)

k!
− u(k)(xi)

k!

)2

, (5)

where u(·) is obtained from the trained PINN, and f(·) is
obtained from the candidate symbolic expression.

Residual sensitivity quantifies the change in physical
residual error, defined by the violation of the governing dif-
ferential equation when substituting the symbolic expression
into the physics operator N [·]:

∆res
j = MSE(N [f−sj ](x))− MSE(N [f ](x)) (6)

Here, N [·] represents the differential operator associated
with the target PDE, and the residual is evaluated point-wise
over a collocation set x. The mean squared error measures
how well the expression satisfies the physical constraint. We
integrate both sensitivities into a single scalar score:

∆total
j = β ·∆res

j + (1− β) ·∆struct
j (7)

The balancing parameter β ∈ [0, 1] controls the trade-
off between residual accuracy and structural fidelity. Sub-
trees with low ∆total

j are deemed structurally and function-
ally unimportant, and thus are prioritized for modification
during evolution.

In crossover, we adopt a sensitivity-guided strategy that
prioritizes protecting beneficial symbolic patterns while



Table 1: Summary of tested differential equations with their deterministic conditions.

Name PDE Deterministic Conditions

Advection ∂ϕ

∂t
+ u

∂ϕ

∂x
= 0 u(x, 0) = sin(x), x ∈ [0, 1], t ∈ [0, 1]

Diffusion ∂u

∂t
=

∂2u

∂x2
− e−t sin(πx)(1 − π2)

u(x, 0) = sin(πx), x ∈ [−1, 1]
u(−1, t) = u(1, t) = 0, t ∈ [0, 1]

Poisson2D ∂2u
∂x2

1

+ ∂2u
∂x2

2

= 30x2
1 − 7.8x1 + 1 u(x) = 2.5x4

1 − 1.3x3
1 + 0.5x2

2 − 1.7x2, x ∈ ∂[−1, 1]2

Poisson3D ∂2u
∂x2

1

+ ∂2u
∂x2

2

+ ∂2u
∂x2

3

= 30x2
1 − 7.8x2 + 1 u(x) = 2.5x4

1 − 1.3x3
2 + 0.5x2

3, x ∈ ∂[−1, 1]3

Heat2D ∂u
∂t

−
(

∂2u
∂x2

1

+ ∂2u
∂x2

2

)
= −30x2

1 + 7.8x2 + t
u(x, t) = 2.5x4

1 − 1.3x3
2 + 0.5t2, x ∈ ∂[−1, 1]2, t ∈ [0, 1]

u(x, 0) = 2.5x4
1 − 1.3x3

2, x ∈ [−1, 1]2

Heat3D ∂u
∂t

−
(

∂2u
∂x2

1

+ ∂2u
∂x2

2

+ ∂2u
∂x2

3

)
= −30x2

1 + 7.8x2 − 2.7
u(x, t) = 2.5x4

1 − 1.3x3
2 + 0.5x2

3 − 1.7t, x ∈ ∂[−1, 1]3, t ∈ [0, 1]

u(x, 0) = 2.5x4
1 − 1.3x3

2 + 0.5x2
3, x ∈ [−1, 1]3

Wave2D ∂2u
∂t2

−
(

∂2u
∂x2

1

+ ∂2u
∂x2

2

)
= −u3 + (0.25 − 4x2

1)
u(x, 0) = exp(x2

1) sin(x2), x ∈ [−1, 1]2

u(x, t) = exp(x2
1) sin(x2)e

−0.5t, x ∈ ∂[−1, 1]2, t ∈ [0, 1]

Wave3D ∂2u
∂t2

−
(

∂2u
∂x2

1

+ ∂2u
∂x2

2

+ ∂2u
∂x2

3

)
= u2 −

(
4x2

1 + 4x2
3 + 2.75

)
u(x, 0) = exp(x2

1 + x2
3) cos(x2), x ∈ [−1, 1]3

u(x, t) = exp(x2
1 + x2

3) cos(x2)e
−0.5t, x ∈ ∂[−1, 1]3, t ∈ [0, 1]

Table 2: Mean absolute error (MAE) comparison between StruSR and representative symbolic regression baselines on recov-
ering closed-form solutions for a set of PDE benchmarks. Each entry reports the average test MAE and its standard deviation
over 10 independent runs.

Name StruSR (Ours) RAG-SR NetGP HD-TLGP PhySO

Advection 1.21E-13 ± 3.57E-15 2.03E-13 ± 4.22E-14 9.59E-14 ± 1.27E-14 7.91E-11 ± 6.89E-12 3.18E-10 ± 1.10E-10
Diffusion 6.38E-6 ± 1.33E-6 8.91E-6 ± 1.18E-6 1.79E-5 ± 2.12E-5 2.23E-5 ± 3.97E-5 3.41E-3 ± 7.59E-4
Poisson2D 7.32E-5 ± 2.71E-6 8.03E-5 ± 3.21E-6 5.69E-1 ± 7.94E-2 1.87E-2 ± 2.40E-3 7.13E+0 ± 1.43E+0
Poisson3D 5.62E-3 ± 1.41E-3 5.77E-3 ± 1.52E-3 2.67E+0 ± 1.08E-1 1.85E-1 ± 1.69E-2 6.11E+0 ± 1.48E+0
Heat2D 1.53E-6 ± 7.81E-7 1.61E-6 ± 8.12E-7 3.16E+0 ± 1.32E-1 2.21E-2 ± 1.34E-2 1.18E+1 ± 1.21E+0
Heat3D 1.09E-4 ± 1.29E-5 9.27E-5 ± 1.42E-5 2.74E+0 ± 3.32E-1 8.71E-2 ± 2.91E-3 1.13E+1 ± 1.69E+0
Wave2D 4.33E-5 ± 2.41E-6 4.79E-5 ± 2.89E-6 9.47E+0 ± 2.19E-1 4.32E-4 ± 3.57E-4 2.01E+0 ± 1.39E-1
Wave3D 7.09E-6 ± 1.64E-6 8.92E-6 ± 1.52E-6 1.36E+1 ± 4.03E+0 9.71E-4 ± 2.35E-5 1.34E+1 ± 2.29E+0

maintaining diversity in the search. Instead of determin-
istically selecting the lowest-sensitivity subtrees for swap-
ping, we construct a softmax distribution over all subtrees
based on ∆total

j . This biases the selection toward less sen-
sitive regions of each parent, yet assigns a small proba-
bility to higher-sensitivity subtrees, preventing the search
from repeatedly modifying the same locations and improv-
ing overall exploration. This approach preserves structural
alignments inherited from PINN guidance while reducing
the risk of premature convergence, ultimately enhancing the
interpretability of the evolved expressions.

Similarly, for mutation, a candidate expression is mu-
tated with probability pmut. When triggered, a subtree sj is
sampled from the same softmax distribution, favoring low-
sensitivity components but allowing occasional changes in
other regions to ensure population diversity. The selected
subtree is then replaced with a randomly generated one from
the symbol library, introducing variability while largely pre-
serving structurally critical components.

Finally, to balance physical fidelity and symbolic expres-
siveness, we define a hybrid fitness function that jointly pe-
nalizes physics violations and structural mismatch:

F(f) = Lphys(f) + LTaylor(f) (8)
Here, Lphys(f) denotes the physics residual loss, com-

puted as the mean squared deviation of f when substituted
into the governing differential equation operator N [·], i.e.,

Lphys(f) =
1

N

N∑
i=1

(N [f ](xi))
2 (9)

where {xi}Ni=1 are collocation points and N [f ] represents
the target PDE/ODE form. The second term LTaylor(f) quan-
tifies the structural mismatch between the Taylor expansion
of the candidate expression and that of the reference PINN
at selected anchor points. Candidate expressions are selected
based on this composite objective, facilitating symbolic dis-
covery that is both accurate and grounded in physical priors.

In summary, our framework transforms the symbolic re-
gression pipeline by incorporating Taylor-expansion-based
structural signals into GP evolution. It promotes the genera-
tion of symbolic models that exhibit both empirical accuracy
and physics-guided interpretability.

Experiments
Benchmark Setup
To comprehensively evaluate the accuracy and interpretabil-
ity of the proposed method, we construct a PDE benchmark
suite consisting of eight representative partial differential



Table 3: Comparison of ground-truth analytical solutions and symbolic solutions identified by StruSR on classic PDEs.

Name Ground Truth utrue Symbolic Solution û by StruSR

Advection sin(x1 − t) sin(x1 − 1.001t) + 0.001 sin(2x1)

Diffusion e−t sin(πx) (1.022 − 0.482t + 0.124t2) sin(3.145x − 0.005t)

Poisson2D x2
1(2.5x

2
1 − 1.3x1) + 0.5x2(x2 − 1.4) − x2 x2

1(2.500x
2
1 − 1.301x1) + 0.504x2(x2 − 1.396) − x2

Poisson3D 2.5x4
1 − 1.3x3

2 + 0.5x2
3 2.500x4

1 − 1.300x3
2 + 0.501x2

3 − 2.158 × 10−5

Wave2D exp(x2
1) sin(x2) e

−0.5t (1.000 − 0.500t + 0.120t2)(1.000 + x2
1) sin(x2)

Wave3D exp(x2
1 + x2

3) sin(x2)e
−0.5t exp(−0.5001t + 1.000x2

1 + 0.999x2
3) sin(x2)

Heat2D 0.5t2 + 2.5x4
1 − 1.3x3

2 0.5002 + 2.501x4
1 − 1.299x2(x2 + 0.020)x2

Heat3D −1.7t + 2.5x4
1 − 1.3x3

2 + 0.5x2
3 −1.701t + 2.500x4

1 − 1.300x3
2 + 0.499x2

3

Figure 2: Performance comparison of symbolic regression methods across three evaluation dimensions on two benchmark suites
(Strogatz and Feynman). Each row corresponds to a specific baseline algorithm, while the circular and square markers represent
results on the Strogatz and Feynman datasets, respectively. Subfigure (a) reports the test R2 score (higher is better), indicating
predictive accuracy. Subfigure (b) shows the normalized structural complexity (lower is better), reflecting the compactness of
the learned expressions. Subfigure (c) presents the inference time (lower is better), measuring computational efficiency.

equations, covering one, two, and three-dimensional cases.
These tasks are designed to reflect various physical struc-
tures and boundary conditions. For each equation, the goal is
to recover the underlying analytical solution based on given
boundary constraints and sparse observations. Tab. 1 sum-
marizes the governing equations along with their determin-
istic conditions, including initial and boundary constraints.

Quantitative Performance Comparison
We first compare StruSR against representative symbolic re-
gression baselines on a suite of PDE recovery tasks. Com-
peting methods include RAG-SR, NetGP, HD-TLGP, and
PhySO. Evaluation is based on the Mean Absolute Error
(MAE) computed on the test set. Each result reports the av-
erage and standard deviation over 10 independent runs to
ensure statistical robustness.

As shown in Tab. 2, StruSR consistently achieves the
lowest or second-lowest MAE across most PDE bench-
marks. This advantage is particularly evident in structurally
complex scenarios such as Poisson2D/3D, Wave2D, and

Heat2D. We attribute this superior performance to StruSR’s
structure-aware modeling framework, which effectively in-
tegrates Taylor priors and guided evolution to align expres-
sion generation with the underlying physical structure.

Moreover, StruSR maintains competitive accuracy in
3D problems, demonstrating strong generalization to high-
dimensional tasks. While RAG-SR shows promising results
on specific cases like Heat3D, it falls short in overall consis-
tency. Other baselines, such as NetGP and PhySO, exhibit
higher variance across tasks, indicating limited robustness
in structural expression discovery.

Analytical Structure Matching
To assess structural alignment between predicted and
ground-truth solutions, we further compare symbolic ex-
pressions identified by StruSR with the original closed-form
equations. Tab.3 shows that the discovered formulas exhibit
strong structural fidelity, often matching the ground truth up
to minor coefficient variations or algebraic transformations.
These results validate StruSR’s ability to not only approxi-



(a) Normalized structure loss across generations. (b) Effect of Taylor expansion order K on structure loss and MAE.

Figure 3: Ablation studies on structural supervision: (a) convergence of normalized structure loss across different methods; (b)
impact of Taylor expansion order K on performance.

mate numerical behavior but also recover semantically faith-
ful symbolic forms.

General Symbolic Modeling Performance

To assess the general modeling capability of StruSR beyond
PDE recovery, we further evaluate it on two widely-used
symbolic regression benchmarks: the Strogatz system and
the Feynman equation dataset [34]. Following the standard
symbolic regression evaluation protocol [44], each dataset
is randomly split into 75% training and 25% testing subsets.
All methods are evaluated based on 10 independent runs.
We report three metrics: test R2 score (higher is better), nor-
malized structural complexity (lower is better), and average
inference time (lower is better).

Fig.2(a) shows that StruSR achieves competitive or lead-
ing prediction accuracy on both datasets, demonstrating
strong symbolic function approximation capabilities. This
performance stems from its structure-aware expression evo-
lution strategy, which allows the model to efficiently ex-
plore semantically meaningful subspaces. In terms of sym-
bolic expression complexity, Fig.2(b) evaluates the num-
ber of nodes in the output expression trees. All complex-
ity values are normalized to the [0, 1] interval for each task,
where 1 corresponds to the most complex expression in the
set. StruSR consistently produces more compact and inter-
pretable formulas, reflecting the effectiveness of its struc-
tural guidance mechanisms in constraining unnecessary re-
dundancy during evolution. Fig.2(c) presents the average in-
ference time per expression on a logarithmic scale. StruSR
exhibits relatively low inference latency across most tasks,
highlighting its potential for real-time and resource-efficient
deployment scenarios. These results collectively demon-
strate that StruSR not only achieves accurate symbolic mod-
eling, but also provides structurally concise and compu-
tationally efficient solutions across diverse application do-
mains.

Structural Guidance Analysis
To evaluate the effectiveness of structural guidance in sym-
bolic expression evolution, we conduct two complementary
studies: structure loss dynamics across methods and an ab-
lation on Taylor expansion order for prior extraction.

Fig.3(a) shows normalized structure loss over genera-
tions for three methods: Vanilla GP (red), Physics-Informed
GP (orange), and our StruSR (blue). StruSR achieves sta-
ble and monotonic structure loss reduction, outperforming
both baselines. Vanilla GP shows minimal structural im-
provement, lacking inductive bias. Physics-Informed GP im-
proves early on but fluctuates later due to the absence of
explicit structural preservation. Fig.3(b) evaluates the im-
pact of varying Taylor expansion order K. Both structure
loss and prediction MAE are minimized at K = 5, indicat-
ing an optimal trade-off between local fidelity and robust-
ness. Lower orders (K ≤ 2) lack sufficient derivative in-
formation, while higher orders (K > 5) risk overfitting and
noise. These results validate our dual-level guidance: Taylor-
based initialization from a PINN captures globally consis-
tent physical priors, while masking-based attribution enables
fine-grained, subtree-level mutation control. Together, they
promote stable, interpretable, and physically grounded sym-
bolic modeling.

Conclusion
We propose StruSR, a structure-aware symbolic regression
framework that leverages physics-informed priors derived
from Taylor expansions of trained PINNs. By introducing
a dual-level structural guidance mechanism—comprising
Taylor-based initialization and sensitivity-based attribu-
tion—StruSR steers symbolic evolution toward globally
consistent, physically meaningful solutions. Extensive ex-
periments on PDE recovery and standard symbolic bench-
marks demonstrate that StruSR consistently delivers high
predictive accuracy, reduced structural complexity. It reli-
ably discovers semantically faithful expressions with stable
and interpretable structural evolution, highlighting the effec-



tiveness of embedding physical inductive biases into sym-
bolic modeling. This work lays a principled foundation for
physics-guided symbolic discovery and opens new direc-
tions for interpretable, efficient, and generalizable equation
modeling.
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