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Abstract
Recent explainable artificial intelligence (XAI)
methods for time series primarily estimate point-
wise attribution magnitudes, while overlooking
the directional impact on predictions, leading
to suboptimal identification of significant points.
Our analysis shows that conventional Integrated
Gradients (IG) effectively capture critical points
with both positive and negative impacts on predic-
tions. However, current evaluation metrics fail
to assess this capability, as they inadvertently
cancel out opposing feature contributions. To ad-
dress this limitation, we propose novel evalua-
tion metrics—Cumulative Prediction Difference
(CPD) and Cumulative Prediction Preservation
(CPP)—to systematically assess whether attribu-
tion methods accurately identify significant pos-
itive and negative points in time series XAI. Un-
der these metrics, conventional IG outperforms
recent counterparts. However, directly applying
IG to time series data may lead to suboptimal
outcomes, as generated paths ignore temporal re-
lationships and introduce out-of-distribution sam-
ples. To overcome these challenges, we introduce
TIMING, which enhances IG by incorporating
temporal awareness while maintaining its theoreti-
cal properties. Extensive experiments on synthetic
and real-world time series benchmarks demon-
strate that TIMING outperforms existing time
series XAI baselines. Our code is available at
https://github.com/drumpt/TIMING.

1. Introduction
Time series data are prevalent across various fields, espe-
cially in safety-critical domains such as healthcare (Sukkar
et al., 2012; Bica et al., 2020; Rangapuram et al., 2021),
energy (Rangapuram et al., 2018; Benidis et al., 2022),
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transportation (Nguyen et al., 2018; Song et al., 2020), and
infrastructure (Dick et al., 2019; Torres et al., 2021). These
sectors usually necessitate high transparency in predictive
models to ensure safe and reliable operations, making the
interpretability of model behavior crucial. With deep neural
networks becoming the dominant approach for time series
analysis, understanding their decision-making processes has
become increasingly challenging due to their black-box na-
ture (Zhao et al., 2023; Liu et al., 2024b;a).

To tackle this challenge, several XAI methods for time
series data have been proposed (Tonekaboni et al., 2020;
Leung et al., 2023; Crabbé & Van Der Schaar, 2021; En-
guehard, 2023; Liu et al., 2024b; Queen et al., 2024; Liu
et al., 2024a; Ismail et al., 2020). These methods commonly
employ unsigned attribution schemes, focusing on the mag-
nitude of output changes resulting from feature removal,
rather than their direction—whether they reinforce or op-
pose the model’s prediction. This is practically undesirable
as end-users typically want to identify positively contribut-
ing features. Furthermore, existing evaluation strategies as-
sess these methods by measuring prediction changes by si-
multaneously masking out the most important points based
on high attribution scores; this approach does not adequately
capture the effectiveness of methods such as Integrated Gra-
dients (IG) that provide directional attribution.

Regarding this matter, our preliminary analysis in Sec-
tion 3.1 reveals that while IG effectively captures important
points, this capability has been significantly underestimated
in prior studies; this underestimation occurs since tradi-
tional metrics cancel out the effects of points with opposing
impacts. By relying solely on these evaluations, recent litera-
ture has inadvertently favored methods that align attribution
directions while neglecting the interpretative value of direc-
tional information.

Motivated by these limitations, we first propose novel eval-
uation metrics—Cumulative Prediction Difference (CPD)
and Cumulative Prediction Preservation (CPP)—to compre-
hensively assess both directed and undirected attribution
methods. These metrics evaluate points cumulatively rather
than simultaneously: CPD for high-attribution points (higher
is better) and CPP for low-attribution points (lower is better).
By addressing the cancel out problem of positive and nega-
tive attribution under these metrics, we re-evaluate existing
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baselines and find that traditional gradient-based methods,
such as IG, perform remarkably well compared to state-
of-the-art methods (Enguehard, 2023; Liu et al., 2024a;b).
This result demonstrates that these methods with directional
attributions are more effective at capturing the points that
truly influence the model’s behavior.

Building on the efficacy of directional attribution methods,
we propose Time Series Integrated Gradients (TIMING),
a novel approach designed to enhance conventional IG tai-
lored for the time series domain. While traditional IG cal-
culates gradients along a zero baseline at all points simul-
taneously, it often fails to capture the effects of complex
temporal dependencies and introduces out-of-distribution
(OOD) samples along the integration path. TIMING over-
comes these challenges by integrating temporality-aware
stochastic baselines into the attribution calculation process.
We further analyze the theoretical guarantees of TIMING,
demonstrating that its segment-based masking can be incor-
porated into the internal IG path, preserving key theoretical
properties of IG while enabling more effective calculation.
Extensive experiments on synthetic and real-world datasets
demonstrate that TIMING outperforms existing time series
XAI baselines.

To summarize, our contributions are threefold:

• We propose CPD and CPP, which monitor all internal
changes rather than making simultaneous changes, to
resolve the cancel out problem present in existing time
series XAI evaluations.

• We introduce TIMING, which improves IG by adapting
temporality-aware stochastic baselines to capture the
effects of complex temporal dependencies and mitigate
OOD problems.

• Extensive experiments show that TIMING outperforms
baselines while maintaining the efficiency and theoreti-
cal properties of IG.

2. Problem Setup
We define the problem of estimating feature attribution for
time series data. Let F : RT×D → [0, 1]C be a time se-
ries classifier, where T is the number of time steps, D is
the feature dimension, and C is the number of classes. Let
x ∈ RT×D denote an input time series. The classifier F out-
puts class probabilities F (x) = (F1(x), . . . , FC(x)) where
Fc(x) ≥ 0 and

∑C
c=1 Fc(x) = 1. A feature attribution

A(F, x) ∈ RT×D is a real-valued matrix, where each entry
A(F, x)t,d quantifies the contribution of the feature xt,d to
the model’s predicted probability for the chosen class Fŷ(x),
with ŷ = argmaxc∈{1,...,C} Fc(x).

For signed attribution methods (Lundberg & Lee, 2017;
Ribeiro et al., 2016; Sundararajan et al., 2017; Shrikumar
et al., 2017), positive values of A(F, x)t,d indicate that the

(a) Correctly ranked attributions
with unaligned signs.

(b) Poorly ranked attributions
with aligned signs.

(c) Existing raw prediction dif-
ference.

(d) Proposed cumulative predic-
tion difference.

Figure 1: An example illustrating how cumulative predic-
tion difference (CPD) improves upon raw prediction dif-
ference. While raw difference incorrectly favors a poorly
performing method with aligned signs (blue, b) over a per-
fect method with misaligned signs (red, a), CPD correctly
identifies the superior performance of the latter (d vs. c).

feature xt,d contributes to increasing model’s prediction
score for the chosen class, while negative values suggested
that xt,d suppresses the prediction score, with the absolute
value reflecting the strength of influence. In contrast, un-
signed attribution methods (Suresh et al., 2017; Tonekaboni
et al., 2020; Leung et al., 2023; Crabbé & Van Der Schaar,
2021; Enguehard, 2023; Liu et al., 2024b; Queen et al.,
2024; Liu et al., 2024a) focus solely on the magnitude of
contributions (i.e., high A(F, x)t,d indicates the importance
of xt,d for the model’s prediction), highlighting the relative
importance of each feature without indicating the direction
of its impact.

3. Proposed Metrics
In this section, we first discuss the limitations of the evalua-
tion metrics of current time series XAI algorithms in Sec-
tion 3.1. We then introduce our novel metrics, Cumulative
Prediction Difference (CPD) and Cumulative Prediction
Preservation (CPP) in Section 3.2.

3.1. Limitations of Current Time Series XAI Metrics

Evaluating XAI methods is challenging due to the absence
of a definitive ground truth regarding which parts of the
input the model focuses on, especially in modern deep neu-
ral networks (Lundberg & Lee, 2017). Yet, these methods
should be quantitatively evaluated, and thus we typically
consider two approaches: 1) assessing whether high attri-
bution is assigned to the input elements that were used to
generate the output in a synthetic dataset, where the data gen-
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eration process is known, or 2) measuring the performance
drop (e.g., Accuracy, AUROC, or AUPRC drop) when the
top-K high attribution points are removed from a real-world
dataset. However, in the case of synthetic data, there is no
guarantee that the model correctly focuses on the important
points dictated by the data generation process. Addition-
ally, performance drop analysis relies on ground truth labels,
which shift the focus of the explanation from the model to
the data. For instance, when the model has learned spurious
correlations or is attending to irrelevant features, removing
high-attribution regions can inversely improve performance.

A more reasonable approach in terms of faithfulness is to
measure the prediction difference before and after removing
the top-K salient points, which can be formulated as:

∆ŷ =
∣∣Fŷ(x)− Fŷ(x

↑
K)

∣∣,
where x↑

K denotes the input time series with the top-K
salient points removed, and |·| represents the absolute value.
This stems from an intuition that if the model truly depends
on certain points, removing them should significantly al-
ter the prediction, while removing irrelevant points should
have minimal impact. However, issues arise when multi-
ple top-K points are removed simultaneously. As shown
in Figure 1, this introduces a sign-aligning bias, where fea-
tures with small but consistently directed attributions are
incorrectly deemed important, as positive and negative attri-
butions cancel out their influence on the prediction. Specifi-
cally, when measuring naive prediction difference (Figure 1
(c)), removing the top 50 attribution points with a poor rank-
ing but aligned signs (Figure 1 (b)) ultimately outperforms
the removal of perfectly ranked yet misaligned attributions
(Figure 1 (a)). This misdirection can skew time series XAI
research toward merely aligning attribution directions.

Our preliminary experiment in Table 1 further demonstrates
that aligning positively or negatively attributed points using
IG (without taking the absolute value) significantly outper-
forms existing baselines, further highlighting the flaw in Acc
(10%), which is the ratio of retained predictions after mask-
ing 10% of points. Consequently, simply applying a ReLU
activation to IG’s attribution—an approach analogous to
GradCAM (Selvaraju et al., 2017) and GradCAM++ (Chat-
topadhay et al., 2018), two widely adopted XAI methods
in computer vision—can misleadingly yield state-of-the-art
results under these metrics. However, within the context of
simultaneously removing important points, relying solely
on these directionally aligned activation maps constitutes
an inherently unfair comparison. Based on these findings,
we claim that such metrics inherently suffer from a shared
limitation, and thereby propose novel evaluation metrics
in Section 3.2.

Table 1: Preliminary evaluation of XAI methods and evalua-
tion metrics for MIMIC-III mortality prediction, comparing
the accuracy and cumulative preservation difference.

Method Acc (10%) ↓ CPD (K = 50) ↑
Extrmask 0.930±0.005 0.204±0.007

ContraLSP 0.981±0.003 0.013±0.001

TimeX++ 0.991±0.001 0.027±0.002

IG (Unsigned) 0.974±0.001 0.342±0.021

IG (Signed) 0.855±0.011 0.248±0.010

TIMING 0.975±0.001 0.366±0.021

3.2. New Metrics: Cumulative Prediction Difference and
Preservation

To address the aforementioned limitations, we introduce two
novel evaluation metrics—Cumulative Prediction Differ-
ence (CPD) and Cumulative Prediction Preservation (CPP)—
designed to assess both directed and undirected attribution
methods on an equal footing. Specifically, CPD sequentially
removes the points with the highest absolute attributions
and cumulatively measures the prediction differences be-
tween consecutive steps, where larger values indicate better
performance. Formally, CPD is defined as:

CPD(x) =

K−1∑
k=0

∥∥∥F (x↑
k)− F (x↑

k+1)
∥∥∥
1
,

where F (x) = (F1(x), F2(x), . . . , FC(x)) is the model
output probability vector for the input x, and ∥·∥1 denotes
the ℓ1 norm. CPD computes the cumulative difference be-
tween class probability vectors for consecutive inputs across
all time steps, capturing the overall impact of perturbations
on model predictions.

In a similar vein, CPP sequentially removes points with
the lowest absolute attributions and measures prediction
differences between consecutive steps. The CPP metric is
defined as:

CPP(x) =
K−1∑
k=0

∥∥∥F (x↓
k)− F (x↓

k+1)
∥∥∥
1
,

where x↓
k refers to the input after the removal of the top-k

points with the lowest absolute attributions. The smaller
CPP indicates that the model’s predictions remain stable
when removing points deemed less important by the attribu-
tion method.

Our CPD and CPP metrics offer several compelling advan-
tages. First, they are specifically designed to optimize the
evaluation of an XAI method’s faithfulness, providing a
robust measure of attribution quality. Second, these metrics
enable a fair comparison between signed and unsigned attri-
bution methods and extend naturally to domains beyond the
time series domain. However, for signed methods, alternat-
ing positive and negative points by absolute value order can
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Figure 2: Overview of the Temporality-Aware Integrated Gradients (TIMING) framework for improved attribution in time
series data. TIMING extends the traditional Integrated Gradients (IG) (Section 4.1) by incorporating temporal dependencies
through segment-based random masking to handle disruptions in temporal relationships (Section 4.2). Our framework
applies a randomization strategy to compute IG under varied conditions and aggregates the results to yield more robust
feature attributions.

inflate the metric; they should avoid using attribution signs
to manipulate point ordering. Last, by varying K when
computing CPD or CPP, these metrics provide a holistic
evaluation of the overall ranking of attributions, offering
deeper insights into their effectiveness.

4. Proposed Method
In this section, we first briefly review Integrated Gradi-
ents (IG) (Sundararajan et al., 2017) and discuss its lim-
itations when applied to time series data. We then describe
our novel method, Temporality-Aware Integrated Gradients
(TIMING), along with its theoretical properties. The overall
framework of our method is illustrated in Figure 2 and the
detailed algorithm is provided in Appendix A.

4.1. Background: Integrated Gradients

We begin by reviewing the methodology of IG (Sundarara-
jan et al., 2017). Formally, let F : RT×D → [0, 1]C be
a time series classifier, where T is the number of time
steps, D is the feature dimension, and C is the num-
ber of classes. The classifier outputs class probabilities
F (x) = (F1(x), . . . , FC(x)), satisfying Fc(x) ≥ 0 and∑C

c=1 Fc(x) = 1. The predicted class is given by ŷ =
argmaxc∈{1,...,C} Fc(x). IG computes point-wise attribu-
tion by integrating gradients along the straight-line path
from a baseline x′ to the input x. In time series applica-
tions, the baseline x′ is typically chosen as 0. Thus, the
formulation for time t and dimension d is as follows:

IGt,d(x) = (xt,d − x′
t,d)

∫ 1

α=0

∂Fŷ(x
′ + α(x− x′))

∂xt,d
dα

= xt,d ×
∫ 1

α=0

∂Fŷ(αx)

∂xt,d
dα.

4.2. TIMING: Temporality-Aware Integrated Gradients

Suboptimality of naive IG on time series data. Directly
applying IG in Section 4.1 to time series data introduces
several non-trivial problems. First, when using a zero base-
line, all points along the path in the time series are simply
scaled down, and gradients are computed under this condi-
tion. This approach only captures changes when temporal
relationships remain consistent and thereby fails to observe
effects when temporal patterns are lost. In other words,
while computing the impact of the current value, IG main-
tains the relationship with past and future values, making
it difficult to interpret scenarios where such relationships
break down. Another critical issue in time series data is the
Out-of-Distribution (OOD) problem. When all points along
the path are scaled down, the intermediate points may lie in
OOD regions that the model has never encountered during
training. In such cases, the gradients computed along the
path may not contribute meaningfully to determining the
importance, leading to unreliable attributions.

Randomly retaining strategy. To address these two is-
sues, we first consider partially retaining certain points in the
data when applying IG. By preserving some original values,
we can observe how F (x) changes when certain temporal
relationships are disrupted. Specifically, we modify the zero
baseline to (1 −M) ⊙ x, where M ∈ {0, 1}T×D is a bi-
nary mask indicating which points are scaled down to zero
(Mt,d = 1) versus retained (Mt,d = 0). In this way, each
intermediate point remains closer to x, which helps mitigate
the OOD problem. Concretely, intermediate points in the IG
path can be represented as follows:

x′ + α(x− x′) = α(M ⊙ x) + (1−M)⊙ x.
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Next, we define this partially masked version of IG, called
MaskingIG, as:

MaskingIGt,d(x,M) =

xt,dMt,d ×
∫ 1

α=0

∂Fŷ(α(M ⊙ x) + (1−M)⊙ x)

∂xt,d
dα,

where ⊙ denotes element-wise multiplication. To estimate
the attribution of each point xt,d, we then propose RandIG,
which runs MaskingIG multiple times with random masks.
By computing the expectation of IG under these random
masks, we can obtain feature attribution ∀xt,d:

RandIGt,d(x; p) =

EMp

[
MaskingIGt,d(x,Mp)

∣∣ (Mp)t,d = 1
]
,

where Mp ∈ {0, 1}T×D and (Mp)i,j ∼ Bernoulli(p) are
independent ∀1 ≤ i ≤ T, 1 ≤ j ≤ D.

Combination of segments. In RandIG, each point is ran-
domly masked with probability p independently. However,
this approach can be suboptimal for time series data, as
the retained points may not align with meaningful temporal
structures. Time series data inherently exhibit temporal de-
pendencies, where both individual points and subsequences
carry rich semantic information (Leung et al., 2023). To bet-
ter suit time series data, we propose segment-based mask-
ing instead of random point masking. Retaining several
segments allows the model to preserve segment-level in-
formation, mitigating the OOD issue and enabling better
consideration of scenarios where temporal relationships are
either preserved or disrupted. Using the Combination of Seg-
ments strategy, we introduce Temporality-Aware Integrated
Gradients (TIMING), formalized as:

TIMINGt,d(x;n, smin, smax) =

EM∼G(n,smin,smax)

[
MaskingIGt,d(x,M)

∣∣Mt,d = 1
]
,

where G(n, smin, smax) is a mask generator that selects n
segments of lengths within [smin, smax]. Instead of masking
individual points, TIMING applies masking at the segment
level, thereby reflecting temporal dependencies in each IG
computation.

4.3. Theoretical Properties

Applying randomness in the path. Computing IG mul-
tiple times can yield accurate attributions but is often im-
practical due to its prohibitive computational cost. Instead,
we propose a more cost-efficient approach that leverages
randomization along the path. Formally, we introduce the
Effectiveness of TIMING.

Proposition 4.1 (Effectiveness). Let x, x′ ∈ RT×D be any
input and baseline respectively, and let M ∈ {0, 1}T×D be

a binary mask. Define the retained baseline combined with
the input as:

x̃(M) = (1−M)⊙ x + M ⊙ x′,

and consider the intermediate point in the path from x̃(M)
to x:

z(α;M) = x̃(M) + α(x− x̃(M)), α ∈ [0, 1].

Suppose the partial derivatives of the model output Fŷ are
bounded along all of these paths. Then∫ 1

0

∣∣∣∣∣∂Fŷ

(
z(α;M)

)
∂xt,d

∣∣∣∣∣ dα <∞, ∀α ∈ [0, 1], t, d, M.

Especially if x′ = 0 and M follows some probability distri-
bution,

EM

[
MaskingIGt,d(x,M)

∣∣Mt,d = 1
]

= xt,d ×
∫ 1

α=0

EM

[
∂Fŷ(z(α;M))

∂xt,d

∣∣∣∣∣Mt,d = 1

]
dα.

Proposition 4.1 shows that we no longer need to compute
IG repeatedly over different baselines. Instead, we can ran-
domly select one binary mask for each intermediate point
in the IG path, creating a highly fluctuating path from the
baseline 0 to the input. The detailed proof of Proposition
4.1 is provided in Appendix B. In all of the following exper-
iments, we adopt an efficient formulation of TIMING using
a single sample to approximate the inter-expectation.

Axiomatic properties. TIMING satisfies several key ax-
iomatic properties, ensuring its theoretical soundness and
consistency with the original Integrated Gradients (IG)
method (Sundararajan et al., 2017).

Proposition 4.2 (Sensitivity). Let x and x′ be two inputs
that differ in exactly one point (t, d), such that xt,d ̸= x′

t,d

and xi,j = x′
i,j for all (i, j) ̸= (t, d). If F (x) ̸= F (x′),

then TIMINGt,d(x) ̸= 0.

Proposition 4.3 (Implementation Invariance). TIMING
maintains consistency across functionally equivalent mod-
els, ensuring identical attributions if two models produce
identical outputs for all inputs.

These properties are practically important since they ensure
that TIMING provides reliable and interpretable feature
attributions that are consistent, sensitive to changes, The
detailed proof for these propositions is in Appendix B.

Proposition 4.4 (Incompleteness). Let x be an input
and x′ be a baseline. Then, the sum of the attributions
{TIMINGt,d(x)} assigned by our method across all features
is not guaranteed to equal the difference in model outputs.
Hence, our method does not satisfy the completeness axiom
as defined for IG.
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Table 2: Performance comparison of various XAI methods on MIMIC-III mortality prediction with zero substitution.
Results are aggregated with mean ± standard error over five random cross-validation repetitions and presented for both 20%
masking and cumulative masking strategies, with multiple metrics including cumulative prediction difference (CPD) for two
values of K = 50, 100, accuracy (Acc), cross-entropy (CE), sufficiency (Suff), and comprehensiveness (Comp).

Cumulative Masking 20% Masking
Method CPD (K = 50) ↑ CPD (K = 100) ↑ Acc ↓ CE ↑ Suff ∗ 102 ↓ Comp ∗ 102 ↑
FO 0.016±0.002 0.034±0.004 0.991±0.001 0.101±0.006 1.616±0.531 -0.258±0.180

AFO 0.120±0.008 0.177±0.013 0.975±0.002 0.121±0.007 1.484±0.306 -0.698±0.257

GradSHAP 0.327±0.021 0.447±0.030 0.975±0.002 0.136±0.008 0.253±0.217 0.570±0.536

DeepLIFT 0.142±0.010 0.189±0.014 0.974±0.002 0.374±0.005 0.325±0.076 -0.001±0.176

LIME 0.071±0.004 0.087±0.005 0.988±0.001 0.103±0.008 -1.875±0.081 -0.259±0.257

FIT 0.015±0.001 0.032±0.002 0.991±0.001 0.103±0.006 1.620±0.686 0.008±0.119

WinIT 0.020±0.001 0.038±0.002 0.989±0.001 0.106±0.006 1.261±0.658 0.250±0.147

Dynamask 0.052±0.002 0.079±0.004 0.974±0.002 0.131±0.008 0.081±0.374 1.626±0.218

Extrmask 0.204±0.007 0.281±0.009 0.932±0.005 0.485±0.022 -8.434±0.382 23.370±1.088

ContraLSP 0.013±0.001 0.028±0.002 0.921±0.006 0.301±0.013 -7.114±0.306 12.690±0.998

TimeX 0.064±0.007 0.101±0.009 0.974±0.002 0.117±0.003 3.810±0.560 -1.701±0.166

TimeX++ 0.027±0.002 0.051±0.004 0.987±0.001 0.095±0.005 1.885±0.328 -0.936±0.127

IG 0.342±0.021 0.469±0.030 0.974±0.001 0.132±0.008 0.403±0.156 0.118±0.561

TIMING 0.366±0.021 0.505±0.029 0.975±0.002 0.136±0.008 0.242±0.136 0.436±0.562

While standard IG ensures that all attributions sum to the
overall difference in model output for one baseline, our
method broadens the interpretation by examining multi-
ple baseline contexts. This broader perspective can offer
richer insights into when and how each feature contributes
across different masking or baseline conditions. However,
this flexibility inevitably sacrifices the original completeness
property that IG guarantees.

5. Experiments
This section presents a comprehensive evaluation of the em-
pirical effectiveness of TIMING. We begin by describing the
experimental setup in Section 5.1, followed by answering
the key research questions:

• Can TIMING faithfully capture the points that truly
influence the model’s predictions? (Section 5.2)

• Do the individual components of TIMING truly con-
tribute to capturing model explanations? (Section 5.3)

• Are the explanations provided by TIMING practi-
cally meaningful and interpretable for end-users? (Sec-
tion 5.4)

• How practical is TIMING in terms of hyperparameter
sensitivity and time complexity? (Section 5.4)

5.1. Experimental Setup

Datasets. Following existing state-of-the-art litera-
ture (Liu et al., 2024b;a), we evaluate TIMING on both
synthetic and real-world datasets. For synthetic datasets,
we utilize Switch-Feature (Tonekaboni et al., 2020; Liu
et al., 2024b) and State (Tonekaboni et al., 2020; Crabbé
& Van Der Schaar, 2021). For real-world datasets, we

employ MIMIC-III (Johnson et al., 2016), Personal
Activity Monitoring (PAM) (Reiss & Stricker, 2012),
Boiler (Shohet et al., 2019), Epilepsy (Andrzejak et al.,
2001), Wafer (Dau et al., 2019), and Freezer (Dau et al.,
2019). These datasets span a wide range of real-world
time series domains, ensuring a comprehensive evaluation
of TIMING’s effectiveness. Detailed descriptions of the
datasets are provided in Appendix D.

XAI baselines. We conduct a comprehensive compari-
son of TIMING against 13 baseline methods: FO (Suresh
et al., 2017), AFO (Tonekaboni et al., 2020), IG (Sun-
dararajan et al., 2017), GradSHAP (Lundberg & Lee, 2017),
DeepLIFT (Shrikumar et al., 2017), LIME (Ribeiro et al.,
2016), FIT (Tonekaboni et al., 2020), WinIT (Leung et al.,
2023), Dynamask (Crabbé & Van Der Schaar, 2021), Extr-
mask (Enguehard, 2023), ContraLSP (Liu et al., 2024b),
TimeX (Queen et al., 2024), and TimeX++ (Liu et al.,
2024a). These baselines encompass a diverse range of ap-
proaches, including modality-agnostic XAI methods—FO,
AFO, IG, GradSHAP, DeepLIFT, LIME—and time series-
specific XAI techniques such as FIT, WinIT, Dynamask,
Extrmask, ContraLSP, TimeX, and TimeX++, ensuring a
robust evaluation of TIMING.

Model architectures. We primarily evaluate TIMING
on black-box classifiers using a single-layer GRU (Chung
et al., 2014), following the experimental protocols of prior
works (Tonekaboni et al., 2020; Leung et al., 2023; Crabbé &
Van Der Schaar, 2021; Enguehard, 2023; Liu et al., 2024b;a).
To demonstrate the model-agnostic versatility of TIMING,
we assess its performance on CNNs (Krizhevsky et al., 2012)
and Transformers (Vaswani et al., 2017) in Appendix E.
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Table 3: Performance comparison of various XAI methods on real-world datasets with 10% feature masking. Results
are aggregated as mean ± standard error over five random cross-validation repetitions and presented across multiple
datasets, including MIMIC-III, PAM, Boiler (Multivariate), Epilepsy, Wafer, and Freezer (Univariate). Evaluation metrics
include cumulative prediction difference (CPD) attribution performance under two feature substitution strategies: average
substitution (Avg.) and zero substitution (Zero).

MIMIC-III PAM Boiler Epilepsy Wafer Freezer
Method Avg. Zero Avg. Zero Avg. Zero Avg. Zero Avg. Zero Avg. Zero

AFO 0.127±0.009 0.227±0.017 0.140±0.009 0.200±0.013 0.262±0.020 0.349±0.035 0.028±0.003 0.030±0.004 0.018±0.003 0.018±0.003 0.143±0.054 0.143±0.054

GradSHAP 0.250±0.015 0.522±0.038 0.421±0.014 0.518±0.012 0.752±0.055 0.747±0.092 0.052±0.004 0.054±0.004 0.485±0.014 0.485±0.014 0.397±0.110 0.397±0.110

Extrmask 0.154±0.008 0.305±0.010 0.291±0.007 0.380±0.009 0.338±0.028 0.400±0.031 0.028±0.003 0.029±0.003 0.202±0.026 0.202±0.026 0.176±0.057 0.176±0.057

ContraLSP 0.048±0.003 0.051±0.004 0.046±0.007 0.059±0.011 0.408±0.035 0.496±0.043 0.016±0.001 0.016±0.001 0.121±0.032 0.121±0.032 0.176±0.055 0.176±0.055

TimeX++ 0.017±0.002 0.074±0.006 0.057±0.004 0.070±0.004 0.124±0.028 0.208±0.043 0.030±0.004 0.032±0.004 0.000±0.000 0.000±0.000 0.216±0.056 0.216±0.056

IG 0.243±0.015 0.549±0.039 0.448±0.013 0.573±0.022 0.759±0.053 0.752±0.013 0.052±0.004 0.054±0.004 0.500±0.017 0.500±0.017 0.405±0.111 0.405±0.111

TIMING 0.250±0.015 0.597±0.037 0.463±0.007 0.602±0.033 1.259±0.065 1.578±0.085 0.057±0.005 0.060±0.005 0.674±0.014 0.674±0.014 0.409±0.109 0.409±0.109

Figure 3: Cumulative Prediction Preservation (CPP) com-
parison of XAI methods on MIMIC-III mortality prediction
with zero substitution. Results are averaged over five cross-
validation runs, with 10% random masking of observed
points alongside all missing points.

Evaluation metrics. As we propose new evaluation met-
rics for time series XAI—CPD and CPP—and address the
limitations of existing metrics, we primarily employ these
metrics on both synthetic and real-world datasets. Never-
theless, we also report results based on established metrics:
AUP and AUR for synthetic datasets (Liu et al., 2024a), as
well as accuracy, cross-entropy, sufficiency, and comprehen-
siveness for real-world datasets (Liu et al., 2024b). Detailed
explanations of these metrics are provided in Appendix C.

Implementation details. In all tables, the best and second-
best performance values are shown in bold and underlined,
respectively. Further implementation details are available at
https://github.com/drumpt/TIMING.

5.2. Main Results

Result on real-world datasets. As shown in Table 2,
TIMING achieves the best performance, with average Cu-
mulative Prediction Difference (CPD) scores of 0.366
(K = 50) and 0.505 (K = 100). Additionally, modality-
agnostic gradient-based methods, such as IG and Grad-
SHAP, demonstrate strong capabilities in identifying im-
portant features. Recent masking-based methods, includ-
ing Extrmask and ContraLSP, achieve state-of-the-art per-
formance based on standard evaluation metrics. However,
as illustrated in Figure 3, these methods exhibit a criti-
cal limitation—unimportant points can significantly affect
model predictions. Our analysis of CPD and CPP scores
reveals that these masking-based methods tend to assign
zero importance to negatively important features, potentially
overlooking their impact on model behavior. To further vali-
date our findings, we extended our evaluation to additional
real-world datasets. Also demonstrated in Table 3, TIMING
consistently achieves state-of-the-art performance across
all datasets. Specifically, TIMING improves zero substitu-
tion CPD performance with relative increases of 8.7% for
MIMIC-III, 5.1% for PAM, 109.8% for Boiler, 11.1% for
Epilepsy, 34.8% for Wafer, 1.0% for Freezer. These results
highlight the robustness of TIMING in diverse real-world
scenarios.

Result on synthetic datasets. Although real-world
datasets are more crucial for practical applications, we also
conducted experiments on the Switch-Feature and State
datasets following Liu et al. (2024b). As illustrated in Ta-
ble 4, ContraLSP and Extrmask outperform other methods
in estimating the true saliency map on the Switch-Feature
dataset. However, this superior performance in saliency map
estimation comes at the cost of sacrificing aspects of model
explanations, as reflected by their CPD scores. In contrast,
while TIMING may not excel in estimating true saliency
maps, it provides robustly effective model explanations,
achieving high CPD scores on both synthetic datasets. This
demonstrates that TIMING not only excels in real-world
scenarios but also maintains strong model explanation capa-
bilities in controlled synthetic environments.
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Table 4: Performance comparison of various XAI methods
on Switch Feature and State datasets. Results are reported as
mean ± standard error over five cross-validation repetitions,
evaluated using AUP, AUR, and CPD (10% masking) for
true saliency map and cumulative masking strategies.

Switch-Feature
Method CPD ↑ AUP ↑ AUR ↑
FO 0.191±0.006 0.902±0.009 0.374±0.006

AFO 0.182±0.007 0.836±0.012 0.416±0.008

GradSHAP 0.196±0.006 0.892±0.010 0.387±0.006

DeepLIFT 0.196±0.007 0.918±0.019 0.432±0.011

LIME 0.195±0.006 0.949±0.015 0.391±0.016

FIT 0.106±0.001 0.522±0.005 0.437±0.002

Dynamask 0.069±0.001 0.362±0.003 0.754±0.008

Extrmask 0.174±0.002 0.978±0.004 0.745±0.007

ContraLSP 0.158±0.002 0.970±0.005 0.851±0.005

IG 0.196±0.007 0.918±0.019 0.433±0.011

TIMING 0.208±0.003 0.926±0.011 0.434±0.015

State
Method CPD ↑ AUP ↑ AUR ↑
FO 0.158±0.004 0.882±0.021 0.303±0.005

AFO 0.143±0.007 0.809±0.037 0.374±0.007

GradSHAP 0.156±0.004 0.857±0.019 0.315±0.009

DeepLIFT 0.162±0.002 0.926±0.008 0.359±0.008

LIME 0.163±0.002 0.944±0.008 0.333±0.010

FIT 0.057±0.000 0.483±0.001 0.607±0.002

Dynamask 0.052±0.001 0.335±0.003 0.506±0.002

Extrmask 0.055±0.001 0.557±0.024 0.012±0.001

ContraLSP 0.025±0.000 0.495±0.011 0.015±0.001

IG 0.162±0.002 0.922±0.009 0.357±0.008

TIMING 0.163±0.002 0.921±0.010 0.355±0.008

Table 5: Ablation study comparing TIMING’s segment-
based masking strategy against IG and a random masking
IG (RandIG). We report CPD with K = 50 on the MIMIC-
III benchmark under both average and zero substitutions.

Method Avg. Zero

IG 0.172±0.011 0.342±0.021

RandIG (p = 0.3) 0.175±0.011 0.350±0.022

RandIG (p = 0.5) 0.175±0.011 0.353±0.022

RandIG (p = 0.7) 0.174±0.011 0.354±0.022

TIMING 0.177±0.011 0.366±0.021

5.3. Ablation Study

We perform an ablation study on TIMING to assess the im-
pact of each component. As TIMING builds on Integrated
Gradients (IG) with segment-based masking, we compare
it to standard IG and RandIG. As shown in Table 5, TIM-
ING outperforms both methods across substitution strate-
gies, with a particularly large gain in the Zero substitution
settings. This result shows RandIG’s limitation in solely
disrupting temporal dependencies. In contrast, TIMING pre-
serves structured information by leveraging segment-level
temporal patterns. This improves OOD generalization and
reinforces the need for segment-based attribution in time
series explainability.

5.4. Further Analysis

Qualitative analysis. We qualitatively assess TIMING for
coherence—examining whether its explanations are mean-
ingful and interpretable. In the MIMIC-III mortality bench-
mark, Figures 6 and 7 (true positives) highlight feature
index 9 (lactate) as most salient, consistent with clinical
knowledge that elevated lactate contributes to lactic acido-
sis, strongly linked to mortality (Villar et al., 2019; Bernhard
et al., 2020). Conversely, Figures 8 and 9 (true negatives)
align with known patterns: a low BUN/Cr ratio does not
indicate mortality risk (Tanaka et al., 2017; Ma et al., 2023),
and lower systolic/diastolic blood pressures promote patient
stability (Group, 2015; Brunström & Carlberg, 2018). Fur-
ther analyses in Figure 10 reveal that TIMING provides
compact and reasonable feature attributions.

Table 6: Hyperparameter sensitivity analysis for
(n, smin, smax), reporting CPD (K = 50) on MIMIC-III
with average and zero substitutions.

(n, smin, smax) Avg. Zero

(10, 1, 10) 0.173±0.011 0.345±0.021

(10, 1, 48) 0.175±0.011 0.354±0.021

(10, 10, 10) 0.173±0.011 0.347±0.021

(10, 10, 48) 0.176±0.011 0.356±0.021

(100, 1, 10) 0.175±0.011 0.354±0.021

(100, 1, 48) 0.176±0.011 0.365±0.021

(100, 10, 10) 0.175±0.011 0.358±0.021

(100, 10, 48) 0.174±0.011 0.363±0.021

(50, 1, 10) 0.174±0.011 0.351±0.021

(50, 1, 48) 0.177±0.011 0.365±0.021

(50, 10, 10) 0.175±0.011 0.355±0.021

TIMING (50, 10, 48) 0.177±0.011 0.366±0.021

Hyperparameter sensitivity. TIMING has three
hyperparameters—n for the number of filled segments,
smin for minimum segment length, and smax for maximum
segment length. As shown in Table 6, TIMING showcases
strong robustness to hyperparameter choices, with a
maximum discrepancy in the average performance of only
0.04 (Avg. substitution) and 0.019 (zero substitution) across
all configurations. Moderate segment lengths (smin = 10)
paired with a larger maximum (smax = 48) tend to
perform best, while a small maximum (smax = 10) slightly
degrades performance. Meanwhile, our default setting of
(n, smin, smax) = (50, 10, 48) achieves optimal results by
balancing these factors.

Computational efficiency. We further analyze the time
complexity of TIMING and other baselines in Figure 4,
focusing on methods that do not require post-training, as
training-based algorithms inherently take much longer than
their counterparts and are not a fair comparison. As shown
in Figure 4, TIMING achieves a competitive complexity of
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DeepLIFT (0.017, 0.142)

GradSHAP (0.034, 0.327)

IG (0.034, 0.342)
TIMING (0.040, 0.366)

FO (2.948, 0.016)

LIME (3.742, 0.071)

AFO (3.540, 0.120)

Figure 4: Computational efficiency analysis of TIMING
and baselines. We report elapsed real time (sec) on a logarith-
mic scale for all test samples in the MIMIC-III benchmark,
alongside CPD with K = 50. Each ordered pair (x, ·) rep-
resents per-sample elapsed real-time as the x-coordinate.

0.04 sec/sample while delivering the best CPD performance.
This highlights TIMING’s optimal trade-off between effi-
ciency and thoroughness.

6. Related Work
Modality-agnostic explainable artificial intelligence
methods. Deep neural networks have become a domi-
nant paradigm in machine learning, growing more com-
plex over time. While achieving high accuracy, they often
act as black boxes, offering little insight into how predic-
tions are made (Christoph, 2020). This lack of transparency
can undermine trust and accountability, especially in high-
stakes applications (Rudin, 2019). Modality-agnostic ex-
plainable artificial intelligence (XAI) methods, such as
SHAP (Lundberg & Lee, 2017), LIME (Ribeiro et al., 2016),
Integrated Gradients (IG) (Sundararajan et al., 2017), and
DeepLIFT (Shrikumar et al., 2017), aim to address this chal-
lenge by attributing model predictions to individual features.
These methods help provide insight into how input features
influence the output. Additionally, perturbation-based meth-
ods like Feature Occlusion (FO) (Suresh et al., 2017) and
Augmented Feature Occlusion (AFO) (Tonekaboni et al.,
2020) are commonly used to evaluate feature importance.
FO works by masking individual feature values, replacing
them with zeros or uniform noise, and observing the impact
on the model’s predictions. In contrast, AFO replaces fea-
tures with the corresponding values from random training
samples, rather than introducing noise. While these methods
can help explain predictions, they are predominantly vali-
dated on the image and language domains (Selvaraju et al.,
2017; Zhou et al., 2016; Ross et al., 2017; Danilevsky et al.,
2020), and thus limited in the context of time series data,
where the temporal dependencies between observations are
crucial for accurate explanations.

Explainable artificial intelligence for time series data.
Developing explainable artificial intelligence (XAI) meth-
ods for time series data encounters unique challenges due
to the temporal dependencies inherent in the data. The re-
lationships between data points are influenced by their or-
der and historical context. Naively adopting conventional
modality-agnostic XAI methods, which treat observations
as independent, often fail to capture these dynamics. Recent
methods address this by incorporating temporal dependen-
cies. Specifically, FIT (Tonekaboni et al., 2020) quantifies
feature importance by measuring shifts in the model’s pre-
dictive distribution using KL divergence. WinIT (Leung
et al., 2023) extends this by considering temporal dependen-
cies between observations and aggregating importance over
time. Dynamask (Crabbé & Van Der Schaar, 2021) learns
dynamic masks for feature importance at each time step,
while Extrmask (Enguehard, 2023) further learns perturba-
tions to better capture temporal dynamics. ContraLSP (Liu
et al., 2024b) tackles distribution shifts using contrastive
learning with sparse gates. TimeX (Queen et al., 2024)
trains interpretable surrogates to mimic pre-trained mod-
els, ensuring faithfulness while preserving temporal rela-
tionships. TimeX++ (Liu et al., 2024a) improves upon this
with an information bottleneck framework to avoid trivial
solutions and distribution shifts. Beyond these works, MIL-
LET (Early et al., 2024) and TimeMIL (Chen et al., 2024)
employ multiple-instance learning to provide explanations
that operate only within the architectures they propose. De-
spite substantial advancements in XAI methods, critical
gaps persist in capturing the directional influence of indi-
vidual data points and developing a cohesive framework
for evaluating their significance—challenges that this work
directly tackles.

7. Conclusion
In this paper, we have proposed a time series XAI method by
identifying critical limitations in existing attribution meth-
ods that fail to capture directional attributions and rely on
flawed evaluation metrics. To this end, we introduced novel
metrics—Cumulative Prediction Difference (CPD) and Cu-
mulative Prediction Preservation (CPP)—to address these
issues, revealing that classical Integrated Gradients (IG)
outperforms recent methods. Building on this insight, we
proposed TIMING, an enhanced integrated gradients ap-
proach that addresses the limitations of conventional IG with
segment-based masking strategies, which effectively cap-
ture complex temporal dependencies while avoiding out-of-
distribution samples. Extensive experiments demonstrated
TIMING’s superior performance in attribution faithfulness,
coherence, and efficiency. We believe this work bridges the
gap between model development and practical XAI in time
series, offering reliable, interpretable insights for real-world
applications.

9



TIMING: Temporality-Aware Integrated Gradients for Time Series Explanation

Acknowledgments
This work was supported by the Institute of Information &
Communications Technology Planning & Evaluation (IITP)
(No. RS-2019-II190075, Artificial Intelligence Graduate
School Program (KAIST), No. 2022-0-00984, Development
of Artificial Intelligence Technology for Personalized Plug-
and-Play Explanation and Verification of Explanation) and
the National Research Foundation of Korea (NRF) (No. RS-
2023-00209060, A Study on Optimization and Network
Interpretation Method for Large-Scale Machine Learning)
grant funded by the Korean government (MSIT).

Impact Statement
This paper presents work whose goal is to advance explain-
able AI for time series analysis. Our contributions enhance
model transparency in safety-critical applications such as
healthcare, energy systems, and infrastructure monitoring,
enabling clinicians, engineers, and operators to better un-
derstand and trust AI-driven decisions. This work promotes
responsible AI deployment by providing more reliable expla-
nations that support human expertise and improve decision-
making in domains where interpretability is crucial for
safety and effectiveness.

References
Andrzejak, R. G., Lehnertz, K., Mormann, F., Rieke, C.,

David, P., and Elger, C. E. Indications of nonlinear deter-
ministic and finite-dimensional structures in time series of
brain electrical activity: Dependence on recording region
and brain state. Physical Review E, 2001.

Benidis, K., Rangapuram, S. S., Flunkert, V., Wang, Y.,
Maddix, D., Turkmen, C., Gasthaus, J., Bohlke-Schneider,
M., Salinas, D., Stella, L., et al. Deep learning for time
series forecasting: Tutorial and literature survey. ACM
Computing Surveys, 2022.
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Appendix

A. Algorithm
The detailed procedure for the efficient version of TIMING that we used in our experiments is provided in Algorithm 1.

Algorithm 1 TIMING

Input: Test instance x ∈ RT×D, Pre-trained time series classifier F , # of segments n, Minimum segment length smin,
Maximum segment length smax, # of samples nsamples

α, ŷ ← 0, argmaxc∈{1,...,C} Fc(x)
Baselines, unmaskcount,TotalGrad← 0T×D,0T×D,0T×D

while α < 1 do
// Parallelized in our implementation
x̃← Baselines + α (x− Baselines)
for i = 1 to n do
// Parallelized in our implementation
l, d, s← RandomSample([smin, smax]),RandomSample({0, . . . , D − 1}),RandomSample({0, . . . , T − l})
e← s+ l
x̃s:e,d ← xs:e,d

unmaskcounts:e,d ← unmaskcounts:e,d + 1
end for
grad← ∂Fŷ(x̃)/∂x̃
grads:c,d ← 0
TotalGrad← TotalGrad + grad
α← α+ 1/nsamples

end while
A(F, x)← (TotalGrad ⊙ (x− Baselines))/(nsamples − unmaskcount)
Output: Attribution A(F, x)

B. Proof of Propositions
B.1. Proof of Proposition 4.1

Proof. Since x′ = 0, we have x̃(M) = (1−M)⊙ x. Therefore, the intermediate point z(α;M) on the path from x̃(M) to
x is:

z(α;M) = x̃(M) + α
(
x− x̃(M)

)
= α

(
M ⊙ x

)
+

(
1−M

)
⊙ x, ∀α ∈ [0, 1].

By bounded partial derivatives assumption, there exists L > 0 such that∣∣∣∣∣∂Fŷ

(
z(α;M)

)
∂xt,d

∣∣∣∣∣ ≤ L ∀α ∈ [0, 1], t, d, M.

Hence, ∫ 1

0

∣∣∣∣∣∂Fŷ

(
z(α;M)

)
∂xt,d

∣∣∣∣∣ dα ≤
∫ 1

0

Ldα = L <∞.

In particular, for each (t, d), ∣∣∣∣∣xt,d ×
∫ 1

α=0

∣∣∣∣∣∂Fŷ

(
z(α;M)

)
∂xt,d

∣∣∣∣∣ dα

∣∣∣∣∣ ≤ L |xt,d| .

Since M is drawn from a probability distribution and we assume Pr(Mt,d = 1) > 0, the event {Mt,d = 1} occurs with
nonzero probability, and thus E

[
· |Mt,d = 1

]
is well-defined. Therefore,

EM

[
xt,d Mt,d

∫ 1

0

∣∣∂Fŷ(z(α;M))
∂xt,d

∣∣ dα ∣∣∣ Mt,d = 1
]
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(a) CPP with 20% masking and zero substitution. (b) CPP with 40% masking and zero substitution.

Figure 5: Cumulative Prediction Preservation (CPP) comparison of XAI methods on MIMIC-III mortality prediction with
zero substitution. Results are averaged over five cross-validation runs, with 20% and 40% random masking of observed
points alongside all missing points.

is finite. By the Fubini-Tonelli theorem, we may interchange the integral and the expectation. Hence, we can get the following
formula:

EM

[
MaskingIGt,d(x,M)

∣∣∣ Mt,d = 1
]
= EM

[
xt,d Mt,d

∫ 1

0

∂Fŷ(z(α;M))

∂xt,d
dα

∣∣∣ Mt,d = 1
]

= xt,d

∫ 1

0

EM

[
∂Fŷ(z(α;M))

∂xt,d

∣∣∣ Mt,d = 1
]
dα.

B.2. Proof of Proposition 4.2

Proof. Since x and x′ differ only at the single coordinate (t, d), whenever Mt,d = 1, we have

x̃(M) = (1−M)⊙ x+M ⊙ x′ = x′.

Hence, for any mask M with Mt,d = 1, MaskingIGt,d(F, x, x̃(M)) reduces to IGt,d(F, x, x
′). Taking the conditional

expectation over all such M yields

TIMINGt,d(x) = E
[
MaskingIGt,d(F, x, x̃(M))

∣∣Mt,d = 1
]
= IGt,d(x).

By the sensitivity property of Integrated Gradients, if F (x) ̸= F (x′), then IGt,d(x) ̸= 0. Consequently, TIMINGt,d(x)
must also be nonzero.

B.3. Proof of Proposition 4.3

Proof. The TIMING formula depends only on the gradients of the model, similar to IG (Sundararajan et al., 2017). Therefore,
it satisfies implementation invariance.

14
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C. Existing Evaluation Metrics for Time Series XAI
We introduce CPD and CPP as novel evaluation metrics designed to better capture model faithfulness. Consequently, we
prioritize their use in our analysis while also employing existing XAI evaluation metrics for comparative purposes. For
synthetic datasets, we assess feature importance using Area Under Precision (AUP) and Area Under Recall (AUR), alongside
our proposed CPD metric. For real-world datasets, we adopt the evaluation criteria from (Enguehard, 2023; Liu et al.,
2024b), detailed as follows:

• Accuracy (Acc): Accuracy evaluates how often the model’s original prediction is retained after removing salient
features. A lower accuracy score indicates a more effective explanation.

• Cross-Entropy (CE): Cross-Entropy quantifies the entropy difference between perturbed and original feature predic-
tions, measuring information loss. A higher CE value is preferred.

• Sufficiency (Suff): Sufficiency measures the average change in predicted class probabilities when only selected features
are retained. A lower value is preferable, indicating minimal information loss.

• Comprehensiveness (Comp): Comprehensiveness assesses how much the model’s confidence in a target class
decreases when important features are removed. A higher score suggests that the removed features were crucial for
prediction, making it a stronger interpretability measure.

Traditional feature importance metrics, such as AUP and AUR, assume that the model correctly identifies ground truth
importance in synthetic data. However, this assumption does not always hold in practice, limiting their reliability. While
Acc, CE, Suff, and Comp are well-established metrics, they suffer from the drawback of simultaneously removing multiple
features, potentially affecting interpretability. A natural extension of our cumulative metrics could involve integrating these
conventional measures to develop a more robust evaluation framework.

D. Description of Datasets

Table 7: We describe two synthetic datasets—Switch-Feature (Tonekaboni et al., 2020; Liu et al., 2024b) and State (Tonek-
aboni et al., 2020; Crabbé & Van Der Schaar, 2021)—and six real-world datasets—MIMIC-III (Johnson et al., 2016),
PAM (Reiss & Stricker, 2012), Epilepsy (Andrzejak et al., 2001), Boiler (Shohet et al., 2019), Wafer (Dau et al., 2019), and
Freezer (Dau et al., 2019)—which are all used in our experiments.

Type Name Task Dataset Size Length Dimension Classes

Synthetic Switch-Feature Binary classification 1,000 100 3 2
datasets State Binary classification 1,000 200 3 2

MIMIC-III Mortality prediction 22,988 48 32 2
PAM Action recognition 5,333 600 17 8

Real-world Epilepsy EEG classification 11,500 178 1 2
datasets Boiler Mechanical fault detection 90,115 36 20 2

Wafer Wafer fault detection 7,164 152 1 2
Freezer Appliance classification 3,000 301 1 2

Building on recent state-of-the-art studies (Liu et al., 2024b;a), we evaluate our method on 8 time series datasets spanning
both synthetic and real-world domains, as summarized in Table 7.

D.1. Synthetic Datasets

We consider 2 synthetic datasets: Switch-Feature (Tonekaboni et al., 2020; Liu et al., 2024b) and State (Tonekaboni et al.,
2020; Crabbé & Van Der Schaar, 2021).

Switch-Feature. Following the protocol of Tonekaboni et al. (2020) and the implementation details in Liu et al. (2024b),
we synthesize the dataset with a three-state hidden Markov model (HMM) whose initial distribution is π = [ 13 ,

1
3 ,

1
3 ] and

whose transition matrix is given as follows: 0.95 0.02 0.03
0.02 0.95 0.03
0.03 0.02 0.95

 .
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At each time step, the model occupies a state st ∈ {0, 1, 2} and emits a three-dimensional feature vector xt drawn from a
Gaussian Process (GP) mixture. Each GP component employs an RBF kernel with γ = 0.2 and marginal variance 0.1; its
mean vector is state-dependent:

µ0 = [0.8,−0.5,−0.2], µ1 = [0,−1.0, 0], µ2 = [−0.2,−0.2, 0.8].

The binary label yt also depends on the state and is drawn from Bernoulli(pt) with

pt =


1/(1 + exp(−xt,0)) if st = 0,

1/(1 + exp(−xt,1)) else if st = 1,

1/(1 + exp(−xt,2)) else if st = 2.

.

We generate 1,000 time series sequences of length 100 (T = 100) using the above procedure. The dataset is split into 800
training samples and 200 test samples for evaluating time series XAI methods. Each sample is annotated with the true
saliency map {(t, st) | t = 1, . . . , T}, as in Liu et al. (2024b).

State. First proposed by Tonekaboni et al. (2020) and later slightly modified by Crabbé & Van Der Schaar (2021), this
dataset has since become a standard test-bed for time series XAI (Enguehard, 2023; Liu et al., 2024b). Each sequence is
generated by a two-state hidden Markov model (HMM) with initial distribution π = [0.5, 0.5] and transition matrix[

0.1 0.9
0.1 0.9

]
.

Conditioned on the latent state st ∈ {0, 1}, an input feature vector xt is sampled from N (µst ,Σst) with

µ0 = [0.1, 1.6, 0.5], µ1 = [−0.1,−0.4,−1.5],

Σ0 =

0.8 0 0
0 0.8 0.01
0 0.01 0.8

 , Σ1 =

 0.8 0.01 0
0.01 0.8 0
0 0 0.8

 .

A binary label yt is then drawn from Bernoulli(pt) where

pt =

{
1/(1 + exp(−xt,1)) if st = 0,

1/(1 + exp(−xt,2)) else if st = 1.
.

Using the above procedure, we synthesize 1,000 time series of length 200 (T = 200). For each sample, we define the
true saliency map as {(t, 1 + st) | t = 1, . . . , T}, following Crabbé & Van Der Schaar (2021). We train on the first 800
sequences and reserve the remaining 200 for evaluation.

D.2. Real-world Datasets

We employ 6 real-world datasets: MIMIC-III (Johnson et al., 2016), PAM (Reiss & Stricker, 2012), Boiler (Shohet et al.,
2019), Epilepsy (Andrzejak et al., 2001), Wafer (Dau et al., 2019), and Freezer (Dau et al., 2019).

MIMIC-III. Using the MIMIC-III database (Johnson et al., 2016), we assemble adult ICU admission data for in-hospital
mortality prediction from the 48 hours of recorded data (T = 48). The data processing pipeline mirrors that of Tonekaboni
et al. (2020), with two small tweaks: we restore a laboratory variable that was inadvertently dropped, and we apply a uniform
constant fill to any missing entries. The final collection comprises 22,988 ICU admissions, each represented by 32 aligned
clinical features (D = 32).

PAM. We adopt the Physical Activity Monitoring (PAM) dataset introduced by Reiss & Stricker (2012), which records
18 daily activities performed by 9 subjects wearing 3 inertial measurement units. Following the data processing protocol
of Queen et al. (2024), we retain the 8 activities with at least 500 samples each. The resulting dataset comprises 5,333
samples, each consisting of 600 time steps (T = 600) across 17 sensor channels (D = 17).
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Table 8: Comparison of model consistency across various XAI methods for MIMIC-III mortality prediction with zero
substitution. We evaluate with Transformer and CNN models under 20% masking and cumulative masking strategies.
Results (mean ± standard error) are averaged over five cross-validation repetitions, reporting multiple performance metrics,
including accuracy (Acc) and cumulative prediction difference (CPD) at K = 50 and K = 100.

Transformer CNN
Method CPD (K = 50) ↑ CPD (K = 100) ↑ Acc ↓ CPD (K = 50) ↑ CPD (K = 100) ↑ Acc ↓
AFO 0.063±0.002 0.091±0.004 0.975±0.001 0.261±0.021 0.424±0.035 0.909±0.008

GradSHAP 0.099±0.004 0.126±0.007 0.974±0.001 0.855±0.077 1.237±0.111 0.903±0.008

Extrmask 0.052±0.002 0.081±0.004 0.973±0.002 0.480±0.037 0.633±0.049 0.896±0.009

ContraLSP 0.011±0.001 0.024±0.002 0.955±0.005 0.132±0.007 0.313±0.015 0.583±0.015

TimeX 0.049±0.002 0.070±0.003 0.974±0.002 0.275±0.022 0.396±0.035 0.917±0.009

TimeX++ 0.029±0.001 0.040±0.002 0.976±0.001 0.329±0.040 0.496±0.068 0.914±0.008

IG 0.103±0.005 0.129±0.007 0.974±0.002 0.925±0.087 1.349±0.123 0.905±0.007

TIMING 0.109±0.005 0.140±0.008 0.974±0.002 1.173±0.077 1.826±0.113 0.874±0.011

Boiler. We adopt the Boiler dataset (Shohet et al., 2019), which contains multivariate sensor traces from simulated hot
water heating boilers and is used to detect blowdown valve faults. Following the data processing pipeline of Queen et al.
(2024), we obtain 90,115 samples, each represented by 36 time steps (T = 36) across 20 sensor channels (D = 20).

Epilepsy. The Epilepsy dataset (Andrzejak et al., 2001) consists of single-lead EEG recordings from 500 subjects.
Following the preprocessing of Queen et al. (2024), we convert the original five classes into a binary label indicating whether
a seizure occurs. Each subject is monitored for 23.6 seconds; the recording is segmented into 1 second windows sampled
at 178 Hz, producing 11,500 samples. Each resulting sample comprises 178 time steps (T = 178) from a single channel
(D = 1).

Wafer and Freezer. The Wafer and FreezerRegularTrain (Freezer) datasets are both drawn from the UCR archive (Dau
et al., 2019) and are evaluated in Liu et al. (2024a) as standard benchmarks for time series classification. The Wafer dataset
captures inline process control signals from semiconductor fabrication sensors. Each univariate time series contains 152 time
steps (T = 152) recorded while processing a single wafer. The binary task is to detect abnormal wafers. The Freezer dataset
comprises 3,000 univariate power-demand sequences, each 301 time steps long (T = 301), collected from two household
freezers located in a kitchen and a garage. The classification task is to determine which freezer generated each sequence.

E. Result on Different Black-Box Classifiers
Our main experiments focus on a single-layer GRU with 200 hidden units as the primary model architecture. To further
validate the generalizability of our approach, we extended our black box models to include Convolutional Neural Network
(CNN) and Transformer (Vaswani et al., 2017), as suggested in TimeX++ (Liu et al., 2024a). As illustrated in Table 8,
TIMING can generalize across the type of black box model.

F. Qualitative Examples
Due to space limitations in the main text, all of the qualitative figures and analysis for Figure 10 are included in this appendix.
In Figure 10, the visualization of feature attributions across methods highlights key differences in how signed and unsigned
methods identify salient features. Signed methods like TIMING, GradSHAP (Lundberg & Lee, 2017), DeepLIFT (Shrikumar
et al., 2017), and IG (Sundararajan et al., 2017) consistently assign importance to feature index 9 (lactate) in specific regions,
aligning with clinical knowledge that elevated lactate levels contribute to lactic acidosis, a condition strongly linked to
mortality. In contrast, unsigned methods fail to clearly identify lactate as a salient feature, suggesting limitations in their
ability to explain model behavior and align with clinical understanding.
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Input TIMING

Figure 6: Qualitative analysis of input features and attributions extracted from TIMING on the MIMIC-III mortality
benchmark (Johnson et al., 2016) for a true positive case where (label = 1, model output = 0.625).

Input TIMING

Figure 7: Qualitative analysis of input features and attributions extracted from TIMING on the MIMIC-III mortality
benchmark (Johnson et al., 2016) for a true positive case where (label = 1, model output = 0.898).

Input TIMING

Figure 8: Qualitative analysis of input features and attributions extracted from TIMING on the MIMIC-III mortality
benchmark (Johnson et al., 2016) for a true negative case where (label = 0, model output = 0.020).

Input TIMING

Figure 9: Qualitative analysis of input features and attributions extracted from TIMING on the MIMIC-III mortality
benchmark (Johnson et al., 2016) for a true negative case where (label = 0, model output = 0.081).
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Input TIMING

DeepLIFT

Dynamask Extrmask

FIT

ContraLSP

GradSHAP

IG
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Figure 10: Qualitative analysis of input features and attributions extracted from TIMING and baselines on the MIMIC-III
mortality benchmark (Johnson et al., 2016) for a true positive case where (label = 1, model output = 0.625).
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