
Under review as a conference paper at ICLR 2024

SAMPLE-EFFICIENT TRAINING FOR DIFFUSION

Anonymous authors
Paper under double-blind review

ABSTRACT

Score-based diffusion models have become the most popular approach to deep
generative modeling of images, largely due to their empirical performance and
reliability. Recently, a number of theoretical works (Chen et al.; 2022a; 2023;
Benton et al., 2023) have shown that diffusion models can efficiently sample,
assuming L2-accurate score estimates. The score-matching objective naturally
approximates the true score in L2, but the sample complexity of existing bounds
depends polynomially on the data radius and desired Wasserstein accuracy. By
contrast, the time complexity of sampling is only logarithmic in these parameters.
We show that estimating the score in L2 requires this polynomial dependence,
but that a number of samples that scales polylogarithmically in the Wasserstein
accuracy actually do suffice for sampling. We show that with a polylogarithmic
number of samples, the ERM of the score-matching objective is L2 accurate on all
but a probability δ fraction of the true distribution, and that this weaker guarantee
is sufficient for efficient sampling.

1 INTRODUCTION

Score-based diffusion models are currently the most successful methods for image generation, serving
as the backbone for popular text-to-image models such as stable diffusion (Rombach et al., 2022),
Midjourney, and DALL·E 2 (Ramesh et al., 2022) as well as achieving state-of-the-art performance
on other audio and image generation tasks (Sohl-Dickstein et al., 2015; Ho et al., 2020; Jalal et al.,
2021; Song et al., 2022; Dhariwal & Nichol, 2021).

The goal of score-based diffusion is to sample from a (potentially complicated) distribution q0. This
involves two components: training estimates of score functions from samples, and sampling using
the trained estimates. To this end, consider the following stochastic differential equation, which is
often referred to as the forward SDE:

dxt = −xt dt+
√
2 dBt, x0 ∼ q0 (1)

where Bt represents Brownian motion. Here, x0 is a sample from the original distribution q0 over
Rd, while the distribution of xt can be computed to be

xt ∼ e−tx0 +N (0, σ2
t Id)

for σ2
t = 1− e−2t. Note that this distribution approaches N (0, Id), the stationary distribution of (1),

exponentially fast.

Let qt be the distribution of xt, and let st(y) := ∇ log qt(y) be the associated score function. We
refer to qt as the σt-smoothed version of q0. Then, starting from a sample xT ∼ qT , there is a reverse
SDE associated with the above forward SDE in equation 1 (Anderson, 1982):

dxT−t = (xT−t + 2sT−t(xT−t)) dt+
√
2 dBt. (2)

That is to say, if we begin at a sample xT ∼ qT , following the reverse SDE in equation 2 back to time
0 will give us a sample from the original distribution q0. This suggests a natural strategy to sample
from q0: start at a time T large enough using a sample from N (0, Id), and follow the reverse SDE
back to time 0. Since xT is distributed exponentially close in T to N (0, Id), our samples at time 0
will end up being distributed close to q0. In particular, if T is large enough–logarithmic in m2

ε –then
our samples from this process will be ε-close in TV to being drawn from q0. Here m2

2 is the second
moment of q0, given by

m2
2 := E

x∼q0

[
∥x∥2

]
.
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Of course, to follow the reverse SDE from equation 2, we need access to the score functions st at
various times t. A diffusion model estimates these score functions using score-matching.

Score-matching. One can show (Theorem 1, Hyvärinen (2005)) that the score function at time t,
st, is the minimizer over functions s of the following “score matching objective”:

E
x∼q0,z∼N (0,σ2

t Id)

[∥∥∥∥s(e−tx+ z)− −z

σ2
t

∥∥∥∥2
2

]
(3)

This gives a natural method for estimating st: minimize the empirical value of equation 3 over
samples xi ∼ q0 and independent Gaussian samples zi ∼ N (0, σ2

t Id). In other words, for a given
function family H of candidate score functions, estimate the empirical risk minimizer (ERM):

argmin
ŝt∈H

1

m

m∑
i=1

∥∥∥∥ŝt(e−txi + zi)−
−zi
σ2
t

∥∥∥∥2
2

(4)

Such a minimizer can be approximated in practice using deep neural networks, with the objective
optimized by stochastic gradient descent (SGD).

Sampling. Given the score estimates ŝt, one can sample from a distribution close to q0 by running
the reverse SDE in equation 2.

To practically implement the reverse SDE in equation 2, we discretize this process into N steps and
choose a sequence of times 0 = t0 < t1 < · · · < tN < T . At each discretization time tk, we use our
score estimates ŝtk and proceed with an approximate reverse SDE using our score estimates, given
by the following. For t ∈ [tk, tk+1],

dxT−t = (xT−t + 2ŝT−tk(xT−tk)) dt+
√
2 dBt. (5)

Here, we will begin at xT = xT−t0 ∼ N (0, Id). We will let q̂t be the distribution at time t from
following the above SDE. This algorithm is referred to as “DDPM”, as defined in (Ho et al., 2020).

A number of recent theoretical works (Chen et al.; 2022a; 2023; Benton et al., 2023) have studied
this sampling process: how many steps are needed, what is the right schedule of discretization times
t, and how accurately must the score be estimated? They have shown polynomial time algorithms in
remarkable generality.

For example, consider any d-dimensional distribution q0 supported in B(0, R) (or, more generally,
subgaussian with parameter R2). In Chen et al. it was shown that the SDE can sample from a
distribution ε-close in TV to a distribution (γ ·R)-close in 2-Wasserstein to q0 , in poly(d, 1

ε ,
1
γ ) steps,

as long as the score estimates are close in L2. That is, as long as:

E
x∼qt

[
∥st(x)− ŝt(x)∥2

]
≤ O∗ (ε2) (6)

where O∗(·) hides factors logarithmic in d, 1
ε , and 1

γ .

Moreover, in the same situation, Block et al. (2020) showed that training with the score-matching
objective achieves the desired L2 accuracy with a similar sample complexity to the above time
complexity. The precise bound depends on the hypothesis class H; for finite hypothesis classes, it is
poly(d, ε, 1

γ , log |H|).
On the sampling side, more recent work (Chen et al., 2022a; Benton et al., 2023) has given exponen-
tially better dependence on the accuracy γ, as well as replacing the uniform bound R by the second
moment. In particular, Benton et al. (2023) show that Õ( d

ε2 log
2 1

γ ) steps suffice to sample from a
distribution that is γ ·m2 close to q0 in 2-Wasserstein, as long as the score estimates ŝt at these times
t are accurate enough – that is, satisfy:

E
x∼qt

[
∥st(x)− ŝt(x)∥2

]
≤ O∗

(
ε2

σ2
t

)
. (7)
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This requirement is easier to satisfy than that of equation 6, because the schedule is such that σt ≤ 1
always.

Thus, for sampling, recent work has replaced the poly( 1γ ) dependence with poly(log 1
γ ) to sample

from a distribution γ ·m2 close to q0 in 2-Wasserstein. Can we do the same for the sample complexity
of training? That is the question we address in this work.
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Figure 1: Given o
(

1
η

)
samples from either p1 = (1− η)N (0, 1) + ηN (−R, 1), or p2 = (1− η)N (0, 1) +

ηN (R, 1) we will only see samples from the main Gaussian with high probability, and cannot distinguish
between them. However, if we pick the wrong score function, the L2 error incurred is large - about ηR2. On the
right, we take η = 0.001, R = 10000, δ = 0.01. We plot the probability that the ERM has error larger than 0 in
the L2 sense, and our Dδ

p sense.

Our results. Ideally, one would like to simply show that the ERM of the score matching objective
will have bounded L2 error (7) with a number of samples that scales polylogarithmically in 1

γ .
Unfortunately, this is false. In fact, it is information-theoretically impossible to achieve equation 7 in
general without poly( 1γ ) samples. See Figure 1, or the discussion in Section 4, for a hard instance.

In the example in Figure 1, score matching + DDPM still works to sample from the distribution with
sample complexity scaling with poly(log 1

γ ); the problem lies in the theoretical justification for it.
Given that it is impossible to learn the score in L2 to sufficient accuracy with fewer than poly( 1γ )
samples, such a justification needs a different measure of estimation error. We will introduce such a
measure, showing (1) that it will be small for all relevant times t after a number of samples that scales
polylogarithmically in 1

γ , and (2) that this measure suffices for fast sampling via the reverse SDE.

The problem with measuring error in L2 comes from outliers: rare, large errors can increase the L2

error while not being observed on the training set. We propose a more robust measure of distance, the
1− δ quantile error. For distribution p, and functions f, g, we say that

Dδ
p(f, g) ≤ ε ⇐⇒ Pr

x∼p
[∥f(x)− g(x)∥2 ≥ ε] ≤ δ. (8)

Our main result shows that for a finite-size function class H containing a sufficiently accurate score
estimate, we can estimate the score function at a given time t in our robust distance measure using a
number of samples that is independent of the domain size or the maximum value of the score.
Theorem 1.1 (Score Estimation for Finite Function Class). For any distribution q0 and time t > 0,
consider the σt-smoothed version qt with associated score st. For any finite set H of candidate score
functions. If there exists some s∗ ∈ H such that

E
x∼qt

[
∥s∗(x)− st(x)∥22

]
≤ δscore · δtrain · ε2

100 · σ2
t

, (9)

for a sufficiently large constant C, then using m > Õ
(

1
ε2δscore

(d+ log 1
δtrain

) log |H|
δtrain

)
samples, the

empirical minimizer ŝ of the score matching objective as described in equation 4 used to estimate st
satisfies

Dδscore
qt (ŝ, st) ≤ ε/σt

with probability 1− δtrain.
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Theorem 1.1 supposes that H is a finite hypothesis class. One can extend this to infinite classes by
taking a union bound over a net; see Theorem 1.5 for an application to neural networks, getting a
bound polynomial in the number of parameters and logarithmic in the maximum weight and m2.

Note that for distributions supported in B(0, R), the final step of the sampling process has σt = γ,
for which the score can be as large as R

γ2 . Prior work (Block et al., 2020) requires poly(Rγ ) samples to
learn the score in L2 in this setting. In contrast, the sample complexity in Theorem 1.1 is independent
of the domain size and smoothing level.

Previous results like (Benton et al., 2023; Chen et al.) show that learning a score estimate in L2

suffices for efficient sampling via DDPM (described in equation 5). We adapt (Benton et al., 2023) to
show that learning the score in our new outlier-robust sense also suffices for sampling, if we have
accurate score estimates at each relevant discretization time.

Theorem 1.2. Let q be a distribution over Rd with second moment m2
2 between 1/poly(d) and poly(d).

For any γ > 0, there exist N = Õ( d
ε2+δ2 log

2 1
γ ) discretization times 0 = t0 < t1 < · · · < tN < T

such that if the following holds for every k ∈ {0, . . . , N − 1}:

Dδ/N
qT−tk

(ŝT−tk , sT−tk) ≤
ε

σT−tk

then the SDE process in equation 5 can produce a sample from a distribution that is within Õ(δ +

ε
√
log (d/γ)) in TV distance to qγ in N steps.

Applying Theorem 1.1 with a union bound, and combining with Theorem 1.2, we have the end-to-end
guarantee:

Corollary 1.3 (End-to-end Guarantee). Let q be a distribution over Rd with second moment m2
2

between 1/poly(d) and poly(d). For any γ > 0, there exist N = Õ( d
ε2+δ2 log

2 1
γ ) discretization

times 0 = t0 < · · · < tN < T such that if H contain approximations hT−tk that satisfy

E
x∼qt

[
∥hT−tk(x)− sT−tk(x)∥2

]
≤ δ · ε3

CN2σ2
T−tk

· 1

log d
γ

for sufficiently large constant C, then given m = Õ
(

N
ε3 (d+ log 1

δ ) log
|H|
δ log 1

γ

)
samples, with

1− δ probability the SDE process in equation 5 can sample from a distribution ε-close in TV to a
distribution γm2-close in 2-Wasserstein to q in N steps.

The sample complexity required for the end-to-end guarantee above depends polynomially on N , the
number of discretization times required for sampling. As stated, this depends polylogarithmically on
1
γ , for a final sample complexity that scales polylogarithmically in 1

γ . Prior work (Block et al., 2020)
needs poly( 1γ ) training samples even to learn the score at the final smoothing level, as described
earlier. Thus our bound gives much higher Wasserstein accuracy for a fixed number of samples.

Remark 1.4 (Scaling of m2). The above theorems assume m2
2 is between 1

poly(d) and poly(d) because
the bound is simpler to state with this assumption, and because this is the “right” scaling. The
forward diffusion process transforms any arbitrary distribution into a standard normal distribution
of second moment d. If the initial moment m2

2 is extremely large or extremely small relative to d, the
convergence time will have an additional (logarithmic) factor depending on m2. This dependence
is analyzed explicitly in Theorem B.6 and Corollary C.1. However, a better way to handle these
situations is to rescale the distribution to have second moment polynomial in d, so that Theorem 1.2
and Corollary 1.3 hold for the rescaled distributions.

Application to Neural Networks. To demonstrate that the restriction of Theorem 1.1 to finite
hypothesis classes is relatively mild, we show that it implies results for general neural networks
with ReLU activation. If the score function is well-approximated by a depth-D, P -parameter neural
network, then roughly dPD samples suffice to learn it well enough for accurate sampling.

Theorem 1.5 (Score Training for Neural Networks). For any distribution q0 with second moment
m2

2, and any time t > 0, let qt be the σt-smoothed version with associated score st. Let ϕθ(·) be the
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fully connected neural network with ReLU activations parameterized by θ, with P total parameters
and depth D. If there exists some weight vector θ∗ with ∥θ∗∥F ≤ Θ such that

E
x∼qt

[
∥ϕθ∗(x)− st(x)∥2

]
≤ δscore · δtrain · ε2

1000 · σ2
t

then using m > Õ

(
(d+log 1

δtrain
)·PD

ε2δscore
· log

(
(m2+σ)Θ

δtrain

))
samples, the empirical minimizer ϕθ̂ of the

score matching objective used to estimate st (over ϕθ with ∥θ∥F ≤ Θ) satisfies

Dδscore
qt (ϕθ̂, st) ≤ ε/σ.

with probability 1− δtrain.

2 RELATED WORK

Score-based diffusion models were first introduced in (Sohl-Dickstein et al., 2015) as a way to
tractably sample from complex distributions using deep learning. Since then, many empirically
validated techniques have been developed to improve the sample quality and performance of diffusion
models (Ho et al., 2020; Nichol & Dhariwal, 2021; Song & Ermon, 2020; Song et al., 2021b;a). More
recently, diffusion models have found several exciting applications, including medical imaging and
compressed sensing (Jalal et al., 2021; Song et al., 2022), and text-to-image models like DALL·E 2
(Ramesh et al., 2022) and Stable Diffusion (Rombach et al., 2022).

Recently, a number of works have begun to develop a theoretical understanding of diffusion. Different
aspects have been studied – the sample complexity of training with the score-matching objective
(Block et al., 2020), the number of steps needed to sample given accurate scores (Chen et al.; 2022a;b;
2023; Benton et al., 2023; Bortoli et al., 2021; Lee et al., 2023), and the relationship to more traditional
methods such as maximum likelihood (Pabbaraju et al., 2023; Koehler et al., 2023).

On the training side, Block et al. (2020) showed that for distributions bounded by R, the score-
matching objective learns the score of qγ in L2 using a number of samples that scales polynomially in
1
γ . On the other hand, for sampling using the reverse SDE in equation 2, (Chen et al., 2022a; Benton
et al., 2023) showed that the number of steps to sample from qγ scales polylogarithmically in 1

γ given
L2 approximations to the scores.

Our main contribution is to show that while learning the score in L2 requires a number of samples
that scales polynomially in 1

γ , the score-matching objective does learn the score in a weaker sense
with sample complexity depending only polylogarithmically in 1

γ . Moreover, this weaker guarantee
is sufficient to maintain the polylogarithmic dependence on 1

γ on the number of steps to sample with
γ ·m2 2-Wasserstein error.

3 PROOF OVERVIEW

3.1 TRAINING

We show that the score-matching objective (equation 4) concentrates well enough that the ERM is
close to the true minimizer.

Background: the true expectation gives the true score. For a fixed t, let σ = σt and p be the
distribution of e−tx for x ∼ q0. We can think of a joint distribution of (y, x, z) where y ∼ p and
z ∼ N(0, σ2Id) are independent, and x = y + z is drawn according to qt. The score matching
objective is then

E
x,z

[∥∥∥∥s(x)− −z

σ2

∥∥∥∥2
2

]
Because x = y + z for Gaussian z, Tweedie’s formula states that the true score s∗ is given by

s∗(x) = E
z|x

[
−z

σ2
].
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Define ∆ = s∗(x)− −z
σ2 , so E[∆ | x] = 0. Therefore for any x,

l(s, x, z) :=

∥∥∥∥s(x)− −z

σ2

∥∥∥∥2
2

= ∥s(x)− s∗(x) + ∆∥2

= ∥s(x)− s∗(x)∥2 + 2⟨s(x)− s∗(x),∆⟩+ ∥∆∥2 . (10)

For every x, the second term is zero on average over (z | x), so the expected loss is

E
x,z

[l(s, x, z)] = E
x,z

[∥s(x)− s∗(x)∥2 + 2⟨s(x)− s∗(x),∆⟩+ ∥∆∥2]

= E
x
[∥s(x)− s∗(x)∥2] + E

x,z
[∥∆∥2]

The ∥∆∥2 term is independent of s, so indeed the score matching objective is minimized by the true
score. Moreover, an ε-approximate optimizer of l(s) will be close in L2, as needed by prior samplers.

Understanding the ERM. The algorithm chooses the score function s minimizing the empirical
loss,

Ê
x,z

[l(s, x, z)] :=
1

m

m∑
i=1

l(s, xi, zi) = Ê
x,z

[∥s(x)− s∗(x)∥2 + 2⟨s(x)− s∗(x),∆⟩+ ∥∆∥2].

Again the Ê[∥∆∥2] term is independent of s, so it has no effect on the minimizer and we can drop it
from the loss function. Let

l′(s, x, z) := ∥s(x)− s∗(x)∥2 + 2⟨s(x)− s∗(x),∆⟩ (11)

so l′(s∗, x, z) = 0 always, E[l′(s, x, z)] = E[∥s(x)− s∗(x)∥2], and we want to show that

Ê
x,z

[l′(s, x, z)] > 0 (12)

for all candidate score functions s that are “far” from s∗. We will show equation 12 is true with high
probability for each individual s, then take a union bound (possibly over a net).

Boundedness of ∆. Now, z ∼ N(0, σ2Id) is technically unbounded, but is exponentially close
to being bounded: ∥z∥ ≲ σ

√
d with overwhelming probability. You are certainly unlikely to

sample any zi much larger than this. So for the purpose of this proof overview, imagine that z
were drawn from a distribution of bounded norm, i.e., ∥z∥ ≤ Bσ always; the full proof needs some
exponentially small error terms to handle the tiny mass the Gaussian places outside this ball. Then
since ∆ = z

σ2 − Ez|x[
z
σ2 ], ∥∆∥ ≤ 2B/σ as well.

Warmup: poly(R/σ). As a warmup, consider the setting of prior work Block et al. (2020): (1)
∥x∥ ≤ R always, so ∥s∗(x)∥ ≲ R

σ2 ; and (2) we only optimize over candidate score functions s with
∥x∥ ≲ R

σ2 , so ∥s(x)− s∗(x)∥ ≲ R
σ2 . With both these restrictions, then, |l′(s, x, z)| ≤ R2

σ4 + RB
σ3 . We

can then apply a Chernoff bound to show concentration of l′: for poly(ε, R
σ , B, log 1

δtrain
) samples,

with 1− δtrain probability we have

Ê
x,z

[l′(s, x, z)] ≥ E
x,z

[l′(s, x, z)]− ε

σ2
= E[∥s(x)− s∗(x)∥2]− ε2

σ2

which is greater than zero if E[∥s(x)− s∗(x)∥2] > ε2

σ2 . Thus the ERM would reject each score
function that is far in L2. However, as we show in Section 4, both these restrictions are necessary: the
score matching ERM needs a polynomial dependence on both the distribution norm and the candidate
score function values to learn in L2. To avoid these, we settle for rejecting score functions s that are
far in our stronger distance measure Dδscore

p , i.e., for which

Pr[∥s(x)− s∗(x)∥ > ε/σ] ≥ δscore. (13)
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An intermediate notion. In order to show equation 12, we take two steps. First, we separate
out the choice of x, and that of (z | x); we consider an intermediate measure that is the empirical
average over x, and the true average over (z | x). Since Ez|x[∆] = 0, this is just the empirical L2

error. Second, in order to limit the contribution of outliers we cannot reliably sample, we cap the
contribution to 10B2

σ2 . That is, we define

Ax := Ê
x
[min( E

z|x
[l′(s, x, z)],

10B2

σ2
)] = Ê

x
[min(∥s(x)− s∗(x)∥2 , 10B

2

σ2
)]. (14)

Under equation 13, for m > O(
log 1

δtrain
δscore

), we will with 1− δtrain probability have

A ≳
ε2δscore

σ2
. (15)

Concentration about the intermediate notion. Finally, we show that for every set of samples
xi satisfying equation 15, the empirical average over z is with high probability at least half the true
average over z, i.e., A/2. For each sample x, we split our analysis of Êz|x[l(s, x, z)] into two cases:

If ∥s(x)− s∗(x)∥ > O(Bσ ), then by Cauchy-Schwarz and the assumption that ∥∆∥ ≤ 2B/σ,

l′(s, x, z) ≥ ∥s(x)− s∗(x)∥2 −O(
B

σ
) ∥s(x)− s∗(x)∥ ≥ 10B2

σ2

so these x will contribute the maximum possible value to Ax, regardless of z (in its bounded range).

On the other hand, if ∥s(x)− s∗(x)∥ < O(Bσ ), then |l′(s, x, z)| ≲ B2/σ2 and

Varz|x(l
′(s, x, z)) = 4E[⟨s(x)− s∗(x),∆⟩2] ≲ B2

σ2
∥s(x)− s∗(x)∥2

so for these x, as a distribution over z, l′ is bounded with bounded variance.

In either case, the contribution to Ax is bounded with bounded variance; this lets us apply Bernstein’s

inequality to show, if m > O(
B2 log 1

δtrain
σ2A ), for every x we will have

Ê
z
[l′(s, x, z)] ≥ A

2
> 0

with 1− δtrain probability.

Conclusion. Suppose m > O(
B2 log 1

δtrain
ε2δscore

). Then with 1−δtrain probability we will have equation 15;
and conditioned on this, with 1− δtrain probability we will have Êx,z > 0. Hence this m suffices to
distinguish any candidate score s that is far from s∗.

Then for finite hypothesis classes we can take the union bound, incurring a log |H| loss. This gives
Theorem 1.1.

3.2 SAMPLING

Recall that the reverse SDE in equation 2 is discretized using score estimates ŝT−tk for some
0 < tk < T as follows:

dxT−t = (xT−t + 2ŝT−tk(xT−tk)) dt+
√
2 dBt.

Let Q̂ be the law of the above approximate process, and let Q be the law of the true reverse SDE in
equation 2. Our goal is to bound TV(Q̂,Q), the error incurred from following the above approximate
SDE rather than the true one.

There are three sources of error: (a) Score estimation error, from making use of our estimated
scores ŝtk rather than the true scores stk . (b) Discretization error. (c) Initialization error, since
xT ∼ N (0, Id) rather than qT . To bound (b) and (c), we make use of prior results (Benton et al.,
2023). So, our main technical result is to bound the contribution of the score estimation error in our
new Dδ

q sense to the final sampling error. Formally, we show the following.
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Lemma 3.1 (Main Sampling Lemma). Consider an arbitrary sequence of discretization times
0 = t0 < t1 < · · · < tN = T − γ. Assume that for each k ∈ {0, . . . , N − 1}, the following holds:

Dδ/N
qT−tk

(ŝT−tk , sT−tk) ≤
ε

σT−tk

· 1√
T + log 1

γ

Then, the output distribution q̂T−tN satisfies

TV(q̂T−tN , qT−tN ) ≲ δ + ε+ TV(Q,Qdis) + TV(qT ,N (0, Id))

In the above lemma, Qdis is a discretized version of the true reverse SDE in equation 2, using the
true scores. Note that the assumption in the above lemma is satisfied for score estimates using
the score-matching ERM using a number of samples scaling polynomially in N , via theorem 1.1.
Per (Benton et al., 2023), N scales polylogarithmically in 1

γ . Also, as stated above, we can bound
TV(Q,Qdis) and TV(qT ,N (0, Id)) using previous results from (Benton et al., 2023). So, we will
focus sketching the proof of the above – for the full proof of Theorem 1.2, see Appendix B.

To show the above, first, note that the error incurred from beginning at N (0, Id) instead of qT is
exactly TV(qT ,N (0, Id)). For the remaining sketch, we will ignore this term, by assuming that all
the processes start at qT .

Observe that by the definition of Dδ
p from equation 8, a simple union bound yields that with probability

1− δ under Q, the score estimates satisfy

N−1∑
k=0

∥ŝT−tk(xT−tk)− sT−tk(xT−tk)∥2 (tk+1 − tk) ≤ ε2. (16)

Now, for each k ∈ {0, . . . , N − 1}, we will let Ek be the event that the accumulated score estimation
error up to time T − tk is at most ε2. That is

Ek = 1

{
k∑

i=0

∥ŝT−ti(xT−ti)− sT−ti(xT−ti)∥2(ti+1 − ti) ≤ ε2

}
.

Define the process Q̃ initialized at xT ∼ qT that makes use of the true (discretized) score sT−tk
while the accumulated score error is at most ε2, and then switches over to the score estimate ŝT−tk .
That is, xT ∼ qT , and for t ∈ [tk, tk+1],

dxT−t = −(xT−t + 2s̃T−tk(xT−tk)) dt+
√
2 dBt

where

s̃T−tk(xT−tk) :=

{
sT−tk(xT−tk) Ek holds,
ŝT−tk(xT−tk) Ek doesn’t hold.

Now, by the triangle inequality, TV(Q, Q̂) ≲ TV(Q, Q̃) + TV(Q̃, Q̂). We will bound each term
separately.

Bounding TV(Q, Q̃). With probability 1− δ over Q, all Ek hold, since the total score estimation
error is at most ε2, per equation 16. So, with probability 1− δ − TV(Q,Qdis) over Qdis, all Ek hold,
where Qdis is the discretized process using the true scores. But, under this condition, Qdis and Q̃ are
the same process. So, TV(Q, Q̃) ≤ δ + TV(Q,Qdis).

Bounding TV(Q̃, Q̂). Here, we can apply Girsanov’s theorem, which shows

DKL(Q̃∥Q̂) ≲ E
Q̃

[
N−1∑
k=0

∥s̃T−tk(xT−tk)− ŝT−tk(xT−tk)∥2(tk+1 − tk)

]
≲ ε2.

So, TV(Q̃, Q̂) ≲ ε.

8
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4 HARDNESS OF LEARNING IN L2

In this section, we give concrete examples where it is information-theoretically hard to learn the
score in L2, and demonstrate that our proposed error measure can be much smaller than the L2

error. In particular, as in equation (7), previous works require the L2 error of the score estimate to
be bounded. We show that this guarantee is prohibitively expensive to achieve – if q0 has second
moment 1, achieving the bound in (7) requires a number of samples polynomial in 1

σt
to learn an

estimate of st. So, to sample from a distribution γ-close in 2-Wasserstein to q0, we would need
polynomially many samples in 1

γ .

For our first example, consider the two distributions (1 − η)N (0, 1) + ηN (±R, 1), where R is
polynomially large. Even though these distributions are polynomially bounded, it is information-
theoretically impossible to distinguish these in L2 given significantly fewer than 1

η samples. However,
the L2 error in score incurred from picking the score of the wrong distribution is large – polynomial
in R. In Figure 1, the rightmost plot shows a simulation of this example, and demonstrates that the
L2 error remains large even after many samples are taken. Formally, we have:
Lemma 4.1. Let R be sufficiently large. Let p1 be the distribution (1−η)N (0, 1)+ηN (−R, 1) with
corresponding score function s1, and let p2 be (1−η)N (0, 1)+ηN (R, 1) with score s2. Then, given
m samples from either distribution, it is impossible to distinguish between p1 and p2 for η < 1

m1.1

with probability larger than 1/2 + om(1). But,
E

x∼p1

[
∥s1(x)− s2(x)∥2

]
≳ ηR2 and E

x∼p2

[
∥s1(x)− s2(x)∥2

]
≳ ηR2.

In the above example, the true distribution that our samples are drawn from is somewhat complex – a
mixture of Gaussians. In the following example, we show that even if our true distribution is very
simple–just a standard normal distribution, the score can still not be learned in L2 definitively if the
hypothesis class is large enough, for instance, in the case of neural networks.

In particular, let ŝ be the score of the mixture distribution ηN (0, 1) + (1− η)N (S, 1), as in Figure
2. This score will have practically the same score matching objective as the true score for the given
samples with high probability, as shown in Figure 2, since all m samples will occur in the region
where the two scores are nearly identical. However, the squared L2 error incurred from picking the
wrong score function ŝ is large – Ω

(
S2

m

)
. We formally state this result in the following lemma:

Lemma 4.2. Let S be sufficiently large. Consider the distribution p̂ = ηN (0, 1)+(1−η)N (S, 1) for

η = Se−
S2

2
+10

√
log m·S

10
√
logm

, and let ŝ be its score function. Given m samples from the standard Gaussian
p∗ = N (0, 1) with score function s∗, with probability at least 1− 1

poly(m) ,

Ê
[
∥ŝ(x)− s∗(x)∥2

]
≤ e−O(S

√
logm) but E

x∼p∗

[
∥ŝ(x)− s∗(x)∥2

]
≳

S2

m
.

Together, these examples show that the score cannot be learned in L2 with fewer than poly(R/γ)
samples, motivating our 1− δ quantile error measure.

0 R

η√
2π

1√
2π

True Dist.

Alternate Dist.

0 10
√

logm R

True Score

Alternate Score

Figure 2: For m samples from N (0, 1), consider the score ŝ of the mixture ηN (0, 1) + (1− η)N (R, 1) above
with η is chosen so that ŝ(10

√
logm) = 0. For this ŝ, the score-matching objective is close to 0, while the

squared L2 error is Ω
(

R2

m

)
.
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A SCORE ESTIMATION

This section analyzes the score-matching objective for arbitrary distributions and bounded size
function classes. Our main result (Theorem 1.1) shows that if there is a function in the function
class H that approximates the score well in our Dδ

p sense (see equation 8), then the score-matching
objective can learn this function using a number of samples that is independent of the domain size or
the maximum value of the score.

We also show how to obtain a similar bound for the case when the function class H is the class of
neural networks with bounded weight (Theorem 1.5).
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A.1 SCORE ESTIMATION FOR FIXED TIME

Notation. Fix a time t. For the purposes of this section, let q := qt be the distribution at time t, let
σ := σt be the smoothing level for time t, and let s := st be the score function for time t. For m
samples yi ∼ q0 and zi ∼ N (0, σ2), let xi = e−tyi − zi ∼ qt.

We now state the score matching algorithm.

Algorithm 1 Empirical score estimation for s

Input: Distribution q0, y1, . . . , ym ∼ q0, set of hypothesis score function H = {s̃i}, smoothing
level σ.

1. Take m independent samples zi ∼ N(0, σ2Id), and let xi = e−tyi − zi.
2. For each s̃ ∈ H, let

l(s̃) =
1

m

m∑
i=1

∥∥∥∥s̃(xi)−
−zi
σ2

∥∥∥∥2
2

3. Let ŝ = argmins̃∈H l(s̃)

4. Return ŝ

Theorem 1.1 (Score Estimation for Finite Function Class). For any distribution q0 and time t > 0,
consider the σt-smoothed version qt with associated score st. For any finite set H of candidate score
functions. If there exists some s∗ ∈ H such that

E
x∼qt

[
∥s∗(x)− st(x)∥22

]
≤ δscore · δtrain · ε2

100 · σ2
t

, (9)

for a sufficiently large constant C, then using m > Õ
(

1
ε2δscore

(d+ log 1
δtrain

) log |H|
δtrain

)
samples, the

empirical minimizer ŝ of the score matching objective as described in equation 4 used to estimate st
satisfies

Dδscore
qt (ŝ, st) ≤ ε/σt

with probability 1− δtrain.

Proof. Per the notation discussion above, we set s = st and σ = σt.

Denote

l(s, x, z) :=
∥∥∥s(x)− z

σ2

∥∥∥2
2

We will show that for all s̃ such that Dδscore
q (s̃, s) > ε/σ, with probability 1− δtrain,

Ê [l(s̃, x, z)− l(s∗, x, z)] > 0,

so that the empirical minimizer ŝ is guaranteed to have

Dδscore
q (ŝ, s) ≤ ε/σ.

We have

l(s̃, x, z)− l(s∗, x, z) =
∥∥∥s̃(x)− z

σ2

∥∥∥2 − ∥∥∥s∗(x)− z

σ2

∥∥∥2
=

(∥∥∥s̃(x)− z

σ2

∥∥∥2 − ∥∥∥s(x)− z

σ2

∥∥∥2)− ∥s∗(x)− s(x)∥2 − 2⟨s∗(x)− s(x), s(x)− z

σ2
⟩.

(17)

Note that by Markov’s inequality, with probability 1− δtrain/3,

Êx

[
∥s∗(x)− s(x)∥2

]
≤ δscore · ε2

30 · σ2
.

12
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Moreover, s(x) = Ez|x
[

z
σ2

]
so that

E
[
⟨s∗(x)− s(x), s(x)− z

σ2
⟩
]
= 0

and

E
[
⟨s∗(x)− s(x), s(x)− z

σ2
⟩2
]
≤ E

x

[
∥s∗(x)− s(x)∥2

]
E
x,z

[
∥s(x)− z

σ2
∥2
]

≤ δscore · δtrain · ε2
25σ2

· d

σ2

So, by Chebyshev’s inequality, with probability 1− δtrain/3,

Ê
[
⟨s∗(x)− s(x), s(x),

z

σ2
⟩
]
≲

1

σ2

√
δscore · ε2 · d

25m
≤ δscore · ε2

100σ2

for our choice of m.

Also, by Corollary A.2, with probability 1 − δtrain/3, for all s̃ ∈ H that satisfy Dδscore
q (s̃, s) > ε/σ

simultaneously,

Ê
[∥∥∥s̃(x)− z

σ2

∥∥∥2 − ∥∥∥s(x)− z

σ2

∥∥∥2] ≥ δscoreε
2

16σ2
.

Plugging in everything into equation equation 17, we have, with probability 1− δtrain, for all s̃ ∈ H
with Dδscore

q (s̃, s) > ε/σ simultaneously,

Ê [l(s̃, x, z)− l(s∗, x, z)] ≥ δscoreε
2

16σ2
− δscoreε

2

100σ2
− δscoreε

2

100σ2
> 0

as required.

Lemma A.1. Consider any set F of functions f : Rd → Rd such that for all f ∈ F ,

Pr
x∼p

[∥f(x)∥ > ε/σ] > δscore.

Then, with m > Õ
(

1
ε2δscore

(d+ log 1
δtrain

) log |F|
δtrain

)
samples drawn in Algorithm 1, we have with

probability 1− δtrain,

1

m

m∑
i=1

−2
( zi
σ2

− E
[ z

σ2
|xi

])T
f(xi) +

1

2
∥f(xi)∥2 ≥ δscore · ε2

16σ2

holds for all f ∈ F .

Proof. Define

hf (x, z) := −2
( z

σ2
− E

[ z

σ2
|x
])T

f(x) +
1

2
∥f(x)∥2

We want to show that hf has

Ê [hf (x, z)] :=
1

m

m∑
i=1

hf (xi, zi) ≥
δscoreε

2

16σ2
(18)

for all f ∈ F with probability 1− δtrain.

Let B = O

(√
d+log m

εδscoreδtrain
σ

)
. For f ∈ F , let

gf (x, z) =

{
B2 if ∥f(x)∥ ≥ 10B

hf (x, z) otherwise

be a clipped version of hf (x, z). We will show that for our chosen number of samples m, the
following hold with probability 1− δtrain simultaneously:

13
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1. For all i,
∥∥ zi
σ2

∥∥ ≤ B.

2. For all i,
∥∥E[ z

σ2 |xi]
∥∥ ≤ B

3. Ê[gf (x, z)] ≥ δscoreε
2

16 for all f ∈ F

To show that these together imply equation 18, note that whenever gf (xi, zi) ̸= hf (xi, zi), ∥f(xi)∥ ≥
10B. So, since ∥ zi

σ2 ∥ ≤ B and ∥E[ z
σ2 |xi]∥ ≤ B,

hf (xi, zi) = −2
( zi
σ2

− E
[ z

σ2
|xi

])T
f(xi) +

1

2
∥f(xi)∥2 ≥ −4B∥f(xi)∥+

1

2
∥f(xi)∥2 ≥ B2 ≥ gf (xi, zi).

So under conditions 1, 2, 3, for all f ∈ F ,

Ê[hf (x, z)] ≥ Ê[gf (x, z)] ≥
δscoreε

2

16σ2

So it just remains to show that conditions 1, 2, 3 hold with probability 1− δtrain simultaneously.

1. For all i,
∥∥ zi
σ2

∥∥ ≤ B. Holds with probability 1 − δtrain/3 by Lemma E.5 and the union
bound.

2. For all i,
∥∥E [ z

σ2 | xi

]∥∥ ≤ B. Holds with probability 1 − δtrain/3 by Lemma E.6 and the
union bound.

3. Ê[gf (x, z)] ≥ δscoreε
2

16σ2 for all f ∈ F .

Let E be the event that 1. and 2. hold. Let ai = min(∥f(xi)∥, 10B). We proceed in
multiple steps.

• Conditioned on E, |gf (xi, zi)| ≲ B2.
If ∥f(xi)∥ ≥ 10B, |gf (xi, zi)| = B2 by definition. On the other hand, when
∥f(xi)∥ < 10B, since we condition on E,

|gf (xi, zi)| = |hf (xi, zi)| =
∣∣∣∣−2

( zi
σ2

− E
[ z

σ2
|xi

])T
f(xi) +

1

2
∥f(xi)∥2

∣∣∣∣ ≲ B2

• E [gf (xi, zi)|E, ai] ≳ a2i −O(δtrainB
2).

First, note that by definition of gf (x, z), for ai = 10B,

E [gf (xi, zi)|ai = 10B] = B2

Now, for ai < 10B,

E [gf (xi, zi)|ai] = E [hf (xi, zi)|ai]

= E
xi|∥f(xi)∥=ai

[
E

z|xi

[hf (xi, z)]

]

Now, note that

E
z|x

[hf (x, z)] =
1

2
∥f(x)∥2

So, for a < 10B

E [gf (xi, zi)|ai] =
1

2
a2i

Now let gclip
f (xi, zi) be a clipped version of gf (xi, zi), clipped to ±CB2 for sufficiently

large constant C. We have, by above,

E[gf (xi, zi)|ai, E] = E[gclip
f (xi, zi)|ai, E]

But,

E[gclip
f (xi, zi)|ai, E] ≥ E[gclip

f (xi, zi)|ai]−O(δtrainB
2)

≳ a2i −O(δtrainB
2)

14
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• Var(gf (xi, zi)|ai, E) ≲ a2iB
2.

For ai = 10B, we have, by definition of gf (x, z),

Var(gf (xi, zi)|ai, E) ≲ B4 ≲ a2iB
2

On the other hand, for ai < 10B,

Var(gf (xi, zi)|ai, E) ≤ E
[
gf (xi, zi)

2|ai, E
]

= E

[(
−2
( zi
σ2

− E
[ z

σ2
|xi

])T
f(xi) +

1

2
∥f(xi)∥2

)2
]

≲ a2iB
2

by Cauchy-Schwarz.

• With probability 1− δtrain/3, for all f ∈ F , Ê[gf (xi, zi)] ≳ Ω
(

ε2δscore
σ2

)
Using the above, by Bernstein’s inequality, with probability 1− δtrain/6,

Ê [gf (xi, zi)|ai, E] ≳
1

n

n∑
i=1

a2i −O(δtrainB
2)− 1

n
B

√√√√ n∑
i=1

a2i log
1

δtrain
− 1

n
B2 log

1

δtrain

Now, note that since Prx∼pσ
[∥f(x)∥ > ε/σ] ≥ δscore, we have with probability 1 −

δtrain/6, for n > O

(
log 1

δtrain
δscore

)
1

n

n∑
i=1

a2i ≥ Ω

(
ε2δscore

σ2

)

So, for n > O

(
B2·σ2 log 1

δtrain
ε2δscore

)
, we have, with probability 1− δtrain/3,

Ê [gf (xi, zi)|E] ≳ Ω

(
ε2δscore

σ2

)
−O(δtrainB

2)

Rescaling so that δtrain ≤ O
(

ε2δscore
σ2·B2

)
, for n > O

(
B2·σ2 log B2·σ2

ε2δscoreδtrain
ε2·δscore

)
, we have, with

probability 1− δtrain/3,

Ê [gf (xi, zi)|E] ≳ Ω

(
ε2δscore

σ2

)
Combining with 1. and 2. gives the claim for a single f ∈ F . Union bounding over the
size of F gives the claim.

Corollary A.2. Let Hbad be a set of score functions such that for all s̃ ∈ Hbad,

Dδscore
q (s̃, s) > ε/σ.

Then, for m > Õ
(

1
ε2δscore

(d+ log 1
δtrain

) log |Hbad|
δtrain

)
samples drawn by Algorithm 1, we have with

probability 1− δtrain,

Ê
[
∥s̃(x)− z

σ2
∥2 − ∥s(x)− z

σ2
∥2
]
≥ δscoreε

2

16σ2

for all s̃ ∈ Hbad.
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Proof. We have, for f(x) := s̃(x)− s(x),

∥s̃(x)− z

σ2
∥2 − ∥s(x)− z

σ2
∥2 = ∥f(x) + (s(x)− z

σ2
)∥2 − ∥s(x)− z

σ2
∥2

= ∥f(x)∥2 + 2(s(x)− z

σ2
)T f(x)

= ∥f(x)∥2 − 2(
z

σ2
− E[

z

σ2
|x])T f(x)

since s(x) = E
[

z
σ2 |x

]
by Lemma E.1. Then, by definition, for s ∈ Hbad, for the associated f ,

Pr[∥f(x)∥ > ε/σ] > δscore. So, by Lemma A.1, the claim follows.

A.2 SCORE ESTIMATION FOR DIFFUSION PROCESS

Theorem A.3. Let q0 be a distribution over Rd. For discretization times 0 = t0 < t1 < · · · < tN ,
let sT−tk be the true score function of qT−tk . If for each tk, the function class H contains some
s̃T−tk ∈ H with

E
x∼qT−tk

[
∥s̃T−tk(x)− sT−tk(x)∥22

]
≤ δscore · δtrain · ε2

40σ2
T−tk

·N2
(19)

Then, if we take m > Õ
(

N
ε2δscore

(d+ log 1
δtrain

) log |H|
δtrain

)
samples, then with probability 1 − δtrain,

each score ŝT−tk learned by score matching satisfies

Dδscore/N
qT−tk

(ŝT−tk , sT−tk) ≤ ε/σT−tk .

Proof. Note that for each tk, qT−tk is a σT−tk -smoothed distribution. Therefore, we can use
theorem 1.1 by taking δtrain/N into δtrain and taking δscore/N into δscore. We have that for each tk,
with probability 1− δtrain/N the following holds:

Pr
x∼qT−tk

[
∥ŝT−tk(x)− s∗T−tk

(x)∥ ≤ ε/σT−tk

]
≥ 1− δscore/N.

By a union bound over all the steps, we conclude the proposed statement.

A.3 SCORE TRAINING FOR NEURAL NETWORKS

Theorem 1.5 (Score Training for Neural Networks). For any distribution q0 with second moment
m2

2, and any time t > 0, let qt be the σt-smoothed version with associated score st. Let ϕθ(·) be the
fully connected neural network with ReLU activations parameterized by θ, with P total parameters
and depth D. If there exists some weight vector θ∗ with ∥θ∗∥F ≤ Θ such that

E
x∼qt

[
∥ϕθ∗(x)− st(x)∥2

]
≤ δscore · δtrain · ε2

1000 · σ2
t

then using m > Õ

(
(d+log 1

δtrain
)·PD

ε2δscore
· log

(
(m2+σ)Θ

δtrain

))
samples, the empirical minimizer ϕθ̂ of the

score matching objective used to estimate st (over ϕθ with ∥θ∥F ≤ Θ) satisfies

Dδscore
qt (ϕθ̂, st) ≤ ε/σ.

with probability 1− δtrain.

Proof. Per the notation discussion above, we set s = st and σ = σt.

For any function f denote

l(f, x, z) :=
∥∥∥f(x)− z

σ2

∥∥∥2
We will show that for every θ̃ with ∥θ̃∥F ≤ Θ such that Dδscore

q (ϕθ̃, s) > ε/σ, with probability
1− δtrain,

Ê
[
l(ϕθ̃, x, z)− l(ϕθ∗ , x, z)

]
> 0

16
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so that the empirical minimizer ϕθ̂ is guaranteed to have

Dδscore
q (ϕθ̂, s) ≤ ε/σ

First, note that since the ReLU activation is contractive, the total Lipschitzness of ϕθ is at most the
product of the spectral norm of the weight matrices at each layer. For any θ, consider θ̃ such that

∥θ̃ − θ∥F ≤ τ

σDΘD−1

Let M1, . . . ,MD be the weight matrices at each layer of the neural net ϕθ, and let M̃1, . . . , M̃D be
the corresponding matrices of ϕθ̃.

We now show that
∥∥ϕθ̃(x)− ϕθ(x)

∥∥ is small, using a hybrid argument. Define yi to be the output of
a neural network with weight matrices M1, . . . ,Mi, M̃i+1, . . . , M̃D on input x, so y0 = ϕθ̃(x) and
yD = ϕθ(x). Then we have

∥yi − yi+1∥ ≤ ∥x∥ ·

∏
j≤i

∥Mj∥

 ·
∥∥∥Mi+1 − M̃i+1

∥∥∥ ·
 ∏

j>i+1

∥∥∥M̃j

∥∥∥


≤ ∥x∥ΘD−1
∥∥∥θ̃ − θ

∥∥∥
F

and so∥∥ϕθ̃(x)− ϕθ(x)
∥∥
2
= ∥y0 − yD∥ ≤

D−1∑
i=0

∥yi − yi+1∥ ≤ ∥x∥DΘD−1
∥∥∥θ̃ − θ

∥∥∥
F
≤ ∥x∥ · τ/σ.

Note that the dimensionality of θ is P . So, we can construct a τ
σDΘD−1 -net N over the set {θ :

∥θ∥F ≤ Θ} of size O
(

σDΘD−1

τ

)P
, so that for any θ with ∥θ∥F ≤ Θ, there exists θ̃ ∈ N with

∥ϕθ̃(x)− ϕθ(x)∥2 ≤ (τ/σ) · ∥x∥

Let H = {ϕθ̃ : θ̃ ∈ N}. Then, we have that for every θ with ∥θ∥F ≤ Θ, there exists h ∈ H such that

Ê
[
∥h(x)− ϕθ(x)∥2

]
≤ (τ/σ)2 · 1

m

m∑
i=1

∥xi∥2 (20)

Now, choose any θ̃ with ∥θ̃∥F ≤ Θ and Dδscore
q (ϕθ̃, s) > ε/σ, and let h̃ ∈ H satisfy the above for θ̃.

Our final choice of m will satisfy m > Õ
(

1
ε2δscore

(
d+ log 1

δtrain

)
log |H|

δtrain

)
We have

l(ϕθ̃, x, z)− l(ϕθ∗ , x, z)

= ∥ϕθ̃(x)−
z

σ2
∥2 − ∥ϕθ∗(x)− z

σ2
∥2

= ∥ϕθ̃(x)− h̃(x)∥2 + 2⟨ϕθ̃(x)− h̃(x), h̃(x)− z

σ2
⟩+ ∥h̃(x)− z

σ2
∥2

− ∥s(x)− z

σ2
∥2 − ∥ϕθ∗(x)− s(x)∥2 − 2⟨ϕθ∗(x)− s(x), s(x)− z

σ2
⟩

(21)

Now, by Corollary A.2, for our choice of m, with probability 1 − δtrain/4 for every h ∈ H with
D2δscore

q (h, s) > ε/(2σ) simultaneously,

Ê
[
∥h(x)− z

σ2
∥2 − ∥s(x)− z

σ2
∥2
]
≥ δscoreε

2

128σ2

By Markov’s inequality, with probability 1− δtrain/4,

Ê
[
∥ϕθ∗(x)− s(x)]∥2

]
≤ δscore · ε2

250σ2

17
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Now, since s(x) = Ez|x
[

z
σ2

]
,

E
[
⟨ϕθ∗(x)− s(x), s(x)− z

σ2
⟩
]
= 0

and

E
[
⟨ϕθ∗(x)− s(x), s(x)− z

σ2
⟩2
]
≤ E

x

[
∥ϕθ∗(x)− s(x)∥2

]
· E
x,z

[
∥s(x)− z

σ2
∥2
]

≤ δscore · δtrain · ε2
250 · σ2

· d

σ2

So, by Chebyshev’s inequality, with probability 1− δtrain/4

Ê
[
⟨ϕθ∗(x)− s(x), s(x)− z

σ2
⟩
]
≤ 1

σ2

√
δscore · ε2 · d

250m
≤ δscore · ε2

1000 · σ2

for our choice of m. So, by the above and equation 21 we have shown that with probability
1− 3δtrain/4, as long as h̃ has D2δscore

q (h̃, s) > ε/(2σ),

Ê
[
l(ϕθ̃, x, z)− l(ϕθ∗ , x, z)

]
≥ δscore · ε2

500 · σ2
+ 2⟨ϕθ̃(x)− h̃(x), h̃(x)− z

σ2
⟩ (22)

Now, we will show that D2δscore
q (h̃, s) > ε/(2σ), as well as bound the last term above.

By the fact that q0 has second moment m2
2, we have that with probability 1− δ over x,

∥x∥ ≤ m2√
δ
+ σ

(
√
d+

√
log

1

δ

)

Now since Dδscore
q (ϕθ̃, s) > ε/σ, and ∥h̃(x) − ϕθ̃(x)∥ ≤ (τ/σ) · ∥x∥, we have, with probability at

least 1− 2δscore,

∥h̃(x)− s(x)∥ ≥ ∥ϕθ̃(x)− s(x)∥ − ∥h̃(x)− ϕθ̃(x)∥

≥ ε/σ − (τ/σ) ·
(

m2√
δscore

+ σ

(√
d+

√
log

1

δscore

))
≥ ε/(2σ)

for τ < Cεδscoreδtrain
1

ΘD
(
m·m2

2+σ2(d+log m
δtrain

)
) for some small enough constant C. So, we have

shown that D2δscore
q (h̃, s) > ε/(2σ).

Finally, we bound the last term in equation 22 above. We have by equation 20 and a union bound,
with probability 1− δtrain/8,

Ê
[
∥h̃(x)− ϕθ̃(x)∥2

]
≲ (τ/σ)2 ·

(
m ·m2

2

δtrain
+ σ2

(
d+ log

m

δtrain

))

for τ < Cεδscoreδtrain
1

ΘD
(
m·m2

2+σ2(d+log m
δtrain

)
) for some small enough constant C. Similarly, with

probability 1− δtrain/8,

Ê
[
∥h̃(x)− z

σ2
∥2
]
≲ ΘD ·

(
m ·m2

2

δtrain
+ σ2

(
d+ log

m

δtrain

))
+

1

σ2

(
d+ log

m

δtrain

)
So, with probability 1 − δtrain/4, for τ < Cεδscoreδtrain

1

ΘD
(
m·m2

2+σ2(d+log m
δtrain

)
) for some small

enough constant C,

Ê
[
⟨ϕθ̃(x)− h̃(x), h̃(x)− z

σ2
⟩
]
≥ −Ê

[
∥h̃(x)− ϕθ̃(x)∥2

]
· E
[
∥h̃(x)− z

σ2
∥2
]

18
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≥ − δscoreε
2

2000 · σ2

So finally, combining with equation 22, we have with probability 1− δtrain

Ê
[
l(ϕθ̃, x, z)− l(ϕθ∗ , x, z)

]
≥ δscore · ε2

1000 · σ2
> 0

as required.

B SAMPLING WITH OUR SCORE ESTIMATION GUARANTEE

In this section, we show that diffusion models can converge to the true distribution without necessarily
adhering to an L2 bound on the score estimation error. A high probability accuracy of the score is
sufficient.

In order to simulate the reverse process of equation 1 in an actual algorithm, the time was discretized
into N steps. The k-th step ends at time tk, satisfying 0 ≤ t0 < t1 < · · · < tN = T − γ. The
algorithm stops at tN and outputs the final state xT−tN .

To analyze the reverse process run under different levels of idealness, we consider these four specific
path measures over the path space C([0, T − γ];Rd):

• Let Q be the measure for the process that

dxT−t = (xT−t + 2sT−t(xT−t)) dt+
√
2 dBt, xT ∼ qT .

• Let Qdis be the measure for the process that for t ∈ [tk, tk+1],

dxT−t = (xT−t + 2sT−tk(xT−tk)) dt+
√
2 dBt, xT ∼ qT .

• Let Q be the measure for the process that for t ∈ [tk, tk+1],

dxT−t = (xT−t + 2ŝT−tk(xT−tk)) dt+
√
2 dBt, xT ∼ qT .

• Let Q̂ be the measure for the process that for t ∈ [tk, tk+1],

dxT−t = (xT−t + 2ŝT−tk(xT−tk)) dt+
√
2 dBt, xT ∼ N (0, Id).

To summarize, Q represents the perfect reverse process of equation 1, Qdis is the discretized version
of Q, Q runs Qdis with an estimated score, and Q̂ starts Q at N (0, Id) — effectively the actual
implementable reverse process.

Recent works have shown that under the assumption that the estimated score function is close to the
real score function in L2, then the output of Q̂ will approximate the true distribution closely. Our next
theorem shows that this assumption is in fact not required, and it shows that our score assumption
can be easily integrated in a black-box way to achieve similar results.

Lemma B.1 (Score Estimation guarantee). Consider an arbitrary sequence of discretization times
0 = t0 < t1 < · · · < tN = T − γ, and let σt :=

√
1− e−2t. Assume that for each k ∈

{0, . . . , N − 1}, the following holds:

Dδ/N
qT−tk

(ŝT−tk , sT−tk) ≤
ε

σT−tk

.

Then, we have

Pr
Q

[
N−1∑
k=0

∥ŝT−tk(xT−tk)− sT−tk(xT−tk)∥22(tk+1 − tk) ≤ ε2
(
T + log

1

γ

)]
≥ 1− δ.
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Proof. Since random variable xT−tk follows distribution qT−tk under Q, for each k ∈ {0, . . . , N −
1}, we have

Pr
Q

[
∥ŝT−tk(xT−tk)− sT−tk(xT−tk)∥ ≤ ε√

1− e−2(T−tk)

]
≥ 1− δ

N
.

Using a union bound over all N different σ values, it follows that with probability at least 1− δ over
Q, the inequality

∥ŝT−tk(xT−tk)− sT−tk(xT−tk)∥22 ≤ ε2

1− e−2(T−tk)
.

is satisfied for every k ∈ {0, . . . , N − 1}. Under this condition, we have

N−1∑
k=0

∥ŝT−tk(xT−tk)− sT−tk(xT−tk)∥22(tk+1 − tk)

≤
N−1∑
k=0

ε2

1− e−2(T−tk)
(tk+1 − tk)

≤
N−1∑
k=0

∫ tk+1

tk

ε2

1− e−2(T−tk)
dt

≤
∫ T−γ

0

ε2

1− e−2(T−tk)
dt

≤ε2
(
T + log

1

γ

)
.

Hence, we find that

Pr
Q

[
N−1∑
k=0

∥ŝT−tk(xT−tk)− sT−tk(xT−tk)∥22(tk+1 − tk) ≤ ε2
(
T + log

1

γ

)]
≥ 1− δ.

Lemma B.2 (Score estimation error to TV). Let q be an arbitrary distribution. If the score estimation
satisfies that

Pr
Q

[
N−1∑
k=0

∥ŝT−tk(xT−tk)− sT−tk(xT−tk)∥22(tk+1 − tk) ≤ ε2

]
≥ 1− δ, (23)

then the output distribution pT−tN of Q̂ satisfies

TV(qγ , pT−tN ) ≲ δ + ε+ TV(Q,Qdis) + TV(qT ,N (0, Id)).

Proof. We will start by bounding the TV distance between Qdis and Q. We will proceed by defining
Q̃ and arguing that both TV(Qdis, Q̃) and TV(Q̃,Q) are small. By the triangle inequality, this will
imply that Q and Q are close in TV distance.

Defining Q̃. For k ∈ {0, . . . , N − 1}, consider event

Ek :=

(
k∑

i=0

∥ŝT−ti(xT−ti)− sT−ti(xT−ti)∥22(ti+1 − ti) ≤ ε2

)
,

which represents that the accumulated score estimation error along the path is at most ε2 for a
discretized diffusion process.

Given Ek, we define a version of Qdis that is forced to have a bounded score estimation error. Let
Q̃ over C((0, T ],Rd) be the law of a modified reverse process initialized at xT ∼ qT , and for each
t ∈ [tk, tk+1),

dxT−t = − (xT−t + 2s̃T−tk(xT−tk)) dt+
√
2 dBt, (24)
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where

s̃T−tk(xT−tk) :=

{
sT−tk(xT−tk) Ek holds,
ŝT−tk(xT−tk) Ek doesn’t hold.

This SDE guarantees that once the accumulated score error exceeds ε2score (Ek fails to hold), we
switch from the true score to the estimated score. Therefore, we have that the following inequality
always holds:

N−1∑
k=0

∥s̃T−tk(xT−tk)− ŝT−tk(xT−tk)∥22(tk+1 − tk) ≤ ε2. (25)

Qdis and Q̃ are close. By (23), we have

Pr
Qdis

[E0 ∧ · · · ∧ EN−1] = Pr
Qdis

[EN−1] ≥ Pr
Q

[EN−1]− TV(Q,Qdis) ≥ 1− δ − TV(Q,Qdis),

Note that when a path (xT−t)t∈[0,tN ] satisfies E0 ∧ · · · ∧EN−1, its probability under Q̃ is at least its
probability under Qdis. Therefore, we have

TV(Qdis, Q̃) ≲ δ + TV(Q,Qdis).

Q̃ and Q are close. Inspired by Chen et al., we utilize Girsanov’s theorem (see theorem E.7) to
help bound this distance. Define

br :=
√
2(s̃T−tk(xT−tk)− ŝT−tk(xT−tk)),

where k is index such that r ∈ [tk, tk+1). We apply the Girsanov’s theorem to (Q̃, (br)). By eq. (25),
we have∫ tN

0

∥br∥22 dr ≤
N−1∑
k=0

∥
√
2(s̃T−tk(xT−tk)− ŝT−tk(xT−tk))∥22(tk+1 − tk) ≤ 2ε2 < ∞.

This satisfies Novikov’s condition and tells us that for

E(L)t = exp

(∫ t

0

br dBr −
1

2

∫ t

0

∥br∥22 dr
)
,

under measure Q̃′ := E(L)tN Q̃, there exists a Brownian motion (B̃t)t∈[0,tN ] such that

B̃t = Bt −
∫ t

0

br dr,

and thus for t ∈ [tk, tk+1),

dB̃t = dBt +
√
2(s̃T−tk(xT−tk)− ŝT−tk(xT−tk)) dt.

Plug this into (24) and we have that for t ∈ [tk, tk+1)

dxT−t = − (xT−t + 2ŝT−tk(xT−tk)) dt+
√
2 dB̃t, xT ∼ qT .

This equation depicts the distribution of x, and this exactly matches the definition of Q. Therefore,
Q = Q̃′ = E(L)tN Q̃, and we have

DKL

(
Q̃
∥∥∥Q) = E

Q̃

[
ln

dQ̃

dQ

]
= E

Q̃

[
ln E(L)tN

]
.

Then by using (25), we have

E
Q̃

[
ln E(L)tN

]
≲ E

Q̃

[
N−1∑
k=0

∥s̃T−tk(xT−tk)− ŝT−tk(xT−tk)∥22(tk+1 − tk)

]
≲ ε2.

Therefore, we can apply Pinsker’s inequality and get

TV(Q̃,Q) ≤
√

DKL

(
Q̃
∥∥∥Q) ≲ ε.
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Putting things together. Using the data processing inequality, we have

TV(Q, Q̂) ≤ TV(qT ,N (0, Id)).

Combining these results, we have

TV(Q, Q̂) ≤ TV(Q,Qdis) + TV(Qdis, Q̃) + TV(Q̃,Q) + TV(Q, Q̂)

≲ δ + ε+ TV(Q,Qdis) + TV(qT ,N (0, Id)).

Since qγ is the distribution for xT−tN under Q and pT−tN is the distribution for xT−tN under Q̂, we
have

TV(qγ , pT−tN ) ≤ TV(Q, Q̂) ≲ δ + ε+ TV(Q,Qdis) + TV(qT ,N (0, Id)).

Lemma 3.1 (Main Sampling Lemma). Consider an arbitrary sequence of discretization times
0 = t0 < t1 < · · · < tN = T − γ. Assume that for each k ∈ {0, . . . , N − 1}, the following holds:

Dδ/N
qT−tk

(ŝT−tk , sT−tk) ≤
ε

σT−tk

· 1√
T + log 1

γ

Then, the output distribution q̂T−tN satisfies

TV(q̂T−tN , qT−tN ) ≲ δ + ε+ TV(Q,Qdis) + TV(qT ,N (0, Id))

Proof. Follows by Lemma B.1 and Lemma B.2.

The next two lemmas from existing works show that the discretization error, TV(Q,Qdis), is relatively
small. Furthermore, as T increases, qT converges exponentially towards N (0, Id).
Lemma B.3 (Discretization Error, Corollary 1 and eq. (17) in Benton et al. (2023)). For any T ≥ 1,
γ < 1 and N ≥ log(1/γ), there exists a sequence of N discretization times such that

TV(Q,Qdis) ≲

√
d

N

(
T + log

1

γ

)
.

Lemma B.4 (TV between true Gaussian and qT for large T , Proposition 4 in Benton et al. (2023)).
Let q be a distribution with a finite second moment of m2

2. Then, for T ≥ 1 we have

TV(qT ,N (0, Id)) ≲ (
√
d+m2)e

−T .

Combining lemma B.3 and lemma B.4 with lemma 3.1, we have the following result:
Corollary B.5. Let q be a distribution with finite second moment m2

2. For any T ≥ 1, γ < 1 and
N ≥ log(1/γ), there exists a sequence of discretization times 0 = t0 < t1 < · · · < tN = T − γ
such that if the following holds for each k ∈ {0, . . . , N − 1}:

Dδ/N
qT−tk

(ŝT−tk , sT−tk) ≤
ε

σT−tk

,

then there exists a sequence of N discretization times such that

TV(qγ , pT−tN ) ≲ δ + ε

√
T + log

1

γ
+

√
d

N

(
T + log

1

γ

)
+ (

√
d+m2)e

−T .

This implies our main theorem of this section as a corollary.
Theorem B.6. Let q be a distribution with finite second moment m2

2. For any γ > 0, there exist
N = Õ( d

ε2+δ2 log
2 d+m2

γ ) discretization times 0 = t0 < t1 < · · · < tN < T such that if the
following holds for every k ∈ {0, . . . , N − 1},

Dδ/N
qT−tk

(ŝT−tk , sT−tk) ≤
ε

σT−tk

then the SDE process in equation 5 can produce a sample from a distribution that is within Õ(δ +

ε
√
log ((d+m2)/γ)) in TV distance of qγ in N steps.
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Proof. By setting T = log(
√
d+m2

ε+δ ) and N = d(T+log(1/γ))2

ε2+δ2 in corollary B.5, we have

TV(qγ , pT−tN ) = Õ

(
δ + ε

√
log

d+m2

γ

)
.

Furthermore, we present our theorem under the case when m2 lies between 1/poly(d) and poly(d)
to provide a clearer illustration.
Theorem 1.2. Let q be a distribution over Rd with second moment m2

2 between 1/poly(d) and poly(d).
For any γ > 0, there exist N = Õ( d

ε2+δ2 log
2 1

γ ) discretization times 0 = t0 < t1 < · · · < tN < T

such that if the following holds for every k ∈ {0, . . . , N − 1}:

Dδ/N
qT−tk

(ŝT−tk , sT−tk) ≤
ε

σT−tk

then the SDE process in equation 5 can produce a sample from a distribution that is within Õ(δ +

ε
√
log (d/γ)) in TV distance to qγ in N steps.

C END-TO-END GUARANTEE

In this section, we state our end-to-end guarantee that combines our score estimation result in the
new equation 8 sense with prior sampling results (from Benton et al. (2023)) to show that the score
can be learned using a number of samples scaling polylogarithmically in 1

γ , where γ is the desired
sampling accuracy.
Corollary C.1. Let q be a distribution of Rd with second moment m2

2. For any γ > 0, there exist
N = Õ( d

ε2+δ2 log
2 m2+1/m2

γ ) discretization times 0 = t0 < · · · < tN < T such that if H contain
approximations hT−tk that satisfy

E
x∼qt

[
∥hT−tk(x)− sT−tk(x)∥2

]
≤ δ · ε3

CN2σ2
T−tk

· 1

log d+m2+1/m2

γ

for sufficiently large constant C, then given m = Õ
(

N
ε3 (d+ log 1

δ ) log
|H|
δ log m2+1/m2

γ

)
samples,

with 1− δ probability the SDE process in equation 5 can sample from a distribution ε-close in TV to
a distribution γm2-close in 2-Wasserstein to q in N steps.

Proof. Note that for an arbitrary t > 0, the 2-Wasserstein distance between q and qt is bounded by
O(tm2 +

√
td). Therefore, by choosing tN = T −min(γ, γ2m2

2/d), Theorem B.6 shows that by
choosing N = Õ( d

ε′2+δ2
log2 d+m2

min(γ,γ2m2
2/d)

), we only need

Dε/N
qT−tk

(ŝT−tk , sT−tk) ≤
ε′

σT−tk

√
log d+m2

min(γ,γ2m2
2/d)

then DDPM can produce a sample from a distribution within Õ(ε′) in TV distance to a distribution
γm2-close in 2-Wasserstein to q in N steps. Note that

log
d+m2

min(γ, γ2m2
2/d)

≲ log
d+m2 + 1/m2

γ
.

Therefore, we only need to take Õ( d
ε′2+δ2

log2 m2+1/m2

γ ) steps. Therefore, to achieve this, we set

δtrain = δ, δscore = ε′, and ε = ε′/
√
log d+m2+1/m2

γ ≲ ε′/
√
log d+m2

min(γ,γ2m2
2/d)

in theorem A.3. This
gives us the result that with

m = Õ

(
N

ε′3
(d+ log

1

δ
) log

|H|
δ

log
m2 + 1/m2

γ

)
samples, we can satisfy the score requirement given the assumption in the statement.
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Again, we present this corollary under the case when m2 lies between 1/poly(d).
Corollary 1.3 (End-to-end Guarantee). Let q be a distribution over Rd with second moment m2

2

between 1/poly(d) and poly(d). For any γ > 0, there exist N = Õ( d
ε2+δ2 log

2 1
γ ) discretization

times 0 = t0 < · · · < tN < T such that if H contain approximations hT−tk that satisfy

E
x∼qt

[
∥hT−tk(x)− sT−tk(x)∥2

]
≤ δ · ε3

CN2σ2
T−tk

· 1

log d
γ

for sufficiently large constant C, then given m = Õ
(

N
ε3 (d+ log 1

δ ) log
|H|
δ log 1

γ

)
samples, with

1− δ probability the SDE process in equation 5 can sample from a distribution ε-close in TV to a
distribution γm2-close in 2-Wasserstein to q in N steps.

D HARDNESS OF LEARNING IN L2

In this section, we give proofs of the hardness of the examples we mention in Section 4.
Lemma 4.1. Let R be sufficiently large. Let p1 be the distribution (1−η)N (0, 1)+ηN (−R, 1) with
corresponding score function s1, and let p2 be (1−η)N (0, 1)+ηN (R, 1) with score s2. Then, given
m samples from either distribution, it is impossible to distinguish between p1 and p2 for η < 1

m1.1

with probability larger than 1/2 + om(1). But,

E
x∼p1

[
∥s1(x)− s2(x)∥2

]
≳ ηR2 and E

x∼p2

[
∥s1(x)− s2(x)∥2

]
≳ ηR2.

Proof.

TV(p1, p2) ≳ η

So, it is impossible to distinguish between p1 and p2 with fewer than O
(

1
η

)
samples with probability

1/2 + om(1).

The score L2 bound follows from calculation.

Lemma 4.2. Let S be sufficiently large. Consider the distribution p̂ = ηN (0, 1)+(1−η)N (S, 1) for

η = Se−
S2

2
+10

√
log m·S

10
√
logm

, and let ŝ be its score function. Given m samples from the standard Gaussian
p∗ = N (0, 1) with score function s∗, with probability at least 1− 1

poly(m) ,

Ê
[
∥ŝ(x)− s∗(x)∥2

]
≤ e−O(S

√
logm) but E

x∼p∗

[
∥ŝ(x)− s∗(x)∥2

]
≳

S2

m
.

Proof. Let X1, . . . , Xm ∼ p∗ be the m samples from N (0, 1). With probability at least 1− 1
poly(m) ,

every Xi ≤ 2
√
logm. Now, the score function of the mixture p̂ is given by

ŝ(x) =
−x− (x− S)

(
1−η
η

)
e−

S2

2 +Sx

1 +
(

1−η
η

)
e−

S2

2 +Sx

For x ≤ 2
√
logm,

ŝ(x) = −x

(
1 +

e−O(S
√
logm)

S

)
+ e−O(S

√
logm)

So,

Ê
[
∥ŝ(x)− s∗(x)∥2

]
≤ e−O(S

√
logm)

On the other hand,

E
x∼p∗

[
∥ŝ(x)− s∗(x)∥2

]
≳

S2

m
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E UTILITY RESULTS

Lemma E.1 (From Gupta et al. (2023)). Let f be an arbitrary distribution
on Rd, and let fΣ be the Σ-smoothed version of f . That is, fΣ(x) =
Ey∼f

[
(2π)−d/2 det(Σ)−1/2 exp

(
− 1

2 (x− Y )TΣ−1(x− Y )
)]

. Let sΣ be the score function
of fΣ. Let (X,Y, ZΣ) be the joint distribution such that Y ∼ f , ZΣ ∼ N (0,Σ) are independent,
and X = Y + ZΣ ∼ fΣ. We have for ε ∈ Rd,

fΣ(x+ ε)

fΣ(x)
= E

ZΣ|x

[
e−εTΣ−1ZΣ− 1

2 ε
TΣ−1ε

]
so that

sΣ(x) = E
ZΣ|x

[
−Σ−1ZΣ

]
Lemma E.2 (From Hsu et al. (2012), restated). Let x be a mean-zero random vector in Rd that is
Σ-subgaussian. That is, for every vector v,

E
[
eλ⟨x,v⟩

]
≤ eλ

2vTΣv/2

Then, with probability 1− δ,

∥x∥ ≲
√

Tr(Σ) +

√
2∥Σ∥ log 1

δ

Lemma E.3. For sΣ the score function of an Σ-smoothed distribution where Σ = σ2I , we have that
vT sΣ(x) is O(1/σ2)-subgaussian, when x ∼ fΣ and ∥v∥ = 1.

Proof. We have by Lemma E.1 that

sΣ(x) = E
ZΣ|x

[
Σ−1ZΣ

]
So,

E
x∼fΣ

[
(vT sΣ(x))

k
]
= E

x∼fΣ

[
E

ZΣ|x

[
vTΣ−1ZΣ

]k]
≤ E

ZΣ

[
(vTΣ−1ZΣ)

k
]

≤ kk/2

σk
since vTZΣ ∼ N (0, σ2)

The claim follows.

Lemma E.4. Let Σ = σ2I , and let x ∼ fΣ. We have that with probability 1− δ,

∥sΣ(x)∥2 ≲
d+ log 1

δ

σ2

Proof. Follows from Lemmas E.3 and E.2.

Lemma E.5. For z ∼ N (0, σ2Id), with probability 1− δ,

∥∥∥ z

σ2

∥∥∥ ≲

√
d+ log 1

δ

σ

Proof. Note that ∥z∥2 is chi-square, so that we have for any 0 ≤ λ < σ2/2,

E
z

[
eλ∥

∥z∥
σ2 ∥2

]
≤ 1

(1− 2(λ/σ2))d/2

The claim then follows by the Chernoff bound.
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Lemma E.6. For x ∼ fΣ, with probability 1− δ,

E
ZΣ|x

[∥ZΣ∥
σ2

]
≲

√
d+ log 1

δ

σ

Proof. Since ZΣ ∼ N (0, σ2Id) so that ∥ZΣ∥2 is chi-square, we have that for any 0 ≤ λ < σ2/2, by
Jensen’s inequality,

E
x∼fΣ

[
e
λEZΣ|x

[
∥ZΣ∥
σ2

]2]
≤ E

ZΣ

[
eλ

∥ZΣ∥2

σ4

]
≤ 1

(1− 2(λ/σ2))d/2

The claim then follows by the Chernoff bound. That is, setting λ = σ2/4, for any t > 0,

Pr
x∼fΣ

[
E

ZΣ|x

[∥ZΣ∥
σ2

]2
≥ t

]
≤

Ex∼fΣ

[
e
λEZΣ|x

[
∥ZΣ∥
σ2

]2]
eλt

≤ 2d/2e−tσ2/4 = 2
d ln 2

2 − tσ2

4

For t = O
(

d+log 1
δ

σ2

)
, this is less than δ.

Theorem E.7 (Girsanov’s theorem). For t ∈ [0, T ], let Lt =
∫ t

0
bs dBs where B is a Q-Brownian

motion. Assume Novikov’s condition is satisfied:

E
Q

[
exp

(
1

2

∫ T

0

∥bs∥22 ds
)]

< ∞.

Then

E(L)t := exp

(∫ t

0

bs dBs −
1

2

∫ t

0

∥bs∥22 ds
)

is a Q-martingale and

B̃t := Bt −
∫ t

0

bs ds

is a Brownian motion under P where P := E(L)TQ, the probability distribution with density E(L)T
w.r.t. Q.
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