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Abstract

Few-shot classification aims to learn a classifier to recognize unseen classes during
training, where the learned model can easily become over-fitted based on the
biased distribution formed by only a few training examples. A recent solution
to this problem is calibrating the distribution of these few sample classes by
transferring statistics from the base classes with sufficient examples, where how to
decide the transfer weights from base classes to novel classes is the key. However,
principled approaches for learning the transfer weights have not been carefully
studied. To this end, we propose a novel distribution calibration method by learning
the adaptive weight matrix between novel samples and base classes, which is
built upon a hierarchical Optimal Transport (H-OT) framework. By minimizing
the high-level OT distance between novel samples and base classes, we can view
the learned transport plan as the adaptive weight information for transferring
the statistics of base classes. The learning of the cost function between a base
class and novel class in the high-level OT leads to the introduction of the low-
level OT, which considers the weights of all the data samples in the base class.
Experiments on standard benchmarks demonstrate that our proposed plug-and-
play model outperforms competing approaches and owns desired cross-domain
generalization ability, proving the effectiveness of the learned adaptive weights. 1

1 Introduction

Deep learning models have become the regular ingredients for numerous computer vision tasks
such as image classification [1, 2] and achieve state-of-the-art performance. However, the strong
performance of deep neural networks typically relies on abundant labeled instances for training [3].
Considering the high cost of collecting and annotating a large amount of data, a major research
effort is being dedicated to fields such as transfer learning [4] and domain adaptation [5]. As a
trending research subject in the low data regime, few-shot classification aims to learn a model on
the data from the base classes, so that the model can generalize well on the tasks sampled from
the novel classes. Several lines of works have been proposed such as those based on meta-learning
paradigms [3, 6–11] and those directly predicting the weights of the classifiers for novel classes
[12, 13]. Recently, methods based on distribution calibration have gained increasing attention. As a
representative example, Yang et al. [14] calibrate the feature distribution of the few-sample classes by
transferring the statistics from the base classes and then utilize the sampled data to train a classifier
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for novel classes. A unique advantage of distribution calibration methods over others is that they build
on top of off-the-shelf pretrained feature extractors and do not finetune/re-train the feature extractor.

The key of distribution calibration methods is to select the corresponding base classes and transfer
their statistics for the labeled samples in a novel task. Existing approaches in this line usually do so
with heuristic or less adaptive solutions. Specifically, Yang et al. [14] use the average features of the
samples as the representation of a base class and select the top-k (e.g., k = 2) closest base classes
based on the Euclidean distance between the features of a novel sample and a base class. Despite the
effectiveness of Yang et al. [14], it is questionable whether the Euclidean distance is the proper metric
to measure the closeness between a base class and a novel sample since viewing a novel sample and
a base class as points in the same space may not be the best solution. Moreover, it is less sound to
characterize a base class only by the unweighted average over all its samples, when measuring its
closeness with the novel sample. Representing a base class in this way would completely ignore the
fact that each sample of a base class may contribute to the classification boundary differently. Finally,
it may also be less effective to treat each of the top-k base classes equally as their contributions can
also be different, not to mention the omission of the other base classes.

To this end, this work develops a more adaptive distribution calibration method leveraging optimal
transport (OT), which is a powerful tool for measuring the cost in transporting the mass in one
distribution to match another given a specific point-to-point cost function. First, we formulate a
distribution P over the base classes and a distribution Q over the labeled samples from the novel
classes. With such formulation, how to transfer the statistics from the base classes to the novel
samples can be viewed as the OT problem between two distributions, denoted as the high-level OT.
By solving the high-level OT, the learned transport plan can be used as the similarity or closeness
between novel samples and base classes. Since the high-level OT requires specifying the cost function
between one base class and one novel sample, we further introduce a low-level OT problem to learn
this cost automatically, where we formulate a base class as a distribution over its samples. In this
way, the similarity between a novel sample and a base class is no longer representing a base class by
the unweighted average over all its samples and then using the Euclidean distance. In our method,
the weights of the samples are considered in a principled way. In summary, the statistics of base
classes can be better transferred to the novel samples for providing a more effective way to measure
the similarity between them. Notably, even in the challenging cross-domain few-shot learning, our
H-OT can still effectively transfer the statistics from the source domain to the target domain.

We can refer to this adaptive distribution calibration method as a novel hierarchical OT method
(H-OT) for few-shot learning, which is applicable to a range of semi-supervised and supervised tasks,
such as few-shot classification [9] and domain adaptation [5]. Our contributions are summarized as
follows: (1) We develop a new distribution calibration method for few-shot learning, which can be
built on top of an arbitrary pre-trained feature extractor for being implemented over the feature-level,
without further costly fine-tuning. (2) We formulate the task of transferring statistics from base classes
to novel classes in distribution calibration as the H-OT problem and tackle the task with a principled
solution. (3) We apply our method to few-shot classification and also explore the cross-domain
generalization ability. Experiments on standardized benchmarks demonstrate that introducing the
H-OT into distribution calibration methods can learn adaptive weight matrix, paving a new way to
transfer the statistics of base classes to novel samples.

2 Background

2.1 Optimal Transport Theory

Optimal Transport (OT) is a powerful tool for the comparison of probability distributions, which
has been widely used in various machine learning problems, such as generative models [15], text
analysis [16, 17], adversarial robustness [18], and imbalanced classification [19]. Here we limit
our discussion to OT for discrete distributions and refer the reader to Peyré and Cuturi [20] for
more details. Denote p =

∑n
i=1 aiδxi

and q =
∑m

j=1 bjδyj
as two n and m dimensional discrete

probability distributions, respectively. In this case, a ∈ ∆n and b ∈ ∆m, where ∆m denotes the
probability simplex of Rm. The OT distance between p and q is defined as

OT(p, q) = min
T∈Π(p,q)

⟨T,C⟩, (1)
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where ⟨·, ·⟩ denotes the Frobenius dot-product; C ∈ Rn×m
≥0 is the transport cost function with element

Cij = C(xi, yj); T ∈ Rn×m
>0 denotes the doubly stochastic transport probability matrix such that

Π(p, q) := {T |
∑n

i Tij = bj ,
∑m

j Tij = ai}, meaning that T has to be one of the joint distribution
of p and q. As directly optimising Equation (1) can be time-consuming for large-scale problems,
the entropic regularization, H = −

∑
ij Tij lnTij , is introduced in Cuturi [21], resulting in the

widely-used Sinkhorn algorithm for discrete OT problems with reduced complexity.

2.2 Few-Shot Classification

Following a typical few-shot learning problem, we divide the whole dataset with labeled examples
into a base dataset Dbase with B base classes and a novel dataset Dnovel with Nall novel classes, each
with a disjoint set of classes. To build a commonly-used N -way-K-shot task [8, 14], we randomly
sample N classes from Nall novel classes, and in each class, we only pick K (e.g., 1 or 5) samples
for the support set S={(xi, yi)}N×K

i=1 to train or fine-tune the model and sample q instances for the
query set Q={(xi, yi)}N×K+N×q

i=N×K+1 to evaluate the model. By averaging the accuracy on the query
set of multiple tasks from the novel dataset, we can evaluate the performance of a model.

2.3 Distribution Calibration for Few-Shot Classification

Distribution calibration [14] uses the statistics of base classes to estimate the statistics of novel
samples in the support set and generate more samples. Specifically, for the bth base class, its samples
are assumed to be generated from a Gaussian distribution, whose mean and covariance matrix are:

µb=
1

Jb

∑Jb

j=1
xj , Σb=

1

Jb−1

∑Jb

j=1
(xj−µb) (xj−µb)

T
, (2)

where b∈ [1, B], xj ∈ RV is the V -dimensional feature of sample j extracted from the pre-trained
feature encoder, Jb the number of samples in class b, and {µb,Σb} are the statistics of base class b.

The samples of a novel class are also assumed to be generated from a Gaussian distribution with
mean µ′ and covariance Σ′. As the novel class only has one or a few labeled samples, it is hard
to accurately estimate µ′ and Σ′. Thus, the key idea is to transfer the statistics of the base classes
to calibrate the novel class’s distribution. Once the distribution of the novel class is calibrated, we
can generate more samples from it, which are useful for training a good classifier. As a result, how
to effectively transfer the statistics from the base classes is critical to the success of distribution
calibration-based methods for few-shot learning. Accordingly, Free-Lunch [14] designs a heuristic
approach that calibrates the Gaussian parameters of a novel distribution with one data sample x:

µ′=
Σi∈topk(Sd)µi + x̃

k + 1
, Σ′=

∑
i∈topk(Sd) Σi

k
+ α, (3)

where: 1) x̃ is the transformed data by Tukey’s Ladder of Powers transformation (TLPT) [22], i.e.,
x̃ = xλ if λ ̸= 0 and x̃ = log(x) if λ = 0, for reducing the skewness of distributions and make
distributions more Gaussian-like. 2) Sd=

{
−∥µb−x̃∥2 | b=[1, B]

}
is a distance set defined by the

Euclidean distance between the transformed feature x̃ of a novel sample in support set and the mean
µb of the base class b. 3) topk(Sd) is the operation that selects the top-k closest base classes from the
set Sd. 4) α determines the degree of dispersion of features sampled from the calibrated distribution.

Although effective, Free-Lunch represents a base class by the unweighted average over all its samples
when computing its closeness with a novel sample, which ignores the fact that each sample of a base
class may contribute to the classification boundary differently. In addition, the Euclidean distance
in the feature space may not well capture the relations between a base class and a novel sample.
Moreover, each selected top-k base class has an equal weight (i.e., 1/k), which may not reflect the
different contributions of the base classes and omit useful information in unselected base classes.

3 Our Proposed Model

3.1 Overall Method

In this work, we propose a novel adaptive distribution calibration framework, a holistic method for
few-shot classification. Compared to the novel classes, which only have a limited number of labeled
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samples, the base classes typically have a sufficient amount of data, allowing their statistics to be
estimated more accurately. Due to the correlation between novel and base classes, it is reasonable
to use the statistics of base classes to revise the distribution of the novel sample. Therefore, the key
is how to transfer the statistics from the base classes to a novel class to achieve the best calibration
results, which is the focus of this paper. Here, we develop the H-OT to learn the Transport Plan
matrix between base classes and novel samples, where each element of the transport plan measures
the importance of each base class for each novel sample and more relevant classes usually have
a larger transport probability. Computing the high-level OT requires the specification of the cost
function between one base class and one novel class, which leads to the introduction of a low-level
OT problem. By viewing the learned transport plan as the adaptive weight matrix, we provide an
elegant and principled way to transfer the statistics from the base classes to novel classes.

3.2 Hierarchical OT for Few-Shot Learning

Moving beyond the Free-Lunch method [14], which uses the Euclidean distance between a novel
sample and a base class to decide their similarity and endow the chosen base classes with the equal
importance, we aim to capture the correlations between the base class and novel samples at multiple
levels and transfer the related statistics from base classes to novel samples. We learn the similarity
by minimizing a high-level OT distance between base and novel classes and build the cost function
used in high-level OT by further introducing a low-level OT distance. To formulate the task as the
high-level OT problem, we model P as a following discrete uniform distribution over B base classes:

P =
∑B

b=1

1

B
δRb

, (4)

where Rb represents the base class b in the V -dimensional feature space, which will be introduced
later. Taking the N -way-1-shot task as the example, where each novel class has one labeled sample
x, we represent Q as a discrete uniform distribution over N novel classes from support set:

Q =
∑N

n=1

1

N
δx̃n

, x̃n ∈ RV×1, (5)

where x̃n is the transformed feature from x following Yang et al. [14] and detailed below Equation 3.
The OT distance between P and Q is thus defined as OT(P,Q) = minT∈Π(P,Q)⟨T,C⟩. We adopt a
regularised OT distance with an entropic constraint [21] and express the optimisation problem as:

OTϵ(P,Q)
def.
=

∑B,N

b,n
CbnTbn − ϵ

∑B,N

b,n
−Tbn lnTbn, (6)

where ϵ > 0, C ∈ RB×N
≥0 is the transport cost matrix, and Cbn indicates the cost between base

class b and novel sample n. Importantly, the transport probability matrix T ∈ RB×N
>0 should satisfy

Π(P,Q) :=
{∑N

n Tbn = 1
B ,

∑B
b Tbn = 1

N

}
with element Tbn = T (Rb, x̃n), which denotes the

transport probability between the bth base class and the nth novel sample and is an upper-bounded
positive metric. Therefore, Tbn provides a natural way to weight the importance of each base class
which can be used as the class similarity matrix when calibrating the novel distribution. Hence, the
transport plan is the main thing that we want to learn from the data.

To compute the OT in Equation 6, we need to define the cost function C, which is the main parameter
defining the transport distance between probability distributions and thus plays the paramount role in
learning the optimal transport plan. In terms of the transport cost matrix, a naive method is to specify
the C with Euclidean distance or cosine similarity between the feature space of the novel sample and
mean of the features from the base classes, such as Cbn=1−cos (x̃n,µb). However, these manually
chosen cost functions might have the limited ability to measure the transport cost between a base
class and a novel sample. Besides, representing the base class only with the average of all features in
class b might ignore the contributions of different samples for this class. Hence the optimal transport
plan for these cost functions might be inaccurate. To this end, we further introduce a low-level OT
optimization problem to automatically learn the transport cost function C in (6). Specifically, we
further treat each base class b as an empirical distribution Rb over the features within this class:

Rb =
∑Jb

j=1
pbjδxb

j
, xb

j ∈ RV , (7)

4



where pbj is the weight of data xb
j to base class b and captures the importance of this sample and will

be described in short order. Specifically, we train a classifier parameterized by ϕ with the samples in
the base classes, which predicts which base class a sample is in. The predicted probability of sample
j belonging to the base class b is denoted by sbj and then [pb1, . . . , p

b
Jb
] is obtained by normalizing the

vector [sb1, . . . , s
b
Jb
] with the Softmax function. We further define the low-level OT distance between

each distribution Rb and distributions Q with an entropic constraint as

OTϵ(Rb, Q)
def.
=

∑N,Jb

n,j
Db

jnM
b
jn − ϵ

∑N,J

n,j
−M b

jn lnM
b
jn, (8)

where the transport probability matrix Mb ∈ RJb×N
>0 should satisfy Π(Rb, Q) :={∑Jb

j M b
jnp

b
j =

1
N ,

∑N
n M b

jn
1
N = pbj

}
. The element Db

jn of cost function Db ∈ RJb×N
>0 is the

distance between the n-th novel sample and the j-th sample from base class b, where we naturally
use the distance between their features, i.e., x̃n and xb

j . Empirically, we find that the cosine similarity
Db

jn = 1− cos(x̃n,x
b
j) works well in practice, although other choices are possible.

Minimizing the low-level OT loss in Equation (8) can learn an optimal transport probability matrix
Mb for b ∈ B, where M b

jn tells us the transport weight between the nth novel class and jth sample
in b base class. Back to the cost function Cbn for the high-level OT, instead of using the manually
chose cost functions, we further adopt the learned total transport cost between novel sample xn and
all samples from base class b in the low-level OT to represent the cost function Cbn in high-level OT:

Cbn =
∑Jb

j=1
Db

jnM
b
jn, (9)

where Cbn is fed into (6) for learning the transport plan between base classes and novel samples.
Defined in this way Cbn is an adaptive cost between base class b and novel sample n in support
set, taking full advantage of all samples in a base class. With the proposed low-level OT distance,
the distance between a novel sample and a base class is no longer representing a base class by the
unweighted average over all its samples and then using the Euclidean distance. In our method, the
weights of the samples are considered in a principled way.

3.3 Calibrating Distribution and Training Classifier

Once we obtain the transport plan matrix by minimizing the OT problem in (6), we can compute the
statistics of novel samples by following Yang et al. [14]. For the n-th transformed feature x̃n in the
support set, we calibrate its mean and covariance as follows:

µ′
n=

N
∑

b∈B Tbnµb + x̃n

B + 1
, Σ′

n=
N

∑
i∈B TbnΣb

B
+ α, (10)

where µb and Σb are the statistics of base class b by (2), respectively; Tbn provides an adaptive
way to weight the importance of base class b for novel sample n; N is used to scale Tbn since∑

b∈B Tbn = 1/N ; α is a hyper-parameter explained in Equation (3).

For N -way-K-shot task with K > 1, the N in aforementioned Equations (6) and (8) should be
replaced with N ∗K, and the distribution calibration in Equation (10) should be undertaken K times
for each novel class. Notably, this way can potentially achieve more diverse and accurate distribution
estimation for avoiding the bias provided by one specific sample. Thus, for a class y ∈ N in novel
task, we denote the calibrated distribution with a set of statistics as

Sy =
{(

µ′
n1,Σ

′
n1

)
, . . . ,

(
µ′

nK ,Σ′
nK

)}
. (11)

Based on set Sy for novel class y, we can sample from the calibrated Gaussian distributions to
generate a set of feature vectors with label y: Dy = {(x, y) | x ∼ N (µ,Σ),∀(µ,Σ) ∈ Sy}. Given
the transformed support set S̃ with TLPT and the generated features Dy, we only need to train the
classifier for a task T (under, N-way-K-shot) by minimizing the cross-entropy loss:

ℓ =
∑

(x,y)∼S̃∪Dy,y∈YT

− log Pr(y | x; θ), (12)

where YT is the set of classes for the task T and the classifier is parameterized by θ. We describe our
proposed framework in Algorithm 1.
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Algorithm 1 Workflow about our adaptive distribution calibration on few-shot learning.

Require: Datasets Dbase , Dnovel , pretrained feature extractor f(·), classifier ϕ, classifier θ, hyper-
parameters
Extract the features of Dbase and Dnovel with f(·); compute {µi,Σi}Bi=1 by (2);
Train a classifier ϕ with Dbase to compute pbj ; Represent base class b as Rb with (7);
for t in number of tasks do

Randomly choose N -way-K-shot task;
Learn M with (8) and compute cost Cbn with (9);
Learn the transport plan matrix T with (6);
Calibrate the statistics with (10) and generate the samples from (11);
Train the N -way classifier θ with (12) and test the query set on classifier θ.

end for

4 Related Work

Recently, many efforts have been devoted to exploring the idea of learning to learn or meta-learning
to alleviate the few-shot challenge. One approach to this problem is the optimization-based meta-
learning algorithms [6, 7], which aim to learn a single set of model parameters that can be adapted to
individual tasks with a small number of gradient update steps. Some simple but effective algorithms
based on metric learning are also developed, with the goal of “learning to compare.” For example,
MatchingNet [8] and ProtoNet [9] learned to classify samples by comparing the distance to the
representatives of each class. Another line of algorithms is to compensate for the insufficient samples
by learning to augment. Most methods augment the training set using Generative Adversarial
Networks (GANs) [23] or autoencoders [24] to generate samples [25–27] or features [28, 29].

Recently, Free-Lunch [14] is proposed to calibrate the distribution of the novel samples using
the statistics from base classes and augment the data from the calibrated distribution. Although
distribution calibration belongs to the scope of data augmentation, it does not need to build any
complex generative models or fine-tune the backbone. Therefore, distribution calibration can be
considered as a new promising line, where both Free-Lunch and our model fall into. Different from
Free-Lunch which adopts a heuristic method to choose base classes for novel samples, we develop a
novel hierarchical OT to learn the cost function and similarity (transport plan) between base classes
and novel samples, providing a general and adaptive distribution calibration framework for few-shot
learning. A recent metric-based work of connecting few-shot learning with OT is DeepEMD [30],
which decomposes an image into a set of local features and uses the optimal matching cost between
two images to represent their similarity. Besides, the authors of [31] introduce a prototype-oriented
OT (POT) framework for set-structured data and apply it to metric-based few-shot classification.
However, we directly minimize the OT between base classes and novel samples to learn the transport
plan, which serves as the adaptive weight matrix in distribution calibration. Although both using OT
for few-shot learning, DeepEMD, POT and ours are totally different methods. The hierarchical topic
transport distance (HOTT) [32] is developed to measure the distance between documents, where
documents are modeled as distributions over topics (solved by a high-level OT), and topics are further
modeled as distributions over words (solved by a low-level OT). Different from HOTT which captures
the semantic difference between documents by leveraging OT, topic modeling, and word embeddings,
we develop the H-OT to learn the adaptive weight matrix for improving distribution calibration in
few-shot learning, a task distinct from document representation.

5 Experiments

5.1 Experimental Setup

Datasets We evaluate our proposed method on several standard few-shot classification datasets with
different levels of granularity, including miniImageNet [33], tieredImageNet [34], CUB [35], and
CIFAR-FS [36]. Here, miniImageNet, tieredImageNet, and CIFAR-FS have a broad range of classes
including various animals and objects while CUB is a more fine-grained dataset that includes various
species of birds. The miniImageNet, which is randomly chosen from ILSVRC-12 dataset [37],
contains 100 diverse classes with 600 samples per class. The image size is 84× 84× 3. Following
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Table 1: Classification accuracy (%) on miniImageNet, tieredImagenet and CUB with 95% confidence
intervals. ◦ indicates the results reported by authors and ⋆ is our implementation of Free-Lunch with
their released code.

Methods Backbone miniImageNet tieredImagenet CUB
5way1shot 5way5shot 5way1shot 5way5shot 5way1shot 5way5shot

E3BM◦ [41] ResNet25 64.3 ± n/a 81.0 ± n/a 70.0± n/a 85.0± n/a - -
LEO◦ [42] WRN28 61.76 ± 0.08 77.59 ± 0.12 66.33 ± 0.05 81.44 ± 0.09 - -

MAML [6] by [3] ResNet18 49.61± 0.92 65.72 ± 0.77 - - 69.96 ±1.01 82.70±0.65
Baseline++ ◦ [3] ResNet18 51.87 ± 0.77 75.68 ± 0.63 - - 67.02±0.90 83.58±0.54

Negative-Cosine◦ [43] ResNet12 63.85 ± 0.81 81.57 ± 0.56 - - 72.66±0.85 89.40±0.34
DeepEMD◦ [30] ResNet12 65.91 ± 0.82 82.41 ± 0.56 71.16 ± 0.87 86.03 ±0.58 75.65±0.83 88.69±0.50

MatchNet [8] by [30] ResNet12 63.08 ± 0.80 75.99 ± 0.60 68.50 ± 0.92 80.60 ± 0.71 71.87±0.85 85.08±0.57
MatchNet [8] by [31] ResNet34 - 68.32 ± 0.66 - - - 84.66±0.55

MatchNet +POT by [31] ResNet34 - 68.51 ± 0.64 - - - 85.50±0.66
ProtoNet [9] by [30] ResNet12 60.37 ± 0.83 78.02 ± 0.57 65.65±0.92 83.40±0.65 66.09±0.92 82.50±0.58
ProtoNet [8] by [31] ResNet34 - 73.99 ± 0.64 - - - 87.33±0.48

ProtoNet +POT by [31] ResNet34 - 75.15 ± 0.63 - - - 88.34±0.46

Free-Lunch⋆ [14] ResNet12 64.73± 0.44 81.15±0.42 71.40±0.31 85.56±0.40 74.13±0.86 87.91±0.45
Our H-OT ResNet12 65.63±0.32 82.87 ±0.43 73.71±0.26 87.46±0.35 76.28±0.40 89.87±0.36

Free-Lunch◦ [14] WRN28+RTloss 68.57 ± 0.55 82.88± 0.42 75.10 ± 0.32⋆ 88.42± 0.40 ⋆ 79.56±0.87 90.67±0.35
Our H-OT WRN28+RTloss 69.04 ± 0.29 84.36 ± 0.41 75.91±0.35 89.33±0.48 81.23±0.35 91.45±0.38

the previous work [33], we split the dataset into 64 base classes, 16 validation classes, and 20 novel
classes. The tieredImageNet is a larger subset of ILSVRC-12 dataset [37]. It contains 608 classes
sampled from a hierarchical category structure, where each class belongs to one of 34 higher-level
categories from the high-level nodes in the ImageNet. The average number of images in each class is
1281. We adopt 351, 97, and 160 classes for training, validation, and test, respectively. The CUB is a
fine-grained few-shot classification benchmark, which contains 200 different classes of birds with a
total of 11,788 images, and we resize them as 84× 84× 3. We follow previous works [3] and split
the dataset into 100 base classes, 50 validation classes, and 50 novel classes. The CIFAR-FS dataset
is a recently proposed few-shot image classification benchmark, consisting of all 100 classes from
CIFAR-100 [38]. The classes are randomly split into 64, 16, and 20 for meta-training, meta-validation,
and meta-testing, respectively. Each class contains 600 images of size 32× 32× 3.

Implementation Details Since Free-Lunch is the SOTA distribution calibration method, we mainly
compare with Free-Lunch. For miniImageNet and CUB, we directly use pre-extracted features from
Free-Lunch’s code [14], which are produced by WideResNet trained from scratch on the base classes
by following Mangla et al. [39] to optimize a classification loss and a self-supervised rotation loss
jointly, denoted as WRN28+RTLoss. Free-lunch did not share the features on tieredImageNet and
CIFAR-FS, thus we have taken the pre-trained WRN28+RTloss backbone of Mangla et al. [39] to
extract the features, where we use this same backbone to implement Free-lunch with its official code
and we have explored and selected an appropriate w for Free-lunch. To confirm the validity of our
proposed method on the commonly-used backbone, we also take the ResNet12 as the example, which
is trained from scratch by minimizing a standard classification loss (without the rotation loss). To
make sure the log transform in TLPT is valid to its inputs, we need to guarantee the non-negativity
of features. Therefore, we extract the features of given samples from the penultimate layer (with a
ReLU activation function) of the feature extractor. To demonstrate the effectiveness of our method,
we consider the simple Logistic Regression (LR) classifier for θ and ϕ in Algorithm 1, where the
LR implementation of scikit-learn [40] with the default settings is adopted. We use the same hyper-
parameter value for all datasets except for λ. Specifically, the number of generated features is 750,
the ϵ in Sinkhorn algorithm is 0.01, the α in (10) is 0.21; and λ is 0.5, 1, 1 and 0.8 for miniImageNet,
tieredImageNet, CUB, and CIFAR-FS, respectively, selected by a grid search using the validation
set. The maximum iteration number in Sinkhorn algorithm is set as 200. The reported results are the
averaged classification accuracy over 10,000 tasks.

5.2 Evaluation with the Standard Setting

We now conduct experiments on the most common setting in few-shot classification, 1-shot and
5-shot classification, where the results of different models on miniImageNet, tieredImagenet, CUB
and CIFAR-FS are shown in Tables 1 and 2. To validate the effectiveness of our proposed model, we
compare it with three main groups of the few-shot learning method, including optimization-based,
metric-based, and distribution calibration-based. There are several observations. First, we can find
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Table 2: 5way1shot and 5way5shot classification accuracy (%) on CIFAR-FS with 95% confidence
intervals. ∗ means the results cited from [44] and ÷ denotes our implementation of Free-Lunch with
their official code.

Methods Backbone CIFAR-FS
5way1shot 5way5shot

MAML∗ [6] 32-32-32-32 58.9 ± 1.9 71.5 ± 1.0
ProtoNet∗ [9] 64-64-64-64 55.5 ± 0.7 72.0 ± 0.6
RelaNet∗ [45] 64-96-128-256 55.0 ± 1.0 69.3 ± 0.8
R2D2∗ [46] 96-192-384-512 65.3 ± 0.2 79.4 ± 0.1
Shot-Free∗ [47] ResNet12 69.2 ± n/a 84.7 ± n/a
MetaOpt∗ [48] ResNet12 72.6 ± 0.7 84.3 ± 0.5
RFS∗ [44] ResNet12 73.9 ± 0.8 86.9 ± 0.5
Free-Lunch÷ [14] ResNet12 73.8 ± 0.4 86.0 ± 0.4
Our H-OT ResNet12 74.5 ± 0.4 87.1 ± 0.3
Free-Lunch [14] WRN28+RTloss 74.9 ± 0.4 86.2± 0.5
Our H-OT WRN28+RTloss 75.4 ± 0.3 87.5 ± 0.3

that our H-OT equipped with WRN28+RTLoss and simple linear classifier outperforms all previous
competing methods on 5-way-1-shot and 5-way-5-shot settings, which illustrates the superiority of
the proposed framework. Second, our H-OT equipped with ResNet12 is better than other baselines
except for the 5way1shot task on miniImageNet, where in this case our H-OT is still competitive with
DeepEMD [30]. This observation proves the effectiveness of distribution calibration and transferring
the statistics from base classes to novel classes using OT. Third, the comparison between our model
and the strong baseline of distribution calibration-based methods, i.e., Free-Lunch [14], confirms
the validity of incorporating the adaptive weight matrix when transferring the statistics from the
base classes to the novel classes. Although both methods utilize distribution calibration to perform
few-shot classification, our model can more effectively transfer the knowledge of the base classes to
estimate the distribution of novel samples more accurately with the help of hierarchical OT (H-OT).
Fourth, in terms of 5-way 1-shot tasks on all datasets, the performance gain from our model over
Free-Lunch on the CUB is larger than that of other datasets. However, for 5-way 5-shot tasks on all
datasets, the improvement gain from our model over Free-Lunch on the CUB is not as significant as
that on other datasets. The reason behind this might be that CUB is a fine-grained image classification
dataset, which makes it more effective for statistics transfer compared to other datasets under the
1-shot setting. Furthermore, with the development of label examples in the novel classes (5-shot), our
method can perform more effective knowledge transfer from base classes to novel samples in the
coarse-grained image classification dataset. The results reveal that the granularity of the dataset is an
important factor in the current few-shot classification setting. Our model avoids the costly fine-tuning
for backbone and it only takes time at the testing stage. We defer the details on comparison of
computational cost to Appendix A and summary of test results to Appendix B.

5.3 Evaluation with the Cross-domain Setting

Figure 1: 5way1shot accuracy un-
der the cross-domain scenarios, i.e.,
miniImageNet → CUB and CIFAR-
FS → CUB. CUB indicates that
both base and novel classes are
from CUB.

To explore the cross-domain generalization ability of H-OT for
the few-shot classification task, we consider a practical evalu-
ation setting following Chen et al. [3], where there exists do-
main shift between base and novel classes (e.g., sampling base
classes from a coarse-grained dataset and novel classes from a
fine-grained dataset). We design two cross-domain scenarios:
miniImageNet → CUB, CIFAR-FS → CUB, where CUB is
the target domain while both miniImageNet and CIFAR-FS are
the source domains. Compared with collecting images from a
general class, collecting images from fine-grained classes might
be more difficult, so these two scenarios are very meaningful
in reality. We consider the comparison with Free-Lunch, which
is closely related to ours. As shown in Fig. 1, both H-OT and
Free-Lunch achieve acceptable performance in these two sce-
narios, proving the effectiveness of the distribution calibration
framework in the cross-domain case. Besides, H-OT shows its
clear advantage over Free-Lunch. It indicates that H-OT can
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Figure 2: Accuracy on miniImageNet for 5way1shot
task with varying number of generated features.

Figure 3: Top-5 closest base classes for a novel
sample from the “plain” class on CIFAR-FS based
on our learned transport plan.

better utilize the statistics from the base classes of the source domain with the adaptive weight matrix
and transfer them to the novel classes of the target domain. Moreover, H-OT under the CIFAR-FS →
CUB (blue bar in the 3rd column) scenario still outperforms Free-Lunch under CUB (orange bar in
the 1st column). These results show that H-OT is less affected by domain shift between the base and
novel classes and possesses the desired cross-domain generalization ability.

Table 3: Ablation study with different cost functions (5way1shot).
Models miniImageNet CUB CIFAR-FS tieredImagenet
Free-lunch [14] 68.57 ± 0.55 79.56 ± 0.87 74.94 ± 0.64 75.10±0.32
High-level OT+Euc 68.79 ± 0.31 80.29 ± 0.25 75.09 ± 0.33 75.31±0.36
High-level OT+Euc+weighted 68.80 ± 0.32 80.33± 0.27 75.13± 0.31 75.35±0.40
High-level OT+cos 68.82 ± 0.36 81.01 ± 0.41 75.12 ± 0.31 75.52±0.36
High-level OT+cos+weighted 68.78 ± 0.33 81.02± 0.30 75.10 ± 0.34 75.55±0.41
Our H-OT 69.04 ± 0.29 81.23 ± 0.35 75.42 ± 0.32 75.91±0.35

Table 4: 5way1shot perfor-
mance on miniImageNet with
different backbones.

Backbone Free-Lunch Ours
Conv4 54.62 ± 0.64 55.23 ± 0.59
Conv6 57.14 ± 0.45 58.01 ± 0.42
ResNet10 64.41 ±0.33 65.22± 0.37
Resnet18 61.50 ± 0.47 62.61 ± 0.41
WRN28+RTloss 68.57 ± 0.55 69.04 ± 0.29

5.4 Ablation Study and Qualitative Analysis

Impact of adaptive cost from low-level OT Recall that we formulate our general goal as a high-level
OT problem and we propose a low-level OT for computing the cost function for the high-level one in
an adaptive way. The low-level OT captures the distance between a base class and a novel class. Here
we consider two commonly-used cost functions to replace the adaptive cost, including Euclidean
distance and cosine similarity between the feature space of the novel classes and the mean of the
features from the base classes, denoted as High-level OT+Euc and High-level OT+cos. Besides, to
exclude the possibility that the gain of our H-OT comes only from the effect of introducing weighted
mean in the low-level OT, we also consider use the weighted mean with (7) to implement High-level
OT, denoted as High-level OT+Euc+weighted and High-level OT+cos+weighted. As summarized
in Table 6, our proposed H-OT achieves better performance than these degraded variants, which
confirms the validity of adaptive cost from low-level OT in few-shot classification. And introducing
the weighted mean into the cost function of high-level OT does not improve the performance. It
indicates that the performance gain comes mainly from the low-level OT rather than the effect of
weighted mean. The reason behind this might be that our proposed low-level OT considers all samples
within a base class when deciding the cost between novel samples and this base class, instead of using
the mean of the features from the base class. Besides, even with the given cost functions, our proposed
method still outperforms the competing baseline (i.e., Free-Lunch), indicating the usefulness of the
transport plan (i.e., adaptive matrix) learned from high-level OT.

Different backbones Since our framework is agnostic with the choice of backbones, following Yang
et al. [14], we further employ other commonly used backbones, such as networks with four or six
convolutional layers (Conv4 or Conv6), Resnet10 and Resnet18, which are trained from scratch
following [3]. Table 4 illustrates the classification performance (5-way-1-shot) comparison between
our H-OT and strong baseline (Free-Lunch) on miniImageNet with different backbones. We find that
H-OT always outperforms its baseline given the same backbone. This result reveals the superiority of
learning an adaptive weight matrix to select statistics of base classes on different backbones. As H-OT
is agnostic to the feature extractor and does not require costly fine-tuning, it can also conveniently
work with more advanced feature extractors to get better performance.
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Number of generated features Fig. 2 shows the variation of the classification performance of
distribution calibration models with the increasing number of generated features, where we consider
our H-OT (red) and Free-Lunch (green) in a 5-way-1-shot classification setting for miniImageNet.
We can see that increasing the number of generated samples results in consistent improvement in
both cases. However, given the same number of generated samples, H-OT outperforms its baseline,
which only selects the top − k base classes for each novel sample using Euclidean distance [14].
Interestingly, our model achieves around 68.5 accuracy with only 50 generated samples, while
Free-Lunch takes 750 generated samples to achieve a similar result. Hence, the adaptive weight
matrix learned by H-OT can contribute to the distribution calibration strategy for sampling more
representative features.

Learned transport plan To explore whether the learned transport plan can capture the correlations
between the base classes and one given sample from the novel class (“plain”), we show a list of base
classes with decreasing ranks in Fig. 3. The top-5 base classes are highly related to the given novel
sample about their semantic meanings. It is reasonable since the images from wild animal-related
classes are usually taken on the plain, such as “elephant” and “bear”. It indicates that the transport
plan can be successfully optimized by our H-OT and provides an elegant way to measure the closeness
between base classes and novel samples. Different from Free-Lunch that only selects top-k base
classes (k=2), our model takes full advantage of all base classes for learning adaptive weight for each
base class. Additional quantitative results and qualitative are deferred to the Appendix B.

6 Conclusion

This paper introduces a novel hierarchical OT to improve the existing distribution calibration-based
algorithm for few-shot learning. We first develop a low-level OT problem to learn the cost between
novel samples and a base class, which takes into account different weights of the samples in the
base class. Moreover, we further design a high-level OT for measuring the distance between novel
samples and all base classes, which uses the cost learned from the low-level one to define the cost
function rather than manually chosen cost functions. The proposed H-OT can capture the correlations
between the novel samples and base classes with a two-level hierarchy. When transferring the
statistics from base classes to novel samples, we view the learned optimal transport plan between
them as the adaptive weight matrix, providing an effective way to weigh each base class for a novel
sample. Extensive experiments have been conducted, showing that our proposed framework achieves
competing performance on commonly few-shot learning problems and cross-domain scenarios.

7 Negative Societal Impacts

We develop a simple and effective distribution calibration approach to the few-shot learning, which
has the potential to encourage researchers to derive new and better methods for few-shot learning or
meta-learning. Our work may indirectly lead to a negative outcome if there is a sufficiently malicious
or ill-informed choice of a few-shot classification task.
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and Robotics for Society.

References
[1] Kaiming He, Xiangyu Zhang, Shaoqing Ren, and Jian Sun. Deep residual learning for image

recognition. In Proceedings of the IEEE conference on computer vision and pattern recognition,
pages 770–778, 2016.

[2] Karen Simonyan and Andrew Zisserman. Very deep convolutional networks for large-scale
image recognition. In Yoshua Bengio and Yann LeCun, editors, 3rd International Conference
on Learning Representations, ICLR 2015, San Diego, CA, USA, May 7-9, 2015, Conference
Track Proceedings, 2015. URL http://arxiv.org/abs/1409.1556.

[3] Wei-Yu Chen, Yen-Cheng Liu, Zsolt Kira, Yu-Chiang Frank Wang, and Jia-Bin Huang. A closer
look at few-shot classification. In International Conference on Learning Representations, 2019.

10

http://arxiv.org/abs/1409.1556


[4] Sinno Jialin Pan and Qiang Yang. A survey on transfer learning. IEEE Transactions on
knowledge and data engineering, 22(10):1345–1359, 2009.

[5] Yaroslav Ganin and Victor Lempitsky. Unsupervised domain adaptation by backpropagation.
In International conference on machine learning, pages 1180–1189. PMLR, 2015.

[6] Chelsea Finn, Pieter Abbeel, and Sergey Levine. Model-agnostic meta-learning for fast adapta-
tion of deep networks. In International Conference on Machine Learning, pages 1126–1135.
PMLR, 2017.

[7] Sachin Ravi and Hugo Larochelle. Optimization as a model for few-shot learning. In 5th
International Conference on Learning Representations, ICLR 2017, Toulon, France, April
24-26, 2017, Conference Track Proceedings, 2017.

[8] Oriol Vinyals, Charles Blundell, Tim Lillicrap, Koray Kavukcuoglu, and Daan Wierstra. Match-
ing networks for one shot learning. In Advances in Neural Information Processing Systems 29:
Annual Conference on Neural Information Processing Systems 2016, December 5-10, 2016,
Barcelona, Spain, pages 3630–3638, 2016.

[9] Jake Snell, Kevin Swersky, and Richard S. Zemel. Prototypical networks for few-shot learning.
In Advances in Neural Information Processing Systems, pages 4077–4087, 2017.

[10] Bharath Hariharan and Ross B. Girshick. Low-shot visual recognition by shrinking and
hallucinating features. In IEEE International Conference on Computer Vision, ICCV 2017,
Venice, Italy, October 22-29, 2017, pages 3037–3046. IEEE Computer Society, 2017.

[11] Yu-Xiong Wang, Ross B. Girshick, Martial Hebert, and Bharath Hariharan. Low-shot learning
from imaginary data. In 2018 IEEE Conference on Computer Vision and Pattern Recognition,
CVPR 2018, Salt Lake City, UT, USA, June 18-22, 2018, pages 7278–7286. Computer Vision
Foundation / IEEE Computer Society, 2018.

[12] Spyros Gidaris and Nikos Komodakis. Dynamic few-shot visual learning without forgetting.
In 2018 IEEE Conference on Computer Vision and Pattern Recognition, CVPR 2018, Salt
Lake City, UT, USA, June 18-22, 2018, pages 4367–4375. Computer Vision Foundation / IEEE
Computer Society, 2018.

[13] Hang Qi, Matthew Brown, and David G. Lowe. Low-shot learning with imprinted weights.
In 2018 IEEE Conference on Computer Vision and Pattern Recognition, CVPR 2018, Salt
Lake City, UT, USA, June 18-22, 2018, pages 5822–5830. Computer Vision Foundation / IEEE
Computer Society, 2018.

[14] Shuo Yang, Lu Liu, and Min Xu. Free lunch for few-shot learning: Distribution calibration. In
International Conference on Learning Representations, 2021.

[15] Viet Huynh, Dinh Q Phung, and He Zhao. Optimal transport for deep generative models: State
of the art and research challenges. In IJCAI, pages 4450–4457, 2021.

[16] He Zhao, Dinh Phung, Viet Huynh, Trung Le, and Wray Buntine. Neural topic model via
optimal transport. In International Conference on Learning Representations, 2021.

[17] Dongsheng Wang, Dandan Guo, He Zhao, Huangjie Zheng, Korawat Tanwisuth, Bo Chen, and
Mingyuan Zhou. Representing mixtures of word embeddings with mixtures of topic embeddings.
In International Conference on Learning Representations, 2022.

[18] Anh Tuan Bui, Trung Le, Quan Hung Tran, He Zhao, and Dinh Phung. A unified Wasserstein
distributional robustness framework for adversarial training. In International Conference on
Learning Representations, 2022.

[19] Dandan Guo, Zhuo Li, Meixi Zheng, He Zhao, Mingyuan Zhou, and Hongyuan Zha. Learning
to re-weight examples with optimal transport for imbalanced classification. arXiv preprint
arXiv:2208.02951, 2022.

[20] Gabriel Peyré and Marco Cuturi. Computational optimal transport. Found. Trends Mach. Learn.,
11(5-6):355–607, 2019.

11



[21] Marco Cuturi. Sinkhorn distances: Lightspeed computation of optimal transport. Advances in
neural information processing systems, 26:2292–2300, 2013.

[22] John W Tukey et al. Exploratory data analysis, volume 2. Reading, Mass., 1977.

[23] Ian Goodfellow, Jean Pouget-Abadie, Mehdi Mirza, Bing Xu, David Warde-Farley, Sherjil
Ozair, Aaron Courville, and Yoshua Bengio. Generative adversarial nets. volume 27, 2014.

[24] David E Rumelhart, Geoffrey E Hinton, and Ronald J Williams. Learning representations by
back-propagating errors. nature, 323(6088):533–536, 1986.

[25] Ruixiang Zhang, Tong Che, Zoubin Ghahramani, Yoshua Bengio, and Yangqiu Song. Metagan:
An adversarial approach to few-shot learning. NeurIPS, 2:8, 2018.

[26] Hang Gao, Zheng Shou, Alireza Zareian, Hanwang Zhang, and Shih-Fu Chang. Low-shot
learning via covariance-preserving adversarial augmentation networks. In Advances in Neural
Information Processing Systems 31: Annual Conference on Neural Information Processing
Systems 2018, NeurIPS 2018, December 3-8, 2018, Montréal, Canada, pages 983–993, 2018.

[27] Eli Schwartz, Leonid Karlinsky, Joseph Shtok, Sivan Harary, Mattias Marder, Abhishek Kumar,
Rogério Schmidt Feris, Raja Giryes, and Alexander M. Bronstein. Delta-encoder: an effective
sample synthesis method for few-shot object recognition. In Advances in Neural Information
Processing Systems 31: Annual Conference on Neural Information Processing Systems 2018,
NeurIPS 2018, December 3-8, 2018, Montréal, Canada, pages 2850–2860, 2018.

[28] Yongqin Xian, Tobias Lorenz, Bernt Schiele, and Zeynep Akata. Feature generating networks
for zero-shot learning. In Proceedings of the IEEE conference on computer vision and pattern
recognition, pages 5542–5551, 2018.

[29] Jian Zhang, Chenglong Zhao, Bingbing Ni, Minghao Xu, and Xiaokang Yang. Variational
few-shot learning. In 2019 IEEE/CVF International Conference on Computer Vision, ICCV
2019, Seoul, Korea (South), October 27 - November 2, 2019, pages 1685–1694. IEEE, 2019.

[30] Chi Zhang, Yujun Cai, Guosheng Lin, and Chunhua Shen. Deepemd: Few-shot image classifica-
tion with differentiable earth mover’s distance and structured classifiers. In Proceedings of the
IEEE/CVF conference on computer vision and pattern recognition, pages 12203–12213, 2020.

[31] Dan dan Guo, Long Tian, Minghe Zhang, Mingyuan Zhou, and Hongyuan Zha. Learning
prototype-oriented set representations for meta-learning. In International Conference on Learn-
ing Representations, 2022.

[32] Mikhail Yurochkin, Sebastian Claici, Edward Chien, Farzaneh Mirzazadeh, and Justin M.
Solomon. Hierarchical optimal transport for document representation. In Hanna M. Wallach,
Hugo Larochelle, Alina Beygelzimer, Florence d’Alché-Buc, Emily B. Fox, and Roman Garnett,
editors, Advances in Neural Information Processing Systems 32: Annual Conference on Neural
Information Processing Systems 2019, NeurIPS 2019, December 8-14, 2019, Vancouver, BC,
Canada, pages 1599–1609, 2019.

[33] Sachin Ravi and Hugo Larochelle. Optimization as a model for few-shot learning. 2016.

[34] Mengye Ren, Eleni Triantafillou, Sachin Ravi, Jake Snell, Kevin Swersky, Joshua B. Tenen-
baum, Hugo Larochelle, and Richard S. Zemel. Meta-learning for semi-supervised few-shot
classification. In 6th International Conference on Learning Representations, ICLR 2018, Van-
couver, BC, Canada, April 30 - May 3, 2018, Conference Track Proceedings. OpenReview.net,
2018. URL https://openreview.net/forum?id=HJcSzz-CZ.

[35] Peter Welinder, Steve Branson, Takeshi Mita, Catherine Wah, Florian Schroff, Serge Belongie,
and Pietro Perona. Caltech-ucsd birds 200. 2010.

[36] Luca Bertinetto, Joao F Henriques, Philip HS Torr, and Andrea Vedaldi. Meta-learning with
differentiable closed-form solvers. arXiv preprint arXiv:1805.08136, 2018.

12

https://openreview.net/forum?id=HJcSzz-CZ


[37] Olga Russakovsky, Jia Deng, Hao Su, Jonathan Krause, Sanjeev Satheesh, Sean Ma, Zhiheng
Huang, Andrej Karpathy, Aditya Khosla, Michael S. Bernstein, Alexander C. Berg, and Li Fei-
Fei. Imagenet large scale visual recognition challenge. Int. J. Comput. Vis., 115(3):211–252,
2015.

[38] Alex Krizhevsky, Vinod Nair, and Geoffrey Hinton. Cifar-10 (canadian institute for advanced
research). URL http://www. cs. toronto. edu/kriz/cifar. html, 5:4, 2010.

[39] Puneet Mangla, Nupur Kumari, Abhishek Sinha, Mayank Singh, Balaji Krishnamurthy, and
Vineeth N Balasubramanian. Charting the right manifold: Manifold mixup for few-shot learning.
In Proceedings of the IEEE/CVF Winter Conference on Applications of Computer Vision, pages
2218–2227, 2020.

[40] Fabian Pedregosa, Gaël Varoquaux, Alexandre Gramfort, Vincent Michel, Bertrand Thirion,
Olivier Grisel, Mathieu Blondel, Peter Prettenhofer, Ron Weiss, Vincent Dubourg, et al. Scikit-
learn: Machine learning in python. the Journal of machine Learning research, 12:2825–2830,
2011.

[41] Yaoyao Liu, Bernt Schiele, and Qianru Sun. An ensemble of epoch-wise empirical bayes for
few-shot learning. In Andrea Vedaldi, Horst Bischof, Thomas Brox, and Jan-Michael Frahm,
editors, Computer Vision - ECCV 2020 - 16th European Conference, Glasgow, UK, August
23-28, 2020, Proceedings, Part XVI, volume 12361 of Lecture Notes in Computer Science,
pages 404–421. Springer, 2020.

[42] Andrei A. Rusu, Dushyant Rao, Jakub Sygnowski, Oriol Vinyals, Razvan Pascanu, Simon
Osindero, and Raia Hadsell. Meta-learning with latent embedding optimization. In 7th
International Conference on Learning Representations, ICLR 2019, New Orleans, LA, USA,
May 6-9, 2019. OpenReview.net, 2019.

[43] Bin Liu, Yue Cao, Yutong Lin, Qi Li, Zheng Zhang, Mingsheng Long, and Han Hu. Negative
margin matters: Understanding margin in few-shot classification. In Andrea Vedaldi, Horst
Bischof, Thomas Brox, and Jan-Michael Frahm, editors, Computer Vision - ECCV 2020 - 16th
European Conference, Glasgow, UK, August 23-28, 2020, Proceedings, Part IV, volume 12349
of Lecture Notes in Computer Science, pages 438–455. Springer, 2020.

[44] Yonglong Tian, Yue Wang, Dilip Krishnan, Joshua B Tenenbaum, and Phillip Isola. Rethinking
few-shot image classification: a good embedding is all you need? In Computer Vision–ECCV
2020: 16th European Conference, Glasgow, UK, August 23–28, 2020, Proceedings, Part XIV
16, pages 266–282. Springer, 2020.

[45] Flood Sung, Yongxin Yang, Li Zhang, Tao Xiang, Philip HS Torr, and Timothy M Hospedales.
Learning to compare: Relation network for few-shot learning. In Proceedings of the IEEE
conference on computer vision and pattern recognition, pages 1199–1208, 2018.

[46] Luca Bertinetto, Joao F Henriques, Philip HS Torr, and Andrea Vedaldi. Meta-learning with
differentiable closed-form solvers. arXiv preprint arXiv:1805.08136, 2018.

[47] Avinash Ravichandran, Rahul Bhotika, and Stefano Soatto. Few-shot learning with embedded
class models and shot-free meta training. In Proceedings of the IEEE/CVF International
Conference on Computer Vision, pages 331–339, 2019.

[48] Kwonjoon Lee, Subhransu Maji, Avinash Ravichandran, and Stefano Soatto. Meta-learning with
differentiable convex optimization. In Proceedings of the IEEE/CVF Conference on Computer
Vision and Pattern Recognition, pages 10657–10665, 2019.

[49] Lénaïc Chizat, Pierre Roussillon, Flavien Léger, François-Xavier Vialard, and Gabriel Peyré.
Faster wasserstein distance estimation with the sinkhorn divergence. In Advances in Neural
Information Processing Systems 33: Annual Conference on Neural Information Processing
Systems 2020, NeurIPS 2020, December 6-12, 2020, virtual, 2020.

[50] Jason Altschuler, Jonathan Weed, and Philippe Rigollet. Near-linear time approximation
algorithms for optimal transport via sinkhorn iteration. In Advances in Neural Information
Processing Systems 30: Annual Conference on Neural Information Processing Systems 2017,
December 4-9, 2017, Long Beach, CA, USA, pages 1964–1974, 2017.

13



[51] Pavel E. Dvurechensky, Alexander V. Gasnikov, and Alexey Kroshnin. Computational optimal
transport: Complexity by accelerated gradient descent is better than by sinkhorn’s algorithm. In
Jennifer G. Dy and Andreas Krause, editors, Proceedings of the 35th International Conference
on Machine Learning, ICML 2018, Stockholmsmässan, Stockholm, Sweden, July 10-15, 2018,
volume 80 of Proceedings of Machine Learning Research, pages 1366–1375. PMLR, 2018.

[52] Laurens Van der Maaten and Geoffrey Hinton. Visualizing data using t-sne. Journal of machine
learning research, 9(11), 2008.

14



1. For all authors...
(a) Do the main claims made in the abstract and introduction accurately reflect the paper’s

contributions and scope? [Yes]
(b) Did you describe the limitations of your work? [Yes] See Appendix A.
(c) Did you discuss any potential negative societal impacts of your work? [Yes] See

Appendix C.
(d) Have you read the ethics review guidelines and ensured that your paper conforms to

them? [Yes]
2. If you are including theoretical results...

(a) Did you state the full set of assumptions of all theoretical results? [N/A]
(b) Did you include complete proofs of all theoretical results? [N/A]

3. If you ran experiments...
(a) Did you include the code, data, and instructions needed to reproduce the main experi-

mental results (either in the supplemental material or as a URL)? [Yes] We will upload
code into the supplemental material.

(b) Did you specify all the training details (e.g., data splits, hyperparameters, how they
were chosen)? [Yes] See Section 5.1.

(c) Did you report error bars (e.g., with respect to the random seed after running experi-
ments multiple times)? [Yes]

(d) Did you include the total amount of compute and the type of resources used (e.g., type
of GPUs, internal cluster, or cloud provider)? [Yes] See Appendix A.

4. If you are using existing assets (e.g., code, data, models) or curating/releasing new assets...
(a) If your work uses existing assets, did you cite the creators? [Yes]
(b) Did you mention the license of the assets? [N/A]
(c) Did you include any new assets either in the supplemental material or as a URL? [No]
(d) Did you discuss whether and how consent was obtained from people whose data you’re

using/curating? [N/A]
(e) Did you discuss whether the data you are using/curating contains personally identifiable

information or offensive content? [N/A]
5. If you used crowdsourcing or conducted research with human subjects...

(a) Did you include the full text of instructions given to participants and screenshots, if
applicable? [N/A]

(b) Did you describe any potential participant risks, with links to Institutional Review
Board (IRB) approvals, if applicable? [N/A]

(c) Did you include the estimated hourly wage paid to participants and the total amount
spent on participant compensation? [N/A]

15


