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Abstract

Pretrained large language models (LLMs) exhibit
exceptional general language processing capabili-
ties but come with significant demands on mem-
ory and computational resources. As a power-
ful compression technology, binarization can ex-
tremely reduce model weights to a mere 1 bit,
lowering the expensive computation and mem-
ory requirements. However, existing quantiza-
tion techniques fall short of maintaining LLM
performance under ultra-low bit-widths. In re-
sponse to this challenge, we present BiLLM, a
groundbreaking 1-bit post-training quantization
scheme tailored for pretrained LLMs. Based on
the weight distribution of LLMs, BiLLM first
identifies and structurally selects salient weights,
and minimizes the compression loss through an
effective binary residual approximation strategy.
Moreover, considering the bell-shaped distribu-
tion of the non-salient weights, we propose an op-
timal splitting search to group and binarize them
accurately. BiLLM, for the first time, achieves
high-accuracy inference (e.g. 8.41 perplexity on
LLaMAZ2-70B) with only 1.08-bit weights across
various LLM families and evaluation metrics, out-
performs SOTA quantization methods of LLM by
significant margins. Moreover, BiLLM enables
the binarization process of a 7-billion LLM within
0.5 hours on a single GPU, demonstrating satis-
factory time efficiency. Our code is available at
https://github.com/Aaronhuang-778/BiLLM.

1. Introduction

Recently, large language models (LLMs) based on trans-
formers (Vaswani et al., 2017) have garnered significant
attention in natural language processing. Pre-trained LLMs
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Figure 1: Perplexity of LLaMA-13B on WikiText2 under
different bit-widths. Round-to-nearest (RTN), GPTQ, and
PB-LLM (10% weight of INT8) suffer accuracy loss at ultra-
low bits, facing the sharply increasing perplexity (J.). BiLLM
demonstrates exceptional performance under binarization.

such as OPT (Zhang et al., 2022) and LLaMA (Touvron
et al., 2023a), have demonstrated excellent performance
across a range of evaluation benchmarks. However, LLMs
pose substantial challenges in deployment on memory-
constrained devices due to their immense parameter size
and computation requirements. For instance, the widely-
used LLaMA2-70B (Touvron et al., 2023b) model, with its
70 billion parameters, requires 150 GB of storage in half-
precision (FP16) format. This necessitates at least two A100
GPUs, each with 80 GB of storage space, for inference.

Model quantization has emerged as a highly effective tech-
nology for compressing neural networks, thereby reducing
the model size of LLMs and substantially saving GPU mem-
ory consumption (Dettmers et al., 2022). Current quan-
tization techniques primarily fall into Quantization-Aware
Training (QAT) and Post-Training Quantization (PTQ). QAT
involves fine-tuning and retraining during the quantization
process, while PTQ significantly streamlines the compu-
tation by eliminating back-propagation, enabling a faster
quantization process and promoting the practicality of quan-
tization (Frantar et al., 2022; Shang et al., 2023; Lin et al.,
2023). Given the deep structures and numerous parameters
of LLMs, PTQ stands out for its ability to rapidly perform
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the quantization process, especially on time and resource-
constrained scenarios (Zhu et al., 2023).

Despite the success of previous PTQ methods in 8-bit and
4-bit quantization (Dettmers et al., 2022; 2023b; Frantar
et al., 2022; Xiao et al., 2023; Frantar & Alistarh, 2022), the
expanding size of LLMs demands more aggressive quan-
tization approaches (Shang et al., 2023). Neural network
binarization, which reduces the weight bit-width to only 1
bit, is a promising approach (Helwegen et al., 2019; Qin
etal., 2020; 2023). However, as depicted in Figure 1, current
advanced PTQ methods for LLMs exhibit a performance
collapse under ultra-low bit (<3 bits) quantization. This
phenomenon can be attributed to the significant difference
between quantized and original weights. Even the recent bi-
nary PTQ method for LLMs, PB-LLM (Shang et al., 2023),
only maintains a perplexity metric of around 800 with an
average weight of 1.7 bits. This observation underscores
the challenges existing PTQ methods face in promoting the
weight binarization of LLMs.

In pursuit of this goal, we conducted an empirical study to
analyze the distribution of pre-trained weights in LLMs. The
findings derived from this study are presented in Appendix
G, revealing two key observations:

* The second-order Hessian matrix of weights demon-
strates an exceptionally long-tail distribution and is
often used to measure the importance of weight ele-
ments in neural networks (LeCun et al., 1989; Dong
et al., 2019). As depicted in Figure 2, a small fraction
of weights elements possesses significantly high Hes-
sian values, substantially influencing the layer output.
In contrast, most Hessian values cluster around 0.

* The density distribution of weight magnitudes in LLMs
follows a bell-shaped pattern. This bell-shaped dis-
tribution exhibits a significant resemblance to both the
Gaussian or Laplace distribution in terms of its char-
acteristics (Blundell et al., 2015). Figure 2 illustrates
that most weight values cluster around zero with a
non-uniform bell-shaped distribution.

The above implies: a) A minority of weights play an impor-
tant role in LLMs, whereas the majority of weights exhibit
characteristics of redundancy (Shang et al., 2023; Dettmers
et al., 2023b); b) With the most aggressive bit-width, bina-
rization incurs most severe error among quantization under
bell-shaped distributions in LLMs (Jacob et al., 2018).

Motivated by the above observation, we propose a novel
1-bit PTQ framework for LLMs, namely BiLLM, incorpo-
rating two core designs to achieve highly accurate weight
binarization. First, guided by the Hessian-based metric, we
select the salient weights structurally (Figure 3 upper-right)
to achieve a trade-off between accuracy and storage sav-
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Figure 2: The Hessian metrics (sensitivity) and magnitude
(value) of weights in LLMs. The weights of different lay-
ers in LLMs are characterized by bell-shaped distribution,
accompanied by a few salient values.

ings and develop a residual approximation to maximize the
restoration of salient weights with highly dynamic range.
Second, for the remaining non-salient weights (Figure 3
lower-right), we design an optimal splitting binarization
strategy, where a meticulous search process is applied to de-
termine an optimal break-point for weight distribution and
binarization of the segments is then processed separately to
minimize binarization errors. Moreover, BiLLM incorpo-
rates error compensation on a block-wise basis by default
following existing common practices (Frantar et al., 2022;
Shang et al., 2023), which further reduces quantization error.

Extensive experiments demonstrate that BiLLM achieve the
state-of-the-art (SOTA) performance for LLMs across mul-
tiple LLM families on various evaluation metrics, and first
achieves extremely compact 1.07~1.11 bit-width in aver-
age for the PTQ binarization. For example, on the Wiki-
text2(Merity et al., 2016) metric, BiLLM achieved perplexi-
ties of 8.49 and 8.41 with only 1.08-bit weights on LLaMA-
65B (Touvron et al., 2023a)and LLaMA2-70B (Touvron
et al., 2023b), respectively, even surpassing the 9.34 perfor-
mance of the FP16 OPT-66B (Zhang et al., 2022).

2. Related Works

2.1. Large Language Model Quantization

Quantization maps high-precision parameters to a discrete
range. This method, which compresses parameters without
altering the model structure, effectively reduces the storage
and computational overhead of deep neural networks. Re-
cent work has successfully applied QAT and PTQ to LLMs.
QAT, through a quantization-aware retraining strategy, bet-
ter preserves the performance of quantized models. LLM-
QAT (Liu et al., 2023) addressed data barrier issues in QAT
training through data-free distillation. However, for LLMs
with extremely large parameter sizes, the cost of retraining
is prohibitively high and inefficient. Therefore, techniques
such as QLoRA (Dettmers et al., 2023a) focus on parameter-
efficient fine-tuning (PEFT) methods for quantizing LLMs,
enhancing the efficiency of QAT. Nevertheless, even these
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Figure 3: Schematic of the PTQ binarization framework for LLMs. The left side shows the structure of the Transformer
block after binarization. The right side shows the binarization process of BiLLM, which consists of two parts, Residual
Approximation for salient weights and Bell-shaped Splitting for non-salient weights.

efficient fine-tuning quantization strategies require over 24
hours of GPU time.

Therefore, the PTQ strategy has become a significant
option for quantizing LLMs efficiently. =~ Works like
BRECQ (Li et al., 2021), ZerqQuant (Yao et al.) and
LLM.int8() (Dettmers et al., 2022) enhance quantization
accuracy by adding additional grouping labels for custom
quantization blocks. Other studies adopt a feature segmen-
tation strategy, such as PB-LLM (Shang et al., 2023) and
SpQR (Dettmers et al., 2023b). They preserve the bit-width
of outlier features or those with higher quantization errors
to FP16 or INT8, mitigating the precision loss due to quanti-
zation. GPTQ (Frantar et al., 2022) employs a more precise
quantization framework, reducing the block quantization
errors of LLMs through Hessian-based second-order er-
ror compensation (Frantar & Alistarh, 2022), achieving
commendable performance in low-bits (4 bits) quantization.
Smoothquant (Xiao et al., 2023) introduces a strategy of
scaling weight and activation outliers to simplify quantiza-
tion. Subsequently, AWQ (Lin et al., 2023) and OWQ (Lee
et al., 2023) also proposed scale transformations of more
crucial weight channels for activation features, preserving
their information representation capacity.

2.2. Network Binarization

Binarized compression can quantize parameters to only 1 bit,
expressed as 1. In forward propagation, the sign function
is used to binarize the original parameter tensor:

W, = a-sign(Wy), )]

{1 if x> 0, ®

sign(m) - —1 others

where W € R™>™ is the full precision weight and W, €
R™>" ig the binarized output. n and m represent the size of

the weight matrix. o denotes the scaling factor (Courbariaux
et al., 2016). Binarization usually uses the channel-wise
scale (Rastegari et al., 2016; Qin et al., 2023), so o € R™.

Most previous binarization works adopt a framework based
on QAT for quantization (Qin et al., 2023). Straight through
estimator (STE) (Bengio et al., 2013) is deployed to ad-
dress the issue of gradient vanishing caused by the sign(-)
function. Binary Weight Network (BWN) (Rastegari et al.,
2016) was initially proposed for executing neural network
computations by binarizing weights and using full-precision
activations, while XNOR-Net (Rastegari et al., 2016) ex-
tends this approach by binarizing both weights and activa-
tions. Both methods minimize quantization errors through
dynamic searching of a. DoReFa-Net (Zhou et al., 2016)
further expands upon XNOR-Net, employing quantized gra-
dients to accelerate network training. Group segmentation
is also applied in binarization tasks, with Syq (Faraone et al.,
2018) utilizing network weight to the small size of groups
for minimizing binarization errors.

Based on the successful application of binarization in Trans-
formers (Wang et al., 2023) and Bert (Qin et al., 2022), we
believe that the binarization of LLMs is filled with poten-
tial. PB-LLM (Shang et al., 2023) investigates the impact
of binarized QAT and PTQ strategies on LLMs, but it is
necessary to retain a significant proportion (over 30%) of
the weights at 8 bits to enable LLMs to produce reasonable
answers. Due to the presence of a large amount of INTS,
LLMs still have a relatively high average bit-width. To ad-
dress this issue, we proposed BiLLM, which aims to push
the limit of PTQ binarization for LLMs.

3. Method

To achieve accurate binarization of LLMs, our approach is
designing distinct binarization strategies for salient and non-
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salient weights. We first introduce the selection rules for
salient weights and their binarization strategies in Section
3.1. Then, we elaborate on the distribution-based binariza-
tion strategy for non-salient weights in Section 3.2.

3.1. Salient Weight Binarization for LL.Ms

In deep neural networks, not all parameters carry equal sig-
nificance. Utilizing solely the magnitude of the weights
can not fully capture the impact of each element on the
model’s performance. The Hessian metric serves as a com-
mon benchmark for detecting parameter sensitivity (Dong
et al., 2019; Dettmers et al., 2023b; 2022). We thus leverage
the Hessian matrix to assess the salience of parameters in
each under-binarized layer. We implement an optimized
computation process to derive weight sensitivity, which
allows us to obtain the importance metric of parameters
without compromising efficiency:

w?

7
8 = = 3
COEAE ®
where H represents the Hessian matrix of each layer, and
w,; represents the original value of each element. In the
following section, s; serves as a criterion for assessing the
significance of weight elements and is used as a feature

indicator for structured selection.

Structural Searching Selection. Utilizing an unstructured
selection enables the coverage of all salient elements. How-
ever, it requires the implementation of an additional 1-bit
bitmap index (Chan & Ioannidis, 1998), leading to increased
average bit-width. This balance is inefficient, especially for
Hessian outlier weights that constitute a mere 1-5% of the
total (Yao et al., 2023). In our analysis of sensitivity distri-
bution within LLMs, we discovered that the majority of the
weights’ sensitive Hessian values are predominantly con-
centrated in specific columns or rows (Appendix G). This
pattern is attributed to the convergence effects inherent in
the multi-head self-attention mechanism of these models
and further motivates us to implement a structured approach
for selecting salient weights, for reducing the additional
bitmap. Given that BiLLM employs a per-channel (or per-
row) type of binarization, we determine salience through a
per-column segmentation on the whole weight matrix.

We organize the column salience in descending order and
introduce an optimized search algorithm aimed at minimiz-
ing quantization error, which in turn determines the number
of columns within the salient group. To elaborate on this
methodology, we initially define the objective of binariza-
tion quantization, grounded on Equation (1):

argmin||WfaB\|2, )
a,B

where B € {—1,+1}"**  k is the number of selected
columns. The problem (Rastegari et al., 2016) of optimal

original .
binarization =

> | B

Walient

Resdual

Figure 4: Illustration of salient weight binarization. The B4
binarized from salient weight is made into a residual with
the original value and then binarized again to obtain Bs.

« and B can simply be solved as a = HX‘;'L“ and B =
sign(W). Then, the optimization function for selecting

salient columns is defined as:

arg min ||W — (ar sign(Wa ) Uckuns sign(Wns))| %, (5)

uns

where Wy, denotes the column-wise combination of orig-
inal weight and Wy, is the left non-salient part. We can
easily get that W = W, U Wy, so the only variable
parameter is the number of rows in W,,.

Binary Residual Approximation. Salient weights are lim-
ited in quantity, yet exhibit significant variance when ag-
gregated. Direct preservation of these weights in INT8 or
FP16 formats leads to an increase in the average weight bits,
undermining the compressive benefits of binarization. Tra-
ditional binarization methods for salient weights, however,
result in substantial quantization errors. To that end, we
develop a residual approximation approach for binarizing
salient weights. Contrary to the comprehensive high-order
quantization (Li et al., 2017) applied to the entire weight
matrix, our technique minimizes binarization error through
a second-order approximation of merely a select subset of
salient weights. This method guarantees the precision of
salient weights while simultaneously decreasing bit-width
overhead. As illustrated in Figure 4, this approach incor-
porates a recursive computation strategy for weight bina-
rization compensation, applying a subsequent binarization
process to the residuals remaining after the initial binary pro-
cess. Building upon Equation (4), we propose a redesigned
residual approximation optimization specifically for salient
weights, which is defined as follows:

al,Bf = argmin ||W — a,B,||?),

LB ©)
o7, B} = argmin||(W — aB}) — 0, B, ||%),

A, Dy

where B, represents the original binary tensor, while B,
denotes the residual binarized matrix with the same size as
B,. We efficiently solve for the two binarized optimization
objectives using the same solution method as in Equation (4).
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Figure 5: Distribution and splitting schematic of the 4'"
projection layer in LLaMA2-7B. The top 5% of the Hessian
elements are orange, and the optimal break-point divides
the non-salient weights into sparse and concentrated areas.

Ultimately, we arrive at the following approximation:
W = alB! + o B). @)

It can be easily proven that the residual approach of Equa-
tion (7) has a lower quantization error than the direct one of
Equation (4). We define the residual binarization error £:

& = [[W = agB; — o/ B]||*. ®

The original binarized quantization error is calculatde as
||[W — a’BZ||> by Equation (4), and from the second
sub-equation of Equation (6) we can get that loss £, <
||[W — aBZ||?>. Therefore, through the method of resid-
ual approximation, we are able to further reduce the binary
quantization error of salient weights with ultra-low bit-width
storage compared to retaining salient weights at 8 or 16 bits.

3.2. Bell-shaped Distribution Splitting for Binarization

Following the removal of salient weights, the remaining
weights maintain a bell-shaped distribution, which becomes
closer to symmetric with the exclusion of salient weights’
impact, as depicted in Figure 5. Binary quantization, rep-
resenting an extreme form of uniform quantization, en-
counters more loss in the presence of non-uniform distribu-
tions. A practical approach involves the group-wise quan-
tization (Park et al., 2018; Fang et al., 2020; Jain et al.,
2019) of weights according to their distribution. Balancing
between quantization accuracy and compression efficiency,
we identify a single break-point within the distribution. As
shown in Figure 5, this partition divides the non-salient bell-
shaped distribution into two categories: the sparse area and
the concentrated area.

The segmentation process identifies a break-point that cat-
egorizes non-salient weights into two groups: A.[—p, p)

for concentrated weights and A;[—m, —p| U [p,m] for
sparse weights, where signifies the maximum extent of
non-salient weights. We then apply binarization to both
A, (concentrated) and A, (sparse). To determine the opti-
mal break-point p*, we assume that the non-salient weights
possess a symmetrical probability density function (PDF)-
g(x) over the bounded domain [—m, m/|, with the properties
g(z) = g(—=x). Then the mean squared quantization error
of binarization is defined as:

0 m
2 _ 2 2 (o
0, = 1 (—a—x)°g(z)dx +/0 (o —z)°g(z)dz. (9)
Since g(z) is a symmetric function, the above formula is
simplified to:

07 = 2/m(a —2)%g(x)dz. (10)
0

Then, the break-point p divides the non-salient weights into
two parts. According to the Equation (10), under the discon-
tinuous weight distribution, we get a new binary quantiza-
tion error:

02 =Wy — a,Bs|]> + |[We — a.B| %, (11)

q,p

where W and W denote the weights of the sparse and
concentrated area, respectively. B; and B, were calculated
from Equation (2), oy and « are the binarization scales,
determined by Equation (4):

1 1
Qg = 7||W8H5170[C: 7HWCH€17 (12)
Ng Ne
where n represents the number of weight elements in each
area. Therefore, the problem function is only related to p,

and our target to find the optimal p* can be defined as:

) (13)

p* = arg min(6?
P

When the remaining weights follow an ideal Gaussian
distribution, Equation (11) is demonstrated to be a con-
vex function with a global minimum, as evidenced in
prior studies (Fang et al., 2020; You, 2010). Nonetheless,
the actual distribution of non-salient weights, while bell-
shaped, diverges from the ideal Gaussian model. Simultane-
ously, we retain the block-wise compensation strategies of
GPTQ (Frantar et al., 2022) and OBC (Frantar & Alistarh,
2022) to offset quantization errors, which could change the
distribution of weights. In response, we employ a percentile
search method to identify the optimal break-point based
on the objective function outlined in Equation (13). This
percentile search strategy is efficient and straightforward,
completing the binarization process for a 7B LLM within
merely 30 minutes. Furthermore, our findings indicate that
despite the deviation of non-salient weights from the ideal
Gaussian distribution, the error curve associated with the
search process still exhibits convex properties (as detailed
in Appendix C), confirming the feasibility of pinpointing
the optimal break-point.
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Table 1: Average bit results from structural searching and
residual binarization of OPT, LLaMA, and LLaMA?2.

Model 7B 13B 30B  66B/65B/70B*
OPT .10  1.12 1.12 1.13
LLaMA 1.09 1.09 1.10 1.10
LLaMA2 1.07 1.08 N/A 1.09

*: OPT-66B, LLaMA-65B and LLaMA2-70B.

3.3. Pipeline of BiLILM

As depicted in Figure 3 left, BiLLM primarily performs
binary quantization on all Linear weights within the Trans-
former blocks. This section introduces the detailed pipeline
of BiLLM.

Binarization Workflow. We first deploy the structural
search of salient columns and a residual approximation
binarization for salient columns. The process of salient
columns incurs additional weight bits due to the search
proportion and residual mechanism. Table 1 presents the
extra bits generated in some LLMs (Zhang et al., 2022; Tou-
vron et al., 2023a;b). It can be observed that the searching
and residuals bring only about 0.1 additional weight bits.
Then, for these non-uniformly distributed weights, we use
a split binarization strategy searching optimal p*. The con-
centrated area and the sparse area are binarized separately.
This part incurs the cost of an additional 1 bit for hardware
group identification, but the computing parameters are still
compressed to 1 bit. By retaining only block-wise com-
pensation(Frantar et al., 2022; Frantar & Alistarh, 2022)
and eliminating column-wise quantization error compensa-
tion, we further enhance the efficiency of PTQ and ensure
the effectiveness of distribution exploration. Algorithm 1
illustrates the complete process of BiLLM, and detailed im-
plementation of BiLLM is shown in Appendix A.

Extra Storing Bits. The extra bits is acceptable under the bi-
nary weight quantization of BiLLM. The weight parameters

and additional hardware overhead are as follows:

Nparam =2x T'salient T 1 x (1 - rsalienl)7

1
Nstoring =1+-—,

bsize

(14)

where r475¢n: Signifies the proportion of salient weights and
bsize denotes the block size in OBC compensation, with 1
bit allocated for marking the division of non-salient weights.
b;ze represents the identifier for the structured column of
salient weights. For example, a 10% structural selection
along with an OBC compensation of size 128 was employed.
This results in a weight parameter bit-width of 1.1 bits and a
hardware flag bit-width of 1.008 bits. Figure 6 illustrates the
weight overhead for different proportions and block sizes.
It is important to note that flag weights do not participate
in the computation; actual calculations are executed solely
with parameter weights. Therefore, additional hardware
identification bits do not affect the acceleration effect of
binary quantization.

Algorithm 1 Main Framework of BiLLM: Inner details of
each function are shown in Algorithm 2
func BinaryLLM(W, X, 3, A)
Input: W € R™*™ - weight matrix
X € R"*? - calibration data
[ - block size
A - hessian regularizer
Output: B - binarized weights
1: H:=2XXT" //? error hessian matrix
2: H® := Cholesky((H + AI) ")

3: B =0,xm

4: for b=0,0,20,..., N do

5: Wb = W:,b:b—i—ﬁ

6:  rows{-} = salient(W. p.p1 5, H)

7. By = res,approximbation(Wij € {row, })
8: pri= seg,search(bVVw ¢ {rows})

9: By := bmaTY(W\wl,j\gp*7,j¢{row3})

10 Bj3:= binary(W‘bwm‘>p*,j¢{mws})

11: B:,b:b-‘rﬁ =B; +By+ B3

122 Ei= (Wb = Bivwrs) /Hippy 15

132 W. 48 =W, 5 7E~H§:b+ﬁ’b+ﬁ: // block-wise
OBC

14: end for

15: return B

4. Experiments
4.1. Setup

We deploy BiLLM within the Pytorch (Paszke et al., 2019)-
Huggingface libraries (Wolf et al., 2019). All the binariza-
tion processes and experiments are conducted on a single 80
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Table 2: Perplexity of RTN, GPTQ, PB-LLM, and BiLLM on OPT Family. The columns represent the perplexity results on

Wikitext2 datasets with different model sizes.

Method Block  Weight 1.3B 2.7B 6.7B 13B 30B 66B
Size Bits
Full Precision - 16.00 14.62 12.47 10.86 10.13 9.56 9.34
RTN N 3.00 1333738 1559472 579732 335701  1566.00 6126.09
GPTQ 128 3.00 20.97 16.88 14.86 11.61 10.27 10.51
“RIN - 200 11272.65  9505.76 28363.14 194086.78 16961647 116586425
GPTQ 128 200 11517 61.59 50.19 21.36 15.71 82.10
RTN - 100 1716572 3651669 1155091 698635 648599 18479630
GPTQ 128 1.00 1488473 1414458 10622.81 1519696 1247837 1310645
PB-LLM t 128 170 26552 12435  105.16 81.92 25.14 29.09
BiLLM 1 128 111 69.97 49.55 35.36 18.82 1271 12.06

-: Vanilla RTN conducts layer-wise quantization. : PB-LLM selects 10% elements in the original tensor as salient weights based on
Hessian. {: BiLLM uses structural searching for salient weights. The table gives the average bit-width of the OPT family.

GB NVIDIA A100. Given that BiLLM is an efficient PTQ
framework, it eliminates the need for any fine-tuning, allow-
ing for completion through a single quantization process.

Models and Datasets. We facilitate our method on the
OPT (Zhang et al., 2022) and LLaMA (Touvron et al.,
2023a;b) families. Additionally, considering the custom-
ary need for instruction-based fine-tuning of LLMs to adapt
to varying contexts, we also conducted experiments on Vi-
cuna (Chiang et al., 2023). In terms of evaluation metrics,
we mainly focused on the perplexity of LLMs’ outputs,
which is widely acknowledged in prior studies as a challeng-
ing yet stable indicator of LLM capabilities, particularly
apt for network compression (Yao et al.; Frantar et al.,
2022; Frantar & Alistarh, 2023; Xiao et al., 2023). We con-
sider the test of WikiText2 (Merity et al., 2016), PTB (Mar-
cus et al., 1994), as well as a part of the C4 (Raffel et al.,
2020) data. Then, we further conduct the experiments on
seven zero-shot evaluation tasks (PIQA (Bisk et al., 2020),
BoolQ (Clark et al., 2019), OBQA (Mihaylov et al., 2018),
Winogrande (Sakaguchi et al., 2021), ARC-e (Clark et al.,
2018), ARC-c (Clark et al., 2018) Hellaswag (Zellers et al.,
2019)) in the Appendix D, further verifying the robustness
of our proposed BiLLM to the binarization of LLMs.

Baseline. Our primary baseline is PB-LLM (Shang et al.,
2023), the most recent PTQ approach on binary LLMs.
GPTQ (Frantar et al., 2022) and vanilla RTN are also se-
lected. GPTQ is currently the advanced technology in PTQ,
and many works(Lin et al., 2023; Dettmers et al., 2023b;
Shang et al., 2023) choose it as the baseline. Other methods
oriented towards 8-bit and 4-bit quantization are deemed
unsuitable for binarization and were thus not considered.

4.2. Results

Comparison results. We conduct a meticulous compar-
ison of the binary performance of different LLMs across

various model sizes. We deploy the BiLLM on the OPT
models (Zhang et al., 2022) under the condition of a block
size equal to 128. As seen in Table 2, the model outputs
under the RTN and GPTQ methods have already collapsed
at 1-bit weights, whereas BiLLM still maintains reasonable
linguistic output capabilities with an average weight of 1.1
bits. In comparison with PB-LLM at 1.7 bits, our method
achieves a 35% reduction in weight bit-width while enhanc-
ing the performance of different sizes of the OPT model by
49.4% to 77.0%. 1t is noteworthy that when the parameter
size exceeds 30B, BiLLM can achieve performance nearly
equivalent to that of GPTQ with 3-bit quantization.

Due to the exceptional performance of the LLaMA (Touvron
et al., 2023a;b) series, they have become the foundation for
many open-source models (Chiang et al., 2023). Then, in
Table 3, we evaluate the perplexity of outputs from the
LLaMA series models using different methods. It can be
observed that, even at ultra-low weight bit-width, BiLLM
consistently outperforms the 2-bit RTN and GPTQ methods.
And 1.08 bits BiLLM for LLaMA-65B and LLaMA2-70B
even surpasses the output of the full-precision OPT-66B
model, which demonstrates the further binary potential of
the LLaMA family. We extend perplexity evaluation to the
PTB and C4 datasets. Figure 7 illustrates the performance
of the 7B parameter LLaMA series as well as the 6.7B
OPT models. BiLLM continues to achieve a leading edge in
performance compared to other methods (more additional
comparisons are discussed in Appendix D).

Experiments of instruction-tuned models. Instruction
fine-tuning can significantly improve the application capa-
bilities of the model and has become a necessary process for
LLMs deployment in different scenarios (Wei et al., 2021;
Sanh et al., 2021; Chiang et al., 2023). We also deployed
BiLLM on the recently popular fine-tuning instruction model
Vicuna for benchmark testing. As shown in Table 4, the
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Table 3: Perplexity of RTN, GPTQ, PB-LLM, BiLLM on LLaMA Family. The columns represent the perplexity results on

Wikitext2 datasets with different model sizes.

Model Method Block  Weight 7B 13B 30B  65B/70B*
Size Bits
Full Precision : 16.00 5.68 5.09 4.10 3.53
RTN : 200 106767.34 5740093 2670436  19832.87
GPTQ 128 2.00 15231 20.4 13.01 8.78
LLaMA  RIN : 100 168388.00 141202025  14681.76  65253.24
GPTQ 128 100 26700172 11389412 6709373  25082.88
PB-LLM { 128 170 102.36 36.60 33.67 12.53
BiLLM 128 1.09 35.04 15.14 10.52 8.49
Full Precision : 16.00 5.47 4.88 N/A 3.32
RTN : 200 17788.93 51145.61 N/A  26066.13
GPTQ 128 2.00 60.45 19.70 N/A 9.12
LLaMA2  RIN . 100 15705834 47902.32 N/A  160389.91
GPTQ 128 100 115905.67 9387.80 N/A 7439542
PB-LLM { 128 170 69.20 151.09 N/A 28.37
BiLLM { 128 1.08 32.48 16.77 N/A 8.41

The table gives the average bit-width of the LLaMA family. N/A: LLaMA?2 do not have 30B version. *: LLaMA has 65B version and

LLaMA?2 has 70B version.

W GPTQ-2bits
M PB-LLM-1.7bits
M BiLLM-1.1bits

LLaMA-7B
9564.53

2020.51
891.15

101.3100.38

ptb c4

Figure 7: GTPQ, PB-LLM, BiLLM performed on the PTB and c4 datasets, mainly on LLaMA-7B, LLaMA2-7B, and

LLaMA-2-7B

B GPTQ-2bits
W PB-LLM-1.7bits
MW BiLLM-1.1bits

B GPTQ-2bits
M PB-LLM-1.7bits
M BiLLM-1.1bits

OPT-6.7B

193.95

ptb c4

OPT-6.7B, and we found that BiLLM performed relatively well.

Table 4: Perplexity of BiLLM on Vicuna-7B and Vicuna-
13B. The columns of different models represent the perplex-
ity results on Wikitext2, PTB, and C4 datasets. The block
size is set to 128.

Weight Wiki

Model Method o3 01 PTB| C4
GPTQ  2.00 109.56 6227.73 64.28
Vicuna-7B PB-LLM 1.70 68.01 47752 67.23
BiLLM 1.08 33.00 332.17 36.24
GPTQ  2.00 41.75 46594 4057
Vicuna-13B PB-LLM 1.70 362.17 772.44 346.16
BiLLM 1.08 3657 300.31 28.76

perplexity performance of GPTQ and PB-LLM are com-
pared on Vicuna-7B and Vicuna-13B with three evaluations.
BiLLM can achieve better performance at an average weight
bit of 1.08, which further proves that BiLLM’s universal
LLMs binarization potential. We also provide dialogue
examples of binary models in Appeandix F.

o RTN < Salient-only < RTN < Salient-only
# Splitting-only © Both-BiLLM # Splitting-only © Both-BiLLM
100000 000
10000 o o 100000 OO0
2 PN S 21000 e e —
g 1000 \-o E 1000
g§ 100 c_----"’*a""'—--qs g§ 100 (r,af"”’A3-~\\"-,3
a0 e
1 1
wikitext2 ptb c4 wikitext2 ptb c4
OPT-6.7B LLaMA-7B
Figure 8: Ablation results of salient-only and splitting-only
methods on OPT and LLaMA.

Zero-Shot results. To conduct a more comprehensive eval-
uation of binary LLMs, we extend our experiments to 7
zero-shot datasets. Appendix D provides detailed results of
our approach compared to previous methods in ultra-low bit
quantization, further showing the outlier of BiLLM.

Ablation results. BiLLM enhances binarization precision
through two primary methods: structured salient binariza-
tion via residual approximation, and non-salient weight bina-
rization via optimal splitting. To examine the effects of these
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Table 5: Model size comparison of LLaMA family.

Method LLaMA-7B LLaMA2-7B LLaMA-13B LLaMA2-13B LLaMA-30B LLaMA-65B LLaMA-70B

FP16
BiLLM

13.5GB
1.5GB

13.5GB
1.6 GB

242 GB
2.7GB

25.0GB
2.8GB

60.5 GB
6.1 GB

121.0 GB
14.8 GB

129.3 GB
15.4 GB

Table 6: The memory occupancy rate compared with FP16
and the corresponding accuracy on OPT-30B.

Configuration BiLLM PB-LLM (10%) GPTQ
Average bit-width 1.11 1.7 2
Memory Occupancy®  9.70% 16.50% 13.30%
PPL on WikiText-2 12.71 25.14  15.71
*: Equation of memory occupancy [R6]:
memory_occupancy_compared_w_FP16 = (bi-

nary_unsalint_weight_size + residual_binary_salint_weight_size
+ CSR_compressed_bitmap_size + scaling_factor_size) / float-
ing_point_weight_size.

Table 7: Memory occupancy rate compared with FP16 OPT.

Model BiLLM GPTQ-2bit
OPT-1.3B 9.40% 13.30%
OPT-2.7B 9.50% 13.30%
OPT-6.7B 9.30% 13.30%
OPT-13B 9.70% 13.30%
OPT-30B 9.70% 13.30%

strategies, we conducted decomposition experiments. As
shown in Figure 8, both approaches significantly improve
binary performance. Notably, we found that OPT-6.7B
exhibits greater sensitivity to the splitting of non-salient
weights (the blue line is lower than the green line), whereas
LLaMA-7B is more responsive to salient weights’ residual
approximation (the green line is lower than the blue line).
This further indicates that different LLMs exhibit varying
responses to distinct binarization optimization strategies,
showing that the two binarization strategies proposed by
BiLLM are efficient to various LLMs. We further discuss
details on the block-size ablation results in Appendix E.

Model size. In Table 5, we present the FP16 of models
ranging from LLaMA-7B to 65B and LLaMA2-7B to 70B,
as well as the sizes of binarized models after compression
by BiLLM. Notably, BiLLM achieved close to a tenfold
compression of weights across LLMs of different sizes.

GPU memory. The motivation of our BiLLM is to push
the bit-width compression limit of LLM weights under post-
training conditions, which reduces both the storage and
GPU memory footprint of LLMs and retains their accuracy
to the greatest extent for being practical. Although binarized
GEMM is hard to implement directly due to fine-grained
grouping, the extreme bit-width compression of our BiILLM

brings significant savings in GPU memory requirements
(size and bandwidth), which is considered to be one of
the most significant efficiency bottlenecks of LLM infer-
ence (Gholami et al., 2024; Dettmers et al.; 2023a; Xiao
et al., 2023; Chee et al., 2024; Shang et al., 2023). Here, we
provide detailed memory and performance comparisons to
demonstrate the advantages of BiLLM (as shown in Table
A.1): for the OPT-30B model, BiLLM (1.1-bit) achieves
a41.57% and 27.07% memory compression improvement
compared to PB-LLM (1.7-bit) and GPTQ (2-bit), respec-
tively, while enhancing accuracy by 49.44% and 19.10%.
We further provide a detailed comparison of memory usage
with the 2-bit GPTQ method under different sizes of LLM
in Table 7. The memory occupancy of our BiLLM is only
about 69.9% of 2-bit quantization, which shows the great
memory-saving benefit of our BiLLM from the extreme
bit-width reduction, and we also achieve higher accuracy
with the significantly saved memory.

5. Conclusions

This work proposed a novel post-training binary quantiza-
tion method named BiLLM, specifically tailored for com-
pressing pre-trained LLMs. Inspired by the characteristics
of weight’s value and Hessian distributions, we adopted a bi-
nary residual approximation for structurally salient weights
to preserve their capabilities at ultra-low bits. For non-
salient weights, we employed optimal segmentation for
grouped binarization. Our results demonstrate that LLMs
can undergo a one-time weight quantization at ultra-low bits
without substantial loss of precision. BiLLM has pioneered
the achievement of LLM performance guarantees at an av-
erage bit rate close to 1 bit. We validated the binarization
performance of BiLLM across multiple open-source LLM
families and conducted generalization tests on a fine-tuned
instruction model. BiLLM advances the bit-width quantiza-
tion frontier of LLMs, promising to facilitate the deployment
of LLMs in edge scenarios and resource-constrained devices,
and encourages further exploration in LLMs compression.
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A. BiLLM Implementation

Algorithm 2 BiLLM: Detailed functions process

func salient (W, H®) func res_approximation (W)

1. S:=W?/[Hj, 5., 5" // salient matrix 1: By = binary(W)

2: rows{-} := topk(sum(abs(S)).(dim = 0)) 2: R=W-B;

3: e = inf // searching error 3: By = binary(R)

4: n* = 0// optimal number of salient columns 4: B:=B; +B,

5: fori=1,2,...,len(rows) do 5: return B

6: By := binary(W.; jcrow,[:i]) func seg_search (W)

7: By = binary(W.; jerouw,[:i]) 1: e = inf // searching error

8: i [[W — (By UB;)||* < e then 2: p* = 0// optimal break-point

9 e=|W—(BiLUBy)] 3: fori =0.1,0.2,0.3,...,9 do
10: n* =1 4 p:=i-max(abs(W))

1l endif 5. By = binary(Wi,, |<p)
12: end for 6: Bg:= binary(W‘wi,ﬂ;p)
13: return row,{: n*} 7. if ||W — (By + Bo)[|Z < ¢ then
func binary (W) 8: e:=||W = (By + By)||?

o IW]a 9: pri=p

o= 10:  endif

2: B = a-sign(W) 11: end for

3: return B 12: return p*

BiLLM necessitates the structured selection of salient rows and their subsequent quantization through residual approximation
binarization. This is followed by dividing the non-salient weights, which exhibit a bell-shaped distribution, into a sparse area
and a concentrated area. The division requires the optimization of the segmentation point p* by minimizing quantization
loss. Ultimately, the two regions of non-salient weights are binarized separately to derive the final binary weights for LLMs.
The implementation details of the aforementioned function are enumerated in Algorithm 2.

B. Quantization Error

Quantization error definition for weight distribution The numerical range covered by the uniform quantizer spans from
[Xmins Xmaz]. The number of intervals post-quantization, denoted as M, typically equals 20 where b represents the target
bit-width of quantization. So the quantization step size is:

Xmax — Xmi
A — max min 15
T (1)

The boundaries can be calculated as:
by = Xmin + A -1 (16)

where [ € 0,1, ..., M, and we have b; € {—«,0, o} under binarization. Then we give the mean of each interval:
Zq = Xmin + A -1 —05A 17
where [ € 1, ..., M. In this quantization scheme, we can get the MSQE from (You, 2010):
M Xmin+A'l
62 — / (X + A -1 — 0.5A — 2)2g(x)d (18)
1=1 XminJrA*(lfl)

then we let the y to replace the X i, + A -1 — 0.5A — x part, so the Equation (18) becomes:

M 054
2= Y2 f [ Xmin + A -1 — (y + 0.5A)dx (19)
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consider the Equation (16) and Equation (17), the above equation becomes:

M 054
6% = Z/ 2? f(z, — x)dw (20)

=1 /054

The aforementioned reasoning indicates that the MSQE of a uniform quantizer depends on the PDF and the quantization
bit-width. Due to previous observations of the weights in pretrained LL.Ms, we have eliminated the salient weights. The

remaining distribution of non-salient weights’ g(z), is not uniform and resembles a Gaussian distribution. In binarization,
therefore, we substitute « into Equation (18), resulting in:

M .(1-0.5M)A

| (05— 05M)A — afg(a)s
=7 J-1-05M)A

/0 (—a —z)?g(z)dx + /Oxmx(oz —2)%g(x)dx (21

Xmin

C. Searching Curve of Salient Column and Non-salient Distribution
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Figure 9: Block-wise searching curve of salient columns in OPT-6.7B. The majority of the curves indicate that the minimal
quantization error can be achieved at the block level by considering only a few columns as salient. The Out Projection layer
has a larger number of salient columns, hence varying coverage for each block. The distribution in the FC layer is more
dispersed. After optimal searching, the overall average weight bit is merely 1.1 bits.

We implemented a column-level segmentation and formulated a minimal-error column number search, as delineated in
Equation (5). The identification of the optimal count of salient column groups commences with the column exhibiting the
highest salience. To mitigate the increase in bit-width resulting from residual approximation, we confined the search range
to between 3 to 30 columns. Figure 9 illustrates the search curve pertinent to the inaugural Transformer block within the
OPT6.7B model. It includes six layers of operators (Q, K, V, Out Projection, FCI, and FC2), with each layer showing
the search curves for the first five blocks. Figure 15 elucidates the clustering of salient weights, suggesting that a majority
of the layers and blocks are capable of attaining minimal quantization errors with a limited number of salient columns.
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The block-wise changes in weight distribution brought about by OBC (Frantar & Alistarh, 2022) introduce fluctuations
in the search curve; however, the structured selection still manages to encompass the majority of salient weights. In the
Feedforward layer, where salient weight distribution is more scattered, the search curve leans towards employing residual
approximation across an increased number of columns. Nonetheless, Table 1, displaying the average weight bit numbers
across various LLMs, confirms that this search strategy effectively maintains weight compression at approximately 1.1 bits.

Figure 10 shows the unstructured search curve for the non-salient weights in the OPT6.7B model, with the same composition
as that in Figure 9. The horizontal axis represents the ratio between p and the maximum weight value. Despite searching
on a block-wise basis, the search curve still exhibits convex properties, indicating the presence of an optimal px. This
phenomenon demonstrates that the non-salient weights exhibit characteristics closely resembling an ideal Gaussian or
Laplacian distribution (You, 2010; Fang et al., 2020).

Figure 10: Block-wise splitting curve of bell-shaped distribution in OPT6.7B. The overall presentation exhibits the
characteristics of a convex function, fundamentally aligning with the theoretical optimal point in terms of theoretical basis.

D. Multi-evaluation Comparisons
Perplexity results on PTB and C4.

We use tables in the main text to show the perplexity of the three methods GPTQ, PB-LLM, and BiLLM on the Wikitext2
dataset, and bar charts to show the perplexity results for LLaMA-7B, LLaMA2-7B, and OPT-6.7B on the PTB and C4
datasets. In the appendix, we show the quantitative comparison results for models of other sizes on the PTB and C4 datasets
with more images.

In Figure 11, we find that although different models have different perplexity results, they still roughly follow the law that
the larger the model, the lower the perplexity. BiLLM is generally still relatively better than the GPTQ and PB-LLM results
in terms of perplexity with a lower bit-width configuration, while PB-LLM and GPTQ are higher or lower than each other,
with slightly inferior results at very low bits.

Zero-shot results
For completeness of testing, we have also tested and compared metrics such as the accuracy of GPTQ, PB-LLM, and BiLLM
on datasets such as PIQA and BoolQ, all using Zero Shot’s experimental setup. From Table 8, We find that despite the loss
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W GPTQ-2bits W GPTQ-2bits B GPTQ-2bits
LLaMA-138 m PB-LLM-1.7bits LLaMA-2-13B g | -1 7bits 11047 OPT-13B B PB-LLM-1.7bits
196.7213:17 W BiLLM-1.1bits 719.25 M BiLLM-1.1bits ) W BiLLM-1.1bits

53.26

B GPTQ-2bits W GPTQ-2bits W GPTQ-2bits
OPT-1.3B  PB-LLM-1.7bits OPT-2.7B B PB-LLM-1.7bits OPT-308 m PB-LLM-1.7bits
278.52 = BiLLM-1.1bits 143.93 B BiLLM-1.1bits 35.05 W BiLLM-1.1bits
25.2
163.72 180.05 87.22 96.13 5.29

ptb c4
B GPTQ-2bits B GPTQ-2bits W GPTQ-2bits
LLaMA-30B T 0 T LLaMA-65B o0 e o OPT-668 = PB-LLM-1.7bits
141.09  BILLM-1.1bits 639 668 B BiLLM-1.1bits - W BiLLM-1.1bits
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Figure 11: GPTQ, PB-LLM, BiLLM performed on the PTB and C4 datasets, mainly on LLaMA-13B, LLaMA2-13B,
OPT-13B, and so on. The results showed that BILLM performed relatively well.

in quantification, a side-by-side comparison between the three methods still shows BiLLM to be superior overall, testing one
level higher on some datasets, while the effect of some random perturbations, although present, does not pull down BiLLM’s
performance across the board. This suggests that BILLM’s quantization results have significantly improved performance at
very low bits, and further validates the conclusions.

Table 8: Accuracy on 7 data sets, from binarization LLaMA, LLaMA?2, and OPT, and we also compare the results among
GPTQ, PB-LLM, and BiLLM to validate the quantization effect.

Weight Block

Model Method Bits  Size PIQA T BoolQ T OBQA 1 Winogrande ™ ARC-e T ARC-c T Hellaswag 1
GPTQ 2.00 128 52.8 50.0 28.2 493 26.6 29.5 26.3
LLaMA-7B PB-LLM 1.70 128 54.6 59.7 30.4 50.6 28.2 24.6 28.7
BiLLM 1.09 128 61.2 62.7 31.8 51.1 36.0 25.7 36.8
GPTQ 2.00 128 51.1 439 29.0 50.8 26.6 28.5 26.3
LLaMAZ2-7B PB-LLM 1.70 128 53.8 62.3 30.2 493 28.0 25.0 27.7
BiLLM 1.08 128 60.6 61.8 33.2 524 36.2 24.4 34.8
GPTQ 2.00 128 56.6 51.1 25.6 51.2 31.3 22.9 30.4
OPT-6.7B  PB-LLM 1.70 128 57.6 55.5 242 47.7 33.2 21.0 31.0
BiLLM 1.11 128 58.6 62.2 29.0 51.5 34.1 239 319

E. Ablation of BiLLM with different block size

To explore the effect of different chunk sizes on the quantization effect of BiLLM, we set up block size settings including 32
columns and 64 columns up to 512 columns and performed quantization experiments on them. The results show that the
overall perplexity is lower as the chunk granularity becomes finer and the number of bits used becomes relatively smaller.
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We believe this is because the smaller the chunks, the finer the data representation, and the more scale is used, but increasing
the diversity of quantization results also increases the weighting overhead. A block size of 128 can better balance the
bit-width and quantization effect.

Table 9: Perplexity on Wikitext2, PTB, and C4 with different block size settings on BiLLM.

Model Block Size Wikitext2 PTB C4
512 74.14 1078.90 81.76

256 48.91 574.34 57.60

LLaMA-7B 128 35.04 421.27 39.59
64 27.23 399.81 27.74

32 17.56 263.39 19.85

512 52.90 267.82 43.86

256 43.69 232.34 43.21

LLaMA2-7B 128 32.48 3877.38 40.52
64 20.12 830.36 24.46

32 13.58 440.40 17.34

512 151.81 257.22 101.96

256 84.42 116.44 77.25

OPT-6.7B 128 35.36 73.63 43.16
64 33.36 48.16 31.94

32 20.48 31.02 21.47

F. Dialog Examples

In this section, we show some dialogue examples of binarized LLaMA-13B and Vicuna-13B.

G. Magnitude and Hessian Distribution of LL.Ms

Figure 2 displays the distribution characteristics of weights and Hessian in LLMs. In this section, we provide additional
examples to illustrate the bell-shaped distribution of weight values and the long-tailed distribution of Hessian weights.
Figure 13 depicts the distributions of four linear layers in the first Transformer block of the OPT-1.3B model, while Figure 14
shows the distributions of seven linear layers in the sixth block of the LLaMA-7B model. The selection of these specific
block positions is intended to demonstrate the universality of these distribution characteristics in LLMs.

Figure 15 displays the distribution of sensitive weights across 5 Transformer blocks within the OPT-1.3B model. We present
the Hessian distribution results for both the attention and feedforward blocks, with the red portion indicating the top 10% of
the most significant weight distribution. We observed that the salient weights of Q, K, and V in the OPT family tend to
concentrate in some columns or rows. Moreover, we noticed that salient weights in the Out Projection layer of multi-head
self-attention blocks are distinctly concentrated in specific columns, supporting our structured selection approach discussed
in the main text. In contrast, the distribution of salient weights in the feedforward layers is more dispersed. Based on these
observations, we adopt a sensitivity-based structured search method to identify salient columns.
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LLaMA-13B

Prompt:

Alaska is a state of __

PB-LLM-1.7bit:
BilLLM-1.1bit:

mind & body aided with other person.
, it is situated in North America.

Prompt:

Yangtze and Yellow River locate in

PB-LLM-1.7bit:
BilLLM-1.1bit:

the lower land.
the country which is called as the country of

Prompt:

After climbing thirty flights of stairs, he was drenched in
sweat and didn't feel much like climbing. I advised him ____

PB-LLM-1.7bit:
BilLLM-1.1bit:

he is really not very health.

. After 2 days, he'd do a lot
better and his sweat had lower.

Vicuna-13B

Prompt:

What are the capitals of China, US and Russia?

PB-LLM-1.7bit:

BilLLM-1.1bit:

A’s, U’sa and U's were. 2, U’s with, A’s, U’s, U's: W, S’A
and U’ with, U’s, or US's, or U's: U's S - with

The capital of China is , the capital of US is
Washington, DC, and the capital of Russia is Moscow.

Prompt:

I have a friend who lives in New York and I would like to
visit him. How would I go there from Paris?

PB-LLM-1.7bit:
BilLLM-1.1bit:

I would like it to go to Paris.

You can , and there are many
airlines that can take you there. You can also take a flight
to the New York, but you will have to check the schedule, as
it will depend.

Prompt:

What should I do after failed in a math exam?

PB-LLM-1.7bit:
BilLLM-1.1bit:

I failed to fail.

if you don’t pass this year.
and work on your weak areas. Or you
need more support for the final, You can also
in the same subject.

Figure 12: Some examples of conversations. LLaMA-13B and Vicuna-13B are chosen to show the case of language
supplementary and Q&A ability. And PB-LLM (int 8, 10%) is selected as the comparison. We color the text to show the
or inappropriate responses.
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Figure 13: Different layers weight density distribution (blue) and hessian density distribution (orange) of the 1% Transformer
block of the OPT-1.3B model
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Figure 14: Different layers weight density distribution (blue) and hessian density distribution (orange) of the

block of the LLaMA-7B model
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Figure 15: Distribution of top 10% salient elements in Hessian matrix. The distribution of 15* — 5" Transformer blocks in

OPT-1.3B
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