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Abstract

Sparsity in deep neural networks promises two improvements in computational
efficiency, fewer FLOPs spent both to train the network and to perform inference.
We find that both may be quantified best using a compute-efficient scaling law. This
tool allows us to compare existing methods to train networks with unstructured
sparse regularisation and parametrization. In this setting, it is natural to focus on the
proportion of weights in the network whose magnitude is below a given threshold
and assume that those weights do not affect the output of the network. However,
we may not know where that threshold is, so we aim to separate our analysis from a
specific threshold. By evaluating the network sparsity at many possible thresholds
we can characterise an empirical upper bound on the advantage of sparsity for
pre-training large language models. We test this bound comparing the performance
of existing sparse regularization methods to find a 15% reduction in pre-training
FLOPs or a 30-40% reduction in inference FLOPs and further identify decoupled
proximal methods as a promising direction.

1 Introduction

“Compute efficient” scaling laws constrain the training budget and model size one should choose
to obtain a loss on a given dataset in order to minimise the compute spent [Hoffmann et al., 2022].
Scaling law driven development therefore progresses by comparison to this law; for example, if an
intervention decreases the validation loss by 1% it is equivalent to spending 7% more FLOPs training
the original model 1. This prompts us to focus on the percentage difference from the expected loss
according to the FLOPs we have spent. If a number of the weights in these networks are zero during
pre-training then we can spend fewer FLOPs, which implies a potential benefit over the existing
scaling law.

Sparse weights in deep neural networks have been well-documented in the field but often the
benchmark is an arbitrary trade-off in performance versus sparsity in the final trained model [Gale
et al., 2019], without reference to a scaling law. The best performing methods in this category
typically perform post-training sparsification; removing parameters from the model and adjusting the
weights to maintain performance [Frantar and Alistarh, 2023]. While this minimizes inference cost it
has no effect on training cost.

17% is an example using the scaling law of Dey et al. [2023].
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During conventional training (e.g. GPT2-style [Radford et al., 2019]) weight decay will drive some
weights to zero. This existing sparsity is a natural choice for our investigation as it is difficult to
predict the FLOPs saved, compared to something like gradual magnitude pruning [Evci et al., 2021]
where the pruning schedule (and therefore FLOPs spent) is known in advance. In addition, we may
try alternative parametrizations and regularizers to observe their effect. In this paper, we argue that
an upper-bounded advantage is an effective way to rank these sparsification methods. Specifically,
our contributions are as follows:

• We propose empirical upper bound metrics grounded in the compute efficient scaling law
that quantify the FLOPs saved at training and inference time versus the chosen scaling law,
marginalised over the threshold below which we consider weights dropped. This method is
described in Section 5.

• As it is well known that minimizing the L1 of parameters will induce a sparse Laplacian
weight distribution [Tibshirani, 1996] we test a family of existing sparsifying regularizers
on a 111M language model task to observe the induced scaling law shift. The compared
methods are described in Section 4.

• Using our existing scaling laws we extrapolate to characterise the potential benefits from
unstructured sparsity when we can assume perfect hardware acceleration and separate
existing methods by their potential advantage. These results are found in Section 5.2.

Establishing the upper bound on sparsity’s potential for compute-efficiency can help researchers
understand the potential return-on-investment for further efforts in the sparsity domain. These efforts
have typically included the development of hardware that can accelerate sparsity [Mishra et al., 2021,
Cerebras Systems, 2024], software that can better leverage existing hardware [Neural Magic, 2024]
and new algorithms that increase sparsity during [Bambhaniya et al., 2024] or after [Frantar and
Alistarh, 2023] training.

2 Related work

Prior work in sparse deep learning can be separated into two eras, which we can imprecisely refer to
as the “overfitting” and “underfitting” eras. In the “overfitting” era work was focused on datasets that
could be processed by the model many times during training, typically image classification datasets
such as Imagenet [Krizhevsky et al., 2012, Han et al., 2016, 2015] and CIFAR-10 [Krizhevsky, 2009];
all the earliest work was in this era [LeCun et al., 1989, Hanson and Pratt, 1988, Hassibi and Stork,
1992]. In the “underfitting” era the dataset and model are so large that iterating through each time is
expensive so each example might only be seen by the model once [Hestness et al., 2017].

Placed at the boundary between these two eras, Gale et al. [2019] apply prior methods from the
overfitting era to the tasks in the overfitting era and find that performance is “inconsistent” at
scale. Specifically, they find that a type of magnitude pruning [Zhu and Gupta, 2017] outperformed
competing methods on a language modelling task at the time. Since then novel magnitude based
pruning methods have been proposed that operate during training [Peste et al., 2021, Saxena et al.,
2023, Thangarasa et al., 2023] but have failed to demonstrate Pareto improvement in the scaling law.
While work has focused on fitting scaling laws to sparsely trained networks [Frantar et al., 2023] we
are not aware of scaling law driven evaluation of sparsity, which we argue here is necessary for useful
comparisons.

In this work we focus on how regularisation and parametrization affects sparsity during training,
for example L1 regularization is known to induce a Laplace distribution in the weights [Tibshirani,
1996, Hanson and Pratt, 1988, Bengio, 2012, Duchi et al., 2008]. This prompted investigation into
the regularization effect of minimizing < 1-norms, such as the L0 norm [Collins and Kohli, 2014,
Louizos et al., 2018]. In this work, we focus on regularizers that can be implemented by modifying
only the parametrization of the weights and the update function of the optimizer (which is still a very
large set) and compare a family of such regularizers in Section 4.

There are also many regularizers that meet these criteria that were not included, such as Deep-
Hoyer [Yang et al., 2020], “Polarization” based methods [Zhuang et al., 2020], Continuous Sparsifica-
tion [Savarese et al., 2021], PowerPropagation Schwarz et al. [2021], Dynamic Sparse Reparametriza-
tion Mostafa and Wang [2019]. Our selection criteria focused on what appeared promising and
available but we did not exhaustively implement everything that could be implemented. Methods that
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do not rely on parametrization or update rules were not included despite the popularity of methods
such as Rigging the Lottery (RiGL) [Evci et al., 2021].

3 Background

Sparsity in neural networks typically refers to the proportion of weights less than a threshold ϵ. IfW
contains all the weights in a network then sparsity s is:

s(ϵ) =
|{w ∈ W : w < ϵ}|

|W|
and ρ(ϵ) = 1− s(ϵ) (1)

where we have also defined the density ρ to be the proportion of weights greater than ϵ. As mentioned
above, we assume that any weights that are ϵ sparse are not computed and we consider these FLOPs
saved 2.

If we reach the same loss without using as many FLOPs then we have changed the relationship
between FLOPs spent and final loss. Predicting the loss a network may achieve given a FLOP and
parameter budget is the domain of neural scaling laws [Kaplan et al., 2020], for example Hoffmann
et al. [2022] give the following:

L̂(N,D) = E +
A

Nα
+

B

Dβ
, (2)

where L̂ is loss, N is the number of parameters, D is the number of training tokens and E is the
irreducible entropy of the dataset3. This equation is useful because it produces a prescription for the
optimal model size and training budget to obtain a given loss on the dataset the scaling law has been
fit. It can also be simplified to produce a scaling law relating the FLOP budget to the validation loss
directly,

L̂(f) =

(
f

fb

)−γ

+ E, (3)

where fb are base FLOPs and γ is another exponent that must be fit to data. In this work we use
this scaling law fit to the Pile dataset Gao et al. [2020], so E = 0.5066, fb = 5.984 × 1022 and
γ = 0.07037, as reported by Dey et al. [2023].

4 Sparsifying Regularization

In this work we restrict our investigation to methods whose interaction with the optimization can be
precisely characterized by their parametrization and update rules. Parametrization can be restricted
here to only consider functions that transform the stored weights before they are used. Specifically, if
the network output y is a function of input x and weightsW , the parametrization, Φ, is a function of
the weights:

y = f(x,Φ(W;U)) where Φ(W;U) = {ω | ω = ϕ(W,U),W ∈ W, U ∈ U} (4)

ϕ may or may not have it’s own learnable parameters U and on the right we note that the parametriza-
tion Φ is applied to each parameter independently.

In this paper “update rules” refer to two specific functions: PreReg and Update in Algorithm 1.
By defining these two functions we can implement various different regularization algorithms. For
example, traditional L1 regularization in deep learning is implemented by adding an L1 penalty to
the loss:

L = Ltask(Y,X,W) + λ||W||1 and ∇WL = ∇WLtask(Y,X,W) + λsign(W) (5)

In our framework, this corresponds to an identity parametrizationW = Φ(W) and PreReg(W) =
λ||W||1. This makes it clear that this method of L1 regularisation is coupled [Loshchilov and Hutter,
2019] to the adaptive optimizer, the L1 penalty gradient is passed to the adaptive optimizer state.

2To compute the FLOPs saved we can use the standard FLOPs/token ≈ 6 × parameters or account for
differing FLOP costs in different layers as described in Appendix A.

3For example, fitted parameters provided by Hoffmann et al. [2022, App.D.2] are E = 1.69, A = 406,
B = 410.7, α = 0.34, β = 0.28.
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Algorithm 1 Generic Optimizer Step

Require: Wt (current weights),∇f(Wt) (gradient), ot (optimizer state)
Require: PreReg(·) (pre-update regularizer)
Require: Update(·) (weight update function)
Require: WeightDelta(·) (maybe a adaptive function, but not necessarily)

1: ∇̃f(Wt)← PreReg(∇f(Wt),Wt,ot) ▷ Apply pre-update regularization
2: ∆Wt ←WeightDelta(∇̃f(Wt),Wt,ot) ▷ Compute weight change
3: Wt+1 ← Update(Wt, ∆̃Wt,ot) ▷ Update weights
4: ot+1 ← UpdateState(ot, ∇̃f(Wt), ∆̃Wt) ▷ Update optimizer state

returnWt+1,ot+1

Parametrization PreReg Update
AdamW id id Wt − η∆Wt − ηλWt

L1 id PreReg(W) = λ||W||1 id
Lp id id pWD(Wt − η∆Wt,Wt)

STR Sg(W, s) id pSTR(Wt − η∆Wt,Wt)
spred W ⊙U id Wt − η∆Wt − ηλWt

Table 1: The family of sparsifying regularizers that we compare in this work. id indicates an identity
function. η is learning rate and λ is regularisation weight. ’id’ refers to Identity matrix (signifying no
contribution). The functional forms of pWD, Sg , U and pSTR are described in Appendix B.

The question of how for Lp norms with p < 1 has been investigated by Outmezguine and Levi [2024].
In this paper we note that their proposed proximal update is easy to implement in the framework
described above. Two of the methods we compare have therefore been mentioned, the full list may be
found in Table 1.

5 Empirical Upper Bounds for Sparse Scaling

These scaling law experiments replicate of Cerebras-GPT at the 111 million parameter scale [Dey
et al., 2023], training the model on the Pile dataset [Gao et al., 2020] until 2.2 billion tokens have been
processed. During training we track the absolute value of the histogram of all “effective” weights
and use this to estimate the proportion of parameters in each layer that are required. “Effective” here
refers to the weight used in the matmul, output by the parametrization. This can then be used to
compute the sparse FLOPs that would have been required.

5.1 Tyranny of the Scaling Equation

Any intervention, such as sparsity, that reduces the FLOPs used during pre-training will lead to an
increase in the validation loss. Inverting equation 3 dictates that, for any increase in loss, one could
have trained a smaller compute-efficient model for fewer FLOPs to obtain the same result,

f̂(L) = exp

(
log(fb)−

log(L− E)

γ

)
. (6)

For sparse pre-training to be worthwhile, i.e. cost fewer pre-training FLOPs, it needs to cost fewer
FLOPs than this. Specifically, we define Pre-training Advantage to be,

∆f = f̂(L)− s(ϵ, ρ̄), (7)

where s is the pre-training FLOPs scaled by the average group sparsity according to the FLOP
equation in Appendix A using mean density ρ̄.

We refer to this equation as a “tyranny” because any method increasing sparsity can negate it’s own
FLOP savings by increasing validation loss. For example, a method achieving 50% average sparsity
throughout pre-training must not increase loss by more that 7.1%. This is illustrated for a strict
ϵ = 2−13 in Figure 1 and we see in this setting that the only runs breaking even are mostly dense
during training but win by maintaining loss. However, at ϵ = 2−8 we see benefits to 70% cumulative
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Figure 1: Across all experiments we compute the Sparse Cumulative FLOPs for ϵ = 2−13/2−8

(left/right) and compare that to the FLOPs required to train a compute optimal model to the same
validation loss, defined as Chinchilla Equivalent FLOPs. For sparsity to be worthwhile it’s necessary
to be above the “break even” line.

sparsity during training; this implies for savings greater than 30% we would need to believe that
parameters > 2−8 can be set to zero.

A similar relationship holds for sparsity in the final pre-trained model. For any given validation loss
we can infer the FLOPs per token, f̂d, of the model size required by the scaling law. In this work, we
fit the following expression,

f̂d = 2.6198× 1012 × L−8.4243, (8)

which can be compared to the final FLOPs per token using the density of the final checkpoint ρD,

∆f̂d = f̂d − sd(ϵ, ρD). (9)

where sd is the sparse FLOPs per token. We refer to this expression as the Inference Advantage,
quantifying the number of FLOPs saved versus using the equivalent compute-efficient dense model.

5.2 Variable Thresholds

The choice of threshold, ϵ, below which the weight is dropped directly affects the cumulative FLOP
estimate. Our analysis produces an upper bound because we neglect the performance loss by actually
setting the weight to zero. This allows us to compare many different possible threshold settings
without retraining the model. The minimum threshold we look at is 2−13, the minimum magnitude
that may be expressed in float16, which we take to be a plausible threshold. As the threshold increases
the reported upper bound advantage in Figure 2 becomes more loose.

6 Discussion

In this work we neglect initialization, all models are initialized with the same standard deviation
as the base model. As shown in Figure 3, sparsity begins very low for all module groups, which
reduces the possible FLOP savings accumulated over the entire training run. Sparse initializations are
a potential direction to address this [Zhao et al., 2022].

As described in Section 5.2, the absolute thresholds define an upper bound that becomes increasingly
loose as the threshold increases. In future work, we hope to define how the loss will be affected by
applying a threshold during pre-training and investigate algorithms to apply this threshold. In addition,
in post-training quantization it is typical to apply sophisticated algorithms such as SparseGPT [Frantar
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Figure 2: Upper bounds on Pretraining and Inference Advantage as defined in Section 5 are plotted
for each of the sparsifying regularizers as described in Section 4. (Left) the best performing hyperpa-
rameter config according to each metric is plotted. (Right) the metrics are measured for models that
are not regularized for comparison, as a sanity check.

and Alistarh, 2023] and finetune a given model. It is likely that the inherent sparsity in the final
weights produced by sparsifying regularization will aid here but we leave the investigation to future
work.
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7 Conclusion

In this work we have illustrated a way to evaluate sparsity in the domain of large language models,
taking compute-efficient scaling laws into account. We define two metrics, pre-training and inference
advantage, that allow us to compare a suite of sparsifying regularizers and identify those that may be
promising. In doing so we identify an optimal training configuration for sparsifying regularization
that promises FLOP savings during pre-training and potentially 30-40% inference advantage.
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A FLOP Calculation

Algorithm 2 describes the method we use to estimate the FLOPs used by the transformers presented
in this work. It is based on the work of Anthony et al. [2024]. The dense FLOPs may be computed by
summing the elements in TransformerFLOPs and sparse FLOPs may be computed by scaling each
element by the average density of that module group.

B Parametrization and Regularization Functions of Regularizers

Below we provide functional formulation for sparsifying regularizers that are discussed in Table 1,
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Algorithm 2 Calculate Theoretical FLOPs for Transformer

Require:
V : vocabulary size
H: hidden size
S: sequence length
L: number of layers
T : number of tokens (= S)
I: iteration factor (= 3)

Ensure: TransformerFLOPs object containing:
Fqkv: FLOPs for query, key, and value projections
Fam: FLOPs for attention matrix computation
Fav: FLOPs for attention over values
Flp: FLOPs for linear projection
Fffn: FLOPs for feed-forward network
Femb: FLOPs for token embedding

1: procedure THEORYFLOPS(V,H, S, L)
2: T ← S
3: I ← 3
4: Fqkv ← I · 2 · 3 · L · T ·H2

5: Fam ← I · 2 · L · T · S ·H
6: Fav ← I · 2 · L · T · S ·H
7: Flp ← I · 2 · L · T ·H2

8: Fffn ← I · 16 · L · T ·H2

9: Femb ← 6 · T ·H · V
10: return TransformerFLOPs(Fqkv, Fam, Fav, Flp, Fffn, Femb)
11: end procedure

• pWD: refers to decoupled weight decay for any p norm (Outmezguine and Levi [2024]).
The functional form of the regularizer is defined as:

Rp(w, s) =
λp

p

∑
i

[siw
2
i +K(si)]

K(si) =
2− p

p
s

p
p−2

i

where p > 0, λp ∈ R+, ||.||p is the p-norm, and wi, si ∈ R, i = 1, ..., Nw

• STR: refers to Soft-thresholding regularization (Kusupati et al. [2020]). As defined in
Table 1, Sg(W, s) is projection ofW parameterized by s (learnable parameter) and function
g. S is applied to each element ofW and is defined as:

Sg(w, s) := sign(w) · ReLU(|w| − g(s))

where g : R −→ R, and α = g(s) is the pruning threshold. ReLU(a) = max(a, 0). That is,
if |w| ≥ g(s), then Sg(w, s) sets it to 0.

• spred: refers to method introduced by Ziyin and Wang [2023] called spred, where the loss
function is parameterized by two learnable parameters Vs, Vd, L1, regularization strength is
2κ, then optimization problem we solve for is -

min
W,U,Vd

L(U ⊙W,Vd) + κ(||W ||22 + ||U ||2)

such, that |Ui| = |Wi| for all i. In other words, after parameterizing the weights as an
element-wise product we can train with normal decoupled weight decay.

• DRT (Deep Relative Trust): refers to concept of "Deep Relative Trust" introduced in
Bernstein et al. [2021]. This sparsfiying regularizer uses the Fromage optimizer’s learning
rule correction as a regularizer. Since Fromage update is derived from concept of DRT, we
name the method as “DRT” regularizer. The motivation to do so is to control the layer-wise
perturbations and penalize excessive growth in magnitude through depth. We define the
regularizer as -

R(W ) =
||Wl||F
||g||F
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Figure 3: The sparsity in each module group is plotted over the course of training for the config with
the best advantage as described in Section 5. Sparsity is defined here as in Section 3 with ϵ = 2−13.

C Sparsity by Module Group

Histograms were gathered every 10 steps for all weight tensors during training, which allows us to
plot the progression of sparsity in each weight group over the course of training. Figure 3 illustrates
this for the same “best” hyper-parameter settings shown in Figure 2.
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