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Abstract

This paper explores the use of foundational large language models (LLMs) in hyperparameter
optimization (HPO). Hyperparameters are critical in determining the effectiveness of machine
learning models, yet their optimization often relies on manual approaches in limited-budget
settings. By prompting LLMs with dataset and model descriptions, we develop a methodology
where LLMs suggest hyperparameter configurations, which are iteratively refined based on
model performance. Our empirical evaluations on standard benchmarks reveal that within
constrained search budgets, LLMs can match or outperform traditional HPO methods like
Bayesian optimization across different models on standard benchmarks. Furthermore, we
propose to treat the code specifying our model as a hyperparameter, which the LLM outputs
and affords greater flexibility than existing HPO approaches.

1 Introduction

Hyperparameters, distinct from the parameters directly learned throughout training, significantly influence
the inductive bias of a machine learning model, thus determining its capacity to generalize effectively. The
choice of hyperparameters helps dictate the complexity of the model, the strength of regularization, the
optimization strategy, the loss function, and more. Due to this importance, many methods have been proposed
to find good hyperparameter configurations automatically. For example, black-box optimization methods
such as random search (Bergstra & Bengio], 2012) or Bayesian optimization (Mockus| [1998; |Shahriari et al.,
2015) have been deployed for hyperparameter optimization (HPO). Beyond black-box methods, other works
use problem structure, e.g., are compute-budget-aware (Lam et al.| |2016)), multi-task (Swersky et al., |2013),
multi-fidelity (Klein et all 2017 |Li et al., [2017)), online (Jaderberg et al.l |2017)), or multi-objective (Daulton
et al.l [2022). However, these methods (a) still rely on practitioners to design a search space, which includes
selecting which parameters can be optimized and specifying bounds on these parameters, and (b) typically
struggle in the initial search phase (< 2¢ queries for d-dimensional hyperparameters). As such, tuning
hyperparameters can be challenging for those with constrained budgets or without machine learning expertise,
and methods that make HPO easier are desirable.

This paper investigates the ability of large language models (LLMs) to optimize hyperparameters. LLMs are
trained on internet-scale data and have demonstrated emergent capabilities in new settings (Brown et al.,
2020; |OpenAlL |2023). We prompt LLMs with an initial set of instructions—describing the specific dataset,
model, and hyperparameters—to recommend hyperparameters to evaluate. We train the model based on the
proposed hyperparameters, record the final metric (e.g., validation loss), and ask the LLM to suggest the
next set of hyperparameters. Figure [1|illustrates this iterative process. We found that LLMs were effective
at proposing hyperparameters during initial search phases, making them valuable both for limited-budget
scenarios and as a complement to traditional approaches when larger search budgets are available.

Our experiments demonstrated that LLMs can effectively optimize hyperparameters across a range of tasks,
from toy problems to real-world applications. We first assessed LLMs’ ability to optimize 2D toy objectives,
where they received loss L(x) at specific points @. Across a range of objectives, we found that LLMs effectively
minimized the loss, exploiting performant regions while exploring untested areas. Next, to analyze whether
LLMs could optimize realistic HPO settings, we evaluated our approach on standard HPO benchmarks
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(Eggensperger et al.;|2021), comparing it to common methods such as random search and Bayesian optimization.
With small search budgets (e.g., 30 evaluations), LLMs improved upon traditional hyperparameter tuning,.
We also assessed the importance of using chain-of-thought reasoning (Wei et al., [2022b)) and demonstrated
that LLMs performed well over longer horizons of up to 100 evaluations. Additionally, LLMs were significantly
faster than random search in tuning hyperparameters for both Vision Transformers and ResNets on the
CIFAR-10 dataset, even when equipped with generic, architecture-agnostic prompts (“You are helping tune
hyperparameters for a neural network.”).

We further explored hyperparameter optimization using the unique flexibility that natural language enables.
Rather than adhering to a fixed set of hyperparameter configurations, we prompted LLMs to produce training
code (e.g., in PyTorch) to improve validation performance. This extension alleviates the need for human
specification of the hyperparameters and their search spaces. The generated code can reduce the initial
search for configuration spaces that are unlikely to succeed. With a limited search budget (5 evaluations),
our results show that code generation performs better than random search and is comparable to LLM search
with human-specified configurations. Finally, we conclude by discussing the potential of language models as
general-purpose hyperparameter tuning assistants, limitations, and future work.

2 Method

Initial prompt: You are Validation metric e.g., loss

helping tune hyperparameters

to minimize loss... this is — LLM

our search space... formulate

your output as JSON.

Hyperparameter configuration

Figure 1: LLMs for hyperparameter optimization. We prompt an LLM with the problem description and the
search space. The LLM then outputs a set of hyperparameters to evaluate. The environment, e.g., practitioner
or automatic script, executes a training run with the hyperparameter setting, and then a validation metric is
used to prompt the language model again.

2.1 Background
Hyperparameter optimization can be formulated as a bilevel optimization problem:
A = argmin £, (A) = argmin Ly (A, w* (X))
A A

s.t. w* (A) = argmin L7 (A, w),

where L7 and Ly are training and validation objectives, and A and w are hyperparameters and the model
parameters, respectively. The objective aims to find the hyperparameters that minimize the validation loss
when the training objective is trained to convergence

Hyperparameter optimization can often be performed sequentially, where a proposal A, depends on the
sequence of prior values {A1, Aa, ..., Ap_1} and their validation losses. For example, Bayesian optimization
(Mockus, [1998; [Shahriari et al.l [2015) builds a probabilistic model, such as a Gaussian process, to map
hyperparameters A to the validation loss Ly (A, w*(X)). This approach iteratively selects the next hyper-
parameters to evaluate by optimizing an acquisition function that balances exploration and exploitation,
thus converging to the optimal hyperparameters A* that minimize the validation loss. In a limited budget
setting, practitioners often employ a trial-and-error “manual” search, choosing hyperparameters based on
prior knowledge or experience (Yang & Shamil, 2020). In this paper, we assess the ability of large language
models in this role, hypothesizing they will be effective because they have been trained on internet-scale data
and demonstrated emergent capabilities in new settings (Brown et al., |2020; [Wei et al.l 2022a)).

1This assumes unique solutions for simplicity. See [Vicol et al|(2022) for effects of non-uniqueness.
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2.2 LLMs for Hyperparameter Optimization

We now describe our approach in more detail. When the hyperparameter search space is known, we prompt
an LLM with a description of the problem and the search space. The LLM outputs a hyperparameter setting
to evaluate. We then repeatedly alternate between two steps: (1) evaluating the current hyperparameter
setting and (2) prompting the LLM with the validation metric (e.g., loss or accuracy) to receive the next set
of hyperparameters. This continues until our search budget is exhausted. We illustrate this process in Figure
[I] and list our prompts in Appendices and [E] The prompts provide a high-level overview of the machine
learning problem setup, the hyperparameters to be tuned, and, if given, their search spaces. This generality
enables our approach to be applied to many domains.

### 1. Chat prompting

User: <<Machine learning problem description>>. Provide a config in JSON
format. Config:

(Assistant: <<generated hyperparameter configuration>>

User: The validation loss was <<L>>. Provide the next config in the same
format.) x N

### 2. Single message prompting

User: <<Machine learning problem description>>. Here is what we have tried
so far:

<<Config 1>> <<Loss 1>>

<<Config 2>> <<Loss 2>>

<<Config N>> <<Loss N>>
Provide the next config in JSON format. Config:

Figure 2: Two ways to prompt the language model. Angular brackets vary with the problem or are dependent
on what was generated in previous steps. Note that both approaches end with a user message so that the
language model generates the next response.

More concretely, we consider two ways to prompt the model, following the popular “chat” interface (Touvron
et al., [2023a; [OpenAl, [2023) where users prompt the model with a dialogue consisting of “user” and “assistant”
messages, depicted in Figure[2l The models we use generate tokens sampled according to an input temperature,
terminating at a stop token. In the first approach, we prompt the model with the entire conversational
history of messages, so the number of messages sent scales linearly with the number of steps. This happens
because every new step contains two additional messages: the previous LLM response and the validation
metrics from executing a training run from the hyperparameters in the response. The inference cost is linear
(with a constant attention window) or quadratic in the number of tokens for a Transformer (Brown et al.,
2020). For every new iteration, the number of tokens increases by the tokens representing the validation
metrics and configuration. We denote this approach the “chat” prompt.

An alternative prompting strategy is to compress the search history into a single initial message that contains
the problem description and lists the hyperparameter configuration history and corresponding validation
metrics. This approach provides a more compact state representation, especially if we use chain-of-thought
prompting (Wei et al., [2022b)) to elicit reasoning, as in some experiments. The inference cost on compressed
messages is cheaper than in the prior approach. Empirically, we observe that the two approaches achieve
similar performance. We denote this approach as the “compressed” prompt and provide an implementation
and example usage in our supplementary material.

When the search space is unknown, we can prompt an LLM to generate code for the model and optimizer,
effectively providing a hyperparameter setting to evaluate. In this case, the environment, e.g., the practitioner,
executes the generated code and provides the resulting output to the LLM. We use the prompt in Appendix
[D] that asks the LLM to write code in PyTorch code that defines a model and optimizer. If the code fails to
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produce a valid output, we can re-prompt with the error message. Code generation can also be viewed as
hyperparameter tuning, where the hyperparameter A is the input string representing the code. This extension
alleviates the need for human specification of the hyperparameters to tune and their search spaces.

3 Related Work

Hyperparameter Optimization (HPO). Finding the optimal hyperparameter settings is crucial to
achieving strong performance in machine learning (Bergstra & Bengio), 2012} [Snoek et al., [2012]). We refer
readers to Feurer & Hutter| (2019) and Bischl et al.| (2023) for a general introduction to HPO. Initial research
mainly explored model-free techniques such as grid and random search (Bergstra & Bengio, 2012). More
advanced methods leverage multi-fidelity optimization — often by using that our optimization is an iterative
process. For example, Hyperband and the Successive Halving (Jamieson & Talwalkar, 2016)
introduced multi-armed bandit approaches to allow for the early stopping of less promising hyperparameter
configurations. These methods are easy to parallelize and have shown promising results in practice, but they
are dependent on random processes and do not fully leverage the HPO structure.

Bayesian Optimization (BO) (Mockus) [1998; Hutter et al., 2011} |[Snoek et al.l [2012; Bergstra et al., [2013}
[Shahriari et al.l [2015) builds a surrogate model from past function evaluations to choose promising future
candidates. Bayesian optimization further models uncertainty, leveraged by optimizing an acquisition function
instead of the loss directly. Since the initial successes of BO in optimizing hyperparameters, numerous tools
have been developed to optimize the pipeline for improved efficiency and adaptability (Bakshy et al., 2018}
[Kandasamy et al., [2020; [Balandat et al., 2020} Lindauer et al., 2022). However, Bayesian optimization is
heavily influenced by the choice of surrogate model parameters (Lindauer et al., 2019)), and faces scalability
problems with an increased hyperparameter number being tuned or the number of past function evaluations.
We show in our experiments that LLMs can exceed the performance of BO in the initial phase of tuning
hyperparameters and the potential benefit of adopting a hybrid strategy of two algorithms.

Gradient or conditioning-based methods (Maclaurin et al.l 2015} [Franceschi et al 2017} [Lorraine & Duvenaud
[2018; MacKay et all [2019; Bae & Grossel, 2020} [Lorraine et al. [2020; Raghu et al) [2021; Bae et all, [2022
Mehta et all 2024; |Lorraine) 2024) are more scalable and efficient HPO methods. Nevertheless, they are
often challenging to implement, require a differentiable objective, and must be deployed in the same location
as the underlying model, making them less appealing general HPO solvers. A related method is OptFormer
(Chen et al., 2022), which finetunes transformers on a large offline dataset to transfer learn a surrogate for
gradient-based HPO.

Decision making with LLMs. Large language models (LLMs) have proven to be valuable in a variety of
practical domains (Hariri, 2023; Liu et al., 2023)), showing surprising emergent abilities, including in-context
learning and chain-of-thought reasoning (Brown et al.l [2020; [Wei et al., [2022b; |OpenAl| 2023). Although
LLMs are known to occasionally give confident but incorrect answers (Ji et al., [2023)), they are also shown
to have reasoning capabilities, especially when explicitly guided to (Nye et al. 2021} [Wei et al. 2022b;
[Kojima et al, [2022). Recent studies have used LLMs for optimization (Yang et al., [2024), such as finding the
best downstream task prompt. They conducted experiments on linear regression, Traveling Salesman, and
prompt optimization. In contrast, our work focuses on using LLMs to make decisions during hyperparameter
optimization for machine learning tasks, including classical ML algorithms and training deep neural networks.

Others have integrated LLMs into the general AutoML pipeline (Chen et al., |2023; Hollmann et al., 2023}
[Lorraine et al., 2022; Zhang et al. [2023} |Zheng et all |2023)). For example, Zheng et al| (2023) demonstrate
that LLMs can find competitive architectures on neural architecture search benchmarks (Su et al. 2021]).

4 Results

We evaluated our approach through a series of experiments. First, we assessed performance using the
HPOBench benchmark (Eggensperger et al, 2021), where we tune hyperparameters across eight datasets
for four different models: neural networks, SVMs, random forests, and logistic regression. We then used
LLMs to tune hyperparameters for more complex architectures by optimizing Vision Transformers and
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ResNets on CIFAR-10. We also demonstrate how our method generalizes to code generation tasks. To build
intuition about how LLMs navigate the optimization landscape, we analyzed their behavior on CIFAR-10
and low-dimensional problems in Appendix [E] where we can directly visualize the optimization trajectories.

4.1 Hyperparameter Optimization on HPOBench

We report results on the HPOBench (Eggensperger et al., 2021) benchmark, which defines search spaces
for various models on publicly available OpenML AutoML benchmarks. [Eggensperger et al.| (2021) showed
that their benchmarks yield different hyperparameter-loss landscapes and are effective for benchmarking
algorithm performance. We used the first 8 datasets provided and tuned hyperparameters for the algorithms
implemented in Sklearn: logistic regression, support vector machines (SVMs), random forests, and neural
networks (Pedregosa et al 2011), resulting in 32 different tasks. As defined by the benchmark, we tune 2
hyperparameters for SVMs, 2 for logistic regression, 4 for random forests, and 5 for neural networks. Search
space details can be found in Appendix [B] as well as figures of results on each task. We compare the following
HPO approaches:

LLMs. Our initial experiments use OpenAl’s time-stamped versions of GPT-3.5 and GPT-4 models in:
gpt-3.5-turbo-0613 and gpt-4-0613 with temperature 0. GPT-4 Turbo was released after our initial results,
so we conducted experiments with the model gpt-4-1106-preview and found better performance at less than
half the price of GPT—4E|

Random. Random search often outperforms grid and manual search, thriving when the hyperparameter
space has low effective dimensionality (Bergstra & Bengio, |2012)). The design spaces of a given benchmark
dictate where we should sample — e.g., log-uniformly for regularization hyperparameters in R™ or from a
discrete set such as the number of neural network layers.

Bayesian Optimization (BO). We evaluate two Bayesian HPO methods in the SMAC3 library (Lindauer
et al., |2022) that use random forest and Gaussian processes as surrogate models. We use the default
recommended settings, including an initial design of up to 25% of the optimization budget.

Table 1: We summarize the performance of various HPO Algorithms on 8 datasets and 4 search spaces tuning
hyperparameters for logistic regression, SVMs, random forests, and neural networks. For all tasks, we use 10
function evaluations. As summary metrics, we report how often each method beats random search (GPT-4
Turbo beats random search 81.25% of the time). We also compute the change in validation error for each
optimizer versus random search and report the median and mean change across 32 tasks. The mean rank is
computed between the 5 HPO approaches and random search, i.e., each method is assigned a rank between 1
and 6 on a task. The mean rank for random across the 32 tasks is 4.00.

Model Versus Random (1) Median Change (1) Mean Change (1) Mean Rank ({)
GPT-4 Turbo 81.25% 13.70% 19.83% 2.42
GPT-4 68.75% 4.58% 8.54% 3.48
GPT-3.5 Turbo 43.75% -0.82% -13.58% 3.84
Bayes Opt o 56.25% 2.11% 5.86% 3.45
Bayes Optp 50.00% -0.01% -8.28% 3.80

In Table [1} we report aggregated results comparing two LLMs, random search, and the two BO algorithms.
We compare the difference in validation error versus random search (0.2 to 0.1 is a 50% improvement). Every
algorithm has a search budget of 10 evaluations. For random search, we randomly sample 500 configurations
for each model and dataset combination, evaluate the corresponding losses, and then use a bootstrapped
sample to estimate the loss on a given budget. As a summary metric, we report the mean and median
improvement in the 32 tasks of each algorithm versus random search. We show the performance on each
dataset and model in Figure [7] and Figure [§] GPT-4 Turbo beats random search most frequently, achieving
the highest mean and median improvement. When we compare the mean rank for the five search algorithms
across the 32 tasks, GPT-4 Turbo is again consistently better.

i

20penAl says “preview” means gpt-4-1106-preview is unsuited for production traffic. We did not encounter problems.
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Table 2: Chain-of-thought reasoning prompting may offer modest improvement versus prompting a model to
immediately output the next set of hyperparameters. We often saw reasoning that describes the effects of
adjusting various hyperparameters.

Model Beats Random (1) Median Change (1) Mean Change (1)
GPT-4 Turbo CoT 81.25% 13.70% 19.83%
GPT-4 Turbo 81.25% 15.58% 21.23%
GPT-4 CoT 68.75% 4.58% 8.54%
GPT-4 65.62% 3.43% 11.55%
GPT-3.5 Turbo CoT 43.75% -0.82% -13.58%
GPT-3.5 Turbo 40.62% -3.19% -117.12%

Table 3: Evaluating performance on a longer trajectory of 30 function calls. GPT-4-Turbo still maintains
good performance, suggesting that it is capable of selecting problem-specific hyperparameter settings. The
mean rank between all 5 methods (each row + random) is 3.

Model Versus Random (1) Median Change (1) Mean Change (1) Rank ({)
GPT-4 Turbo CoT 78.12% 12.10% 18.27 % 2.72
GPT-4 Turbo 90.62% 18.94% 22.34 % 2.22
Bayes Optgp 71.88% 5.91% 14.63 % 3.06
Bayes Optep 84.38% 11.80% 21.07 % 2.75

How important is chain-of-thought reasoning? In Table [2] we evaluate the effects of chain-of-thought
(Wei et al.l 2022b)) on performance. To elicit reasoning, our intermediate messages to the language model are:

loss = {loss:.4e} Write two lines as follows:

Analysis: Up to a few sentences describing what worked so far and what to
choose next

Config: (JSON config)

The loss is expressed in scientific notation to four decimal places. See Appendix [B] for complete details on the
prompts. We see that including reasoning has a large positive impact on GPT-3.5 and a marginal impact on
GPT-4. Reasoning chains can be informative for a practitioner at the cost of additional tokens. We show a
snippet of GPT-4 reasoning when tuning hyperparameters for a neural network:

o (loss 0.193) GPT-4: The loss remained the same despite changes in the hyperparameters. This
suggests that the model might not be sensitive to these parameters or has reached a local minimum.
We should try a more drastic change in the learning rate and depth.

o (loss 0.215) GPT-4: The loss increased, indicating that the last configuration was not beneficial. The
increase in learning rate and the decrease in depth might have caused the model to overshoot the
minimum. Let’s try reducing the learning rate and increasing the depth.

There are potential concerns for the faithfulness of explanations (Lanham et al.l [2023)), though we observe
consistent reasoning that trades off between exploration and selecting a strong final value. We also see logic
that understands interactions and effects of different hyperparameters, presumably garnered from the LLM
training on textbooks and other resources on HPO. We provide additional full trajectories in Appendix [G]

Longer trajectories We evaluated our approach on longer time horizons, with up to 100 proposed
configurations, and show the results in Table 3| and Table Here, we used the “compressed” prompt
described in Section [2} we prompted the LLM with a single message at each step, showing the entire history
of hyperparameter configurations and losses. A longer search trajectory has a reduced dependency on
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initialization and requires a better search algorithm for good performance. GPT-4 Turbo still achieved a
better average rank with hyperparameter optimization trajectories up to length 60 and is comparable in
trajectories of length 100.

We observe the reasoning generated by the language model is a useful summary of experimental results and
the relative importance of different hyperparameters. For example, when tuning a random forest, the LLM
outputs the following reasoning:

e GPT-4-Turbo: The lowest loss so far is with Config 9, which suggests that a combination of a
slightly deeper tree (max__depth: 15), a moderate number of features (maz_features: 0.5), and a higher
number of samples at the leaf nodes (min__samples leaf: 4) and for splitting (min__samples__split:
8) is beneficial. The loss has not improved significantly with changes to the maz__depth beyond the
default, so we should explore other parameters more. We can try increasing the min__samples_leaf
further since increasing it from 1 to 4 improved the performance, and we can also experiment with a
different mazx_features value to see if it affects the loss.

We additionally ran a preliminary experiment to assess if LLMs can be useful to initialize Bayesian
optimization—we find that for a search trajectory of length 30 total steps, using the GPT-4 Turbo proposed
configurations for the first ten steps improves or matches performance on 21 of the 32 tasks (65.6%) for
Bayesian optimization with a random forest surrogate function. This suggests LLMs can be synergistic with
existing approaches.

4.2 CIFAR-10

To evaluate performance in a more difficult deep learning scenario, we tested our method on tuning Vision
Transformers (ViTs) (Dosovitskiy et al., 2020) and ResNet-9 (He et all [2016) on CIFAR-10. This setup poses
a challenge for hyperparameter tuning since ViTs typically operate in the regime of large-scale pretraining.
We tune five hyperparameters: optimizer choice, learning rate, batch size, weight decay, and label smoothing.
To make the task more difficult, we limit training to just 20 epochs and provide minimal context to the LLM,
prompting with “You are helping tune hyperparameters for a neural network” without any details about the
architecture or dataset. We use the compressed prompting format without chain-of-thought.

Despite these constraints, the LLM successfully optimized validation loss, outperforming random search as
shown in Figure[3] Again, we focus on the initial search phase because LLM-based approaches can leverage
learned information about hyperparameters to make better proposals. We evaluated two approaches for
hyperparameter specification from the LLM: (1) using the same structured search space as random search
and (2) allowing free-form valid hyperparameter suggestions, such as requiring batch size to be a positive
integer but not restricting its range. The second approach provides more flexibility while maintaining validity
constraints. Full experimental details are provided in Appendix [C}

4.3 Ablation Studies on Prompt Information and Robustness

We conducted experiments on varying the amount of information presented in the prompt while still tuning a
Vision Transformer with the hyperparameter search space above. These are plotted in Figure [

What is the effect of specifying additional details about the model and dataset? We investigated
how providing varying levels of detail in the initial prompt affects hyperparameter tuning performance for
Vision Transformers. In addition to the base prompt, we considered three conditions:

1. Adding dataset information (“..tune hyperparameters for CIFAR-10")
2. Adding both dataset and correct architecture (“..tune a Vision Transformer on CIFAR-10")

3. Adding dataset and incorrect architecture (“..tune a convolutional neural network on CIFAR-10")

While all conditions reach similar performance by iteration 10 (loss &~ 0.65), the amount of information
provided can improve hyperparameter selection in the first two steps.
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Figure 3: Performance comparison of hyperparameter optimization methods on CIFAR-10. Left: Tuning
Vision Transformers shows LLM-based approaches achieve lower validation loss compared to random search
after 30 iterations. The config-based LLM approach, which uses explicit hyperparameter ranges, performs
similarly to the unconstrained LLM. Right: Similar results for ResNet architecture. The best validation loss
is tracked across iterations to reflect real-world tuning scenarios.
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Figure 4: Effect of prompt information and measurement noise on hyperparameter optimization for Vision
Transformers. Left: Best validation loss across tuning iterations with varying levels of initial prompt detail,
from basic instructions to including dataset and architecture information. The amount of information provided
can improve hyperparameter selection in the first two steps but all conditions reach similar performance
at iteration 10. Right: Comparison of optimization performance with clean versus noisy (£10%) loss
measurements. The similar performance suggests robustness to measurement noise.

How robust is the LLM to noisy measurements? We found that LLM performance was similar even
when there was noise in the optimization process. Here, we multiplied the loss and accuracy by a random
value sampled uniformly from (0.9, 1.1) at each step before passing it to the LLM. This suggests that LLMs
can be robust to noisy measurements in the inner optimization loop, which is important since the process of
training neural networks can have stochasticity in validation metrics.

Visualizing the Search Trajectories We randomly sampled two hyperparameter search trajectories and
visualized the evolution of the batch size and the learning rate in Figure[5} In the trajectories we examined,
we found a reasonable hyperparameter search strategy. There is evidence of conditional hyperparameter
selection, where the LLM selects a learning rate for SGD higher than all its choices for Adam, which follows
conventional wisdom. SGD is used only once, which may be appropriate in this small-budget problem. Bigger
batch sizes are not tried after a batch size of 256, which resulted in a higher loss.
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Figure 5: Visualization of hyperparameter optimization trajectories from the GPT-4 tuning ResNet. GPT-4
selected SGD once (denoted with a plus sign) and Adam with the remaining proposals in both training runs.
The learning rate is adjusted accordingly to the optimizer and regions with high loss were not revisited.

4.4 Code generation

Code generation offers a flexible paradigm to specify the configuration space for hyperparameter tuning. In
this setup, we treat the model and optimizer source code as hyperparameters tuned by the LLM. We use code
generation to avoid needing to specify a configuration space to search over. The code generation approach is
evaluated against random search and LLMs with a fixed, configuration-based search space. Our evaluation
included both GPT-4 Turbo (OpenAl, 2023)) and Llama-3.3 (Dubey et al., |2024)) models operating within
a fixed configuration search space. The baseline methods are provided with a search space, including the
network’s depth and width, batch size, learning rate, and weight decay. To minimize the risk of data leakage
issues where the LLM was trained on performant hyperparameter settings for our dataset, we used a Kaggle
NYC Taxi dataset (Taxi & Commission, [2023a;b|) for our experiments that was released after the knowledge
cutoff of the LLM. We provide our prompts and additional details in Appendix

In the first tuning iteration, we asked the LLM (GPT-4 Turbo) to output model and optimizer source code,
which implicitly requires specifying the hyperparameters. This code is generated as functions that take in
hyperparameters as arguments. Hyperparameter tuning is performed in later iterations by asking the LLM
to generate function calls with specific arguments. The model is run with the given settings, and the LLM
receives the validation loss and the average training losses during each epoch as feedback.

Table [] reports the minimum test loss achieved using a fixed search budget of 5 evaluations, simulating the
initial search phase results during hyperparameter tuning. We randomly sample 200 configurations and use
a bootstrapped sample to estimate the standard error for a random search. Figure |§| (bottom) reports the
minimum test loss found at each step and illustrates that code generation obtains better initial settings than
competing approaches.

Table 4: Minimum test loss after 5 tuning iterations. We report the mean and standard error for code
generation and the config-based LLM across 5 runs.

Method

Min Test Loss ({)

Random search

Code generation

Config-based LLM (GPT-4 Turbo)
Config-based LLM (Llama-3.3 70B)
Bayes Opt

3757 x 1073 £ 1.172 x 1073
2.754 x 1074 +9.241 x 1075
1.218 x 107* £ 2.959 x 10~°
1.127 x 107* £ 3.789 x 10—°
2.130 x 1074 +1.026 x 10~*
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Comparison of Tuning Methods for NYC Taxi Dataset
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Figure 6: Test loss trajectory comparison with a standard error over 5 runs on NYC Taxi. The initial proposal
and early iterations from direct code generation and configuration-based LLM search compare favorably to
random search and Bayes Optimization with a random forest surrogate.

5 Discussion

We discuss limitations and explore broader implications and future work.

Possibility of Dataset Contamination. While some evaluation benchmarks may exist in LLM training
data, our prompting process only provides function outputs without revealing benchmark details, reducing the
possibility of direct memorization. Previous research suggests that such contamination might not critically
influence overall performance (Radford et al.l |2021). Building more private data sets unseen by LLM during
training would be valuable for future studies or even synthetic datasets like our quadratic experiments.

Challenges with Reproducibility. The exact inference procedures for LLMs like GPT-4 (OpenAlj 2023])
are not publicly disclosed, making replicating the results potentially challenging. While setting the sampling
temperature to 0 should theoretically yield deterministic outputs, this is not always observed in practice. For
future studies, running more experiments with open source LLMs (Taori et al.| [2023; [Touvron et al., [2023aib)
to establish a benchmark with reproducible results would be beneficial.

Cost. It can potentially be costly to conduct full-scale HPO experiments with GPT-4. For example,
executing 32 tasks with trajectory 10 using chain-of-thought reasoning on HPOBench costs approximately $8
USD as of March 2024. This cost can increase further when using more iterations but can be reduced using
the “compressed” prompt. For instance, ten rounds of hyperparameter tuning with the “compressed” prompt
and GPT-4, as in the ablation experiments, only costs five cents. These efficiency benefits of using an LLM
for HPO could be worthwhile if the cost of the underlying experiment is expensive. Additionally, in Figure
[6] we show that our method demonstrates consistent performance with open-source models like Llama-3.3
(Dubey et al., 2024), offering the potential for even greater cost reduction through self-hosting.

5.1 Future Directions

Our experiments demonstrate LLMs’ quantitative and qualitative effectiveness for HPO but also pose a new
conundrum for how this ability emerges. |Wei et al.| (2022a)) suggest one hypothesis for emergent abilities:
“more parameters and more training enable better memorization, which could be helpful for tasks requiring
world knowledge.” This may partially explain the jump in performance we observe from GPT-3.5 to GPT-4,
but the underlying mechanisms for this emergence are not yet well understood.

LLMs as Research Assistants Initial experiments demonstrated promising applications beyond simple

hyperparameter suggestion. While traditional optimization methods focus solely on parameter selection, as
shown in Figure LLMs provided useful feedback for error messages through natural language interaction.

10
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However, models can face characteristic challenges of current language models, including hallucinations
(Bowman, [2023). For instance, in Figure we observed the LLM making incorrect assumptions about
model architecture and suggesting potentially inappropriate regularization strategies.

Our findings suggest several promising research directions. First, exploring how to ground LLM suggestions
in verified technical knowledge could improve reliability. Second, developing more robust dialogue systems for
experimental debugging could enhance the assistant paradigm. The future may lie in more interactive and
intuitive optimization processes that maintain human oversight while making use of the general knowledge of
language models.

5.2 Broader Impact Statement

The approach presented in this paper facilitates machine learning research and applications by potentially
making it easier to find well-performing hyperparameters. Using LLMs as hyperparameter tuners may help
lower the cost of model training (e.g., time, compute, and environmental impact), making machine learning
experiments easier for those from other disciplines. Overall, the benefits and risks are likely similar to those
of other automatic machine learning (AutoML) research. Code generation with LLMs should be done with
care; |Zelikman et al.| (2023)) presented an overview of potential risks and trade-offs.
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A Appendix

Our appendix includes details for the HPOBench experiments in Section [B] and code generation in Section
We also include 2-dimensional landscape experiments in Section [E] dialogues of using LLMs as Tuning
Assistants in Section [F} and trajectories of LLM responses in Section [G]

B HPOBench

B.1 Prompts

Our initial prompt is the concatenation of a generic message and the Sklearn documentation for specific
hyperparameters. We used the same initial message for all models. Our prompt is the concatenation of
beginning, middle (model-dependent), and end.

beginning You are helping tune hyperparameters for a {model}. Training is done with Sklearn. This is our
hyperparameter search space:

These search space descriptions are copied verbatim from Sklearn and the benchmark configuration.

middle

svi C, regularization parameter. The strength of the regularization is inversely proportional to C. Must be
strictly positive. The penalty is a squared 12 penalty. Type: UniformFloat, Range: [0.0009765625,
1024.0], Default: 1.0, on log-scale
gamma, Kernel coefficient for rbf, Type: UniformFloat, Range: [0.0009765625, 1024.0], Default: 0.1,
on log-scale

logistic regression alpha, constant that multiplies the regularization term. The higher the value, the
stronger the regularization. Type: UniformFloat, Range: [1le-05, 1.0], Default: 0.001, on log-scale
eta0, The initial learning rate for the adaptive schedule. Type: UniformFloat, Range: [le-05, 1.0],
Default: 0.01, on log-scale

random forest max_ depth, the maximum depth of the tree. Type: UniformInteger, Range: [1, 50], Default:
10, on log-scale
max_ features, the number of features to consider when looking for the best split. Type: UniformFloat,
Range: [0.0, 1.0], Default: 0.5
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min_ samples_ leaf, the minimum number of samples required to be at a leaf node. Type: Uni-
formInteger, Range: [1, 20], Default: 1

min_ samples_ split, the minimum number of samples required to split an internal node. Type:
UniformInteger, Range: [2, 128], Default: 32, on log-scale

neural net alpha, 12 regularization, Type: UniformFloat, Range: [1e-08, 1.0], Default: 0.001, on log-scale
batch_size, Type: UniformInteger, Range: [4, 256], Default: 32, on log-scale
depth, Type: UniformInteger, Range: [1, 3], Default: 3
learning_ rate_init, Type: UniformFloat, Range: [1le-05, 1.0], Default: 0.001, on log-scale
width, Type: UniformInteger, Range: [16, 1024], Default: 64, on log-scale

end We have a budget to try 10 configurations in total. You will get the validation error rate (1 - accuracy)
before you need to specify the next configuration. The goal is to find the configuration that minimizes
the error rate with the given budget, so you should explore different parts of the search space if the
loss is not changing. Provide a config in JSON format. Do not put new lines or any extra characters
in the response. Example config: {"C": x, "gamma": y} Config:

B.2 Transition Messages

After receiving the initial config, we evaluate the hyperparameters and prompt the language model with the
following:

loss = {loss:.4e}. Specify the next config, do not add anything else in your
response. Config:

Here “{loss:.4e}" represents the loss in scientific notation with 4 decimal places.

After that, we use one of the following prompts, where the validation loss is updated based on the result of
the training run.

### Chain of Thought (CoT)

loss = {loss:.4e} Write two lines as follows:

Analysis: Up to a few sentences describing what worked so far and
what to choose next

Config: (JSON config)

### Normal (No CoT)
loss = {loss:.4e}. Specify the next config.

Finally, on the last attempt before our budget is exhausted, we preface the message with “This is the last try."
These prompts were not tuned for the task — we did not adjust them beyond adding “do not add anything
else" to ensure that the language model output is easily parsable. Our reported results are a single seed with
a temperature of 0 for the LLM.

B.3 Other Experiment Details
We use the default arguments for HyperparameterOptimizationFacade and BlackBoxFacade in the SMAC

library (Lindauer et al.| |2022)), which correspond to using Random Forest and Gaussian Process surrogate
models with BO.
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B.4 Results

In Figure [8] we show the validation accuracy achieved on each task after 10 updates. In Table [5 we show
results over trajectories of 60 iterations and 100 iterations. GPT-4 Turbo consistently beats random search
and is comparable to Bayesian Optimization approaches.

17



Under review as submission to TMLR

Minimum Validation Error Achieved when Tuning Neural Network
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Figure 7: Minimum validation error achieved after 10 function evaluations from different hyperparameter
optimizers on datasets from HPOBench (Eggensperger et al.l [2021). The benchmark defines a configuration
search space on neural networks for learning rates, £s regularization, width, depth, and batch size. A large
language model (GPT-4 Turbo) performs well compared to random search and Bayesian optimization (BO)
with Gaussian process (GP) and random forest (RF') surrogate models. Aggregate results across four models
are in Table [I}
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Minimum Validation Error Achieved when Tuning Random Forest
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Figure 8: Minimum validation error achieved after 10 function evaluations from different hyperparameter
optimizers on datasets from HPOBench (Eggensperger et all [2021)). We show performance on each task
tuning Random Forests and SVMs. Aggregate results across four models are in Table E

19



Under review as submission to TMLR

Table 5: Evaluating minimum validation error achieved for trajectories of length 60 and 100. We consider
tuning hyperparameters for SVMs, random forests, and logistic regression trained on eight datasets for a total
of 24 tasks. Neural networks were too costly to train for trajectories of this length, so we used the other three
models. GPT-4-Turbo consistently outperforms random search and is comparable to Bayesian optimization

up to trajectories of length 100. The mean rank between all 4 methods (each row + random) is 2.5.

60 iterations

Model Beats Random (1) Median (1) Mean (1) Rank ({)
GPT-4 Turbo 87.50% 16.31%  22.76 % 1.94
BOgFp 87.50% 19.61%  22.57 % 2.21
BO¢p 91.67% 14.36%  24.78 % 2.19
100 iterations

Model Beats Random (1) Median (1) Mean (1) Rank ({)
GPT-4 Turbo 87.50% 11.71% 21.88 % 2.08
BOgr 91.67% 14.15%  19.69 % 2.33
BOg¢p 91.67% 12.75%  23.89 % 1.88

B.5 Additional Results

We consider the effect of appending a system prompt “You are a machine learning expert” in Table [5] We use
this prompt throughout the rest of the experiments, following the idea of conditioning on good performance

(Zhou et al., [2022).

Table 6:

Evaluating effects of system prompt. We report the mean and median change as in the main paper.

Model Beats Random (1) Median (1) Mean (1)
Expert 90.62% 7.75%  23.23 %
Non-expert 81.25% 13.79%  22.36 %

C CIFAR-10 Experiment Details

The Vision Transformer (ViT) model we use has an input image size of 32x32 pixels, divided into patches
of 4x4. It has a hidden dimension of 512, a depth of 6 layers, and 8 attention heads. The model has MLP

dimensiosn of 512, and both dropout and embedding dropout rates are set to 0.1.

We ran each experiment with three random seeds at temperature 0 for the LLM. We only compute the test
accuracy on the 10000 points once, at the end of 20 training epochs. We use the compressed prompting

approach with the following prompt:

You

{

You

are helping tune hyperparameters for a neural network. This is our
hyperparameter search space:

"optimizer": must be ["adam", "sgd"]
"learning_rate": Dbetween le-4 and le-1
"train_batch_size": 32, 64, 128, 256, 512
"weight_decay": between le-5 and le-1
"label_smoothing": between 0 and 0.2

will get the validation error rate and loss before you need to specify
the next configuration. The goal is to find the configuration that
minimizes the error rate with the given budget, so you should explore
different parts of the search space if the loss is not changing.
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Provide a config in JSON format. Do not put new lines or any extra
characters in the response, only provide the config. Example config:

{
"optimizer": a
"learning_rate": b
"training batch size": ¢
"weight_decay": d
"label_smoothing": e

}

Random search samples from the same search space, with learning rate and weight decay sampled log-
uniformly. We evaluate 100 samples and use bootstrapping to estimate the mean and standard error for plots.

The unconstrained LLM prompt updates the first part of the prompt to:

"optimizer": must be ["adam", "sgd"]
"learning_rate": positive float
"train_batch_size": positive integer
"weight_decay": nonnegative float
"label_smoothing": nonnegative float

D Code Generation

This is the initial prompt we use for code generation:

I’m going to use your abilities to generate a model and tune its
hyperparameters such that it performs well on a Kaggle challenge.

{dataset.problem_description}

You have {dataset.in_features} input features.
The names of the features in the dataset are: {dataset.X_columns}
The target variable is: {dataset.y_columns[0]}

You may assume that the dataset already preprocessed and available as a
DataLoader object.

I want you to write PyTorch code that creates a model and optimizer.

Write everything in one function that is called ‘make_model_and_optimizer

Later I will ask you to call this function so make sure it does not
reference any global variables.

Also make sure that you include all the hyperparameters that you anticipate

needing to tune later as arguments into this function.

Favour using primitive or built-in types and avoid using Callable or Module

types as arguments to this function.
Be sure to include a short docstring and type annotations.

Finally, write a short sentence explaining your reasoning.
Format your output as follows:
reasoning: <your reasoning here>

code:
(SN aN4
python
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<your code here>
¢

The make_model_and_optimizer function is then parsed and validated. This is done by first checking that
it is valid Python code, and then by checking its function signature to make sure that the function arguments
and the outputs are as specified. If these constraints are not met, the error is fed back into the LLM, and it
regenerates the code.

The agent now tunes hyperparameters it has specified for this function by making calls to it. This is done by
taking advantage of the function calling featureE] in the OpenAl API to get our LLM to directly output a call
into this function.

Here is the tuning prompt:

Now let’s tune the hyperparameters of your model.

Give me instances of a both the model and an optimizer by making

a call to ‘make_model_and_optimizer ¢.

Use hyperparameters that you think will perform well on the validation set.
I will then train the model and give you feedback on how well it performs.
You have {search_budget} iterations to tune your model.

Your respone should just be one function call to
‘make_model_and_optimizer ‘.

After training the model with the proposed settings, we provide feedback to the model using the following
prompt:

Here is the output of your code:

training loss over each epoch:

{’, ?.join([£f°{1:.3f}’ for 1 in feedback.train_losses])}
validation loss: {feedback.val_loss:.3f}

Based on this, make a new call to ‘make_model_and_optimizer ¢
with hyperparameters that you think will perform better

on the validation set.

The baseline methods are given the following configuration space to optimize:

alpha, 12 regularization, Type: UniformFloat, Range: [1e-08, 1.0], Default:
0.001, on log-scale

batch_size, Type: UniformInteger, Range: [4, 256], Default: 32, on log-scale

depth, Type: UniformInteger, Range: [1, 3], Default: 3

learning_rate_init, Type: UniformFloat, Range: [1e-05, 1.0], Default: 0.001,
on log-scale

width, Type: UniformInteger, Range: [16, 1024], Default: 64, on log-scale

E 2-dimensional Landscape Experiment

To evaluate whether LLMs can reason about optimization choices, we study a set of 2-dimensional toy
test functions commonly used in optimization: Rosenbrock (Rosenbrock, [1960), Branin (Dixon, [1978)),

Shttps://platform.openai.com/docs/guides/function-calling
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Himmelblau (Himmelblau et all |2018), and Ackley (Ackley, |1987). For each test function f, we consider
optimizing f(x) and also f(x — ¢), where ¢ is a fixed constant, with ¢; ~ U(0,1), to mitigate the LLM’s
potential to memorize the original f. Also, we benchmark performance on a well-conditioned and ill-conditioned
quadratic. We provide the experimental details and the explored prompts in Appendix [E}

We search for optimal solutions using LLMs as an optimizer with GPT-4. While these problems can be
considered black-box optimization, we can also pose them as HPO to the LLM, using the same prompts in
Figure [I] for consistency. We show the performance of a single fixed seed and temperature 0 in Figure [9]
Performance across 3 seeds outperforms random search in most tasks, as in Table [§| Moreover, inspecting the
trajectories and reasoning chains shown in Appendix [G] we qualitatively observe different behaviors that
may characterize a strong search algorithm: initial exploration around search space boundary and center; a
line-search type algorithm to probe function behavior; and reasoning that trades off between exploration
and selecting a performant final value. However, performance can be inconsistent between random seeds, as
shown in Table [7

We use prompts with minimal details to gain intuition on this HPO approach and evaluate our LLM approach
on problems with less complexity. Inspecting the trajectories, we see room for more specific prompts. For
example, the LLMs re-explored previously evaluated points. We obtain the same or better performance in
8 of the 10 tasks by adding a sentence stating that the functions are deterministic, shown in Table 0] We
speculate that HPO performance can generally be improved with more problem-setting details in the prompt.

E.1 Prompts

Prompt 0 is a practical description of the problem as black-box optimization.

You are optimizing a function with two inputs. x1 must be in range
{search_space[’x1’]\. x2 must be in range {search_space[’x2’]}. I want
you to predict values that minimize the loss of the function; I will
tell you the value of the function before you try again. Do not put new
lines or extra characters in your response. Format your output with
json as follows: {{"x": [x1, x2]}}

Prompt 1 adds one sentence to include the compute budget.

You are optimizing a function with two inputs. x1 must be in range
{search_space[’x1’]}. x2 must be in range {search_space[’x2’]}. I want
you to predict values that minimize the loss of the function; I will
tell you the value of the function before you try again. Do not put new
lines or extra characters in your response. We have a total of {budget}
evaluations. Format your output with json as follows: {{"x": [x1,

x2]1}}\n

Prompt 2 is similar to the second but frames the problem as hyperparameter optimization.

You are helping tune hyperparameters to minimize loss. x1 must be in range
{search_space[’x1’]}. x2 must be in range {search_space[’x2’]}. I want
you to predict values that minimize the loss of the function; I will
tell you the value of the function before you try again. Do not put new
lines or extra characters in your response. We have a total of {budget}
evaluations. Format your output with json as follows: {{"x": [x1,

x2]1}}\n
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We also study Prompt 3, adding a sentence: “The training process is deterministic and yields a nonnegative
loss."

Toy Function Prompt O Prompt 1 Prompt 2 Temp 0
ack 0.0, 0.0, 0.0 0.0, 0.0, 0.0 0.0, 0.0, 0.0 0.0, 0.0, 0.0
shifted ack 1.81, 2.52, 2.83 2.19, 2.19, 2.19 4.37, 2.83, 1.77 1.77, 1.86, 4.48
bran 10.82, 2.88, 3.09 1.03, 9.87, 1.94 9.87, 9.87, 0.5 1.94, 3.91, 0.5
shifted__bran 15.54, 15.8, 18.68 7.79, 1.04, 3.26 2.39, 9.9, 50.04 3.26, 5.58, 9.9
rosen 1.0, 1.0, 1.0 1.0, 0.0, 1.0 1.0, 0.0, 1.0 0.0, 1.0, 0.0
shifted_ rosen 7.03, 7.03, 5.3 0.78,167.43, 2154  2.99, 215.4, 0.78  0.53, 163.86, 15.37
himmel 0.0, 8.12, 8.12 2.0, 8.12, 106.0 8.12, 8.12, 26.0 8.12, 8.12, 8.12
shifted__himmel 4.57, 4.57, 4.57 47.07, 14.46, 47.07  47.07, 152.1, 1.58  16.99, 47.07, 47.07
quad2d 0.44, 28.15, 0.44  11.24, 28.15, 12.75  0.72, 0.32, 0.32 1.45, 0.37, 28.15

quad2d_illcond 52.35, 51.45, 51.14  51.45, 51.45, 51.45 18.45, 0.65, 51.21  51.45, 51.14, 0.65

Table 7: Minimum loss achieved in 10 iterations on 3 different seeds at temperature 0.1. We also run

the experiments for Prompt 2 with temperature 0. Note that there is randomness in the results even at
temperature 0.

Toy Function = Prompt O Prompt 1 Prompt 2 Temp 0 Random
ack 0.0 0.0 0.0 0.0 5.28 £ 1.73
shifted__ack 2.39 2.19 2.99 2.7 5.26 + 1.74
bran 5.6 4.28 6.75 2.12 5.83 + 5.57
shifted__bran 16.68 4.03 20.78 6.25 7.13 + 6.00
rosen 1.0 0.67 0.67 0.33 481.34 4+ 998.30
shifted rosen 6.46 127.87 73.06 59.92 618.82 + 1691.99
himmel 5.42 38.71 14.08 8.12 20.39 £+ 19.93
shifted__himmel 4.57 36.2 66.92 37.04 21.47 £ 20.00
quad2d 9.68 17.38 0.46 9.99 4.72 £ 5.76
quad2d__illcond 51.65 51.45 23.44 34.41 15.14 + 17.61

Table 8: Average minimum loss achieved in 10 iterations on 3 different seeds at temperature 0.1. We also
run the experiments for Prompt 2 with temperature 0. Note that there is randomness in the results even at
temperature 0. We report the mean and standard deviation for random across 1000 trials
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Toy Function  Prompt 2 Prompt 3

ack 0.0 0.0
shifted ack 2.7 2.19
bran 2.12 3.57
shifted_ bran 6.25 1.23
rosen 0.33 0.33
shifted rosen 59.92 129.31
himmel 8.12 6.05
shifted__himmel 37.04 36.21
quad2d 9.99 0.87
quad2d__illcond 34.41 27.08

Table 9: Average minimum loss achieved in 10 iterations on 3 different seeds at temperature 0. Note that
there is randomness in the results even at temperature 0. Prompt 3 adds a sentence “The training process is
deterministic and yields a nonnegative loss." to Prompt 2. This achieves the same or better performance on 8
of the 10 tasks.
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Figure 9: The LLM optimizer optimized the function in most situations with few function evaluations, even
when we apply random argument shifts to mitigate memorization. Darker colors represent regions of lower
(better) loss, with the optimum denoted by a star.
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F LLMs as Tuning Assistants

Large language models offer exciting potential for hyperparameter tuning as they can offer interactive help to
debug and improve models, using natural language. We highlight some potential applications and limitations.
We show the temperature 0 responses from different language models.

In Figure LLMs provide useful feedback to someone encountering an error message, which is infeasible
with traditional approaches. A user can also seek additional clarification after implementing suggestions. In
Figure we show a potential shortcoming of this approach. The LLMs generated content assumes the user
is using a neural network and also suggests using regularization (which may be unhelpful if the model is
underfitting); an expert would potentially respond by first requesting clarification from the user (e.g. what
model they are training, and specifics on validation and training performance).
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Question: I'm using Adam with a learning rate of 0.1 to train a neural network and get a NaN error. What
should I do?

GPT-3.5-Turbo: If you are encountering a NaN (Not a Number) error while training a neural network with
Adam optimizer and a learning rate of 0.1, it typically indicates that the gradients have exploded or
become too large. Here are a few steps you can take to address this issue:

1. Reduce the learning rate: A high learning rate can cause the gradients to become unstable and
result in NaN errors. Try reducing the learning rate to a smaller value, such as 0.01 or 0.001, and see
if the issue persists.

2. Check for numerical instability: NaN errors can also occur due to numerical instability in the
network. Ensure that your input data is properly normalized and that there are no extreme values
or outliers that could cause instability.

3. Implement gradient clipping: Gradient clipping is a technique that limits the magnitude of the
gradients during training. By setting a maximum threshold for the gradient values, you can prevent
them from becoming too large. This can help mitigate the NaN error. Most deep learning frameworks
provide built-in functions for gradient clipping.

4. Check for bugs in your code: Review your code implementation to ensure there are no bugs or
mistakes that could lead to NaN errors. Double-check the loss function, network architecture, and
any custom layers or operations you have implemented.

5. Use regularization techniques: Regularization methods like L1 or L2 regularization, dropout,
or batch normalization can help stabilize the training process and prevent NaN errors. Consider
applying appropriate regularization techniques to your network.

6. Verify your data: NaN errors can also occur due to problematic data. Check your dataset for
missing values, corrupted samples, or any other data-related issues that could lead to NaN errors.

7. Monitor the network’s behavior: During training, keep an eye on the loss values and gradients.
If you notice sudden spikes or extremely large values, it can indicate a problem. You can also try
visualizing the gradients to identify any abnormalities.

By following these steps, you should be able to diagnose and address the NaN error in your neural
network training.

GPT-4: Getting a NaN error during training usually indicates that your model is diverging, and the weights
are becoming too large to represent. This is often due to a too high learning rate. Here are some
steps you can take to resolve this issue:

1. Reduce the learning rate: A learning rate of 0.1 is quite high for the Adam optimizer. Try reducing
it to 0.001 or 0.0001.

2. Gradient Clipping: If your model is still diverging after reducing the learning rate, you might want
to try gradient clipping. This is a technique to prevent exploding gradients by capping them at a
certain value.

3. Check your data: Make sure there are no NaN or infinite values in your input data. Also, check if
your data is properly normalized. Large input values can also cause the model to diverge.

4. Check your model architecture: Make sure your model architecture is appropriate for your task. If
your model is too complex, it might overfit and diverge.

5. Regularization: If your model is overfitting, you might want to add some form of regularization,
like dropout or weight decay.

6. Check your loss function: Make sure your loss function is appropriate for your task and correctly
implemented. Some loss functions can produce NaN values if not used correctly.

Remember, debugging a neural network often involves a lot of trial and error. Don’t be discouraged
if the first thing you try doesn’t work. Keep experimenting and you’ll eventually find a solution.

Figure 10: Response to question about NaN.
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Question: I've trained a model but have low accuracies; what hyperparameters should I consider tuning?

GPT-4: 1. Learning Rate: This is one of the most important hyperparameters. If it’s too high, the model
might overshoot the optimal solution. If it’s too low, the model might need too many iterations to
converge to the best values. So, finding a good value is crucial.

2. Number of Epochs: This is the number of times the entire training set is shown to the network
while training. Increase it if the model is underfitting.

3. Batch Size: It is the number of training examples used in one iteration. For a large dataset, it
might be beneficial to use a larger batch size to speed up the training process, but it also might be
less accurate.

4. Number of Layers: If your model is underfitting, you can try to make your model more complex
by increasing the number of layers.

5. Number of Neurons: The number of neurons in a layer can also affect the model performance.
You can try increasing this number for underfitting models.

6. Activation Function: The choice of activation function can have a big impact on the performance
of the model. ReLU, sigmoid, and tanh are some commonly used activation functions.

7. Dropout Rate: Dropout is a regularization technique that prevents overfitting. If your model is
overfitting, you can try increasing the dropout rate.

8. Weight Initialization: The way the initial weights are set in your neural network can have a big
impact on the performance of the model.

9. Optimizer: Different optimizers can have a big impact on the performance of your model. Some
common optimizers are SGD, Adam, RMSProp, etc.

10. Momentum (generally used with SGD optimizer): It helps in accelerating gradients vectors in
the right directions, thus leading to faster converging.

Remember, tuning hyperparameters is a trial and error process. It’s about understanding what each
one does and how they can potentially impact your model training and accuracy.

Figure 11: Response to question about low accuracies. The LLM-generated answer assumes the user is using
a neural network and also suggests using dropout, which generally does not help for underfitting models.

G Trajectories

G.1 2D experiments

We provide code for loading the trajectories in load_toy_trajectories in our supplementary material.
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G.2 HPOBench

Here, we show some of the initial chain-of-thought reasoning for tuning neural networks on HPOBench
generated by GPT-4.

Task 1
{"alpha": 0.001, "batch_size": 32, "depth": 3, "learning_rate_init": 0.001,
"width": 64}

{"alpha": 0.01, "batch_size": 16, "depth": 2, "learning_rate_init": 0.01,
"width": 256}

Analysis: So far, the initial configuration performed well with a loss of
0.19283. The second configuration resulted in a slightly higher loss of
0.19731. It seems that increasing the learning rate and reducing the
batch size did not improve the performance.

Config: {"alpha": 0.001, "batch_size": 32, "depth": 3, "learning_rate_init":
0.001, "width": 64}

Analysis: The previous configurations resulted in decreasing performance,
with the latest configuration having a loss of 0.24664. It seems that
the current hyperparameters are not optimal for minimizing the error
rate.

Config: {"alpha": 0.1, "batch_size": 64, "depth": 1, "learning_rate_init":
0.1, "width": 1024}Analysis: The latest configuration showed some
improvement with a loss of 0.21525, compared to the previous
configuration. It seems that reducing the depth and increasing the
width of the network had a positive impact.

Config: {"alpha": 0.001, "batch_size": 16, "depth": 2, "learning_rate_init":
0.001, "width": 512}Analysis: The latest configuration resulted in
further improvement with a loss of 0.17937, indicating that reducing
the depth and increasing the width of the network continues to be
effective. It seems that a smaller batch size also contributed to the
improved performance.

Config: {"alpha": 0.01, "batch_size": 8, "depth": 2, "learning_rate_init":
0.01, "width": 512}Analysis: The latest configuration resulted in a
loss of 0.19731, which is similar to the previous best configuration.
It seems that further exploration is needed to find a better
combination of hyperparameters.

Config: {"alpha": 0.001, "batch_size": 16, "depth": 3, "learning_rate_init":
0.001, "width": 256}Analysis: The latest configuration resulted in a
loss of 0.17937, which is the same as the previous best configuration.
It seems that we have reached a plateau in terms of performance
improvement.

Config: {"alpha": 0.001, "batch_size": 8, "depth": 2, "learning_rate_init":
0.001, "width": 512}Analysis: The latest configuration resulted in a
loss of 0.21525, which is slightly worse than the previous best
configuration. It seems that reducing the depth and increasing the
width of the network may not always lead to better performance.
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