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ABSTRACT

Existing methods for adapting large language models (LLMs) to new tasks are not
suited to multi-task adaptation because they modify all the model weights–causing
destructive interference between tasks. The resulting effects, such as catastrophic
forgetting of earlier tasks or performance drop due to model merging, make it
challenging to obtain good performance on multiple tasks at the same time. To
mitigate this, we propose Lottery Ticket Adaptation (LoTA), a sparse adaptation
method that identifies and optimizes only a sparse subnetwork of the model. We
evaluate LoTA on a wide range of challenging tasks such as instruction following,
reasoning, math, and summarization. LoTA obtains better performance than full
fine-tuning and low-rank adaptation (LoRA), and maintains good performance even
after training on other tasks – thus, avoiding catastrophic forgetting. By extracting
and fine-tuning over lottery tickets (or sparse task vectors), LoTA also enables
model merging over highly dissimilar tasks.

1 INTRODUCTION

Large language models (LLMs) (Brown et al., 2020) have seen an explosion of applications to
real-world problems (OpenAI, 2023; Team et al., 2023) via adaptation (Ouyang et al., 2022) to new
tasks. Three major multi-task adaptation paradigms have emerged: storing and loading task-specific
adapters (Hu et al., 2022; Beck et al., 2021), continuing to train instruction-tuned models on new
tasks in serial via sequential training (Ouyang et al., 2022), and combining the adaptations to tasks
learned in parallel via model merging (Ilharco et al., 2022). Each paradigm has its own associated
challenges, such as catastrophic forgetting during sequential training (McCloskey & Cohen, 1989;
Dong et al., 2023; Ramasesh et al., 2022; Luo et al., 2023; Wang et al., 2024), and methods that
have been proposed to mitigate these challenges (Crawshaw, 2020; Zhang & Yang, 2021). In this
work, we propose a new LLM adaptation method, called Lottery Ticket Adaptation (LoTA), that
(1) provides sparse adaptation by freezing a majority of the parameters and updating only a sparse
subnetwork of the base model and (2) resolves the challenges in common multi-task adaptation
paradigms. (More details in Section 3.) We summarize our contributions:

• We train lottery tickets (or sparse task vectors) that can be stored efficiently and obtain
performance similar to full fine-tuning (FFT) and higher than LoRA across a range of tasks
spanning reasoning, math, code generation, and instruction following. When adapting Mistral for
instruction following, FFT and LoTA both get a length-controlled AlpacaEval 2 winrate (Dubois
et al., 2024) (how often GPT-4 prefers the outputs of our model over its own) of 19.0%, but
LoRA only gets a winrate of 15.3% after extensive hyperparameter tuning.

• We apply LoTA to mitigate catastrophic forgetting (McCloskey & Cohen, 1989) of earlier
tasks, enabling sequential adaptation to new tasks. If we train models with FFT or LoRA on
first GSM8k and then Commonsense Reasoning tasks, they forget GSM8k completely (< 5%)
accuracy, but by using LoTA we maintain 57% accuracy on GSM8k and get 85% on Reasoning.

• We can use LoTA to merge models in parallel (Wortsman et al., 2022; Jin et al., 2022; Zhang et al.,
2023a) across dramatically different tasks. LoTA achieves better performance than existing merg-
ing methods that rely on post hoc sparsification (Yadav et al., 2023) (which degrades performance
for FFT models), because LoTA naturally trains sparse task vectors. When we use LoTA to merge
multiple models trained on heterogeneous tasks of instruction following, math and summarization,
we get a task-average performance of 21.9% where a merge of FFT models obtains 19.1%.
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2 BACKGROUND: MULTI-TASK ADAPTATION

In this section, we go over common multi-task adaptation paradigms and discuss the challenges
existing fine-tuning methods, such as FFT and LoRA, bring in each paradigm.

OR

Storing
&

Loading
Adapters

Sequential
Learning

Model
Merging

Adaptation Phase Inference Phase

Picks and loads one of the adapters
for inference. Adapter A for Task A or

adapter B for Task B, etc

Uses the final model after sequentially
fine-tuned on Task A, Task B, etc

Merges adapters fine-tuned for different
tasks, e.g., aggregates adapter A fine-

tuned on Task A, adapter B fine-tuned on
Task B, etc.

Figure 1: Multi-task adaptation: storing and loading adapters, sequential training, model merging.

Storing and Loading Adapters. The first row of Figure 1 shows training task-specific adapters that
are loaded during inference (Ostapenko et al., 2024; Beck et al., 2021; Mangrulkar et al., 2022), de-
pending on the need (Houlsby et al., 2019). Notably, Apple stores and loads adapters to enable their on-
device models (Apple, 2024). While using adapters avoids any interference between tasks, it increases
memory and compute costs as it requires storing and loading task-specific adapters. To mitigate
these costs, a number of parameter-efficient fine-tuning (PEFT) methods have been developed, most
popularly LoRA (Hu et al., 2022) (training adapters in the low-rank space). Services such as Punica
and S-LoRA allow developers to use this approach to serve large numbers of task-specific adapters for
specific requests (Chen et al., 2023; Sheng et al., 2023). However, a persistent gap in capacity between
PEFT methods and FFT has presented a tradeoff between adapter overhead and performance (Hu
et al., 2022; Liu et al., 2024b; Kopiczko et al., 2023; Biderman et al., 2024; Nikdan et al., 2024).

Sequential Training. When we want one model with multi-task abilities, we can fine-tune the
model on different tasks sequentially (Ruder, 2017), e.g., first fine-tune on task A, then fine-tune on
task B, as in the second row of Figure 1. We can also train the model on a mixture of all tasks, which
may require optimizing the data mixture. Fine-tuning the LLM for new tasks with FFT or existing
PEFT methods leads to catastrophic forgetting of earlier tasks. This is problematic, especially for
safety alignment, since we can fine-tune an LLM to be safe but later get this feature erased during
future fine-tuning on new tasks (Lermen et al., 2023). In fact, a number of works have aimed to
mitigate this vulnerability (McCloskey & Cohen, 1989; Dong et al., 2023; Ramasesh et al., 2022;
Luo et al., 2023; Wang et al., 2024), leaving an open research question: Can model developers allow
users to finetune their aligned models on custom datasets while retaining safety?

Model Merging. The third row of Figure 1 shows how we can merge multiple models adapted to
different individual tasks to have a single model adapted to multiple tasks, by aggregating task vectors
(or adapters) of different tasks. Existing model merging techniques either require post-processing
the task vectors through sparsification (Yu et al., 2023; Davari & Belilovsky, 2023; Yadav et al.,
2023), degrading the performance on the task, and/or require extensive hyperparameter tuning for
a weighted aggregation of task vectors (Matena & Raffel, 2022; Xiao et al., 2023b).

Each paradigm of multi-task learning poses different challenges, and different methods have been
proposed to address these challenges. We defer the more in-depth analysis of these proposed methods
in Appendix B because of the sheer quantity of related work that must be covered. The number of
methods itself poses challenges for studying their drawbacks, especially when these methods are
adopted in settings orthogonal to those they were originally developed for (i.e., LoRA leading to catas-
trophic forgetting of safety alignment (Lermen et al., 2023)). Rather than proposing tailored solutions
for each paradigm of multi-task adaptation, we want to propose a simple algorithm that can serve as
an effective foundation across all three paradigms and evaluate it on a wide range of challenging tasks.
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3 LOTTERY TICKET ADAPTATION (LOTA)

Algorithm 1 Lottery Ticket Adaptation (LoTA)

Require: Adaptation algorithm A, alignment dataset
D, pre-trained weights wP , sparsity ratio s, learn-
ing rate η, number of calibration iterations T ,
number of sparse training iterations T .

1: Mask Calibration:
2: wF ← wP

3: for τ ∈ 0, . . . , T do
4: ∇ = AD(wF ) {Compute gradient for weights}
5: wF = wF − η · ∇ {Update the model}
6: end for
7: Mask Extraction:
8: ∆ = wF − wp {Find the task vector}
9: m = Sparsify(∆, s) {Create the sparsity mask by

thresholding the task vector based on magnitude}
10: Sparse Adaptation:
11: w ← wP

12: for t ∈ {0, . . . , T} do
13: ∇ = AD(w) {Compute gradient for weights}
14: ∇̂ = ∇⊙m {Apply sparse mask to gradient}
15: w = w − η · ∇̂ {Update the model}
16: end for
17: ŵF ← w
output ŵF

The desiderata for each multi-task adap-
tation paradigm motivates the design of
our method. For adapters, we want a
representation that can be easily compressed
for memory efficiency. For sequential
training, we want a representation that
minimizes destructive interference between
the previously learned tasks and tasks to be
learned in the future. For model merging, we
want representations that are mutually sparse
with each other in parameter space to again
prevent destructive interference. We now
propose LoTA, a single method that enjoys
all these features. We first describe the work-
flow of LoTA, then revisit the problems each
multi-task paradigm faces and discuss how
and why LoTA successfully mitigates them.

Lottery Ticket Adaptation (LoTA). LoTA
works in three phases as summarized in
Figure 2: (1) mask calibration, (2) mask
extraction, (3) sparse adaptation. In the
mask calibration phase of LoTA, a base
model with parameters wP is fine-tuned for
T iterations, yielding a fine-tuned model
with parameters wF . Then, in the mask
extraction phase, LoTA extracts a sparsity mask m from the task vector ∆ = wF − wP based on
the magnitude of the updates in ∆. T could be as small as one iteration. In the sparse adaptation
phase of LoTA, the model is first reset to its original state with weights wP . Then the subnetwork
wP ⊙m is fine-tuned for T iterations, while leaving the remaining parameters wP ⊙ (1−m) frozen
at their initial values. We summarize the workflow of LoTA in Figure 2 and Algorithm 1 further.

By confining the adaptation updates within subnetworks (identified by m), LoTA is able to mitigate
destructive interference, e.g., adaptation loss during fine-tuning on future datasets or model
merging, that FFT and LoRA suffer from. We discuss this in more detail under three multi-task
adaptation paradigms below and provide empirical comparisons with FFT and LoRA in Section 5.
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Figure 2: Lottery Ticket Adaptation (LoTA): (1) Mask calibration via FFT for T iterations, (2)
Extracting the sparsity mask m from the task vector ∆, (3) Restarting from the pretrained model and
doing sparse fine-tuning with sparsity mask m for T iterations to get the final LoTA model.
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(1) Storing & Loading Compressible Adapters Without Compromising Performance. LoRA
restricts the adaptation updates to have a low rank, which may be insufficient for complex downstream
tasks (Nikdan et al., 2024; Biderman et al., 2024). In parallel, recent work (Isik et al., 2023) on
compressing the delta between the fine-tuned and pre-trained model ∆ = wF − wP suggests that
FFT updates are highly compressible through a simple magnitude-based sparsification. LoTA
exploits this underlying sparsity during fine-tuning and obtains better performance than LoRA, while
requiring fewer parameters to be trained. As we will show, LoTA adapters can be stored efficiently
because of the small number of parameters that need to be updated. LoTA also requires fewer
parameters to be updated in the model when the adapter is applied to the model, so loading a LoTA
adapter can be faster than loading a LoRA adapter.

Algorithm 2 Lottery Ticket Together Optimization
(LoTTO)

Require: Alignment dataset sequence DN
i=1, pre-

trained weights wP , LoTA hyperparameter set
H.

1: C = 0 {Initialize constraint set}
2: wi = wP

3: for D ∈ DN
i=1 do

4: mC
i = C {Create mask from constraint set}

5: wC
i = wi −∇ ⊙mC

i {Train model with con-
straint mask}

6: mS
i = Sparsify(wC

i − wi) {Extract sparse
mask from trained model}

7: wF
i = wi −∇⊙mS

i {Train model with sparse
mask}

8: C = C ∪mS
i {Update constraints}

9: end for
output ŵF

N

(2) Preventing Catastrophic Forgetting
During Sequential Training by Mitigating
Destructive Interference. Without loss of
generality, suppose we have two tasks, Task
A and Task B, and that after training on Task
A our model performs well on Task A but
not on Task B, and after training the same
model on Task B our model performs well
on Task B but not on Task A. We believe
one underlying cause for this catastrophic
forgetting is that parameters containing im-
portant information for a task are updated
in other –almost certainly orthogonal– direc-
tions during continued training; we refer to
this as destructive interference. A natural
method to mitigate destructive interference
is to ensure that the model updates disjoint
sets of parameters for Task A and Task B. To
enhance the robustness against destructive
interference in sequential training, we propose Lottery Ticket Together Optimization (LoTTO)
which learns mutually sparse (i.e., non-overlapping) masks for sequentially learned tasks.

Mitigating Destructive Interference via Lottery Ticket Together Optimization (LoTTO). Sup-
pose that we have already learned Task A with LoTA. LoTTO calibrates a sparsity mask for Task B by
first training a model where the only weights that can be updated are those that are not updated when
running LoTA on Task A, and then using a sparse set of those weights to train the final model. In
doing so, LoTTO ensures that the weights updated for Task A are disjoint from the weights updated
for Task B. LoTTO enables learning new tasks without forgetting old ones, by restricting weight
adaptations to not interfere with the weights that were important for previous adaptations, therefore
mitigating destructive interference. This procedure can be applied inductively to enable sequential
adaptation to multiple tasks, so that a model developer seeking to adapt a model adapted with LoTA
(potentially on several tasks), just needs to ensure that they do not update the task vector with respect
to the base model. LoTTO can be applied to capabilities one at a time; first the model learns math,
then coding, then reasoning, then planning, etc. because each of these capabilities benefits from prior
knowledge. We train on up to 4 tasks sequentially, but optimistically if we believe we can update 1%
of the weights for each capability, then LoTTO can fit at most 100 capabilities. When the subnetworks
for different tasks overlap, we do not expect that LoTTO will result in any worse forgetting than
LoTA, which we will show itself has better robustness to forgetting than FFT. We will also show that
LoTTO on sequential tasks outperforms the common practice of training on a mixture of tasks.

(3) Model Merging Across Heterogeneous Tasks. Existing model merging methods have been
shown to merge models trained on relatively similar language datasets (Wortsman et al., 2022; Jin
et al., 2022; Zhang et al., 2023a), typically via a post hoc sparsification (Yadav et al., 2023; Yu et al.,
2023; Davari & Belilovsky, 2023) of the task vectors. This ensures the task vectors are disjoint – hence
limiting destructive interference – but also degrades the performance of each individual task. LoTA
enforces sparsity during fine-tuning and directly trains sparse task vectors, obviating the need for post
hoc sparsification. LoTA’s advantage over methods such as TIES (Yadav et al., 2023) is similar to the
advantage of training a model with an intelligently chosen sparsity constraint throughout training (as in
the original lottery ticket hypothesis (Frankle & Carbin, 2019)) over pruning parameters after training.
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4 EXPERIMENTAL SETUP

In this section, we provide details of the experimental setup, including the baselines, model, dataset,
and metric selection. We present the results later in Section 5. We share our anonymized code.
We are limited to an academic computing budget, and all results are conducted with a single A100
GPU. We typically do 1− 3 epochs of training for each dataset as this is a standard choice in LLM
fine-tuning. We use the RMSProp optimizer with default hyperparameters.

Baselines & Hyperparameters. Across all three multi-task adaptation paradigms, we compare LoTA
against FFT and LoRA. We extensively tune the hyperparameters for FFT and LoRA to ensure that
we are comparing against strong baselines. We do not tune hyperparameters for LoTA and directly
transfer the hyperparameters from FFT. We fix the sparsity ratio hyperparameter in LoTA to 90%.

Models. We use two commonly-used open-weights model families, Mistral Jiang et al. (2023) and
Llama 3 (AI@Meta, 2024; Touvron et al., 2023), specifically Mistral-7B and Llama-3-8B – the
largest models we can adapt with FFT on a single GPU.

Tasks. We consider six capabilities: instruction following, safety, math, coding, summarization,
and reasoning. We now briefly discuss each capability, the datasets we use to fine-tune and evaluate
the presented methods, and the motivation behind the choices.

Instruction Following. The most widely-used instruction-tuned LLMs are the “Instruct” or “chat”
versions of base models, such as Llama-3-8B-Instruct (AI@Meta, 2024). This is because the process
of tuning models on human instructions aligns models to human preferences across a range of
tasks (Ouyang et al., 2022). For this, we adapt models to data from UltraFeedback (Cui et al.,
2023), which contains a mixture of datasets covering truthfulness, honesty, and helpfulness in
addition to instruction-following. We measure the instruction following ability by length-controlled
AlpacaEval2 Win Rate (Li et al., 2023), which we refer to as “winrate”. A high winrate means that
GPT-4 (OpenAI, 2023) prefers the responses of our model on a set of representative prompts over its
own responses. Winrate is the metric most closely correlated with human rating preference (Dubois
et al., 2024). Another common benchmark for “chat” models is MT-Bench (Zheng et al., 2023),
but there is a significant degree of data contamination between MT-Bench and other task-specific
training datasets (Yu et al., 2024)–hence, we do not evaluate on MT-Bench.

Reasoning. We train on the standard set of 8 commonsense reasoning tasks (Christopher et al., 2019;
Bisk et al., 2019; Sap et al., 2019; Zellers et al., 2019; ai2, 2019; Clark et al., 2018; Mihaylov et al.,
2018) (Boolq, PIQA, SocialIQA, Hellaswag, Winograde, ARC-easy, ARC-challenge, OpenBookQA)
and report the exact-match accuracy on the test set. As a representative task, we use ARC-easy.

Math. We use the set of 9 math instruction datasets from (Yue et al., 2023) for fine-tuning and report
performance on the test set of GSM8k (Cobbe et al., 2021). When only considering a single task,
we choose GSM8k as the representative task as it is commonly used as a single training and test
task by other papers.

Code Generation. We use data that instructs the model to write SQL queries given some con-
text (b mc2, 2023)(SQL-create-context) and report the ROUGE-1 F1 score (Lin, 2004) on the test set.

Summarization. We use Samsum (Gliwa et al., 2019), reporting ROUGE-1 F1 score on the test set.

Safety. A recent concern in AI policy is that, while frontier models such as GPT-3.5/GPT-4 are
aligned, they can also be fine-tuned and this presents an opportunity to misalign them. Recently, Qi
et al. (2023) show that by fine-tuning GPT-3.5 on just 100 harmful examples for a few epochs, they
can ask it to answer harmful queries that it ordinarily would refuse, and Zhan et al. (2024) show the
same for GPT-4. Lermen et al. (2023) show that this can be done with LoRA rather than the fine-
tuning method OpenAI are using in their fine-tuning API (presumably FFT). We evaluate the safety of
our models on HEx-Phi (Qi et al., 2023), a dataset of 330 questions spanning multiple categories such
as malware, fraud, etc. The safety score is the percentage of harmful queries that the model refuses
to respond. Aligned models (Llama-3-Instruct) will refuse 100% of harmful queries, but because
we are aligning base models ourselves, our baseline Instruct model only gets 93%. Because we are
interested in measuring the forgetting of safety alignment, we do not see this as a major limitation.

Roadmap of the Evaluation. We vary hyperparameters (Section 5), consider single-task
adapters (Section 5.1), sequential training (Section 5.2), and model merging (Section 5.3).

5
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5 EXPERIMENTAL RESULTS

We first evaluate the impact of varying the sparsity and mask calibration.

Sparsity. We vary the sparsity parameter in LoTA in Table 1. Multiple sparsity thresholds work well;
some values with less sparsity (30%) seem to negatively impact performance and extreme sparsity
seems to improve performance 99% but both deviations are within 2% of FFT.

Table 1: The impact of varying the sparsity of LoTA. GSM8k finetuning with Mistral-7B.

Sparsity 0% (FFT ) 10% 20% 30% 40% 50% 60% 70% 80% 90% 95% 99%

Performance 59.8 60.5 60.2 57.9 57.8 59.4 59.1 59.2 60.7 60.4 60.4 62.00.3

Table 2: LoTA performance on GSM8k degrades gracefully as a smaller fraction of the data is used
to calibrate a 90% sparse mask. 0 data usage corresponds to creating a random mask.

Data Used 100% 10% 1% 0.1% 0

Accuracy (GSM8k) 60.41.3 60.11.1 60.01.7 59.21.3 54.0

Calibrating the LoTA Mask Efficiently. In Table 2, we consider how the performance drops if
we calibrate a 90% sparse mask on a fraction of the overall GSM8k dataset, including the baseline
where we use a random mask which corresponds to 0% data used. We find that a 90%-sparse
mask can achieve good performance on GSM8k with just a single step of calibration (calibration
dataset size= 0.1% of the full dataset). Furthermore, instruction tuning datasets are generally quite
small (finetuning on GSM8k takes less than an hour on a single GPU). Given that the mask can
be efficiently calibrated, transferred from other datasets (as we will show), or in the worst case,
calibrated on the entire dataset in at most a few hours, we do not anticipate that the compute overhead
of LoTA will be a major limitation of the method.

Next, we compare LoTA with baselines, FFT and LoRA, across all three paradigms of multi-task
adaptation. We run all the methods for the same number of steps, i.e., the calibration time for LoTA is
factored in. Unless stated otherwise, LoTA has 90% sparsity where the mask is calibrated by training
for 1% of the adaptation dataset. We choose this sparsity level rather than the 99% sparsity level that
sometimes outperforms FFT because we can compare the improvements of LoTA that are due to the
method’s mitigation of destructive interference, rather than any inherent advantage sparsity may have.

5.1 ADAPTING TO A SINGLE TASK

We first fit an adapter to each dataset starting from a pre-trained base model, i.e., one adapter per
task. In Table 3, we find that LoTA outperforms LoRA and performs similarly to FFT. Although
LoRA is able to achieve similar performance to LoTA on the easier tasks, such as SQL, Samsum,
there is a clear gap in performance on the more challenging tasks, such as Instruction Following
and GSM8k. LoTA consistently recovers the performance of FFT.

Table 3: Performance comparison of Full Finetuning (FFT), LoRA and LoTA on single-task datasets
for 3 epochs. We report the winrate on instruction following, the accuracy of exact match on the
reasoning and math tasks, and the ROUGE-1 score on the SQL generation and summarization tasks.
LoTA outperforms LoRA on the challenging tasks of instruction following, reasoning, and math,
obtaining comparable performance to FFT. bold: best method, underline: second best method.

Model Method Instruction Following Reasoning GSM8k SQL Summarization

Mistral
FFT 19.00.98 85.8 59.81.0 98.90.1 52.00.2

LoRA 15.30.8 86.8 58.31.1 98.90.1 52.90.3
LoTA (ours) 19.00.7 87.5 60.41.1 98.90.1 52.90.2

Llama 3
FFT 17.610.8 84.8 63.40.1 99.40.1 53.61.9

LoRA 14.20.8 84.1 62.30.4 98.70.1 52.30.2
LoTA (ours) 18.00.7 84.4 64.20.7 99.00.1 52.30.3

6



324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377

Under review as a conference paper at ICLR 2025

5.2 SEQUENTIAL TRAINING

During sequential training, a model is first adapted to one capability (Task A) and then to another
capability (Task B) (such as when creating a specialized model for math) or a set of capabilities (the
most common setting for open-sourced fine-tunes of frontier models). The main challenges we seek
to mitigate are (1) catastrophic forgetting of Task A and (2) the inability to adapt to Task B.

Table 4: Comparison of FFT and LoRA baselines with our LoTTO method, which calibrates masks on
Task A (GSM8k) and Task B (Commonsense), where “Mask B” is disjoint from Mask A. Alternating
freeze applies to odd and even layers, respectively. The model is Mistral7B.

Method Task A Task A Params Task B Task B Params

FFT (baseline) 59.8 - - -
LoRA (baseline) 58.3 - - -

FFT 2.3 All 86.4 All
LoRA 4.2 All 86.3 All
FFT 2.4 Odd Layers 86.15 Even Layers

LoRA 47.26 Odd Layers 84.9 Even Layers
LoTTO (ours) 57.81 Mask A 85.12 Mask B

LoTTO Mitigates Destructive Interference. Table 4 compares LoTTO to FFT and LoRA when
training first on GSM8k and then on Reasoning; LoTTO obtains the best performance across both
tasks because it mitigates the destructive interference that leads to catastrophic forgetting. We now
do a detailed comparison to LoRA, proposing a new method in our effort to compare LoTTO to the
strongest possible baselines.

LoRA Does Not Significantly Reduce Catastrophic Forgetting of Capabilities Learned During
Finetuning. First, note that LoRA loses nearly all performance on Task A when training on Task
B. This observation may seem contrary to the results in (Biderman et al., 2024). However, they
measure forgetting as the degradation in performance on standard benchmark tasks between the
pretrained model and the finetuned model, whereas we measure forgetting as the degradation on Task
A between the model finetuned on Task A and the model finetuned on first Task A and then Task B.
We speculate that the discrepancy is that knowledge learned through the pretraining process may be
far more persistent than knowledge learned through finetuning. Indeed, LoRA does forget less than
FFT –just not enough to make a difference when training with LoRA on both tasks.

LoRA Can Also Mitigate Destructive Interference, But Not As Well as LoTTO. A key insight
into the design of LoTTO is that we can mitigate destructive interference between different tasks by
forcing the tasks to update disjoint sets of parameters. LoTTO carefully calibrates the disjoint subsets
by pruning the weights that were updated the most after a small amount of finetuning on the dataset.
We can also extend this insight to try and mitigate destructive interference in FFT and LoRA. We do
this by proposing an “alternating freeze” strategy, where the odd layers can only be trained on Task A
and the even layers can only be trained on Task B. LoRA already struggles to fit complex tasks such
as math (Task A is GSM8k) and the alternating freeze further restricts LoRA’s representative capacity.
Therefore, while the alternating freeze does forget less, and on easy tasks such as commonsense
reasoning, there is no significant gap between LoRA and LoTA, the gap on the challenging Task A is
hard to overcome because it is partially due to the inherent gap in performance between LoRA and
LoTA and partially due to LoTA’s limited forgetting as compared to LoRA. We note that LoTA can
also be combined with LoRA, by fixing the A matrix in LoRA as a random projection (Zhang et al.,
2023b) and tuning the B matrix with LoTA; this could be an interesting piece of future work.

Sequential Training Under LoTTO Outperforms Mixing Datasets Together. We compare our
LoTTO method, that trains disjoint LoTA adapters sequentially on each dataset, to FFT on a mixture
of Instruction Following and the dataset noted in Task B. LoTTO under sequential training consistently
outperforms the common practice of mixing all datasets together and doing FFT. We note that LoTA
can also be used in the setting of mixing all datasets together, by routing each sample of a given
dataset to a GPU –specific to that dataset– that applies the corresponding LoTA mask for that dataset.
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Table 5: We compare our LoTTO method, that trains disjoint LoTA adapters sequentially on each
dataset, to FFT on a mixture of Instruction Following and the dataset noted in Task B. LoTTO under
sequential training consistently outperforms the common practice of mixing all datasets together and
doing FFT.

Task B Method Utility of Task A (Drop) Utility of Task B (Drop)

GSM8k FFT-Mixing (baseline) 15.2 (3.8) 54.5 (5.3)
LoTTO (ours) 17.8 (1.2) 59.1 (0.7)

Reasoning FFT-Mixing (baseline) 10.7 (8.3) 81.3 (4.5)
LoTTO (ours) 16.5 (2.5) 83.7 (2.1)

GSM8k+Arc+SQL FFT-Mixing (baseline) 13.8 (5.2) 73.6 (4.4)
LoTTO (ours) 15.9 (3.1) 73.8 (3.2)

Mitigating Catastrophic Forgetting While Enabling Adaptation to Downstream Datasets.
In Table 6, we consider a range of method combinations for a simplified setting where we seek to
adapt an Instruct model to Math data without catastrophic forgetting. We will go row-by-row through
the table and analyze each set of results. Even when training on just a single, relatively small dataset,
FFT in both phases suffers a significant drop in winrate. An easy way to mitigate this is to simply
train the initial Instruct model with LoTA. Following this, FFT on GSM8k does not significantly
reduce winrate. However, it does present a potentially unwelcome tradeoff in task accuracy. For
this, we turn to LoTTO, which achieves the best performance across both tasks.

Table 6: Sequential learning first on Task A (Instruction Following) then on Task B (varied). Fine-
tuning on Tasks A and B is performed using both FFT and LoTA. The utility of each task is computed
after fine-tuning on Task B is completed. Note that there is no utility when we fine-tune on harmful
data to evaluate the catastrophic forgetting of Safety, and the baseline is the safety score of the Instruct
model. FT=Fine-tuning. We reproduce the baseline of doing FFT on each method independently as
reported in Table 3 for convenience; note that on the reasoning task LoTA outperforms FFT. bold:
best method, underline second-best method; we do not report second-best when only two methods
are presented. All results are with Mistral. We reuse the same mask for LoTTO calibrated on GSM8k
for MathInstruct, Reasoning, GSM8k+Arc+SQL and Safety.

Task B Method on Task A Method on Task B Utility of Task A (Drop) Utility of Task B (Drop)

Instruction Following Baseline - 19.0 (-) -

GSM8k

- Baseline - 59.8 (-)
FFT FFT 15.2 (3.8) 58.3 (1.5)

LoTA (ours) FFT 17.7 (1.3) 58.7 (1.1)
FFT LoTA (ours) 15.9 (3.1) 54.2 (5.6)

LoTA (ours) LoTTO (ours) 17.8 (1.2) 59.1 (0.7)
FFT LoRA 14.1 (4.2) 55.5 (4.9)

LoRA LoRA 13.7 (5.3) 58.8 (1.0)
FFT FFT (Replay) 16.3 (2.7) 55.5 (4.3)

MathInstruct - Baseline - 56.7 (-)
FFT FFT 14.20.8 (4.8) 51.30.2 (5.4)

LoTA (ours) LoTA (ours) 16.00.7 (−3.0) 55.50.1 (1.2)

Reasoning
- Baseline - 85.8 (-)

FFT FFT 0.20.1 (18.8) 82.3 (3.5)
LoTA (ours) LoTTO (ours) 16.50.9 (2.5) 83.7 (2.1)

GSM8k+Arc+SQL

- Baseline - 77.0
FFT FFT 0.50.2 (18.6) 75.0 (2.0)

LoTA (ours) FFT 11.50.7 (7.5) 75.4 (1.6)
LoTA (ours) LoTTO (ours) 15.90.9 (3.1) 73.8 (3.2)

Safety
Baseline - 93.1 (-) -

FFT FFT 19.13.5 (73.9) -
LoTA (ours) LoTTO (ours) 63.42.2 (29.7) -
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How Much Does Data Reuse Help? The simplest and arguably most performant method from prior
work that we found for mitigating catastrophic forgetting is simply to replay in some in-distribution
data from Task A. This is the line marked with “FFT (Replay)”, and it does mitigate forgetting on
Task A, but at the cost of performance on Task B. We ablate the amount of data from Task A to be
used between 1 − 100% of the dataset size of the data from Task B, and this is the best result in
terms of mitigating forgetting on Task A. As we mix in less and less data from Task A, this method
approaches just doing FFT sequentially in performance, so we omit those results for brevity.

Adapting Sequentially to Multiple Tasks with LoTTO. We now consider the more challenging
setting when we need to adapt to multiple tasks without catastrophic forgetting while still obtaining
good performance on those tasks. In Table 6, we adapt an Instruct model to a mix of reasoning, math,
and SQL data and find a surprising result; the FFT Instruct model collapses almost completely to
a winrate of less than half a percent. As we showed in Table 6, this can be mitigated by mixing
in more instruction following data, albeit at a cost. The LoTA Instruct model still degrades in
performance (19 → 11) but nowhere near as much. In the line marked “LoTTO”, we instead
adapt the LoTA Instruct model to the downstream tasks using the mask calibrated from GSM8k
with LoTTO. Applying LoTTO to make the downstream adaptation be mutually sparse with the
initial LoTA Instruct model increases performance significantly on instruction following and math.
Performance on Arc and SQL suffers somewhat because our mask does not consider those tasks, but
this means that our mask is much cheaper to calibrate and is, in fact, generalizable not only across
tasks within a domain (as shown in Table 6) but also across domains.

Mitigating Catastrophic Forgetting of Safety Alignment. In the “Safety” row of Table 6, we
consider fine-tuning the Mistral Instruct model we trained ourselves on the 100 harmful instructions
from (Qi et al., 2023). The baseline model gets a score of 93% and training with FFT quickly
degrades safety. Adapting the LoTA Instruct with LoTTO (again, with the LoTTO mask calibrated
from GSM8k) mitigates this safety drop significantly, even though our LoTTO mask was calibrated
on an extremely different dataset. Therefore, a potential mitigation would be for an entity providing a
fine-tuning API such as OpenAI to do the safety training with LoTA, calibrate the LoTTO mask on
a utility dataset, and then do fine-tuning on their client’s dataset with LoTTO. We do not intend to
present our method as an active defense against fine-tuning attacks; although finetuning with LoTTO
improves safety, given sufficient data and access to the model weights, any attacker can of course
undo safety tuning entirely. However, catastrophic forgetting of safety alignment is an important
problem with real-world applications, and we find it compelling that our method can mitigate this.

5.3 LOTA FOR MODEL MERGING

We now consider the setting of model merging, where we train models on disjoint datasets fully
in parallel and then merge together the task vectors with the goal of producing a model with good
performance on multiple tasks. Prior work in model merging mostly considers merging similar
datasets, such as the commonsense reasoning datasets, but it is relatively easy to merge models when
the datasets are similar and becomes increasingly hard as the datasets become more heterogeneous
due to the gradient mismatch (Daheim et al., 2024). We consider merging models trained on
heterogeneous datasets.

Merging Models. We use TIES-Merging (Yadav et al., 2023) as a baseline to merge models
trained on heterogeneous tasks, because it outperformed other merging methods in our testing. TIES
performs post-hoc sparsification on each task vector and requires a 2-D hyperparameter search for
this quantity, which we perform for the merge of FFT models. Naturally, we could optimize the
performance of Task A by fully sparsifying Task B, and vice versa; we report the result that achieves
good performance on Task B while maintaining some performance on Task A, and report the full
range of hyperparameters in Appendix A. LoTA is inherently sparse, so when we merge a LoTA
model with an FFT model we do not need to perform hyperparameter search on the LoTA model,
and we use the same level of sparsity for the FFT model that we obtained when merging together
two FFT models. When merging two LoTA models together, no hyperparameter search is required at
all as both models are inherently sparse. We could in theory sparsify the LoTA models beyond their
existing levels with post-hoc sparsification, but we do not tune this hyperparameter.

Challenge of Overlapping Sparsity in Model Merging. In the sequential training paradigm, we
exploited the fact that masks for different tasks have a significant overlap in order to generalize our
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LoTTO mask calibrated on GSM8k to provide robustness to forgetting across a range of other tasks.
However, this same phenomenon of overlapping sparsity presents a challenge in the model merging
setting. The challenge is that because the merging is parallel, we cannot use LoTTO to calibrate the
masks to be disjointly sparse as we did in the sequential training setting. One alternative is to enforce
random disjoint masks for each task, corresponding to “0% Data Used” in Table 2.

Table 7: Model merging using TIES of Task A, Instruction Following, and Task B, (varied;
GSM8k+Samsum means we are merging 3 models). Fine-tuning on Tasks A and B is performed
using both full fine-tuning (FFT) and LoTA. The utility of each task is computed after merging the
two task vectors. bold: best result, underline: second best result. We reproduce the baseline for
each task on FFT from Table 3 for convenience; note again that for some tasks the LoTA baseline
outperforms the FFT baseline. All results are with Mistral.

Task B Method on Task A Method on Task B Utility of Task A (Drop) Utility of Task B (Drop)

Instruction Following Baseline - 19.0 (-) -

GSM8k+Samsum

- Baseline - 55.9 (-)
FFT FFT 7.60.6 (11.4) 49.71.1 (6.2)

LoRA LoRA 8.50.5 (10.5) 44.31.0 (11.6)
LoTA (ours) FFT 8.90.6 (10.1) 50.71.1 (5.2)

FFT LoTA (ours) 10.70.7 (8.3) 55.01.1 (0.9)
LoTA (ours) LoTA (ours) 13.10.8 (5.9) 46.61.0 (9.3)

GSM8k

- Baseline - 59.8 (-)
FFT FFT 6.90.5 (12.1) 59.10.1 (0.7)

LoTA (ours) FFT 16.10.8 (2.9) 60.51.1 (+0.7)
FFT LoTA (ours) 14.00.8 (5.0) 59.31.0 (0.5)

LoTA (ours) LoTA (ours) 15.10.8 (3.9) 58.41.1 (1.5)

Samsum

- Baseline - 52.0 (-)
FFT FFT 8.10.7 (10.9) 47.00.0 (5.0)

LoTA (ours) FFT 13.80.8 (5.2) 51.80.2 (0.2)
FFT LoTA (ours) 10.40.7 (8.6) 53.30.1 (+1.3)

LoTA (ours) LoTA (ours) 15.40.9 (3.6) 52.70.1 (0.1)

In Table 7 we merge together models trained on GSM8k and Samsum with the Mistral model that
we trained for instruction following. We consider the full combination of merging FFT and LoTA
models. The merge of two FFT models performs poorly in all settings on both tasks, indicating that
post-hoc sparsification does not perform well for heterogeneous tasks, which is in line with recent
model merging theory (Daheim et al., 2024). Merging LoRA models together does not particularly
improve performance. The merges that contain LoTA models have better performance across all
tasks, but there is no combination that is pareto-optimal across all tasks. One avenue to improve
LoTA for model merging may be to assume that each participant has a small sample from other
participants’ datasets to perform a joint LoTA calibration procedure.

6 DISCUSSION

We propose Lottery Ticket Adaptation (LoTA), a sparse alignment framework that fine-tunes only a
sparse subnetwork of the base model, leaving the rest of the parameters frozen. LoTA successfully
mitigates destructive interference (a problem with existing fine-tuning methods including FFT and
LoRA) in many multi-task adaptation paradigms, prevents catastrophic forgetting of earlier tasks,
including safety, and allows for successful model merging of even dramatically different tasks.

Limitations. As mentioned in Section 5, LoTA does not provide the compute efficiency of LoRA. If
the adapter needs to be compressed by more than 100×, LoTA may not provide sufficient compression.
We evaluate on instruction following, reasoning, math, SQL generation, and summarization, yet even
more tasks exist such as Python code generation, classification, or long-context question answering.
We compare LoTA to baselines (LoRA, TIES) but other PEFT and merging methods exist. In a future
revision of this paper, we plan to provide comparisons to a broader range of PEFT (Liu et al., 2024b)
and merging (Yu et al., 2023) methods. All LoTA masks are unstructured, so we do not reap the
runtime benefits of structured sparsity. We only explore magnitude pruning for LoTA, but many other
methods have been proposed in the literature, as we discuss in Appendix B, and may perform better.
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Reproducibility Statement. As requested by ICLR, we are providing a brief statement on
reproducibility. We provide an anonymous link to our codebase in Appendix A, where all the results
in the paper can be reproduced. We made efforts to create strong baselines for ourselves by tuning
hyperparameters, whose ranges we report in Appendix A, and by creating what we believe is a new
method in the form of the “alternating freeze” baseline. The script “continual learning”, for instance,
reproduces Table 4 end to end on publicly available datasets. In the main text, we provided details on
the datasets we used, all of which are publicly available and in fact are provided in our repository
along with the prompts and code we used to train and evaluate on that data, and our reasoning
for choosing those datasets. We fine-tuned models that are publicly available on Huggingface, but
because we have academic compute restrictions we had to create code that fine-tunes Mistral-7B and
Llama-3-8B on a single GPU, which we provided in the repository so that other researchers can more
easily reproduce our results (typically, instruction tuning these models requires 8 GPUs, as in the
popular Alignment Handbook repository’s scripts). We plan to open source our code and upstream
our LoTA method to Huggingface to further aid in reproducibility.
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A ADDITIONAL EXPERIMENTAL DETAILS

A.1 CODE

Because we evaluate multiple methods on a wide range of tasks, training on > 20 datasets, we defer
all the details on the prompts, exact dataset format, etc. to our open-source code repository.

A.2 HYPERPARAMETER RANGES

FFT. We tune the learning rate in the range 5e− 7, 1e− 5 and the best-performing learning rate for
the downstream finetuning tasks is 1e − 6, with the exception of instruction finetuning which we
detail further below. We use a batch size of 32. We clip the gradient norm of each parameter group to
1. We clip the gradient norm of the parameters as opposed to the full gradient because we fuse the
optimizer with the backward pass to enable FFT on a single A100.

LoTA. We do not tune any hyperparameters for LoTA and merely use the same hyperparameters as
FFT. Unless stated otherwise, we report the performance of LoTA with a sparsity ratio of 0.9 that
was calibrated on the entire dataset.

LoRA. LoRA introduces the additional rank hyperparameter, which we tune jointly with the “lora
alpha” term and the learning rate. We tune the rank and alpha in the range (8, 512). Common wisdom
seems to dictate the use of larger learning rates for LoRA, so we expand the upper edge of the LoRA
learning rate range to 1e− 4 and indeed find that LoRA typically benefits from a larger learning rate.
We use LoRA on all linear layers (q, k, v, gate, up, down). On the commonsense reasoning tasks, the
best hyperparameters are: r = 512, α = 32, η = 1e− 4. On GSM8k, the best hyperparameters are:
r = 64, α = 32, η = 1e− 4.

Instruction Tuning. We use the hyperparameters of Sharma et al. (2024) to avoid the expense of
hyperparameter tuning on winrates. This means that we use a batch size of 8 and a learning rate of
5e− 7 for both FFT and LoTA. We use the best performing hyperparameters for LoRA transferred
from the commonsense reasoning tasks of r = 64, α = 32, η = 1e− 4.

TIES-Merging. We consider post-hoc sparsification factors of 0.1, 0.2, 0.3; the best performance is
at either 0.1 or 0.2.

A.3 MORE COMPARISONS BETWEEN LORA AND LOTA

Compute Overhead. One reason why PEFT methods such as LoRA are commonly used is because
they reduce the memory consumption in the backward pass, thus enabling the use of a larger
pass. Biderman et al. (2024) recently critically analyzed this and found that to fit tasks such as math
and code generation, LoRA needs to use high ranks (≥ 256), which in turn reduces the speedup to at
most 15%. We nevertheless acknowledge that any and all PEFT methods will be faster than LoTA
during training because LoTA requires an initial pass over the dataset to calibrate the sparsity mask.

Memory Overhead. LoTA has a minor overhead when compared to FFT, because a bit-mask must be
loaded for each parameter group. We provide an efficient implementation for this in our open-source
code. repository. We can finetune Llama-3-8B with LoTA on a single 80GB A100, so we do not
anticipate this minor memory overhead being a major limitation of our method. LoRA reduces the
memory footprint during finetuning, at the expense of accuracy.

High-Rank Adaptation Beats Low-Rank Adaptation. LoRA has a heavy regularizing effect on
training. On the commonsense reasoning task, because the base model can get nontrivial zero-shot
performance, LoRA actually improves the performance over that of FFT for Mistral. Note here
that we do a grid search over learning rate and rank for LoRA, and the best performance is at
r = 64, η = 1e − 4. However, sparsity also has a regularizing effect, and LoTA is even more
successful on the reasoning task when using the same learning rate as we searched for the base
model (1e− 6). On GSM8k, the regularization hurts performance significantly; (Nikdan et al., 2024)
report a similar-sized gap between LoRA and FFT on this dataset when training LLama-2-7B. If
LoRA is underfitting the data, it may be better suited for settings where we only train for a single
epoch, or on smaller datasets. In Table 8, we make a side-by-side comparison of LoRA and LoTA
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when training for a single epoch and find that LoTA outperforms LoRA significantly across all tasks;
in fact, the difference is even more pronounced after a single epoch.

Table 8: Performance comparison on single-task datasets for 1 epoch. bold: best method

Method Model Arc GSM8k SQL Summarization

LoRA Mistral 70.40.6 46.31.1 98.60.1 51.80.2
LoTA (ours) Mistral 73.80.7 53.51.0 99.30.1 54.32.5

Storing LoTA Adapters Efficiently. Although FFT generally performs better than PEFT methods,
it is typically infeasible to store a full copy of the model weights for each task. Practitioners, therefore,
consider a tradeoff between memory and adaptation performance when loading task-specific adapters.
We now discuss the storage memory consumption of LoTA and LoRA. Storing the sparse task vector
from LoTA requires 40 bits per parameter; 32 from the parameter, and 8 for the delta encoding of the
sparse indices. If we use 90%-sparse LoTA, our task vector is compressed 8×; if we use 99%-sparse
LoTA, our task vector is compressed 80×. The memory-utility tradeoff between LoTA and LoRA can
be quantified in terms of each method’s performance at a given level of compression, which translates
into the sparsity level for LoTA and the rank r for LoRA. Comparing the compression-utility tradeoff
between LoRA and LoTA is challenging because the size of the saved LoRA adapter is determined
by the rank parameter r, and more is not always better (which is why we have to tune r for every
task for LoRA). As a single point of comparison, we can look at the performance on GSM8k, where
99%-sparse LoTA (62.0) outperforms LoRA for any rank (best performance of 58.3 achieved at
r = 512, increasing rank reduces performance), and they both achieve a similar compression factor.

A.4 INDIVIDUAL TASK RESULTS FOR AVERAGED EXPERIMENTS

In the main body we present a number of experiments where we have to report the average perfor-
mance over a number of tasks for space constraints. We now present the individual task results in
Table 9 and Table 10.

Table 9: Individual task results for the “averaged” results in Table 6. bold: best method.

FT Method on Task A FT Method on Task B Instruction Following Arc GSM8k SQL

FFT FFT 0.450.21 74.1.09 51.90.09 98.90.01
LoTA (ours) FFT 11.480.73 73.30.02 53.90.09 98.90.01
LoTA (ours) LoTTO (ours) 15.880.88 70.30.01 52.50.01 98.60.01

Table 10: Full results on commonsense reasoning.

Model Method BoolQ PIQA SIQA HellaSwag WinoGrande ARC-e ARC-c OBQA Avg.

Mistral
LoRA 76.4 90.7 81.2 91.4 87.0 94.1 83.0 90.4 86.8

LoTA (ours) 75.3 90.0 83.3 91.4 89.5 95.1 85.0 90.2 87.5

B RELATED WORK

Model Pruning & Quantization. Model pruning and quantization have been receiving increased
attention for efficient storage and/or inference of large models. While most of the existing methods
prune (Frantar & Alistarh, 2023; Dettmers et al., 2023b; Kim et al., 2023) or quantize (Frantar et al.,
2023; Dettmers et al., 2022; Xiao et al., 2023a; Lin et al., 2023) the model weight directly, some focus
specifically on compressing the task vectors (Isik et al., 2023; Liu et al., 2024a; Yao & Klimovic,
2023) through post-training sparsification or quantization, assuming that the base model is worth the
storage cost since it is being used frequently for many tasks. Our proposed PEFT method, LoTA,
builds on this observation that the task vectors are highly compressible through sparsification and
imposes this sparsity constraint at the beginning of fine-tuning to train sparse task vectors.
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Lottery Ticket Hypothesis. Motivated by the success of pruning methods at extreme sparsity
ratios (Han et al., 2015), Frankle & Carbin (2019) proposed the lottery ticket hypothesis (LTH),
claiming the existence of sparse subnetworks (or lottery tickets) that could be trained from scratch to
a performance comparably to training the dense model from scratch. While this could potentially
provide a way to train models sparsely more efficiently rather than training them densely and pruning
them later, finding the lottery tickets, i.e., the sparsity masks, is costly. Initially, Frankle & Carbin
(2019) proposed first training the models densely and then extracting the sparsity mask based on the
magnitude of the trained dense model’s weights. Later, a number of more efficient methods were
proposed to find the sparsity masks more efficiently, earlier in the dense training stage (Frankle et al.,
2021; Lee et al., 2019; Wang et al., 2020; Tanaka et al., 2020). Our work shows that LTH works
successfully for fine-tuning LLMs as well–giving us a sparse adaptation tool, LoTA. We extensively
study the tradeoff between the cost of finding the sparsity masks and the performance of the sparsely
fine-tuned model. Unlike other studies on LTH for LLM adaptation (Yuan et al., 2024; Xu & Zhang,
2024), our main focus and motivation is to mitigate destructive interference in multi-task adaptation.

Parameter-Efficient Fine-Tuning (PEFT). Many practitioners fine-tune already pre-trained LLMs
with less data and compute instead of training them from scratch (Liu et al., 2022a; Wang et al., 2022;
Ouyang et al., 2022). While this reduces the cost of LLM training significantly, fine-tuning each
and every parameter of these large models for each (or a few) task is still very costly. This has led
to a number of parameter-efficient fine-tuning (PEFT) methods reducing the number of trainable
parameters during fine-tuning (Zhang et al., 2023c; Li & Liang, 2021; Liu et al., 2022b; Lester
et al., 2021; Edalati et al., 2022; Hu et al., 2023; Nikdan et al., 2024; Guo et al., 2020). Among
different PEFT methods, low-rank adaptation (LoRA) (Hu et al., 2022) and its variants (Dettmers
et al., 2023a; Guo et al., 2024; Li et al., 2024; Kopiczko et al., 2024) have shown similar performance
to full fine-tuning in many tasks while reducing the number of trainable parameters through low-rank
approximation to model updates during fine-tuning. Our PEFT method, LoTA, while reducing the
number of trainable parameters significantly via sparsity, has various other benefits in different
applications, such as avoiding catastrophic forgetting (of especially safety alignment), enabling
fine-tuning on new tasks more successfully, model merging using sparse task vectors, unlearning,
and communication-efficient federated learning (FL). We demonstrate that full fine-tuning and the
existing PEFT methods fall short in these applications and significantly underperform LoTA.

Catastrophic Forgetting. When LLMs go through sequential (or continual) multitask learning, i.e.,
fine-tuned on different tasks sequentially, they often suffer from performance loss on earlier tasks–
known as catastrophic forgetting (McCloskey & Cohen, 1989; Dong et al., 2023; Ramasesh et al.,
2022; Luo et al., 2023; Wang et al., 2024). To mitigate this, a number of data-centric and architectural
solutions have been proposed for language and other domains. Replay-based methods (Rebuffi
et al., 2017; Romanov et al., 2018) add a portion of the previously learned data during fine-tuning
on a new task, which raises privacy concerns as it requires constant access to previously learned
data. Regularization-based approaches (Huang et al., 2021; Aljundi et al., 2018) tend to have poor
adaptability to specific tasks. An architecture-based approach, “progressive prompts” Razdaibiedina
et al. (2023), sequentially concatenates soft prompts as they are being learned for each task–showing
some resistance against forgetting. However, they require access to task identifiers at inference
for each task, which is not always feasible. Other architecture-based approaches add additional
modules to learn task-specific abilities (Dou et al., 2023; Wu et al., 2024)–requiring customized
deployment due to architecture change. Closest to our work, Hui et al. (2024) updates a randomly
selected subset of the parameters at each iteration of fine-tuning to preserve the earlier tasks in
the not-updated parameters of that iteration. Despite similarities, our work LoTA (1) uses a fixed
sparsity mask throughout fine-tuning instead of a new mask at every iteration, which yields sparse
task vectors that are useful for other applications such as model merging and communication-efficient
FL, and (2) finds data-dependent masks rather than the randomly selected masks in (Hui et al., 2024).
Furthermore, unlike (Hui et al., 2024), LoTA not only preserves the earlier tasks on frozen parameters
but also constraints the new tasks on a highly sparse subnetwork–providing resistance to catastrophic
forgetting even when malicious users attempt to overwrite the earlier tasks via FFT.

Model Merging. Merging multiple task-specific models into a single model with multitask abili-
ties (Wortsman et al., 2022; Jin et al., 2022; Zhang et al., 2023a) has been an appealing alternative
to sequential multitask learning, which suffers from catastrophic forgetting and could be inefficient,
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especially if task vectors are already available. The existing model merging methods include aver-
aging weights of task-specific models (Wortsman et al., 2022), task arithmetic through combining
task vectors (Ilharco et al., 2022), weighted aggregation of parameters (Matena & Raffel, 2022; Xiao
et al., 2023b), combining task vectors after some post-processing such as trimming low-magnitude
deltas (Yadav et al., 2023) or sparsifying the deltas (Yu et al., 2023; Davari & Belilovsky, 2023). Our
method, LoTA, directly learns sparse task vectors, obviating the need to post-process the task vectors,
and outperforms existing model merging methods. Most importantly, LoTA enables merging task
vectors trained on heterogeneous datasets, while the other model merging methods are often limited
to similar datasets. This advancement is an important step towards scalable FL (Kairouz et al., 2021)
with LLMs as it enables merging sparse task vectors, which brings communication efficiency, trained
over heterogeneous datasets (of each edge device).

We note that we test model merging with LoTA specifically for highly dissimilar datasets to show its
compatibility with FL, which considers edge devices with heterogeneous datasets. When used in FL,
LoTA can reduce communication and memory costs significantly, which is a main bottleneck when
scaling FL to large models. The successful use of LoTA for model merging and arithmetic further
shows its promise for unlearning (Ilharco et al., 2022) as well.
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