
000
001
002
003
004
005
006
007
008
009
010
011
012
013
014
015
016
017
018
019
020
021
022
023
024
025
026
027
028
029
030
031
032
033
034
035
036
037
038
039
040
041
042
043
044
045
046
047
048
049
050
051
052
053

Under review as a conference paper at ICLR 2025

LOTTERY TICKET ADAPTATION:
MITIGATING DESTRUCTIVE INTERFERENCE IN LLMS

Anonymous authors
Paper under double-blind review

ABSTRACT

Existing methods for adapting large language models (LLMs) to new tasks are not
suited to multi-task adaptation because they modify all the model weights–causing
destructive interference between tasks. The resulting effects, such as catastrophic
forgetting of earlier tasks or performance drop due to model merging, make it
challenging to obtain good performance on multiple tasks at the same time. To
mitigate this, we propose Lottery Ticket Adaptation (LoTA), a sparse adaptation
method that identifies and optimizes only a sparse subnetwork of the model. We
evaluate LoTA on a wide range of challenging tasks such as instruction following,
reasoning, math, and summarization. LoTA obtains better performance than full
fine-tuning and low-rank adaptation (LoRA), and maintains good performance even
after training on other tasks – thus, avoiding catastrophic forgetting. By extracting
and fine-tuning over lottery tickets (or sparse task vectors), LoTA also enables
model merging over highly dissimilar tasks.

1 INTRODUCTION

Large language models (LLMs) (Brown et al., 2020) have seen an explosion of applications to
real-world problems (OpenAI, 2023; Team et al., 2023) via adaptation (Ouyang et al., 2022) to new
tasks. Three major multi-task adaptation paradigms have emerged: storing and loading task-specific
adapters (Hu et al., 2022; Beck et al., 2021), continuing to train instruction-tuned models on new
tasks in serial via sequential training (Ouyang et al., 2022), and combining the adaptations to tasks
learned in parallel via model merging (Ilharco et al., 2022). Each paradigm has its own associated
challenges, such as catastrophic forgetting during sequential training (McCloskey & Cohen, 1989;
Dong et al., 2023; Ramasesh et al., 2022; Luo et al., 2023; Wang et al., 2024), and methods that
have been proposed to mitigate these challenges (Crawshaw, 2020; Zhang & Yang, 2021). In this
work, we propose a new LLM adaptation method, called Lottery Ticket Adaptation (LoTA), that
(1) provides sparse adaptation by freezing a majority of the parameters and updating only a sparse
subnetwork of the base model and (2) resolves the challenges in common multi-task adaptation
paradigms. (More details in Section 3.) We summarize our contributions:

• We train lottery tickets (or sparse task vectors) that can be stored efficiently and obtain
performance similar to full fine-tuning (FFT) and higher than LoRA across a range of tasks
spanning reasoning, math, code generation, and instruction following. When adapting Mistral for
instruction following, FFT and LoTA both get a length-controlled AlpacaEval 2 winrate (Dubois
et al., 2024) (how often GPT-4 prefers the outputs of our model over its own) of 19.0%, but
LoRA only gets a winrate of 15.3% after extensive hyperparameter tuning.

• We apply LoTA to mitigate catastrophic forgetting (McCloskey & Cohen, 1989) of earlier
tasks, enabling sequential adaptation to new tasks. If we train models with FFT or LoRA on
first GSM8k and then Commonsense Reasoning tasks, they forget GSM8k completely (< 5%)
accuracy, but by using LoTA we maintain 57% accuracy on GSM8k and get 85% on Reasoning.

• We can use LoTA to merge models in parallel (Wortsman et al., 2022; Jin et al., 2022; Zhang et al.,
2023a) across dramatically different tasks. LoTA achieves better performance than existing merg-
ing methods that rely on post hoc sparsification (Yadav et al., 2023) (which degrades performance
for FFT models), because LoTA naturally trains sparse task vectors. When we use LoTA to merge
multiple models trained on heterogeneous tasks of instruction following, math and summarization,
we get a task-average performance of 21.9% where a merge of FFT models obtains 19.1%.

1

054
055
056
057
058
059
060
061
062
063
064
065
066
067
068
069
070
071
072
073
074
075
076
077
078
079
080
081
082
083
084
085
086
087
088
089
090
091
092
093
094
095
096
097
098
099
100
101
102
103
104
105
106
107

Under review as a conference paper at ICLR 2025

2 BACKGROUND: MULTI-TASK ADAPTATION

In this section, we go over common multi-task adaptation paradigms and discuss the challenges
existing fine-tuning methods, such as FFT and LoRA, bring in each paradigm.

OR

Storing
&

Loading
Adapters

Sequential
Learning

Model
Merging

Adaptation Phase Inference Phase

Picks and loads one of the adapters
for inference. Adapter A for Task A or

adapter B for Task B, etc

Uses the final model after sequentially
fine-tuned on Task A, Task B, etc

Merges adapters fine-tuned for different
tasks, e.g., aggregates adapter A fine-

tuned on Task A, adapter B fine-tuned on
Task B, etc.

Figure 1: Multi-task adaptation: storing and loading adapters, sequential training, model merging.

Storing and Loading Adapters. The first row of Figure 1 shows training task-specific adapters that
are loaded during inference (Ostapenko et al., 2024; Beck et al., 2021; Mangrulkar et al., 2022), de-
pending on the need (Houlsby et al., 2019). Notably, Apple stores and loads adapters to enable their on-
device models (Apple, 2024). While using adapters avoids any interference between tasks, it increases
memory and compute costs as it requires storing and loading task-specific adapters. To mitigate
these costs, a number of parameter-efficient fine-tuning (PEFT) methods have been developed, most
popularly LoRA (Hu et al., 2022) (training adapters in the low-rank space). Services such as Punica
and S-LoRA allow developers to use this approach to serve large numbers of task-specific adapters for
specific requests (Chen et al., 2023; Sheng et al., 2023). However, a persistent gap in capacity between
PEFT methods and FFT has presented a tradeoff between adapter overhead and performance (Hu
et al., 2022; Liu et al., 2024b; Kopiczko et al., 2023; Biderman et al., 2024; Nikdan et al., 2024).

Sequential Training. When we want one model with multi-task abilities, we can fine-tune the
model on different tasks sequentially (Ruder, 2017), e.g., first fine-tune on task A, then fine-tune on
task B, as in the second row of Figure 1. We can also train the model on a mixture of all tasks, which
may require optimizing the data mixture. Fine-tuning the LLM for new tasks with FFT or existing
PEFT methods leads to catastrophic forgetting of earlier tasks. This is problematic, especially for
safety alignment, since we can fine-tune an LLM to be safe but later get this feature erased during
future fine-tuning on new tasks (Lermen et al., 2023). In fact, a number of works have aimed to
mitigate this vulnerability (McCloskey & Cohen, 1989; Dong et al., 2023; Ramasesh et al., 2022;
Luo et al., 2023; Wang et al., 2024), leaving an open research question: Can model developers allow
users to finetune their aligned models on custom datasets while retaining safety?

Model Merging. The third row of Figure 1 shows how we can merge multiple models adapted to
different individual tasks to have a single model adapted to multiple tasks, by aggregating task vectors
(or adapters) of different tasks. Existing model merging techniques either require post-processing
the task vectors through sparsification (Yu et al., 2023; Davari & Belilovsky, 2023; Yadav et al.,
2023), degrading the performance on the task, and/or require extensive hyperparameter tuning for
a weighted aggregation of task vectors (Matena & Raffel, 2022; Xiao et al., 2023b).

Each paradigm of multi-task learning poses different challenges, and different methods have been
proposed to address these challenges. We defer the more in-depth analysis of these proposed methods
in Appendix B because of the sheer quantity of related work that must be covered. The number of
methods itself poses challenges for studying their drawbacks, especially when these methods are
adopted in settings orthogonal to those they were originally developed for (i.e., LoRA leading to catas-
trophic forgetting of safety alignment (Lermen et al., 2023)). Rather than proposing tailored solutions
for each paradigm of multi-task adaptation, we want to propose a simple algorithm that can serve as
an effective foundation across all three paradigms and evaluate it on a wide range of challenging tasks.

2

108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161

Under review as a conference paper at ICLR 2025

3 LOTTERY TICKET ADAPTATION (LOTA)

Algorithm 1 Lottery Ticket Adaptation (LoTA)

Require: Adaptation algorithm A, alignment dataset
D, pre-trained weights wP , sparsity ratio s, learn-
ing rate η, number of calibration iterations T ,
number of sparse training iterations T .

1: Mask Calibration:
2: wF ← wP

3: for τ ∈ 0, . . . , T do
4: ∇ = AD(wF) {Compute gradient for weights}
5: wF = wF − η · ∇ {Update the model}
6: end for
7: Mask Extraction:
8: ∆ = wF − wp {Find the task vector}
9: m = Sparsify(∆, s) {Create the sparsity mask by

thresholding the task vector based on magnitude}
10: Sparse Adaptation:
11: w ← wP

12: for t ∈ {0, . . . , T} do
13: ∇ = AD(w) {Compute gradient for weights}
14: ∇̂ = ∇⊙m {Apply sparse mask to gradient}
15: w = w − η · ∇̂ {Update the model}
16: end for
17: ŵF ← w
output ŵF

The desiderata for each multi-task adap-
tation paradigm motivates the design of
our method. For adapters, we want a
representation that can be easily compressed
for memory efficiency. For sequential
training, we want a representation that
minimizes destructive interference between
the previously learned tasks and tasks to be
learned in the future. For model merging, we
want representations that are mutually sparse
with each other in parameter space to again
prevent destructive interference. We now
propose LoTA, a single method that enjoys
all these features. We first describe the work-
flow of LoTA, then revisit the problems each
multi-task paradigm faces and discuss how
and why LoTA successfully mitigates them.

Lottery Ticket Adaptation (LoTA). LoTA
works in three phases as summarized in
Figure 2: (1) mask calibration, (2) mask
extraction, (3) sparse adaptation. In the
mask calibration phase of LoTA, a base
model with parameters wP is fine-tuned for
T iterations, yielding a fine-tuned model
with parameters wF . Then, in the mask
extraction phase, LoTA extracts a sparsity mask m from the task vector ∆ = wF − wP based on
the magnitude of the updates in ∆. T could be as small as one iteration. In the sparse adaptation
phase of LoTA, the model is first reset to its original state with weights wP . Then the subnetwork
wP ⊙m is fine-tuned for T iterations, while leaving the remaining parameters wP ⊙ (1−m) frozen
at their initial values. We summarize the workflow of LoTA in Figure 2 and Algorithm 1 further.

By confining the adaptation updates within subnetworks (identified by m), LoTA is able to mitigate
destructive interference, e.g., adaptation loss during fine-tuning on future datasets or model
merging, that FFT and LoRA suffer from. We discuss this in more detail under three multi-task
adaptation paradigms below and provide empirical comparisons with FFT and LoRA in Section 5.

-5 1 8 4

2 -4 -1 6

6 6 -3 1

7 3 7 5

5 2 -9 5

0 0

0

0 0

0 0 0

0 0 0 0

00 0 0

0 0 0 0

-5 1 8 4

2 -4 -1 6

6 6 -3 1

7 3 7 5

5 2 -9 5

0.2 0.1

-0.1

0.3 -0.7

-0.4 0.6 0.3

0.1 0.8 0.5 0.4

0.5-0.6 0.1 -0.8

0.3 -0.3 0.5 0.6
 iterations

-5 1 8 4

2 -4 -1 6

6 6 -3 1

7 3 7 5

5 2 -9 5

0

0

0

0 0

0

-5 1 8 4

2 -4 -1 6

6 6 -3 1

7 3 7 5

5 2 -9 5
 iterations

-0.6

0.5

0.6

-0.7 -0.9

0.8

Mask
Extraction

Sparse
Adaptation

Mask
Calibration

Figure 2: Lottery Ticket Adaptation (LoTA): (1) Mask calibration via FFT for T iterations, (2)
Extracting the sparsity mask m from the task vector ∆, (3) Restarting from the pretrained model and
doing sparse fine-tuning with sparsity mask m for T iterations to get the final LoTA model.

3

162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215

Under review as a conference paper at ICLR 2025

(1) Storing & Loading Compressible Adapters Without Compromising Performance. LoRA
restricts the adaptation updates to have a low rank, which may be insufficient for complex downstream
tasks (Nikdan et al., 2024; Biderman et al., 2024). In parallel, recent work (Isik et al., 2023) on
compressing the delta between the fine-tuned and pre-trained model ∆ = wF − wP suggests that
FFT updates are highly compressible through a simple magnitude-based sparsification. LoTA
exploits this underlying sparsity during fine-tuning and obtains better performance than LoRA, while
requiring fewer parameters to be trained. As we will show, LoTA adapters can be stored efficiently
because of the small number of parameters that need to be updated. LoTA also requires fewer
parameters to be updated in the model when the adapter is applied to the model, so loading a LoTA
adapter can be faster than loading a LoRA adapter.

Algorithm 2 Lottery Ticket Together Optimization
(LoTTO)

Require: Alignment dataset sequence DN
i=1, pre-

trained weights wP , LoTA hyperparameter set
H.

1: C = 0 {Initialize constraint set}
2: wi = wP

3: for D ∈ DN
i=1 do

4: mC
i = C {Create mask from constraint set}

5: wC
i = wi −∇ ⊙mC

i {Train model with con-
straint mask}

6: mS
i = Sparsify(wC

i − wi) {Extract sparse
mask from trained model}

7: wF
i = wi −∇⊙mS

i {Train model with sparse
mask}

8: C = C ∪mS
i {Update constraints}

9: end for
output ŵF

N

(2) Preventing Catastrophic Forgetting
During Sequential Training by Mitigating
Destructive Interference. Without loss of
generality, suppose we have two tasks, Task
A and Task B, and that after training on Task
A our model performs well on Task A but
not on Task B, and after training the same
model on Task B our model performs well
on Task B but not on Task A. We believe
one underlying cause for this catastrophic
forgetting is that parameters containing im-
portant information for a task are updated
in other –almost certainly orthogonal– direc-
tions during continued training; we refer to
this as destructive interference. A natural
method to mitigate destructive interference
is to ensure that the model updates disjoint
sets of parameters for Task A and Task B. To
enhance the robustness against destructive
interference in sequential training, we propose Lottery Ticket Together Optimization (LoTTO)
which learns mutually sparse (i.e., non-overlapping) masks for sequentially learned tasks.

Mitigating Destructive Interference via Lottery Ticket Together Optimization (LoTTO). Sup-
pose that we have already learned Task A with LoTA. LoTTO calibrates a sparsity mask for Task B by
first training a model where the only weights that can be updated are those that are not updated when
running LoTA on Task A, and then using a sparse set of those weights to train the final model. In
doing so, LoTTO ensures that the weights updated for Task A are disjoint from the weights updated
for Task B. LoTTO enables learning new tasks without forgetting old ones, by restricting weight
adaptations to not interfere with the weights that were important for previous adaptations, therefore
mitigating destructive interference. This procedure can be applied inductively to enable sequential
adaptation to multiple tasks, so that a model developer seeking to adapt a model adapted with LoTA
(potentially on several tasks), just needs to ensure that they do not update the task vector with respect
to the base model. LoTTO can be applied to capabilities one at a time; first the model learns math,
then coding, then reasoning, then planning, etc. because each of these capabilities benefits from prior
knowledge. We train on up to 4 tasks sequentially, but optimistically if we believe we can update 1%
of the weights for each capability, then LoTTO can fit at most 100 capabilities. When the subnetworks
for different tasks overlap, we do not expect that LoTTO will result in any worse forgetting than
LoTA, which we will show itself has better robustness to forgetting than FFT. We will also show that
LoTTO on sequential tasks outperforms the common practice of training on a mixture of tasks.

(3) Model Merging Across Heterogeneous Tasks. Existing model merging methods have been
shown to merge models trained on relatively similar language datasets (Wortsman et al., 2022; Jin
et al., 2022; Zhang et al., 2023a), typically via a post hoc sparsification (Yadav et al., 2023; Yu et al.,
2023; Davari & Belilovsky, 2023) of the task vectors. This ensures the task vectors are disjoint – hence
limiting destructive interference – but also degrades the performance of each individual task. LoTA
enforces sparsity during fine-tuning and directly trains sparse task vectors, obviating the need for post
hoc sparsification. LoTA’s advantage over methods such as TIES (Yadav et al., 2023) is similar to the
advantage of training a model with an intelligently chosen sparsity constraint throughout training (as in
the original lottery ticket hypothesis (Frankle & Carbin, 2019)) over pruning parameters after training.

4

216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269

Under review as a conference paper at ICLR 2025

4 EXPERIMENTAL SETUP

In this section, we provide details of the experimental setup, including the baselines, model, dataset,
and metric selection. We present the results later in Section 5. We share our anonymized code.
We are limited to an academic computing budget, and all results are conducted with a single A100
GPU. We typically do 1− 3 epochs of training for each dataset as this is a standard choice in LLM
fine-tuning. We use the RMSProp optimizer with default hyperparameters.

Baselines & Hyperparameters. Across all three multi-task adaptation paradigms, we compare LoTA
against FFT and LoRA. We extensively tune the hyperparameters for FFT and LoRA to ensure that
we are comparing against strong baselines. We do not tune hyperparameters for LoTA and directly
transfer the hyperparameters from FFT. We fix the sparsity ratio hyperparameter in LoTA to 90%.

Models. We use two commonly-used open-weights model families, Mistral Jiang et al. (2023) and
Llama 3 (AI@Meta, 2024; Touvron et al., 2023), specifically Mistral-7B and Llama-3-8B – the
largest models we can adapt with FFT on a single GPU.

Tasks. We consider six capabilities: instruction following, safety, math, coding, summarization,
and reasoning. We now briefly discuss each capability, the datasets we use to fine-tune and evaluate
the presented methods, and the motivation behind the choices.

Instruction Following. The most widely-used instruction-tuned LLMs are the “Instruct” or “chat”
versions of base models, such as Llama-3-8B-Instruct (AI@Meta, 2024). This is because the process
of tuning models on human instructions aligns models to human preferences across a range of
tasks (Ouyang et al., 2022). For this, we adapt models to data from UltraFeedback (Cui et al.,
2023), which contains a mixture of datasets covering truthfulness, honesty, and helpfulness in
addition to instruction-following. We measure the instruction following ability by length-controlled
AlpacaEval2 Win Rate (Li et al., 2023), which we refer to as “winrate”. A high winrate means that
GPT-4 (OpenAI, 2023) prefers the responses of our model on a set of representative prompts over its
own responses. Winrate is the metric most closely correlated with human rating preference (Dubois
et al., 2024). Another common benchmark for “chat” models is MT-Bench (Zheng et al., 2023),
but there is a significant degree of data contamination between MT-Bench and other task-specific
training datasets (Yu et al., 2024)–hence, we do not evaluate on MT-Bench.

Reasoning. We train on the standard set of 8 commonsense reasoning tasks (Christopher et al., 2019;
Bisk et al., 2019; Sap et al., 2019; Zellers et al., 2019; ai2, 2019; Clark et al., 2018; Mihaylov et al.,
2018) (Boolq, PIQA, SocialIQA, Hellaswag, Winograde, ARC-easy, ARC-challenge, OpenBookQA)
and report the exact-match accuracy on the test set. As a representative task, we use ARC-easy.

Math. We use the set of 9 math instruction datasets from (Yue et al., 2023) for fine-tuning and report
performance on the test set of GSM8k (Cobbe et al., 2021). When only considering a single task,
we choose GSM8k as the representative task as it is commonly used as a single training and test
task by other papers.

Code Generation. We use data that instructs the model to write SQL queries given some con-
text (b mc2, 2023)(SQL-create-context) and report the ROUGE-1 F1 score (Lin, 2004) on the test set.

Summarization. We use Samsum (Gliwa et al., 2019), reporting ROUGE-1 F1 score on the test set.

Safety. A recent concern in AI policy is that, while frontier models such as GPT-3.5/GPT-4 are
aligned, they can also be fine-tuned and this presents an opportunity to misalign them. Recently, Qi
et al. (2023) show that by fine-tuning GPT-3.5 on just 100 harmful examples for a few epochs, they
can ask it to answer harmful queries that it ordinarily would refuse, and Zhan et al. (2024) show the
same for GPT-4. Lermen et al. (2023) show that this can be done with LoRA rather than the fine-
tuning method OpenAI are using in their fine-tuning API (presumably FFT). We evaluate the safety of
our models on HEx-Phi (Qi et al., 2023), a dataset of 330 questions spanning multiple categories such
as malware, fraud, etc. The safety score is the percentage of harmful queries that the model refuses
to respond. Aligned models (Llama-3-Instruct) will refuse 100% of harmful queries, but because
we are aligning base models ourselves, our baseline Instruct model only gets 93%. Because we are
interested in measuring the forgetting of safety alignment, we do not see this as a major limitation.

Roadmap of the Evaluation. We vary hyperparameters (Section 5), consider single-task
adapters (Section 5.1), sequential training (Section 5.2), and model merging (Section 5.3).

5

https://anonymous.4open.science/r/lottery-ticket-adaptation-D665/README.md

270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323

Under review as a conference paper at ICLR 2025

5 EXPERIMENTAL RESULTS

We first evaluate the impact of varying the sparsity and mask calibration.

Sparsity. We vary the sparsity parameter in LoTA in Table 1. Multiple sparsity thresholds work well;
some values with less sparsity (30%) seem to negatively impact performance and extreme sparsity
seems to improve performance 99% but both deviations are within 2% of FFT.

Table 1: The impact of varying the sparsity of LoTA. GSM8k finetuning with Mistral-7B.

Sparsity 0% (FFT) 10% 20% 30% 40% 50% 60% 70% 80% 90% 95% 99%

Performance 59.8 60.5 60.2 57.9 57.8 59.4 59.1 59.2 60.7 60.4 60.4 62.00.3

Table 2: LoTA performance on GSM8k degrades gracefully as a smaller fraction of the data is used
to calibrate a 90% sparse mask. 0 data usage corresponds to creating a random mask.

Data Used 100% 10% 1% 0.1% 0

Accuracy (GSM8k) 60.41.3 60.11.1 60.01.7 59.21.3 54.0

Calibrating the LoTA Mask Efficiently. In Table 2, we consider how the performance drops if
we calibrate a 90% sparse mask on a fraction of the overall GSM8k dataset, including the baseline
where we use a random mask which corresponds to 0% data used. We find that a 90%-sparse
mask can achieve good performance on GSM8k with just a single step of calibration (calibration
dataset size= 0.1% of the full dataset). Furthermore, instruction tuning datasets are generally quite
small (finetuning on GSM8k takes less than an hour on a single GPU). Given that the mask can
be efficiently calibrated, transferred from other datasets (as we will show), or in the worst case,
calibrated on the entire dataset in at most a few hours, we do not anticipate that the compute overhead
of LoTA will be a major limitation of the method.

Next, we compare LoTA with baselines, FFT and LoRA, across all three paradigms of multi-task
adaptation. We run all the methods for the same number of steps, i.e., the calibration time for LoTA is
factored in. Unless stated otherwise, LoTA has 90% sparsity where the mask is calibrated by training
for 1% of the adaptation dataset. We choose this sparsity level rather than the 99% sparsity level that
sometimes outperforms FFT because we can compare the improvements of LoTA that are due to the
method’s mitigation of destructive interference, rather than any inherent advantage sparsity may have.

5.1 ADAPTING TO A SINGLE TASK

We first fit an adapter to each dataset starting from a pre-trained base model, i.e., one adapter per
task. In Table 3, we find that LoTA outperforms LoRA and performs similarly to FFT. Although
LoRA is able to achieve similar performance to LoTA on the easier tasks, such as SQL, Samsum,
there is a clear gap in performance on the more challenging tasks, such as Instruction Following
and GSM8k. LoTA consistently recovers the performance of FFT.

Table 3: Performance comparison of Full Finetuning (FFT), LoRA and LoTA on single-task datasets
for 3 epochs. We report the winrate on instruction following, the accuracy of exact match on the
reasoning and math tasks, and the ROUGE-1 score on the SQL generation and summarization tasks.
LoTA outperforms LoRA on the challenging tasks of instruction following, reasoning, and math,
obtaining comparable performance to FFT. bold: best method, underline: second best method.

Model Method Instruction Following Reasoning GSM8k SQL Summarization

Mistral
FFT 19.00.98 85.8 59.81.0 98.90.1 52.00.2

LoRA 15.30.8 86.8 58.31.1 98.90.1 52.90.3
LoTA (ours) 19.00.7 87.5 60.41.1 98.90.1 52.90.2

Llama 3
FFT 17.610.8 84.8 63.40.1 99.40.1 53.61.9

LoRA 14.20.8 84.1 62.30.4 98.70.1 52.30.2
LoTA (ours) 18.00.7 84.4 64.20.7 99.00.1 52.30.3

6

324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377

Under review as a conference paper at ICLR 2025

5.2 SEQUENTIAL TRAINING

During sequential training, a model is first adapted to one capability (Task A) and then to another
capability (Task B) (such as when creating a specialized model for math) or a set of capabilities (the
most common setting for open-sourced fine-tunes of frontier models). The main challenges we seek
to mitigate are (1) catastrophic forgetting of Task A and (2) the inability to adapt to Task B.

Table 4: Comparison of FFT and LoRA baselines with our LoTTO method, which calibrates masks on
Task A (GSM8k) and Task B (Commonsense), where “Mask B” is disjoint from Mask A. Alternating
freeze applies to odd and even layers, respectively. The model is Mistral7B.

Method Task A Task A Params Task B Task B Params

FFT (baseline) 59.8 - - -
LoRA (baseline) 58.3 - - -

FFT 2.3 All 86.4 All
LoRA 4.2 All 86.3 All
FFT 2.4 Odd Layers 86.15 Even Layers

LoRA 47.26 Odd Layers 84.9 Even Layers
LoTTO (ours) 57.81 Mask A 85.12 Mask B

LoTTO Mitigates Destructive Interference. Table 4 compares LoTTO to FFT and LoRA when
training first on GSM8k and then on Reasoning; LoTTO obtains the best performance across both
tasks because it mitigates the destructive interference that leads to catastrophic forgetting. We now
do a detailed comparison to LoRA, proposing a new method in our effort to compare LoTTO to the
strongest possible baselines.

LoRA Does Not Significantly Reduce Catastrophic Forgetting of Capabilities Learned During
Finetuning. First, note that LoRA loses nearly all performance on Task A when training on Task
B. This observation may seem contrary to the results in (Biderman et al., 2024). However, they
measure forgetting as the degradation in performance on standard benchmark tasks between the
pretrained model and the finetuned model, whereas we measure forgetting as the degradation on Task
A between the model finetuned on Task A and the model finetuned on first Task A and then Task B.
We speculate that the discrepancy is that knowledge learned through the pretraining process may be
far more persistent than knowledge learned through finetuning. Indeed, LoRA does forget less than
FFT –just not enough to make a difference when training with LoRA on both tasks.

LoRA Can Also Mitigate Destructive Interference, But Not As Well as LoTTO. A key insight
into the design of LoTTO is that we can mitigate destructive interference between different tasks by
forcing the tasks to update disjoint sets of parameters. LoTTO carefully calibrates the disjoint subsets
by pruning the weights that were updated the most after a small amount of finetuning on the dataset.
We can also extend this insight to try and mitigate destructive interference in FFT and LoRA. We do
this by proposing an “alternating freeze” strategy, where the odd layers can only be trained on Task A
and the even layers can only be trained on Task B. LoRA already struggles to fit complex tasks such
as math (Task A is GSM8k) and the alternating freeze further restricts LoRA’s representative capacity.
Therefore, while the alternating freeze does forget less, and on easy tasks such as commonsense
reasoning, there is no significant gap between LoRA and LoTA, the gap on the challenging Task A is
hard to overcome because it is partially due to the inherent gap in performance between LoRA and
LoTA and partially due to LoTA’s limited forgetting as compared to LoRA. We note that LoTA can
also be combined with LoRA, by fixing the A matrix in LoRA as a random projection (Zhang et al.,
2023b) and tuning the B matrix with LoTA; this could be an interesting piece of future work.

Sequential Training Under LoTTO Outperforms Mixing Datasets Together. We compare our
LoTTO method, that trains disjoint LoTA adapters sequentially on each dataset, to FFT on a mixture
of Instruction Following and the dataset noted in Task B. LoTTO under sequential training consistently
outperforms the common practice of mixing all datasets together and doing FFT. We note that LoTA
can also be used in the setting of mixing all datasets together, by routing each sample of a given
dataset to a GPU –specific to that dataset– that applies the corresponding LoTA mask for that dataset.

7

378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431

Under review as a conference paper at ICLR 2025

Table 5: We compare our LoTTO method, that trains disjoint LoTA adapters sequentially on each
dataset, to FFT on a mixture of Instruction Following and the dataset noted in Task B. LoTTO under
sequential training consistently outperforms the common practice of mixing all datasets together and
doing FFT.

Task B Method Utility of Task A (Drop) Utility of Task B (Drop)

GSM8k FFT-Mixing (baseline) 15.2 (3.8) 54.5 (5.3)
LoTTO (ours) 17.8 (1.2) 59.1 (0.7)

Reasoning FFT-Mixing (baseline) 10.7 (8.3) 81.3 (4.5)
LoTTO (ours) 16.5 (2.5) 83.7 (2.1)

GSM8k+Arc+SQL FFT-Mixing (baseline) 13.8 (5.2) 73.6 (4.4)
LoTTO (ours) 15.9 (3.1) 73.8 (3.2)

Mitigating Catastrophic Forgetting While Enabling Adaptation to Downstream Datasets.
In Table 6, we consider a range of method combinations for a simplified setting where we seek to
adapt an Instruct model to Math data without catastrophic forgetting. We will go row-by-row through
the table and analyze each set of results. Even when training on just a single, relatively small dataset,
FFT in both phases suffers a significant drop in winrate. An easy way to mitigate this is to simply
train the initial Instruct model with LoTA. Following this, FFT on GSM8k does not significantly
reduce winrate. However, it does present a potentially unwelcome tradeoff in task accuracy. For
this, we turn to LoTTO, which achieves the best performance across both tasks.

Table 6: Sequential learning first on Task A (Instruction Following) then on Task B (varied). Fine-
tuning on Tasks A and B is performed using both FFT and LoTA. The utility of each task is computed
after fine-tuning on Task B is completed. Note that there is no utility when we fine-tune on harmful
data to evaluate the catastrophic forgetting of Safety, and the baseline is the safety score of the Instruct
model. FT=Fine-tuning. We reproduce the baseline of doing FFT on each method independently as
reported in Table 3 for convenience; note that on the reasoning task LoTA outperforms FFT. bold:
best method, underline second-best method; we do not report second-best when only two methods
are presented. All results are with Mistral. We reuse the same mask for LoTTO calibrated on GSM8k
for MathInstruct, Reasoning, GSM8k+Arc+SQL and Safety.

Task B Method on Task A Method on Task B Utility of Task A (Drop) Utility of Task B (Drop)

Instruction Following Baseline - 19.0 (-) -

GSM8k

- Baseline - 59.8 (-)
FFT FFT 15.2 (3.8) 58.3 (1.5)

LoTA (ours) FFT 17.7 (1.3) 58.7 (1.1)
FFT LoTA (ours) 15.9 (3.1) 54.2 (5.6)

LoTA (ours) LoTTO (ours) 17.8 (1.2) 59.1 (0.7)
FFT LoRA 14.1 (4.2) 55.5 (4.9)

LoRA LoRA 13.7 (5.3) 58.8 (1.0)
FFT FFT (Replay) 16.3 (2.7) 55.5 (4.3)

MathInstruct - Baseline - 56.7 (-)
FFT FFT 14.20.8 (4.8) 51.30.2 (5.4)

LoTA (ours) LoTA (ours) 16.00.7 (−3.0) 55.50.1 (1.2)

Reasoning
- Baseline - 85.8 (-)

FFT FFT 0.20.1 (18.8) 82.3 (3.5)
LoTA (ours) LoTTO (ours) 16.50.9 (2.5) 83.7 (2.1)

GSM8k+Arc+SQL

- Baseline - 77.0
FFT FFT 0.50.2 (18.6) 75.0 (2.0)

LoTA (ours) FFT 11.50.7 (7.5) 75.4 (1.6)
LoTA (ours) LoTTO (ours) 15.90.9 (3.1) 73.8 (3.2)

Safety
Baseline - 93.1 (-) -

FFT FFT 19.13.5 (73.9) -
LoTA (ours) LoTTO (ours) 63.42.2 (29.7) -

8

432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485

Under review as a conference paper at ICLR 2025

How Much Does Data Reuse Help? The simplest and arguably most performant method from prior
work that we found for mitigating catastrophic forgetting is simply to replay in some in-distribution
data from Task A. This is the line marked with “FFT (Replay)”, and it does mitigate forgetting on
Task A, but at the cost of performance on Task B. We ablate the amount of data from Task A to be
used between 1 − 100% of the dataset size of the data from Task B, and this is the best result in
terms of mitigating forgetting on Task A. As we mix in less and less data from Task A, this method
approaches just doing FFT sequentially in performance, so we omit those results for brevity.

Adapting Sequentially to Multiple Tasks with LoTTO. We now consider the more challenging
setting when we need to adapt to multiple tasks without catastrophic forgetting while still obtaining
good performance on those tasks. In Table 6, we adapt an Instruct model to a mix of reasoning, math,
and SQL data and find a surprising result; the FFT Instruct model collapses almost completely to
a winrate of less than half a percent. As we showed in Table 6, this can be mitigated by mixing
in more instruction following data, albeit at a cost. The LoTA Instruct model still degrades in
performance (19 → 11) but nowhere near as much. In the line marked “LoTTO”, we instead
adapt the LoTA Instruct model to the downstream tasks using the mask calibrated from GSM8k
with LoTTO. Applying LoTTO to make the downstream adaptation be mutually sparse with the
initial LoTA Instruct model increases performance significantly on instruction following and math.
Performance on Arc and SQL suffers somewhat because our mask does not consider those tasks, but
this means that our mask is much cheaper to calibrate and is, in fact, generalizable not only across
tasks within a domain (as shown in Table 6) but also across domains.

Mitigating Catastrophic Forgetting of Safety Alignment. In the “Safety” row of Table 6, we
consider fine-tuning the Mistral Instruct model we trained ourselves on the 100 harmful instructions
from (Qi et al., 2023). The baseline model gets a score of 93% and training with FFT quickly
degrades safety. Adapting the LoTA Instruct with LoTTO (again, with the LoTTO mask calibrated
from GSM8k) mitigates this safety drop significantly, even though our LoTTO mask was calibrated
on an extremely different dataset. Therefore, a potential mitigation would be for an entity providing a
fine-tuning API such as OpenAI to do the safety training with LoTA, calibrate the LoTTO mask on
a utility dataset, and then do fine-tuning on their client’s dataset with LoTTO. We do not intend to
present our method as an active defense against fine-tuning attacks; although finetuning with LoTTO
improves safety, given sufficient data and access to the model weights, any attacker can of course
undo safety tuning entirely. However, catastrophic forgetting of safety alignment is an important
problem with real-world applications, and we find it compelling that our method can mitigate this.

5.3 LOTA FOR MODEL MERGING

We now consider the setting of model merging, where we train models on disjoint datasets fully
in parallel and then merge together the task vectors with the goal of producing a model with good
performance on multiple tasks. Prior work in model merging mostly considers merging similar
datasets, such as the commonsense reasoning datasets, but it is relatively easy to merge models when
the datasets are similar and becomes increasingly hard as the datasets become more heterogeneous
due to the gradient mismatch (Daheim et al., 2024). We consider merging models trained on
heterogeneous datasets.

Merging Models. We use TIES-Merging (Yadav et al., 2023) as a baseline to merge models
trained on heterogeneous tasks, because it outperformed other merging methods in our testing. TIES
performs post-hoc sparsification on each task vector and requires a 2-D hyperparameter search for
this quantity, which we perform for the merge of FFT models. Naturally, we could optimize the
performance of Task A by fully sparsifying Task B, and vice versa; we report the result that achieves
good performance on Task B while maintaining some performance on Task A, and report the full
range of hyperparameters in Appendix A. LoTA is inherently sparse, so when we merge a LoTA
model with an FFT model we do not need to perform hyperparameter search on the LoTA model,
and we use the same level of sparsity for the FFT model that we obtained when merging together
two FFT models. When merging two LoTA models together, no hyperparameter search is required at
all as both models are inherently sparse. We could in theory sparsify the LoTA models beyond their
existing levels with post-hoc sparsification, but we do not tune this hyperparameter.

Challenge of Overlapping Sparsity in Model Merging. In the sequential training paradigm, we
exploited the fact that masks for different tasks have a significant overlap in order to generalize our

9

486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539

Under review as a conference paper at ICLR 2025

LoTTO mask calibrated on GSM8k to provide robustness to forgetting across a range of other tasks.
However, this same phenomenon of overlapping sparsity presents a challenge in the model merging
setting. The challenge is that because the merging is parallel, we cannot use LoTTO to calibrate the
masks to be disjointly sparse as we did in the sequential training setting. One alternative is to enforce
random disjoint masks for each task, corresponding to “0% Data Used” in Table 2.

Table 7: Model merging using TIES of Task A, Instruction Following, and Task B, (varied;
GSM8k+Samsum means we are merging 3 models). Fine-tuning on Tasks A and B is performed
using both full fine-tuning (FFT) and LoTA. The utility of each task is computed after merging the
two task vectors. bold: best result, underline: second best result. We reproduce the baseline for
each task on FFT from Table 3 for convenience; note again that for some tasks the LoTA baseline
outperforms the FFT baseline. All results are with Mistral.

Task B Method on Task A Method on Task B Utility of Task A (Drop) Utility of Task B (Drop)

Instruction Following Baseline - 19.0 (-) -

GSM8k+Samsum

- Baseline - 55.9 (-)
FFT FFT 7.60.6 (11.4) 49.71.1 (6.2)

LoRA LoRA 8.50.5 (10.5) 44.31.0 (11.6)
LoTA (ours) FFT 8.90.6 (10.1) 50.71.1 (5.2)

FFT LoTA (ours) 10.70.7 (8.3) 55.01.1 (0.9)
LoTA (ours) LoTA (ours) 13.10.8 (5.9) 46.61.0 (9.3)

GSM8k

- Baseline - 59.8 (-)
FFT FFT 6.90.5 (12.1) 59.10.1 (0.7)

LoTA (ours) FFT 16.10.8 (2.9) 60.51.1 (+0.7)
FFT LoTA (ours) 14.00.8 (5.0) 59.31.0 (0.5)

LoTA (ours) LoTA (ours) 15.10.8 (3.9) 58.41.1 (1.5)

Samsum

- Baseline - 52.0 (-)
FFT FFT 8.10.7 (10.9) 47.00.0 (5.0)

LoTA (ours) FFT 13.80.8 (5.2) 51.80.2 (0.2)
FFT LoTA (ours) 10.40.7 (8.6) 53.30.1 (+1.3)

LoTA (ours) LoTA (ours) 15.40.9 (3.6) 52.70.1 (0.1)

In Table 7 we merge together models trained on GSM8k and Samsum with the Mistral model that
we trained for instruction following. We consider the full combination of merging FFT and LoTA
models. The merge of two FFT models performs poorly in all settings on both tasks, indicating that
post-hoc sparsification does not perform well for heterogeneous tasks, which is in line with recent
model merging theory (Daheim et al., 2024). Merging LoRA models together does not particularly
improve performance. The merges that contain LoTA models have better performance across all
tasks, but there is no combination that is pareto-optimal across all tasks. One avenue to improve
LoTA for model merging may be to assume that each participant has a small sample from other
participants’ datasets to perform a joint LoTA calibration procedure.

6 DISCUSSION

We propose Lottery Ticket Adaptation (LoTA), a sparse alignment framework that fine-tunes only a
sparse subnetwork of the base model, leaving the rest of the parameters frozen. LoTA successfully
mitigates destructive interference (a problem with existing fine-tuning methods including FFT and
LoRA) in many multi-task adaptation paradigms, prevents catastrophic forgetting of earlier tasks,
including safety, and allows for successful model merging of even dramatically different tasks.

Limitations. As mentioned in Section 5, LoTA does not provide the compute efficiency of LoRA. If
the adapter needs to be compressed by more than 100×, LoTA may not provide sufficient compression.
We evaluate on instruction following, reasoning, math, SQL generation, and summarization, yet even
more tasks exist such as Python code generation, classification, or long-context question answering.
We compare LoTA to baselines (LoRA, TIES) but other PEFT and merging methods exist. In a future
revision of this paper, we plan to provide comparisons to a broader range of PEFT (Liu et al., 2024b)
and merging (Yu et al., 2023) methods. All LoTA masks are unstructured, so we do not reap the
runtime benefits of structured sparsity. We only explore magnitude pruning for LoTA, but many other
methods have been proposed in the literature, as we discuss in Appendix B, and may perform better.

10

540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593

Under review as a conference paper at ICLR 2025

Reproducibility Statement. As requested by ICLR, we are providing a brief statement on
reproducibility. We provide an anonymous link to our codebase in Appendix A, where all the results
in the paper can be reproduced. We made efforts to create strong baselines for ourselves by tuning
hyperparameters, whose ranges we report in Appendix A, and by creating what we believe is a new
method in the form of the “alternating freeze” baseline. The script “continual learning”, for instance,
reproduces Table 4 end to end on publicly available datasets. In the main text, we provided details on
the datasets we used, all of which are publicly available and in fact are provided in our repository
along with the prompts and code we used to train and evaluate on that data, and our reasoning
for choosing those datasets. We fine-tuned models that are publicly available on Huggingface, but
because we have academic compute restrictions we had to create code that fine-tunes Mistral-7B and
Llama-3-8B on a single GPU, which we provided in the repository so that other researchers can more
easily reproduce our results (typically, instruction tuning these models requires 8 GPUs, as in the
popular Alignment Handbook repository’s scripts). We plan to open source our code and upstream
our LoTA method to Huggingface to further aid in reproducibility.

REFERENCES

Winogrande: An adversarial winograd schema challenge at scale. 2019.

AI@Meta. Llama 3 model card. 2024. URL https://github.com/meta-llama/llama3/blob/
main/MODEL CARD.md.

Rahaf Aljundi, Francesca Babiloni, Mohamed Elhoseiny, Marcus Rohrbach, and Tinne Tuytelaars.
Memory aware synapses: Learning what (not) to forget. In Proceedings of the European conference
on computer vision (ECCV), pp. 139–154, 2018.

Apple. Apple adapters, 2024. https://machinelearning.apple.com/research/introducing-apple-
foundation-models.

b mc2. sql-create-context dataset, 2023. URL https://huggingface.co/datasets/b-mc2/
sql-create-context. This dataset was created by modifying data from the following sources:
Zhong et al. (2017); Yu et al. (2018).

Tilman Beck, Bela Bohlender, Christina Viehmann, Vincent Hane, Yanik Adamson, Jaber Khuri,
Jonas Brossmann, Jonas Pfeiffer, and Iryna Gurevych. Adapterhub playground: Simple and flexible
few-shot learning with adapters. arXiv preprint arXiv:2108.08103, 2021.

Dan Biderman, Jose Gonzalez Ortiz, Jacob Portes, Mansheej Paul, Philip Greengard, Connor Jen-
nings, Daniel King, Sam Havens, Vitaliy Chiley, Jonathan Frankle, Cody Blakeney, and John P.
Cunningham. Lora learns less and forgets less, 2024.

Yonatan Bisk, Rowan Zellers, Ronan Le Bras, Jianfeng Gao, and Yejin Choi. Piqa: Reasoning about
physical commonsense in natural language, 2019.

Tom Brown, Benjamin Mann, Nick Ryder, Melanie Subbiah, Jared D Kaplan, Prafulla Dhariwal,
Arvind Neelakantan, Pranav Shyam, Girish Sastry, Amanda Askell, Sandhini Agarwal, Ariel
Herbert-Voss, Gretchen Krueger, Tom Henighan, Rewon Child, Aditya Ramesh, Daniel Ziegler,
Jeffrey Wu, Clemens Winter, Chris Hesse, Mark Chen, Eric Sigler, Mateusz Litwin, Scott Gray,
Benjamin Chess, Jack Clark, Christopher Berner, Sam McCandlish, Alec Radford, Ilya Sutskever,
and Dario Amodei. Language models are few-shot learners. In H. Larochelle, M. Ranzato,
R. Hadsell, M.F. Balcan, and H. Lin (eds.), Advances in Neural Information Processing Systems,
volume 33, pp. 1877–1901. Curran Associates, Inc., 2020. URL https://proceedings.neurips.
cc/paper files/paper/2020/file/1457c0d6bfcb4967418bfb8ac142f64a-Paper.pdf .

Lequn Chen, Zihao Ye, Yongji Wu, Danyang Zhuo, Luis Ceze, and Arvind Krishnamurthy. Punica:
Multi-tenant lora serving, 2023.

Clark Christopher, Lee Kenton, Chang Ming-Wei, Kwiatkowski Tom, Collins Michael, and Toutanova
Kristina. Boolq: Exploring the surprising difficulty of natural yes/no questions. In NAACL, 2019.

Peter Clark, Isaac Cowhey, Oren Etzioni, Tushar Khot, Ashish Sabharwal, Carissa Schoenick, and
Oyvind Tafjord. Think you have solved question answering? try arc, the ai2 reasoning challenge.
arXiv:1803.05457v1, 2018.

11

https://github.com/meta-llama/llama3/blob/main/MODEL_CARD.md
https://github.com/meta-llama/llama3/blob/main/MODEL_CARD.md
https://huggingface.co/datasets/b-mc2/sql-create-context
https://huggingface.co/datasets/b-mc2/sql-create-context
https://proceedings.neurips.cc/paper_files/paper/2020/file/1457c0d6bfcb4967418bfb8ac142f64a-Paper.pdf
https://proceedings.neurips.cc/paper_files/paper/2020/file/1457c0d6bfcb4967418bfb8ac142f64a-Paper.pdf

594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647

Under review as a conference paper at ICLR 2025

Karl Cobbe, Vineet Kosaraju, Mohammad Bavarian, Mark Chen, Heewoo Jun, Lukasz Kaiser,
Matthias Plappert, Jerry Tworek, Jacob Hilton, Reiichiro Nakano, Christopher Hesse, and John
Schulman. Training verifiers to solve math word problems. arXiv preprint arXiv:2110.14168,
2021.

Michael Crawshaw. Multi-task learning with deep neural networks: A survey. arXiv preprint
arXiv:2009.09796, 2020.

Ganqu Cui, Lifan Yuan, Ning Ding, Guanming Yao, Wei Zhu, Yuan Ni, Guotong Xie, Zhiyuan Liu,
and Maosong Sun. Ultrafeedback: Boosting language models with high-quality feedback, 2023.

Nico Daheim, Thomas Möllenhoff, Edoardo Ponti, Iryna Gurevych, and Mohammad Emtiyaz Khan.
Model merging by uncertainty-based gradient matching. In The Twelfth International Conference
on Learning Representations, 2024. URL https://openreview.net/forum?id=D7KJmfEDQP.

MohammadReza Davari and Eugene Belilovsky. Model breadcrumbs: Scaling multi-task model
merging with sparse masks. arXiv preprint arXiv:2312.06795, 2023.

Tim Dettmers, Mike Lewis, Younes Belkada, and Luke Zettlemoyer. Gpt3. int8 (): 8-bit matrix
multiplication for transformers at scale. Advances in Neural Information Processing Systems, 35:
30318–30332, 2022.

Tim Dettmers, Artidoro Pagnoni, Ari Holtzman, and Luke Zettlemoyer. Qlora: Efficient finetuning
of quantized llms. Advances in Neural Information Processing Systems, 36, 2023a.

Tim Dettmers, Ruslan Svirschevski, Vage Egiazarian, Denis Kuznedelev, Elias Frantar, Saleh Ashk-
boos, Alexander Borzunov, Torsten Hoefler, and Dan Alistarh. Spqr: A sparse-quantized represen-
tation for near-lossless llm weight compression. arXiv preprint arXiv:2306.03078, 2023b.

Guanting Dong, Hongyi Yuan, Keming Lu, Chengpeng Li, Mingfeng Xue, Dayiheng Liu, Wei Wang,
Zheng Yuan, Chang Zhou, and Jingren Zhou. How abilities in large language models are affected
by supervised fine-tuning data composition. arXiv preprint arXiv:2310.05492, 2023.

Shihan Dou, Enyu Zhou, Yan Liu, Songyang Gao, Jun Zhao, Wei Shen, Yuhao Zhou, Zhiheng Xi,
Xiao Wang, Xiaoran Fan, et al. Loramoe: Revolutionizing mixture of experts for maintaining
world knowledge in language model alignment. arXiv preprint arXiv:2312.09979, 2023.

Yann Dubois, Balázs Galambosi, Percy Liang, and Tatsunori B Hashimoto. Length-controlled
alpacaeval: A simple way to debias automatic evaluators. arXiv preprint arXiv:2404.04475, 2024.

Ali Edalati, Marzieh Tahaei, Ivan Kobyzev, Vahid Partovi Nia, James J Clark, and Mehdi
Rezagholizadeh. Krona: Parameter efficient tuning with kronecker adapter. arXiv preprint
arXiv:2212.10650, 2022.

Jonathan Frankle and Michael Carbin. The lottery ticket hypothesis: Finding sparse, trainable
neural networks. In International Conference on Learning Representations, 2019. URL https:
//openreview.net/forum?id=rJl-b3RcF7.

Jonathan Frankle, Gintare Karolina Dziugaite, Daniel Roy, and Michael Carbin. Pruning neural
networks at initialization: Why are we missing the mark? In International Conference on Learning
Representations, 2021. URL https://openreview.net/forum?id=Ig-VyQc-MLK.

Elias Frantar and Dan Alistarh. Sparsegpt: Massive language models can be accurately pruned in
one-shot. In International Conference on Machine Learning, pp. 10323–10337. PMLR, 2023.

Elias Frantar, Saleh Ashkboos, Torsten Hoefler, and Dan Alistarh. OPTQ: Accurate quantization
for generative pre-trained transformers. In The Eleventh International Conference on Learning
Representations, 2023. URL https://openreview.net/forum?id=tcbBPnfwxS.

Bogdan Gliwa, Iwona Mochol, Maciej Biesek, and Aleksander Wawer. SAMSum corpus: A human-
annotated dialogue dataset for abstractive summarization. In Proceedings of the 2nd Workshop
on New Frontiers in Summarization, pp. 70–79, Hong Kong, China, November 2019. Association
for Computational Linguistics. doi: 10.18653/v1/D19-5409. URL https://www.aclweb.org/
anthology/D19-5409.

12

https://openreview.net/forum?id=D7KJmfEDQP
https://openreview.net/forum?id=rJl-b3RcF7
https://openreview.net/forum?id=rJl-b3RcF7
https://openreview.net/forum?id=Ig-VyQc-MLK
https://openreview.net/forum?id=tcbBPnfwxS
https://www.aclweb.org/anthology/D19-5409
https://www.aclweb.org/anthology/D19-5409

648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701

Under review as a conference paper at ICLR 2025

Demi Guo, Alexander M Rush, and Yoon Kim. Parameter-efficient transfer learning with diff pruning.
arXiv preprint arXiv:2012.07463, 2020.

Han Guo, Philip Greengard, Eric Xing, and Yoon Kim. LQ-loRA: Low-rank plus quantized matrix
decomposition for efficient language model finetuning. In The Twelfth International Conference on
Learning Representations, 2024. URL https://openreview.net/forum?id=xw29VvOMmU.

Song Han, Huizi Mao, and William J Dally. Deep compression: Compressing deep neural networks
with pruning, trained quantization and huffman coding. arXiv preprint arXiv:1510.00149, 2015.

Neil Houlsby, Andrei Giurgiu, Stanislaw Jastrzebski, Bruna Morrone, Quentin De Laroussilhe,
Andrea Gesmundo, Mona Attariyan, and Sylvain Gelly. Parameter-efficient transfer learning for
nlp. In International conference on machine learning, pp. 2790–2799. PMLR, 2019.

Edward J Hu, yelong shen, Phillip Wallis, Zeyuan Allen-Zhu, Yuanzhi Li, Shean Wang, Lu Wang, and
Weizhu Chen. LoRA: Low-rank adaptation of large language models. In International Conference
on Learning Representations, 2022. URL https://openreview.net/forum?id=nZeVKeeFYf9.

Zhiqiang Hu, Lei Wang, Yihuai Lan, Wanyu Xu, Ee-Peng Lim, Lidong Bing, Xing Xu, Soujanya
Poria, and Roy Lee. LLM-adapters: An adapter family for parameter-efficient fine-tuning of large
language models. In Houda Bouamor, Juan Pino, and Kalika Bali (eds.), Proceedings of the 2023
Conference on Empirical Methods in Natural Language Processing, pp. 5254–5276, Singapore,
December 2023. Association for Computational Linguistics. doi: 10.18653/v1/2023.emnlp-main.
319. URL https://aclanthology.org/2023.emnlp-main.319.

Yufan Huang, Yanzhe Zhang, Jiaao Chen, Xuezhi Wang, and Diyi Yang. Continual learning for
text classification with information disentanglement based regularization. In Proceedings of the
2021 Conference of the North American Chapter of the Association for Computational Linguistics:
Human Language Technologies, pp. 2736–2746, 2021.

Tingfeng Hui, Zhenyu Zhang, Shuohuan Wang, Weiran Xu, Yu Sun, and Hua Wu. Hft: Half
fine-tuning for large language models. arXiv preprint arXiv:2404.18466, 2024.

Gabriel Ilharco, Marco Tulio Ribeiro, Mitchell Wortsman, Suchin Gururangan, Ludwig Schmidt,
Hannaneh Hajishirzi, and Ali Farhadi. Editing models with task arithmetic. arXiv preprint
arXiv:2212.04089, 2022.

Berivan Isik, Hermann Kumbong, Wanyi Ning, Xiaozhe Yao, Sanmi Koyejo, and Ce Zhang. Gpt-zip:
Deep compression of finetuned large language models. In Workshop on Efficient Systems for
Foundation Models@ ICML2023, 2023.

Albert Q Jiang, Alexandre Sablayrolles, Arthur Mensch, Chris Bamford, Devendra Singh Chaplot,
Diego de las Casas, Florian Bressand, Gianna Lengyel, Guillaume Lample, Lucile Saulnier, et al.
Mistral 7b. arXiv preprint arXiv:2310.06825, 2023.

Xisen Jin, Xiang Ren, Daniel Preotiuc-Pietro, and Pengxiang Cheng. Dataless knowledge fusion
by merging weights of language models. In The Eleventh International Conference on Learning
Representations, 2022.

Peter Kairouz, H. Brendan McMahan, Brendan Avent, Aurélien Bellet, Mehdi Bennis, Arjun Nitin
Bhagoji, Kallista Bonawitz, Zachary Charles, Graham Cormode, Rachel Cummings, Rafael G. L.
D’Oliveira, Hubert Eichner, Salim El Rouayheb, David Evans, Josh Gardner, Zachary Garrett,
Adrià Gascón, Badih Ghazi, Phillip B. Gibbons, Marco Gruteser, Zaid Harchaoui, Chaoyang
He, Lie He, Zhouyuan Huo, Ben Hutchinson, Justin Hsu, Martin Jaggi, Tara Javidi, Gauri Joshi,
Mikhail Khodak, Jakub Konečný, Aleksandra Korolova, Farinaz Koushanfar, Sanmi Koyejo,
Tancrède Lepoint, Yang Liu, Prateek Mittal, Mehryar Mohri, Richard Nock, Ayfer Özgür, Rasmus
Pagh, Mariana Raykova, Hang Qi, Daniel Ramage, Ramesh Raskar, Dawn Song, Weikang Song,
Sebastian U. Stich, Ziteng Sun, Ananda Theertha Suresh, Florian Tramèr, Praneeth Vepakomma,
Jianyu Wang, Li Xiong, Zheng Xu, Qiang Yang, Felix X. Yu, Han Yu, and Sen Zhao. Advances
and open problems in federated learning, 2021.

Sehoon Kim, Coleman Hooper, Amir Gholami, Zhen Dong, Xiuyu Li, Sheng Shen, Michael W
Mahoney, and Kurt Keutzer. Squeezellm: Dense-and-sparse quantization. arXiv preprint
arXiv:2306.07629, 2023.

13

https://openreview.net/forum?id=xw29VvOMmU
https://openreview.net/forum?id=nZeVKeeFYf9
https://aclanthology.org/2023.emnlp-main.319

702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755

Under review as a conference paper at ICLR 2025

Dawid Jan Kopiczko, Tijmen Blankevoort, and Yuki Markus Asano. Vera: Vector-based random
matrix adaptation. arXiv preprint arXiv:2310.11454, 2023.

Dawid Jan Kopiczko, Tijmen Blankevoort, and Yuki M Asano. VeRA: Vector-based random matrix
adaptation. In The Twelfth International Conference on Learning Representations, 2024. URL
https://openreview.net/forum?id=NjNfLdxr3A.

Namhoon Lee, Thalaiyasingam Ajanthan, and Philip Torr. SNIP: SINGLE-SHOT NETWORK
PRUNING BASED ON CONNECTION SENSITIVITY. In International Conference on Learning
Representations, 2019. URL https://openreview.net/forum?id=B1VZqjAcYX.

Simon Lermen, Charlie Rogers-Smith, and Jeffrey Ladish. Lora fine-tuning efficiently undoes safety
training in llama 2-chat 70b. arXiv preprint arXiv:2310.20624, 2023.

Brian Lester, Rami Al-Rfou, and Noah Constant. The power of scale for parameter-efficient prompt
tuning. In Marie-Francine Moens, Xuanjing Huang, Lucia Specia, and Scott Wen-tau Yih (eds.),
Proceedings of the 2021 Conference on Empirical Methods in Natural Language Processing,
pp. 3045–3059, Online and Punta Cana, Dominican Republic, November 2021. Association for
Computational Linguistics. doi: 10.18653/v1/2021.emnlp-main.243. URL https://aclanthology.
org/2021.emnlp-main.243.

Xiang Lisa Li and Percy Liang. Prefix-tuning: Optimizing continuous prompts for generation.
In Chengqing Zong, Fei Xia, Wenjie Li, and Roberto Navigli (eds.), Proceedings of the 59th
Annual Meeting of the Association for Computational Linguistics and the 11th International Joint
Conference on Natural Language Processing (Volume 1: Long Papers), pp. 4582–4597, Online,
August 2021. Association for Computational Linguistics. doi: 10.18653/v1/2021.acl-long.353.
URL https://aclanthology.org/2021.acl-long.353.

Xuechen Li, Tianyi Zhang, Yann Dubois, Rohan Taori, Ishaan Gulrajani, Carlos Guestrin, Percy
Liang, and Tatsunori B. Hashimoto. Alpacaeval: An automatic evaluator of instruction-following
models. https://github.com/tatsu-lab/alpaca eval, 2023.

Yixiao Li, Yifan Yu, Chen Liang, Nikos Karampatziakis, Pengcheng He, Weizhu Chen, and Tuo
Zhao. Loftq: LoRA-fine-tuning-aware quantization for large language models. In The Twelfth
International Conference on Learning Representations, 2024. URL https://openreview.net/
forum?id=LzPWWPAdY4.

Chin-Yew Lin. Rouge: A package for automatic evaluation of summaries. In Text summarization
branches out, pp. 74–81, 2004.

Ji Lin, Jiaming Tang, Haotian Tang, Shang Yang, Xingyu Dang, and Song Han. Awq: Activation-
aware weight quantization for llm compression and acceleration. arXiv preprint arXiv:2306.00978,
2023.

Haokun Liu, Derek Tam, Mohammed Muqeeth, Jay Mohta, Tenghao Huang, Mohit Bansal, and
Colin A Raffel. Few-shot parameter-efficient fine-tuning is better and cheaper than in-context
learning. Advances in Neural Information Processing Systems, 35:1950–1965, 2022a.

James Liu, Guangxuan Xiao, Kai Li, Jason D Lee, Song Han, Tri Dao, and Tianle Cai. Bitdelta: Your
fine-tune may only be worth one bit. arXiv preprint arXiv:2402.10193, 2024a.

Shih-Yang Liu, Chien-Yi Wang, Hongxu Yin, Pavlo Molchanov, Yu-Chiang Frank Wang, Kwang-
Ting Cheng, and Min-Hung Chen. Dora: Weight-decomposed low-rank adaptation. arXiv preprint
arXiv:2402.09353, 2024b.

Xiao Liu, Kaixuan Ji, Yicheng Fu, Weng Tam, Zhengxiao Du, Zhilin Yang, and Jie Tang. P-tuning:
Prompt tuning can be comparable to fine-tuning across scales and tasks. In Smaranda Muresan,
Preslav Nakov, and Aline Villavicencio (eds.), Proceedings of the 60th Annual Meeting of the
Association for Computational Linguistics (Volume 2: Short Papers), pp. 61–68, Dublin, Ireland,
May 2022b. Association for Computational Linguistics. doi: 10.18653/v1/2022.acl-short.8. URL
https://aclanthology.org/2022.acl-short.8.

14

https://openreview.net/forum?id=NjNfLdxr3A
https://openreview.net/forum?id=B1VZqjAcYX
https://aclanthology.org/2021.emnlp-main.243
https://aclanthology.org/2021.emnlp-main.243
https://aclanthology.org/2021.acl-long.353
https://github.com/tatsu-lab/alpaca_eval
https://openreview.net/forum?id=LzPWWPAdY4
https://openreview.net/forum?id=LzPWWPAdY4
https://aclanthology.org/2022.acl-short.8

756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809

Under review as a conference paper at ICLR 2025

Yun Luo, Zhen Yang, Fandong Meng, Yafu Li, Jie Zhou, and Yue Zhang. An empirical study of
catastrophic forgetting in large language models during continual fine-tuning. arXiv preprint
arXiv:2308.08747, 2023.

Sourab Mangrulkar, Sylvain Gugger, Lysandre Debut, Younes Belkada, Sayak Paul, and Benjamin
Bossan. Peft: State-of-the-art parameter-efficient fine-tuning methods. https://github.com/
huggingface/peft, 2022.

Michael S Matena and Colin A Raffel. Merging models with fisher-weighted averaging. Advances in
Neural Information Processing Systems, 35:17703–17716, 2022.

Michael McCloskey and Neal J Cohen. Catastrophic interference in connectionist networks: The
sequential learning problem. In Psychology of learning and motivation, volume 24, pp. 109–165.
Elsevier, 1989.

Todor Mihaylov, Peter Clark, Tushar Khot, and Ashish Sabharwal. Can a suit of armor conduct
electricity? a new dataset for open book question answering. In EMNLP, 2018.

Mahdi Nikdan, Soroush Tabesh, and Dan Alistarh. Rosa: Accurate parameter-efficient fine-tuning
via robust adaptation. arXiv preprint arXiv:2401.04679, 2024.

OpenAI. Gpt-4 technical report, 2023.

Oleksiy Ostapenko, Zhan Su, Edoardo Maria Ponti, Laurent Charlin, Nicolas Le Roux, Matheus
Pereira, Lucas Caccia, and Alessandro Sordoni. Towards modular llms by building and reusing a
library of loras, 2024.

Long Ouyang, Jeffrey Wu, Xu Jiang, Diogo Almeida, Carroll Wainwright, Pamela Mishkin, Chong
Zhang, Sandhini Agarwal, Katarina Slama, Alex Ray, et al. Training language models to follow
instructions with human feedback. Advances in neural information processing systems, 35:27730–
27744, 2022.

Xiangyu Qi, Yi Zeng, Tinghao Xie, Pin-Yu Chen, Ruoxi Jia, Prateek Mittal, and Peter Henderson.
Fine-tuning aligned language models compromises safety, even when users do not intend to!, 2023.

Vinay Venkatesh Ramasesh, Aitor Lewkowycz, and Ethan Dyer. Effect of scale on catastrophic
forgetting in neural networks. In International Conference on Learning Representations, 2022.
URL https://openreview.net/forum?id=GhVS8 yPeEa.

Anastasia Razdaibiedina, Yuning Mao, Rui Hou, Madian Khabsa, Mike Lewis, and Amjad Alma-
hairi. Progressive prompts: Continual learning for language models. In The Eleventh Interna-
tional Conference on Learning Representations, 2023. URL https://openreview.net/forum?
id=UJTgQBc91 .

Sylvestre-Alvise Rebuffi, Alexander Kolesnikov, Georg Sperl, and Christoph H Lampert. icarl:
Incremental classifier and representation learning. In Proceedings of the IEEE conference on
Computer Vision and Pattern Recognition, pp. 2001–2010, 2017.

Alexey Romanov, Anna Rumshisky, Anna Rogers, and David Donahue. Adversarial decomposition
of text representation. arXiv preprint arXiv:1808.09042, 2018.

Sebastian Ruder. An overview of multi-task learning in deep neural networks. arXiv preprint
arXiv:1706.05098, 2017.

Maarten Sap, Hannah Rashkin, Derek Chen, Ronan LeBras, and Yejin Choi. Socialiqa: Commonsense
reasoning about social interactions, 2019.

Archit Sharma, Sedrick Keh, Eric Mitchell, Chelsea Finn, Kushal Arora, and Thomas Kollar. A
critical evaluation of ai feedback for aligning large language models, 2024.

Ying Sheng, Shiyi Cao, Dacheng Li, Coleman Hooper, Nicholas Lee, Shuo Yang, Christopher Chou,
Banghua Zhu, Lianmin Zheng, Kurt Keutzer, Joseph E. Gonzalez, and Ion Stoica. S-lora: Serving
thousands of concurrent lora adapters, 2023.

15

https://github.com/huggingface/peft
https://github.com/huggingface/peft
https://openreview.net/forum?id=GhVS8_yPeEa
https://openreview.net/forum?id=UJTgQBc91_
https://openreview.net/forum?id=UJTgQBc91_

810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863

Under review as a conference paper at ICLR 2025

Hidenori Tanaka, Daniel Kunin, Daniel L Yamins, and Surya Ganguli. Pruning neural networks
without any data by iteratively conserving synaptic flow. Advances in neural information processing
systems, 33:6377–6389, 2020.

Gemini Team, Rohan Anil, Sebastian Borgeaud, Yonghui Wu, Jean-Baptiste Alayrac, Jiahui Yu, Radu
Soricut, Johan Schalkwyk, Andrew M Dai, Anja Hauth, et al. Gemini: a family of highly capable
multimodal models. arXiv preprint arXiv:2312.11805, 2023.

Hugo Touvron, Louis Martin, Kevin Stone, Peter Albert, Amjad Almahairi, Yasmine Babaei, Nikolay
Bashlykov, Soumya Batra, Prajjwal Bhargava, Shruti Bhosale, Dan Bikel, Lukas Blecher, Cris-
tian Canton Ferrer, Moya Chen, Guillem Cucurull, David Esiobu, Jude Fernandes, Jeremy Fu,
Wenyin Fu, Brian Fuller, Cynthia Gao, Vedanuj Goswami, Naman Goyal, Anthony Hartshorn,
Saghar Hosseini, Rui Hou, Hakan Inan, Marcin Kardas, Viktor Kerkez, Madian Khabsa, Isabel
Kloumann, Artem Korenev, Punit Singh Koura, Marie-Anne Lachaux, Thibaut Lavril, Jenya Lee,
Diana Liskovich, Yinghai Lu, Yuning Mao, Xavier Martinet, Todor Mihaylov, Pushkar Mishra,
Igor Molybog, Yixin Nie, Andrew Poulton, Jeremy Reizenstein, Rashi Rungta, Kalyan Saladi,
Alan Schelten, Ruan Silva, Eric Michael Smith, Ranjan Subramanian, Xiaoqing Ellen Tan, Binh
Tang, Ross Taylor, Adina Williams, Jian Xiang Kuan, Puxin Xu, Zheng Yan, Iliyan Zarov, Yuchen
Zhang, Angela Fan, Melanie Kambadur, Sharan Narang, Aurelien Rodriguez, Robert Stojnic,
Sergey Edunov, and Thomas Scialom. Llama 2: Open foundation and fine-tuned chat models,
2023.

Chaoqi Wang, Guodong Zhang, and Roger Grosse. Picking winning tickets before training by
preserving gradient flow. In International Conference on Learning Representations, 2020. URL
https://openreview.net/forum?id=SkgsACVKPH.

Liyuan Wang, Xingxing Zhang, Hang Su, and Jun Zhu. A comprehensive survey of continual learning:
Theory, method and application. IEEE Transactions on Pattern Analysis and Machine Intelligence,
2024.

Yizhong Wang, Swaroop Mishra, Pegah Alipoormolabashi, Yeganeh Kordi, Amirreza Mirzaei,
Atharva Naik, Arjun Ashok, Arut Selvan Dhanasekaran, Anjana Arunkumar, David Stap, Eshaan
Pathak, Giannis Karamanolakis, Haizhi Lai, Ishan Purohit, Ishani Mondal, Jacob Anderson, Kirby
Kuznia, Krima Doshi, Kuntal Kumar Pal, Maitreya Patel, Mehrad Moradshahi, Mihir Parmar, Mirali
Purohit, Neeraj Varshney, Phani Rohitha Kaza, Pulkit Verma, Ravsehaj Singh Puri, Rushang Karia,
Savan Doshi, Shailaja Keyur Sampat, Siddhartha Mishra, Sujan Reddy A, Sumanta Patro, Tanay
Dixit, and Xudong Shen. Super-NaturalInstructions: Generalization via declarative instructions on
1600+ NLP tasks. In Yoav Goldberg, Zornitsa Kozareva, and Yue Zhang (eds.), Proceedings of the
2022 Conference on Empirical Methods in Natural Language Processing, pp. 5085–5109, Abu
Dhabi, United Arab Emirates, December 2022. Association for Computational Linguistics. doi:
10.18653/v1/2022.emnlp-main.340. URL https://aclanthology.org/2022.emnlp-main.340.

Mitchell Wortsman, Gabriel Ilharco, Samir Ya Gadre, Rebecca Roelofs, Raphael Gontijo-Lopes,
Ari S Morcos, Hongseok Namkoong, Ali Farhadi, Yair Carmon, Simon Kornblith, et al. Model
soups: averaging weights of multiple fine-tuned models improves accuracy without increasing
inference time. In International conference on machine learning, pp. 23965–23998. PMLR, 2022.

Chengyue Wu, Yukang Gan, Yixiao Ge, Zeyu Lu, Jiahao Wang, Ye Feng, Ping Luo, and Ying Shan.
Llama pro: Progressive llama with block expansion. arXiv preprint arXiv:2401.02415, 2024.

Guangxuan Xiao, Ji Lin, Mickael Seznec, Hao Wu, Julien Demouth, and Song Han. Smoothquant:
Accurate and efficient post-training quantization for large language models. In International
Conference on Machine Learning, pp. 38087–38099. PMLR, 2023a.

Shitao Xiao, Zheng Liu, Peitian Zhang, and Xingrun Xing. Lm-cocktail: Resilient tuning of language
models via model merging. arXiv preprint arXiv:2311.13534, 2023b.

Jing Xu and Jingzhao Zhang. Random masking finds winning tickets for parameter efficient fine-
tuning. arXiv preprint arXiv:2405.02596, 2024.

Prateek Yadav, Derek Tam, Leshem Choshen, Colin Raffel, and Mohit Bansal. TIES-merging:
Resolving interference when merging models. In Thirty-seventh Conference on Neural Information
Processing Systems, 2023. URL https://openreview.net/forum?id=xtaX3WyCj1.

16

https://openreview.net/forum?id=SkgsACVKPH
https://aclanthology.org/2022.emnlp-main.340
https://openreview.net/forum?id=xtaX3WyCj1

864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917

Under review as a conference paper at ICLR 2025

Xiaozhe Yao and Ana Klimovic. Deltazip: Multi-tenant language model serving via delta compression.
arXiv preprint arXiv:2312.05215, 2023.

Le Yu, Bowen Yu, Haiyang Yu, Fei Huang, and Yongbin Li. Language models are super mario:
Absorbing abilities from homologous models as a free lunch. arXiv preprint arXiv:2311.03099,
2023.

Tao Yu, Rui Zhang, Kai Yang, Michihiro Yasunaga, Dongxu Wang, Zifan Li, James Ma, Irene Li,
Qingning Yao, Shanelle Roman, et al. Spider: A large-scale human-labeled dataset for complex
and cross-domain semantic parsing and text-to-sql task. arXiv preprint arXiv:1809.08887, 2018.

Zhuohao Yu, Chang Gao, Wenjin Yao, Yidong Wang, Wei Ye, Jindong Wang, Xing Xie, Yue Zhang,
and Shikun Zhang. Kieval: A knowledge-grounded interactive evaluation framework for large
language models. arXiv preprint arXiv:2402.15043, 2024.

Fei Yuan, Chang Ma, Shuai Yuan, Qiushi Sun, and Lei Li. Ks-lottery: Finding certified lottery tickets
for multilingual language models. arXiv preprint arXiv:2402.02801, 2024.

Xiang Yue, Xingwei Qu, Ge Zhang, Yao Fu, Wenhao Huang, Huan Sun, and Wenhu Chen Yu Su.
Mammoth: Building math generalist models through hybrid instruction tuning. arXiv preprint
arXiv:2309.05653, 2023.

Rowan Zellers, Ari Holtzman, Yonatan Bisk, Ali Farhadi, and Yejin Choi. Hellaswag: Can a machine
really finish your sentence? In Proceedings of the 57th Annual Meeting of the Association for
Computational Linguistics, 2019.

Qiusi Zhan, Richard Fang, Rohan Bindu, Akul Gupta, Tatsunori Hashimoto, and Daniel Kang.
Removing rlhf protections in gpt-4 via fine-tuning, 2024.

Jinghan Zhang, Junteng Liu, Junxian He, et al. Composing parameter-efficient modules with
arithmetic operation. Advances in Neural Information Processing Systems, 36:12589–12610,
2023a.

Longteng Zhang, Lin Zhang, Shaohuai Shi, Xiaowen Chu, and Bo Li. Lora-fa: Memory-efficient
low-rank adaptation for large language models fine-tuning, 2023b. URL https://arxiv.org/abs/
2308.03303.

Qingru Zhang, Minshuo Chen, Alexander Bukharin, Pengcheng He, Yu Cheng, Weizhu Chen, and Tuo
Zhao. Adaptive budget allocation for parameter-efficient fine-tuning. In The Eleventh International
Conference on Learning Representations, 2023c.

Yu Zhang and Qiang Yang. A survey on multi-task learning. IEEE Transactions on Knowledge and
Data Engineering, 34(12):5586–5609, 2021.

Lianmin Zheng, Wei-Lin Chiang, Ying Sheng, Siyuan Zhuang, Zhanghao Wu, Yonghao Zhuang,
Zi Lin, Zhuohan Li, Dacheng Li, Eric. P Xing, Hao Zhang, Joseph E. Gonzalez, and Ion Stoica.
Judging llm-as-a-judge with mt-bench and chatbot arena, 2023.

Victor Zhong, Caiming Xiong, and Richard Socher. Seq2sql: Generating structured queries from
natural language using reinforcement learning. CoRR, abs/1709.00103, 2017.

17

https://arxiv.org/abs/2308.03303
https://arxiv.org/abs/2308.03303

918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971

Under review as a conference paper at ICLR 2025

A ADDITIONAL EXPERIMENTAL DETAILS

A.1 CODE

Because we evaluate multiple methods on a wide range of tasks, training on > 20 datasets, we defer
all the details on the prompts, exact dataset format, etc. to our open-source code repository.

A.2 HYPERPARAMETER RANGES

FFT. We tune the learning rate in the range 5e− 7, 1e− 5 and the best-performing learning rate for
the downstream finetuning tasks is 1e − 6, with the exception of instruction finetuning which we
detail further below. We use a batch size of 32. We clip the gradient norm of each parameter group to
1. We clip the gradient norm of the parameters as opposed to the full gradient because we fuse the
optimizer with the backward pass to enable FFT on a single A100.

LoTA. We do not tune any hyperparameters for LoTA and merely use the same hyperparameters as
FFT. Unless stated otherwise, we report the performance of LoTA with a sparsity ratio of 0.9 that
was calibrated on the entire dataset.

LoRA. LoRA introduces the additional rank hyperparameter, which we tune jointly with the “lora
alpha” term and the learning rate. We tune the rank and alpha in the range (8, 512). Common wisdom
seems to dictate the use of larger learning rates for LoRA, so we expand the upper edge of the LoRA
learning rate range to 1e− 4 and indeed find that LoRA typically benefits from a larger learning rate.
We use LoRA on all linear layers (q, k, v, gate, up, down). On the commonsense reasoning tasks, the
best hyperparameters are: r = 512, α = 32, η = 1e− 4. On GSM8k, the best hyperparameters are:
r = 64, α = 32, η = 1e− 4.

Instruction Tuning. We use the hyperparameters of Sharma et al. (2024) to avoid the expense of
hyperparameter tuning on winrates. This means that we use a batch size of 8 and a learning rate of
5e− 7 for both FFT and LoTA. We use the best performing hyperparameters for LoRA transferred
from the commonsense reasoning tasks of r = 64, α = 32, η = 1e− 4.

TIES-Merging. We consider post-hoc sparsification factors of 0.1, 0.2, 0.3; the best performance is
at either 0.1 or 0.2.

A.3 MORE COMPARISONS BETWEEN LORA AND LOTA

Compute Overhead. One reason why PEFT methods such as LoRA are commonly used is because
they reduce the memory consumption in the backward pass, thus enabling the use of a larger
pass. Biderman et al. (2024) recently critically analyzed this and found that to fit tasks such as math
and code generation, LoRA needs to use high ranks (≥ 256), which in turn reduces the speedup to at
most 15%. We nevertheless acknowledge that any and all PEFT methods will be faster than LoTA
during training because LoTA requires an initial pass over the dataset to calibrate the sparsity mask.

Memory Overhead. LoTA has a minor overhead when compared to FFT, because a bit-mask must be
loaded for each parameter group. We provide an efficient implementation for this in our open-source
code. repository. We can finetune Llama-3-8B with LoTA on a single 80GB A100, so we do not
anticipate this minor memory overhead being a major limitation of our method. LoRA reduces the
memory footprint during finetuning, at the expense of accuracy.

High-Rank Adaptation Beats Low-Rank Adaptation. LoRA has a heavy regularizing effect on
training. On the commonsense reasoning task, because the base model can get nontrivial zero-shot
performance, LoRA actually improves the performance over that of FFT for Mistral. Note here
that we do a grid search over learning rate and rank for LoRA, and the best performance is at
r = 64, η = 1e − 4. However, sparsity also has a regularizing effect, and LoTA is even more
successful on the reasoning task when using the same learning rate as we searched for the base
model (1e− 6). On GSM8k, the regularization hurts performance significantly; (Nikdan et al., 2024)
report a similar-sized gap between LoRA and FFT on this dataset when training LLama-2-7B. If
LoRA is underfitting the data, it may be better suited for settings where we only train for a single
epoch, or on smaller datasets. In Table 8, we make a side-by-side comparison of LoRA and LoTA

18

https://anonymous.4open.science/r/lottery-ticket-adaptation-D665/README.md

972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025

Under review as a conference paper at ICLR 2025

when training for a single epoch and find that LoTA outperforms LoRA significantly across all tasks;
in fact, the difference is even more pronounced after a single epoch.

Table 8: Performance comparison on single-task datasets for 1 epoch. bold: best method

Method Model Arc GSM8k SQL Summarization

LoRA Mistral 70.40.6 46.31.1 98.60.1 51.80.2
LoTA (ours) Mistral 73.80.7 53.51.0 99.30.1 54.32.5

Storing LoTA Adapters Efficiently. Although FFT generally performs better than PEFT methods,
it is typically infeasible to store a full copy of the model weights for each task. Practitioners, therefore,
consider a tradeoff between memory and adaptation performance when loading task-specific adapters.
We now discuss the storage memory consumption of LoTA and LoRA. Storing the sparse task vector
from LoTA requires 40 bits per parameter; 32 from the parameter, and 8 for the delta encoding of the
sparse indices. If we use 90%-sparse LoTA, our task vector is compressed 8×; if we use 99%-sparse
LoTA, our task vector is compressed 80×. The memory-utility tradeoff between LoTA and LoRA can
be quantified in terms of each method’s performance at a given level of compression, which translates
into the sparsity level for LoTA and the rank r for LoRA. Comparing the compression-utility tradeoff
between LoRA and LoTA is challenging because the size of the saved LoRA adapter is determined
by the rank parameter r, and more is not always better (which is why we have to tune r for every
task for LoRA). As a single point of comparison, we can look at the performance on GSM8k, where
99%-sparse LoTA (62.0) outperforms LoRA for any rank (best performance of 58.3 achieved at
r = 512, increasing rank reduces performance), and they both achieve a similar compression factor.

A.4 INDIVIDUAL TASK RESULTS FOR AVERAGED EXPERIMENTS

In the main body we present a number of experiments where we have to report the average perfor-
mance over a number of tasks for space constraints. We now present the individual task results in
Table 9 and Table 10.

Table 9: Individual task results for the “averaged” results in Table 6. bold: best method.

FT Method on Task A FT Method on Task B Instruction Following Arc GSM8k SQL

FFT FFT 0.450.21 74.1.09 51.90.09 98.90.01
LoTA (ours) FFT 11.480.73 73.30.02 53.90.09 98.90.01
LoTA (ours) LoTTO (ours) 15.880.88 70.30.01 52.50.01 98.60.01

Table 10: Full results on commonsense reasoning.

Model Method BoolQ PIQA SIQA HellaSwag WinoGrande ARC-e ARC-c OBQA Avg.

Mistral
LoRA 76.4 90.7 81.2 91.4 87.0 94.1 83.0 90.4 86.8

LoTA (ours) 75.3 90.0 83.3 91.4 89.5 95.1 85.0 90.2 87.5

B RELATED WORK

Model Pruning & Quantization. Model pruning and quantization have been receiving increased
attention for efficient storage and/or inference of large models. While most of the existing methods
prune (Frantar & Alistarh, 2023; Dettmers et al., 2023b; Kim et al., 2023) or quantize (Frantar et al.,
2023; Dettmers et al., 2022; Xiao et al., 2023a; Lin et al., 2023) the model weight directly, some focus
specifically on compressing the task vectors (Isik et al., 2023; Liu et al., 2024a; Yao & Klimovic,
2023) through post-training sparsification or quantization, assuming that the base model is worth the
storage cost since it is being used frequently for many tasks. Our proposed PEFT method, LoTA,
builds on this observation that the task vectors are highly compressible through sparsification and
imposes this sparsity constraint at the beginning of fine-tuning to train sparse task vectors.

19

1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079

Under review as a conference paper at ICLR 2025

Lottery Ticket Hypothesis. Motivated by the success of pruning methods at extreme sparsity
ratios (Han et al., 2015), Frankle & Carbin (2019) proposed the lottery ticket hypothesis (LTH),
claiming the existence of sparse subnetworks (or lottery tickets) that could be trained from scratch to
a performance comparably to training the dense model from scratch. While this could potentially
provide a way to train models sparsely more efficiently rather than training them densely and pruning
them later, finding the lottery tickets, i.e., the sparsity masks, is costly. Initially, Frankle & Carbin
(2019) proposed first training the models densely and then extracting the sparsity mask based on the
magnitude of the trained dense model’s weights. Later, a number of more efficient methods were
proposed to find the sparsity masks more efficiently, earlier in the dense training stage (Frankle et al.,
2021; Lee et al., 2019; Wang et al., 2020; Tanaka et al., 2020). Our work shows that LTH works
successfully for fine-tuning LLMs as well–giving us a sparse adaptation tool, LoTA. We extensively
study the tradeoff between the cost of finding the sparsity masks and the performance of the sparsely
fine-tuned model. Unlike other studies on LTH for LLM adaptation (Yuan et al., 2024; Xu & Zhang,
2024), our main focus and motivation is to mitigate destructive interference in multi-task adaptation.

Parameter-Efficient Fine-Tuning (PEFT). Many practitioners fine-tune already pre-trained LLMs
with less data and compute instead of training them from scratch (Liu et al., 2022a; Wang et al., 2022;
Ouyang et al., 2022). While this reduces the cost of LLM training significantly, fine-tuning each
and every parameter of these large models for each (or a few) task is still very costly. This has led
to a number of parameter-efficient fine-tuning (PEFT) methods reducing the number of trainable
parameters during fine-tuning (Zhang et al., 2023c; Li & Liang, 2021; Liu et al., 2022b; Lester
et al., 2021; Edalati et al., 2022; Hu et al., 2023; Nikdan et al., 2024; Guo et al., 2020). Among
different PEFT methods, low-rank adaptation (LoRA) (Hu et al., 2022) and its variants (Dettmers
et al., 2023a; Guo et al., 2024; Li et al., 2024; Kopiczko et al., 2024) have shown similar performance
to full fine-tuning in many tasks while reducing the number of trainable parameters through low-rank
approximation to model updates during fine-tuning. Our PEFT method, LoTA, while reducing the
number of trainable parameters significantly via sparsity, has various other benefits in different
applications, such as avoiding catastrophic forgetting (of especially safety alignment), enabling
fine-tuning on new tasks more successfully, model merging using sparse task vectors, unlearning,
and communication-efficient federated learning (FL). We demonstrate that full fine-tuning and the
existing PEFT methods fall short in these applications and significantly underperform LoTA.

Catastrophic Forgetting. When LLMs go through sequential (or continual) multitask learning, i.e.,
fine-tuned on different tasks sequentially, they often suffer from performance loss on earlier tasks–
known as catastrophic forgetting (McCloskey & Cohen, 1989; Dong et al., 2023; Ramasesh et al.,
2022; Luo et al., 2023; Wang et al., 2024). To mitigate this, a number of data-centric and architectural
solutions have been proposed for language and other domains. Replay-based methods (Rebuffi
et al., 2017; Romanov et al., 2018) add a portion of the previously learned data during fine-tuning
on a new task, which raises privacy concerns as it requires constant access to previously learned
data. Regularization-based approaches (Huang et al., 2021; Aljundi et al., 2018) tend to have poor
adaptability to specific tasks. An architecture-based approach, “progressive prompts” Razdaibiedina
et al. (2023), sequentially concatenates soft prompts as they are being learned for each task–showing
some resistance against forgetting. However, they require access to task identifiers at inference
for each task, which is not always feasible. Other architecture-based approaches add additional
modules to learn task-specific abilities (Dou et al., 2023; Wu et al., 2024)–requiring customized
deployment due to architecture change. Closest to our work, Hui et al. (2024) updates a randomly
selected subset of the parameters at each iteration of fine-tuning to preserve the earlier tasks in
the not-updated parameters of that iteration. Despite similarities, our work LoTA (1) uses a fixed
sparsity mask throughout fine-tuning instead of a new mask at every iteration, which yields sparse
task vectors that are useful for other applications such as model merging and communication-efficient
FL, and (2) finds data-dependent masks rather than the randomly selected masks in (Hui et al., 2024).
Furthermore, unlike (Hui et al., 2024), LoTA not only preserves the earlier tasks on frozen parameters
but also constraints the new tasks on a highly sparse subnetwork–providing resistance to catastrophic
forgetting even when malicious users attempt to overwrite the earlier tasks via FFT.

Model Merging. Merging multiple task-specific models into a single model with multitask abili-
ties (Wortsman et al., 2022; Jin et al., 2022; Zhang et al., 2023a) has been an appealing alternative
to sequential multitask learning, which suffers from catastrophic forgetting and could be inefficient,

20

1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133

Under review as a conference paper at ICLR 2025

especially if task vectors are already available. The existing model merging methods include aver-
aging weights of task-specific models (Wortsman et al., 2022), task arithmetic through combining
task vectors (Ilharco et al., 2022), weighted aggregation of parameters (Matena & Raffel, 2022; Xiao
et al., 2023b), combining task vectors after some post-processing such as trimming low-magnitude
deltas (Yadav et al., 2023) or sparsifying the deltas (Yu et al., 2023; Davari & Belilovsky, 2023). Our
method, LoTA, directly learns sparse task vectors, obviating the need to post-process the task vectors,
and outperforms existing model merging methods. Most importantly, LoTA enables merging task
vectors trained on heterogeneous datasets, while the other model merging methods are often limited
to similar datasets. This advancement is an important step towards scalable FL (Kairouz et al., 2021)
with LLMs as it enables merging sparse task vectors, which brings communication efficiency, trained
over heterogeneous datasets (of each edge device).

We note that we test model merging with LoTA specifically for highly dissimilar datasets to show its
compatibility with FL, which considers edge devices with heterogeneous datasets. When used in FL,
LoTA can reduce communication and memory costs significantly, which is a main bottleneck when
scaling FL to large models. The successful use of LoTA for model merging and arithmetic further
shows its promise for unlearning (Ilharco et al., 2022) as well.

21

	Introduction
	Background: Multi-Task Adaptation
	Lottery Ticket Adaptation (LoTA)
	Experimental Setup
	Experimental Results
	Adapting to a Single Task
	Sequential Training
	LoTA for Model Merging

	Discussion
	Additional Experimental Details
	Code
	Hyperparameter Ranges
	More Comparisons Between LoRA and LoTA
	Individual Task Results for Averaged Experiments

	Related Work

