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ABSTRACT

Modern language models define distributions over strings, but their outputs are
not always suited to downstream task. For instance, a model generating byte-pair
strings may not be suitable when word-level predictions are needed, and a DNA
model may not fit applications requiring amino acids. In such cases, a deterministic
string-to-string transformation can convert the model’s output to the desired
form. This is a familiar pattern in probability theory: applying a function f to
a random variable X ~ p yields a transformed random variable f(X) with an
induced distribution. While such transformations are occasionally used in language
modeling, they are not treated as yielding new, fully functional language models.
We formalize this perspective and introduce a general framework for language
models derived from deterministic string-to-string transformations. Focusing
on transformations representable as finite-state transducers—a commonly used
state-machine abstraction for efficient string-to-string mappings—we develop
algorithms that compose a language model with an FST to marginalize over
source strings mapping to a given target. This allows us to propagate probabilities
through the transducer without altering model parameters and to condition on
transformed outputs. We present an exact algorithm, an efficient approximation,
and a theoretical analysis. We conduct experiments in three domains: converting
token-level language models to character-level language models, token-level
language models to word-level models, and deriving amino-acid models from
DNA models. This demonstrates inference-time adaptation of pretrained language
models to match application-specific output requirements.

1 INTRODUCTION

Language models (LMs) define distributions over strings. Yet, the strings they produce often fail to
align with the requirements of downstream applications, leading practitioners to apply ad hoc post-
processing. We call this the string mismatch problem. For example, in natural language processing,
modern language models typically generate byte-pair encoded strings (Sennrich et al., 2016), while
downstream tasks may require words or characters instead (see Ex. (2), below). Similarly, DNA
language models generate nucleobase sequences, but many biological applications require strings of
the corresponding amino acids (see Ex. (5), below).

Adding a string-to-string transformation to a generation pipeline is a practical and common engineer-
ing solution. Such as normalizing output, or mapping bytes to UTF-8. Formally, this defines a new
language model over transformed strings. However, while sampling remains straightforward—simple
operations like computing the probability of a transformed variable are no longer available, and
conditioning on transformed strings is off the table. Consider, for instance, the mapping from a string
in any casing to its lowercase version, as in the use-case depicted in Fig. 1. While lowercasing a given
input is trivial, converting the original distribution to a distribution over lowercased words, is not.

In this work, we promote string-to-string transformations to first-class citizens in the language
modeling pipeline. We enable direct reasoning about the transformed distributions of string-valued
random variables and introduce practical algorithms that operate on the transformed models at
inference time. This approach to the string mismatch problem is principled, modular, and often far
more achievable than retraining a language model to generate transformed strings directly. Moreover,
the transformations often guarantee adherence to the requirements of the downstream applications.

We now provide a motivating example in the context of a language model over English utterances.
Consider the following sentence:
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(1) Dr. Lemaitre was flabbergasted. % Hello 4107
hello 3.1e-08
The byte-pair encoding used by GPT4o0 (OpenAl, 2024) HE|LL|O 1.9¢-08
encodes Ex. (1) as the following string of tokens: hell | o 34610
Hell | o 1.8¢-10
Dr . _L ema \C3\AEtre _was _fl ab
2) 5 - - H|ello L1e-10
( 5822 13 451 4603 29135 673 1548 378
berg asted . _\FO\OF\A4 \AF hell |0 7de2
9667 23030 13 93643 107 Hell | 0 7.2e-12
he | 11o 4712
The segmentation of Ex. (1) into tokens induced by the . | 1o 42012

byte-pair encoding is based on character substring fre-
quency. However, many applications would benefit from :
a different choice of units. For instance, in computational ....................................................
psycholinguistics (e.g., (Giulianelli et al., 2024)) and con-
trolled generation (e.g., (Lew et al., 2023; Xefteri et al.,
2025)). This also holds if one wishes to derive distribu-
tions over grammatical words, such as those defined by
the Penn Treebank (PTB) annotation guidelines (Marcus
et al., 1993), a variation of which is shown below:

Figure 1: GPT-2 probabilities for the
BPE token strings that, when lower-
cased, match hello. The total probabil-
ity of all such sequences is at the bottom.

3) DR. LEMAITRE WAS FLABBERGASTED . &

For other applications, e.g., spelling correction, we might also wish to represent Ex. (2) using a string
of characters or UTF-8 byte representation as follows: !

Dr._Lema\C3\AEt re_was_f labber gas t e d. _\FO\9F\A4\AF

(4) 68 11446 3276 10110997 195 174 116114 1013211997 11532102108 97 98 98 101 114103 97 115116 101 100 46 32 240 159 164 175

In genetics, we have another example of varying representations. Consider the DNA sequence given
in Ex. (5). The sequence is one of many that translate into the hormone oxyfocin, typically represented
by the amino acid sequence in Ex. (6), as represented below, along with their integer encodings:

TGTTACATACAAAATTGTCCTCTAGGT 6 CYIQNCPLG
)] 313302030200003313223230113 (©) 1197131111295

Transforming a language model is, in general, non-trivial, and success depends heavily on the com-
plexity of the mapping. Recent papers explore methods for obtaining probabilities over bytes using
subword models (Phan et al., 2024; Hayase et al., 2025, inter alia). In particular, Vieira et al. (2025a)
addresses this problem in the case of strict-prefix monotone transformations, such as converting token-
based models into character-based ones. This paper generalizes that approach to handle more complex
conversions—where target units need not be direct constituents of the source units as in ex. (6).

We introduce a foundational framework for such conversions, involving the composition of pretrained
language models and string-to-string functions, encoded by transducers, referred to as transduced
language models. We develop exact and approximate algorithms for efficient sampling, scoring,
and conditioning on transformed strings, all without modifying the underlying language model.

To validate our approach, we construct FSTs for the three use cases above: (i) by converting tokens
to characters, (ii) inserting orthographic boundaries following the Penn Treebank tokenizer, and
(iii) converting DNA sequences to sequences over amino acids. We then employ commonly used
pretrained language models over the input units of the FSTs, and compose them with the FSTs
to obtain language models over the output tokens. Finally, we use these settings to benchmark the
theoretical and algorithmic contributions. In particular, we find that using an approximation of the
exact algorithm is sufficient to obtain a good approximation at a fraction of the computational cost.

"Note that UTF-8 allows multiple encodings of some strings. For example, the character i can be encoded
composed (\C3\AE) or decomposed(i\CC\82). See https://unicode.org/reports/tri5/.


https://unicode.org/reports/tr15/
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2 BACKGROUND

We now introduce core background material. A glossary of our notation is given in App. A.

STRINGS. Let X be an alphabet (i.e., a finite, non-empty set). Let X'* denote the set of all
finite strings over X', including the empty string €. When there is no risk of ambiguity with other
alphabets, we simply write . We use , 2’ € X'* to denote strings and Z, Z' C X'* to denote sets of
strings. Let xx’ denote concatenation, similarly, we define the concatenation of sets of strings as
77" ¥ {xx' |z € Z,2' € Z'}, and in the singleton case as 2’ & {x} 7/, and Zz' & Z{z'}. We
write < x’ when x is a prefix of ', and © < =’ when it is a strict prefix.

LANGUAGE MODELS. A language model py is a probability distribution over a set of strings
X*. Let EOS ¢ X be a special end-of-string symbol. We define the prefix probability of py as the
probability that a string X ~ pa starts with a given prefix 22, and the conditional prefix probability
as fractions:

— def / — detﬁ( z') — depr()
p«‘v(fﬂ)—w;{*pﬂxw) pr(x' | x) = @) px(EOS | ) = i) ey

def def

when p(z) > 0; otherwise we set py (2 | ) & 0 and pi(E0s | ) & 1. Therefore, p (- | x)
is a probability distribution over X' LI {E0S} for all x € X'*, 3 where U is used to indicate that
X and {EOS} are disjoint Using this structure, any language model py may be factorized as
px(xz) = pL(EOS | x) Ht 1pX(Lf | x<t) Where each p (; | 24) corresponds to the probability
of x; € X LU{EOs}, given the prefix x, € X'*.* This factorlzatlon defines a left- to -right generative
process: starting from x equals e, we repeatedly sample =/ ~ p;{( | x); if ' = EOS, we stop,
otherwise we update x to zz’. Conditional generation simply starts from the conditioning prefix
instead of the empty string. We refer to these operations as the interface to the language model py.

CYLINDRICAL SETS. Cylindrical sets define strings with a given prefix and are inherent to the

definition of prefix probabilities. Let Z, Z' C X'*, we define the cylinder over Z as (7Z) & Zx*.
We say that Z is cylindrical if 7 = (Z). Note that the union of cylinder sets is a cylinder set.

We define the basic cylinder for x as (x) & ({x}). The prefix-base operation pf(Z) is defined

by pf(Z) & {x € Z: #z’ € Z suchthat &’ < x}. The prefix-base operation uniquely partitions
(Z) into basic cylinders over pf(Z). We say that Z is prefix-free if pf(Z) = Z. Crucially,
for all z,x’ € pf(Z) where  # x', the basis sets are disjont (x) N (x’) = () and exhaustive,
Uzept(z) (®) = (Z). Thus, pf(Z) is a set of representative elements such that (Z) = | |,.¢ ¢z (@).

TRANSDUCERS. A transducer is a state-machine that encodes string-to-string relations f C
X* x V*. Transducers are a key component in our work, when we express a relationship defined by f
as a transducer, we expose the computational structure required for developing efficienct algorithms.
Formally, a finite-state transducer® (FST) f is a tuple (S, X', ), T, |, F) where S is a finite set of
states and X', ) are alphabets of input and output symbols. The sets |, F C S are the initial and final
states. T C Sx (XU{e}) x (YU{e}) xS is a set of transitions. We render transitions (s, z,y,s’) € T

as s — s, we say the transition scans = and emits y. We denote the set of outgoing transmons
from state s with T(s), and T(s, z) to denote the set of outgoing transitions from s that scan for x.°

The transducer f defines a set of paths II. Each path 7w € II is a sequence of transitions of the form

T1:Y1 r2iy2 TNIYN
50— 51 % 59 sn_] —— 5. We sometimes describe 7 as a generalized transition

S0 P4 sy that scans * = x129 - xn and emits y = yjys2 - YN, suppressing the intermediate
transitions. We call 7 an accepting path if sy € | and sy € F. The relation defined by f is given by
[F] € {(z,y) | (s ¥ &) € II: s € I, 8" € F}, i.e., each accepting path contributes (not necessarily
uniquely) a pair of scanned and emitted strings. We give more details about transducers in App. C

Note that the prefix probability is not a probability distribution over X'*, but the probability of the event & < X,
i, pr(x) = Prxp, [z < X].

3However, note that p*(- | - EOS - ) is undefined.

“See Cotterell et al. (2024, Theorem 2.4.2) for a proof.

SWe refer to Pin (2021, Ch. 2 & 3) for a detailed treatment of transducers.

zy

Le., T(s") ¥ {(s 25 s) e T: s =s"},and T(s", 2" ) € {(s =5 ') e T: s = 5",z = 2"},



Under review as a conference paper at ICLR 2026

ad:ungood

Py(ab) = pX(AB) + P (Ab) + P (aB) + pA(ab) | Py (ba) = 3, c - (o) P (baz) + px(ba)

Figure 2: Two examples of transformations: (Left) A transducer that maps alphabetic strings to their
lowercase form. Each lowercase output corresponds to a set of input strings that differ only in casing.
(Right) A newspeak (Orwell, 1949) transducer, where the word ‘bad’ is not permitted. So (bad) does
not contribute to py (ba) We use a single symbol for copy transitions, e.g., b to denote b : b.

3 TRANSDUCED LANGUAGE MODELS

A transduced language model py arises from applying a string-to-string transformation [ : X* —
V*, encoded by a transducer f, to a string drawn from a source language model p . Formally, if
X ~ px, then f(X) has the following probability mass function:

py(y) = Pr [y =f(X => px(w) )

wEf Hy)

where f~!(y) is the preimage of v, f~'(y) & {x € X*: y = f(=)}. Put differently, in Eq. (2),
we sum over the strings @ such that f(x) = y. Unfortunately, evaluating py, (y) exactly using Eq. (2)
is generally intractable, even though exact sampling from p is efficient.

Like all language models, a transduced language model py has prefix and conditional prefix probabil-
ity functions. The prefix probablllty py is given by

Py(y) = Pr [y X [(X)] =D px() 3
z€P(y)

where P(y) is the precover of v, w.rt. f, defined as P(y) & {x € X*: y < f(«)}.7"Here, we sum
over the strings @ that transform to strings f(x) that have y as a prefix, y < f(x).

Prefix probabilities allow us to define conditional probabilities over string prefixes, giving a factoriza-
tion of a string’s probability (see §2). This enables efficient conditional generation from a language
model via a simple left-to-right autoregressive sampling procedure. We develop a method in §4 that
allows us to compute the sum in Eq. (3) in finite time for a general class of mappings, such as those
mentioned in the introduction (i.e., normalizing text, inserting orthographic word boundaries, or
converting DNA to amino-acid sequences). In §5, we present algorithms to compute these quantities.

4 DECOMPOSING THE PRECOVER

In §3, we saw that if we can sum over the precover of y, we can calculate py)(y) = 2 zep(y) Px(T)
(Eq. (3)), unlocking an interface to the transduced language model. This sum may have an infinite
number of terms, preventing us from applying the full equation in practice. Consider the transducer in
Fig. 2 (left) that lowercases a string. For the string ab, the precover is given by the infinite set P (ab) =
({AB, Ab, aB, ab}). Recall that py () = 2w (z) Px(x") (§2). Following Eq. (3), we get the deriva-
tion (4a-4d). Eq. (4d) has a remarkable property: if we can decompose the precover into a union of ba-
sis sets, we can express the target prefix probability as a sum of prefix probabilities on the source side.

"Note that the precover depends on f, we suppress this dependency when it is clear from context.
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Py (ab)

Z px(x) (4a)

x€P(ab)

> 3 pa(x) @b = > px(x) (5b)

pyba)= > px(z) (5a)

x € (ba)\ (bad)

' €{AB,Ab,aB,ab} z € (x’) €U, a0\ (o3 (Paz)U{ba}

= P (AB) + P (Ab) (40)
+ pr(aB) + pr(ab)  (4d)

=px(ba) + Z px(baz) (5¢)

zeX\{d}

The transducer on the right in Fig. 2 converts any mention of the word bad into the word ungood
while all other substrings remain the same, meaning that (ba)  P(ba) since bad € (ba). This is an
example of a transducer for which a decomposition into prefix probabilities is not always possible.
Instead, we can at most decompose the precover of ba into a union of disjoint sets, one of which is
the union of basis sets, and the other its complement in the precover. We refer to the former set as the
quotient, and the latter as the remainder. The prefix probability of ba is derived in equations (5a-5c¢).
The final step illustrates a computational shortcut—for any y we can decompose p_f (y):

i)=Y pxl@+ Y pi=) (©6)
zER(Y) zeQ(y)
S—— S——
Remainder Quotient

The reader who is convinced by these examples and is eager to see the algorithm for calculating Eq. (6)
can jump to §5. We give a formal definition of the remainder and quotient in the next section, derive the
general decomposition, and consider when the computational shortcut can be calculated in finite time.

4.1 THE PREFIX DECOMPOSITION OF THE PRECOVER

Let f: X* — )* be a map. For each y € )*, define C(y) & {m e X* | (z) CP(y)}, as the
largest cylinder contained in P(y). By construction, this is the union of all basic cylinders fully
included in P(y). We then define the quotient and remainder of y with respect to f as

Qy) Epf(C(y))  and  R(y) = P(y) \C(y). M
The pair (R(y), Q(y)) is called the prefix decomposition of P(y). We then get

p_f(y) = Z px(x) = Z px(x) (8a, by definition)

x€P(y) z€R(y)UC(y)
= Z Z Z px(zx’) (8b)

zeR(y) reQ(y) ' eX™*
= Y prl@)+ Y pAx). (8¢)

zER(y) z€Q(y)

This generalizes the example given in Eq. (5a-5¢c, 6). We next consider when the terms are finite.

4.2  SUFFICIENT CONDITIONS FOR FINITE QUOTIENTS AND REMAINDERS

We say that amap [: X'* — V* is strict-prefix monotone if and only if V, 2’ € X*: = < ¢’ =
f(z) < f(2'). Similarly [ is prefix monotone if and only if x < ' = f(x) < f(z’). We say
that a map f is prefix-continuous if, for every y € )*, the set P(y) is cylindrical. Equivalently

Ply)=(Q)) <<= R(y)=0. ©
This assumption allows Vieira et al. (2025a) to effectively omit the remainder elements. We make
this clear in the following proposition:
Proposition 4.1. Letr f: X* — V* be any map. The following statements are equivalent: (i) f is

prefix monotone (ii) f({(x)) C (f(x)) forall x € X* (iii) P(f(x)) = C(f(x)) forall x € X* (iv) f
is prefix-continuous. The proof is given in App. F.
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Proposition 4.1 shows how our work generalizes and extends Vieira et al. (2025a); our framework
encompasses the strict-prefix monotone case, as well as enabling more expressive transformations.
These are practical results. An empty (or finite) remainder and a finite quotient set mean that we
get a finite-time computable interface to the transduced language model using the decomposition in
Eq. (8c) and the interface described in §2. What remains is to consider when the remainder is finite.

We saw above that prefix monotonicity implies an empty remainder and, in App. E, that it implies
a bounded quotient. This ensures that p_f(y) (Eq. (8c)) can be computed in finite time for y € V*.
Lemma 4.1 considers functions that need not be prefix monotone, yet guarantee a finite remainder
and quotient. It relies on the notion of a finite closure. We say that a transducer f has finite closure
at s if the relation defined by force-starting at the state is finite, i.e., if |[f[]| < oc.

Lemma 4.1. Let f be a finite-state transducer encoding  : X* — V*, and y € V*. If (i) there is a
finite number of paths in t that emit y and (ii) every state is either universal or has finite closure,
then Q(y) and R(y) are of finite size for all y € V*. The proof is given in App. F.

Next, we consider efficient algorithms for prefix decompositions and probability approximations.

5 ALGORITHMS

We now present algorithms for calculating precover decompositions by taking advantage of the explicit
structure of a transducer that encodes the function. Combined with Eq. (8c), these enable an interface
to transduced language models. We then propose a pruning-based beam-search approximation.

To illustrate the general approach, we first give an abstract algorithm (on the left in Fig. 3) for
decomposing the precover. The algorithm explicitly enumerates © € X', starting from the empty
string and proceeding from shortest to longest. Only when a quotient element is reached, or a conflict
with the target sequence occurs, does the algorithm stop enumerating extensions of the element. Each
prefix « undergoes three sequential checks following the definition of the precover:

Continuity  If (x) C P(y), then x is attributed to the quotient Q(y) and we do not extend it.
Discontinuity If = ¢ O(y) but x € P(y), we place it in the remainder R (y) and continue to extend.

Candidacy If z ¢ O(y), we consider which single-symbol extensions are on track to reach the
precover. Only extensions that might cover y are retained.

Since strings are processed from shortest to longest, each element has no prefix already in the
quotient—since all prefixes of the current element were already considered, and if found to be in the
quotient, not extended. Once the queue is exhausted, the algorithm returns the prefix decomposition.

5.1 TRANSDUCER-BASED ALGORITHM WITH DETERMINISM AND PROJECTION

The high-level algorithm in §5 relies on the three checks to compute the optimal decomposition. In
practice, we represent the transformation [ with a transducer f (see §2 and App. C for details on the
notation and definitions used in this section). We now describe a transducer-based implementation.

Continuity. We wish to assess whether x € Q(vy) holds when y < f(x). To do so, we test whether
any state reached after scanning « is universal—that is, whether the transducer, when force started at
that state, accepts all strings in X'*. More details on the universality check are given in App. G.1.

Discontinuity. In case Continuity does not pass, x ¢ Q(y), we consider whether x € R(y). It
suffices to check whether the state reached after scanning «x is final, i.e., if f accepts « and y < ().

Candidacy. We compose f with a y) copy-transducer and project the composition onto the input
side, obtaining proj (f o ¥)*).% This machine, denoted by P, accepts exactly the precover of v
w.r.t. [ and discards all strings that cannot cover the target y, allowing us to omit the explicit check
whether « is a candidate for covering v, i.e., whether x is a prefix of some element in P(y).9

8A copy-transducer is one where every transition emits the same symbol as it scans, see §2 and App. C for
details on the input projection and the construction of copy transducers.
°This can also be expressed as P(y) = f~ ' (y)*) = [f o yV*].
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1 def abstract_decomposition(y): 18 def determinized_decomposition(y):
2 Q< QUEUE() 19 # Determ. FST encoding [P] = P(y)
3 Q.push(e) 20 P < trim(determinize(proj . (f o y)*)))
. (R,Q) < (0, 0) 2 o TLF) P

s while |Q| > 0: 2 Q< QUEUE()

6 x < Q.pop() 3 for sel: Q.push((s,¢))

»if (@) C P(y): v (R,Q) < (0, 0)

s 0. add(x) »  while [Q] > 0:

9 continue 26 (s,z) + Q.pop()

10 if x € P(y): 27 if is_universal(P,s):

1 R .add(x) 28 Q.add(x)

12 for 2/ € X: 29 continue

13 if 3" € X*: za'z” € P(y): 30 if seF:

14 Q.push(xz”) 31 R .add(x)

i return (R, Q) » for (_ 5 s') € T(s):

16 def is_universal(f,s): 33 Q.push((s',z "))

17 return ([fiq] = &™) s return (R, Q)

Figure 3: (Left) An abstract algorithm for deriving the decomposition of the precover. (Right) A
transducer-based implementation.

Putting It All Together. Fig. 3 (right) presents the algorithm. Starting at the initial state, the paths in
P are enumerated. Every accepted path P contributes to the precover. At a universal state, the scanned
input « is added to the quotient Q(y) and not expanded further. If it enters a nonuniversal accepting
state, we add « to the remainder R(y) and continue to extend. The quotient is prefix-free since we
detect if the state is universal as early as possible and continue on lines 9 and 29. The checks on lines
10 and 31 ensure precover membership, and that « is added to the remainder if not in the quotient.
Since the remainder is defined by set difference (Eq. (7)), the algorithm returns a valid remainder.

5.2 OPTIMIZATIONS FOR SCALABILITY

Lazy determinization. In practice, explicit determinization is often computationally expensive for
large transducers. In App. G.2 (Fig. 9), we present an alternative algorithm that lazily determinizes
on the fly by maintaining power states—the set of all possible states reachable after scanning a prefix.
A string that covers the target sequence is added to the quotient exactly when the power state is
universal. When it is not, it is added to the remainder if any single states in the power state are final.

Memoization and precomputation. In App. G.3, we propose two additional optimizations: a
memoized recursion that derives the precover of a single symbol extension, yy, starting from a
precomputed decomposition for the prefix y. We also employ a direct enumeration of the quotient
and remainder using the transducer f, bypassing the often costly composition with the copy transducer.
This allows for efficient precomputation of universal states and caching of transducer properties.

Approximation via probability mass pruning. When the precover decomposition grows large, it
becomes time-consuming to enumerate and expensive to score. In these cases, we rely on a probability
mass pruning strategy that sorts candidates based on prefix probability and removes those whose
cumulative probability mass falls below a specified threshold 7. The strategy is described in App. G.4.

6 EXPERIMENTS

We now consider three examples of transduced language models. For each use case, we follow
the approach in Vieira et al. (2025a) and measure the Jensen—Shannon divergence (JSD) between
the distributions obtained using the approximation via probability mass pruning mentioned in
§5.2 and a reference distribution we get by choosing a low pruning threshold 7. We also report
cross-entropy loss in App. L.3, indicative of the cost of getting probabilities of specific sequences
as opposed to getting the full distribution. We conduct experiments using GPT-2 Large (pgpt2)
(Radford et al., 2019), LIaMA 3.2-1B (pjlama1) and L1aMA 3.1-8B (pjlamass) (Llama Team, 2024),
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and a DNA-model that we train over the human genome (Pdna).'® For the experiments in §6, we
use GenlLM.bytes!! to convert token-level models into byte-level models. See App. K for details
on the training and evaluation setup, and App. J for details on the transducers we consider.

Recall that a transduced language model py is characterized by a source model py and a transducer
f encoding some function f (§3). To make this dependency explicit, we also write py o f & py, and
refer to the act as composing. All experiments are done using the optimizations described in §5.2
(outlined in Fig. 10), and the algorithms computing the language model interface given in Fig. 13.

From Tokens to Characters. We now revisit the algorithm for converting models over tokens to
models over characters, as presented by Vieira et al. (2025a). This algorithm can be realized by a
simple transducer f,, which consists of O(|X|) states. Specifically, the transducer contains a chain
for each token present in the input vocabulary X'. An example of such a machine is given in Fig. 4.

x:x, Vx € XY\ {,} vy, Vy € X\ {0-9,}
N \@ £:SEP

d:d, vd € {0-9} )L

Figure 4: An FST for converting a token model ~ Figure 5: An FST that inserts a separator (SEP)
into a character model. Paths for _cat, and Dog.  after commas followed by a non-digit character.

We benchmark the algorithms in §5 using the transducers pgpt2 © fo, Pllama1B © o, and Pllamags © fa
on the first ten paragraphs of the wikitext-103-v1 dataset (Merity et al., 2017) (corresponding
to the first 7684 bytes). As shown in Fig. 6 (left) and Tab. 7 in App. L, lower pruning thresholds
(1) give lower JSD values at the cost of throughput, measured in bytes per second'?>. We confirm
that the JSD values are similar to those achieved by Vieira et al. (2025a) in App. L, Tab. 6.

o 7=3e-6 s 7=le-5 ¢ 17=3e-5 a 7=le-4
Pgpt2 © f(k Plla1B © f(} DllasB © Fu Pgpt2 © Fu o 1:pll) Pla1B © 'Frx o Fpth PliagB © f(y © 'Fpth
4.5e-3 2.4e-5
3e-3 } 5 1.66-5 A £| |
» 1.5e-3 5 8e-6 $
00889 R — ‘(3).0._ & ._ .
6 12 18 24 16 24 32 16 24 32 40 5 101520 6 12 18 24 8 12 16

Speed (bytes per second)

Figure 6: Average Jensen—Shannon distance (JSD) and throughput (bytes/s) across thresholds 7
(relative to 7 = 1075). Left: px o fq. Right: py o f, o fi1,. Bars show 95% bootstrapped Cls.

From Tokens to Orthographic Word Boundaries. The next use case we consider is the
conversion of language models over subwords to language models over orthographic words. The
precise definition of what constitutes such a word varies depending on the application. In some
settings, contractions such as “wouldn’t” should be treated as a single unit. While in other settings,
a more natural segmentation would split it in two: “would” and “n’ t”. The proposed approach can
accommodate any definition that can be described with a transformation in the form of a transducer.

Linguistic tokenizers, such as the PTB tokenizer (Marcus et al., 1993), use contextual information to
segment raw English text into linguistically meaningful units, suitable for downstream NLP tasks.We
construct an FST encoding the PTB tokenizer, 1, details are in App. I. An example of a rule in
the transducer is given in Fig. 5, which inserts SEP after a comma if a digit does not follow.

ULinks to models: https://huggingface.co/openai-community/gpt2-large, https://huggingface.
co/meta-1lama/Llama-3.2-1B, https://huggingface.co/meta-11lama/Meta-Llama-3-8B.

Thttps://github.com/genlm/genlm-bytes

"2For higher thresholds 7 >1e-4 (Tab. 7), throughput is less consistent. When this occurs, we relax the threshold
and recompute the decomposition until a valid path is found (see App. G.4).
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Composing px o f o fppep yields a transduced language model, which maps subword tokens to PTB
tokens. To reduce the state count of the composed FST and improve efficiency, we represent py o f,
using the byte-transformed models from GenLM.bytes!. In Fig. 6 (right), we plot the average JSD
against the throughput for different thresholds 7, using the dataset from §6. As with the experiments
in §6, we observe lower JSD at lower thresholds, albeit at the cost of throughput. For experiments
using higher thresholds, see App. L, Tab. 8.

Converting DNA Models to Models Over Amino Acids. To model the translation from
DNA to proteins, we use a transducer that converts sequences of the four DNA nucleotides
to sequences over the twenty-two amino acids. That is we have X = {A,C,G,T} and
Y = {ARN,D,C,QEGHI,LKMFPSTWYBZx*} The transducer fanazaa (partially
shown in App. B) maps each codon-sequence corresponding to three nucleotides to a corresponding
amino acid, with multiple codons often encoding the same amino acid. Let pgna © fqna2aa denote
the transduced model that converts DNA nucleotides into amino acids. To evaluate our approach,
we sample 65 human proteins'#.In Tab. 9, we show the average JSD and throughput for different
thresholds 7. Note that this transducer is particularly challenging since the set of candidates in the
decomposed precover grows exponentially with the sequence length. To mitigate the combinatorial
blow-up, we cap the candidate-set size and report throughput and JSD while varying the cap.

Benchmarking the Quotient. We bench- Table 1: Average Jensen—-Shannon distance (JSD) for
mark the value of the computational shortcut 7 =le-4 after converting n% of the universal states
inherent in the prefix decomposition de- to non-universal. See Tab. 10 for results with pgpto
scribed in §4.1, which allows us to decompose and Tab. 2 for the number of states.

the precover into remainder and quotient

representatives. We generate suboptimal % Dllama1s © Fa Pliama1 © o © Fptb
decompositions by randomly selecting a  Conv.| States avg. JSD/byte |States avg. JSD/byte
proportion of the universal states in the trans- 0 0 0

ducer (see §4) and treat them as non-universal 5 8849 1.8e-2 +4.0e3| 1 997 + 3.2e-7
states in our algorithms (see §5). This 10 17699 1.4e-2£3.0e-3| 3  4.0e-5+2.7e-5
gradually decreases the size of the quotient 15 126548 1.6e-2 +3.0e-3| 4 1.1e-5+9.1e-6
and increases the remainder correspondingly. 20 |35398 5.1e-2+6.0e-3| 6  1.2e-3 +6.8¢-4
Tab. 1 shows the average JSD between the 25 |44247 64e-2£7.0e-3| 7 1.le-2+ 1.5e-3

original and modified distributions over the
first 256 bytes of the wikitext-103-v1 dataset (Merity et al., 2017). For each value of n we repeat
the sampling of new non-universal states five times, and report the mean JSD. The distributions
diverge quickly, and after converting approximately 20-25% of universal states, the algorithm keeps
running into dead ends and can no longer recover any valid sequence.

Training on The Target Domain. There are many reasons why one might prefer transducing a
language model instead of training a new one. For instance, the inductive bias of shared semantic sub-
words may result in a better model, as the popularity of BPE demonstrates. We confirm this by training
byte-level models and comparing them to a transduced model in App. L.4. Training a model may
also be unfeasible or impractical for, e.g., prototyping. Finally, we may simply want to know how a
specific model behaves under a transformation or different units, e.g., for comparison between models.

7 CONCLUSION

We have introduced a foundational framework for transforming language models into new language
models using transducers. In particular, this allows one to convert language models defined over
one set of units into models over another using transducers. Empirically, we have shown that our
beam-search approximation efficiently transduces token-based LL.Ms into models over characters,
words, and even amino acids, without requiring retraining. Our theoretical analysis characterizes the
conditions under which such mappings can be performed exactly. The proposed approach is an effec-
tive way to repurpose existing language models and accurately compute probabilities for any kind of
unit and transformation defined via a transducer. We discuss the limitations of our approach in App. D.

Bhttps://github.com/genlm/genlm-bytes implementing (Vieira et al., 2025a).
“Sampled from https://www.uniprot.org/uniprotkb?query=Human, see Tab. 3 for the accession numbers.
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A NOTATION GLOSSARY

Notation | Gloss

€ Empty string

EOS End-of-string symbol

r, o' e X Symbols in the source alphabet X

x, ' € X* Source strings

X* Set of all source strings

Z,7 CX* Sets of source strings

zx’ Concatenation (strings)

A Concatenation (sets of strings)

v,y € V* Target strings

v,y €Y Symbols in the target alphabet

y* Set of all target strings

fr X —=Y* Transformation from source strings X'* to target strings )J*
x3x @ is a prefix of @’

< @ is a strict prefix of «’

(Z) Cylinder set spanned by 7

pf(Z) Prefix-base of Z

Dx Language model over source strings X'*
X X' *-valued random variable X ~ py
i Prefix probability of py

Dy Language model over target strings J*
ﬁX ) YV*-valued random variable f(X) ~ py
DYy Prefix probability of py

f Transducer implementation of f

—S Set of states

— X Input alphabet

— Y Output alphabet

— T Set of transitions

—1CS Set of initial states

—FCS Set of final states

—UCS Set of universal states

States
Transition from s to s’ that scans = and emits y

T(s)CT Outgoing transitions from state s

II Set of all paths

well Path

(s %¥ ') eI | Pathfrom s to s that scans z and emits y

fof Transducer composition

folf Relation composition

proj v () Input projection

fls) Force-start f in state s

yy* Either a copy-transducer that accepts y)’* or the corresponding relation.
foyy* A transducer whose paths are restricted to those that accept y)*.
() Preimage of the target string v (§3)

) The preimage of aset V, {f ' (v) | v € YV} (§3)

P(y) Precover of the target string vy (§3)

C(y) The largest cylinder set contained in P (y) (§4)

Q(y) Quotient (§4)

R(y) Remainder (§4)

A.1 EXAMPLE DECOMPOSITIONS

We give two concrete examples of decompositions and prefix probabilities.
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Example 1. The transducer below merges consecutive backticks ( ° °) into a quotation mark (") but
otherwise keeps the symbols a and ~ fixed. It can be seen as a minimal example of text normalization.

f = H@m (10a)

When computing the prefix probability p_>y( *), sequences starting with two backticks get mapped to a
quote and thus do not appear in the precover. Instead, a single backtick remains in the remainder,
while a backtick followed by a goes into the quotient, as any further extensions preserve the initial
backtick. We thus have (by visually canceling out continuations that get mapped to quotation marks),
P()={,"—"—>7.tU{a "a’", "aa,..} (10b)

={}tu{atx” (10c)

Thus, py(*) = px (") + px (" a). Similarly, we have P (") = { * }X* and thus p3,(") = py (" ).

Example 1 demonstrates the efficiency of using the remainder and the quotient; both sets only have a
single element, yet they fully specify what probabilities contribute to (" ). There are, however, edge
cases that do not lend themselves to such efficient cover functions.

Example 2. Consider the following mapping [ and its representation as a transducer f:

a:b
(=
a’
f(@") =b"if nis even else c" f= (11a)
a.c
-
L a.’c ]

with X = {a} and Y = {b, c}. The precover for b is given by

P(b) = {#, 4, aa, aad, aaaa, aaasd, aaaaaa, ... } (11b)
This example is, unfortunately, challenging for our approach as the remainder set is not finite:
R(b) ={a*" |n>0},9(b) =0 (11¢)

In other words, the mapping never releases the evenness constraint, and we sum forever.

Finally, we give an example of a simple transducer with a single remainder element in Example 3

Example 3. Consider the following mapping f, visualized in Fig. 7.

f@") =b"ifn #2else c (12a)

X ={a} and Y = {b, c}. Suppose we want to compute the prefix probability p’f(b)
P(b) = {a, 24, aaa, aaaa, aaaaa, ... } (12b)
R(b) = {a}, Q(b) = {aaa} (12¢)

Thus,
pyb)= > pr(x)+ Y pil(x) (12d)
zER(b) zeQ(b)

= px(a) + p(aaa) (12e)
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—

Figure 7: An FST that maps n occurrences of ’a’ to the same number of ’b’s, except when the input
is exactly two ’a’s, which are mapped to "c’.

B TRANSDUCER DIAGRAMS

DNA to amino acid transducer. The DNA to amino-acid transducer, described in §6 is partially
shown in App. B.

A:K, C:N, G:K, T:N

Figure 8: An FST for converting DNA sequences to amino acids. Each triplet of nucleobases maps to
one of 20 different amino acids. We only show a proportion of the machine.

C BACKGROUND ON TRANSDUCERS

Transducer variants. We say a transducer is functional if it defines a function, and partially
functional if it defines a partial function. A transducer is input-deterministic if for every state s € S,
|T(s,e)| =0and|T(s,2)| <1forall z € X. For input-deterministic transducers, each source string
x € X* has at most one accepting path that scans « and, therefore, can emit at most one target string
y € V*. Thus, every input-deterministic transducer defines a (partial) function. A copy-transducer
is one where every transition emits the same symbol as it scans, i.e., every transition is of the form
s =% s'. We abbreviate copy-transitions as s — s’.!5 Copy-transducers define partial identity
functions: they map each string in a designated subset to itself, and drop all others. In the same way
that we abbreviate copy-transitions, we may implicitly map them to a set of strings via (x, x) — «.

'5For readers familiar with finite-state automata, every copy-transducer is isomorphic to an acceptor.
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Operations. Transducers support composition: given transducers f and f’, their composition
f o f’ is a transducer denoting [f o f'] & [f] o [f'].'"” We denote a transducer that encodes
the relationship [f] o {(v/,v') | ¥’ € (y)} with f o yV*. In general, we omit defining these
type coercions explicitly when it should be clear from context what is meant. We define the
input projection operation encoding the relationship [proj, (f)] = {(z,x) | (z,-) C [f]} as
projv(f) € (S, 2, X, {(s =5 &) | s =5 ' € T},1,F), which is a copy-transducer. Let flq)
denote the operation of force-starting f in state s, f|, &f (S, X, Y, T,{s}, F); this operation yields a
machine defining the set of source—target suffix pairs that are generated by paths starting at a given
s and ending in a final state. We say that a state s is universal if [proj (f(;))] = A*. Let U C S
denote the set of universal states.

Our algorithms use an input-determinization transformation determinize(f) that maps a (partially)
functional transducer f to an equivalent one that is input-deterministic. In general, such a mapping
is not always realizable with a finite number of states.'> However, in the special case of copy-
transducers, input-determinization is always possible, but may result in exponential blowup in the
worst case.!” We use trim(f) to denote a trimming operation that removes all states and edges that
do not appear on any accepting path. These are standard operations that are implemented in any FST
library, more details can be found in (Pin, 2021; 2025).

Visual notation. We use diagrams like those shown in Fig. 2 to represent transducers. Transitions
without source states denote initial states; double-lined states indicate final states. Transitions
s =Y s are shown as arrows between states.

Limitations. Finite-state transducers define the class of rational relations (Berstel, 1979, Ch. III).
Because FSTs only have finitely many states, they are inherently limited in the relations they can
represent. For example, FSTs cannot perform transformations that require unbounded matching
or counting. In contrast, transducers with unbounded memory extend beyond the rational class,
offering greater expressive power, but come with increased complexity and often undecidability of
key properties, such as universality (see §5.1) and App. G.1.

D LIMITATIONS

Although our framework enables transduction of any language model to any unit of interest, given
a valid transducer, we test only a limited combination of architectures (GPT-2 and Llama 3) and
target specific units (alphabetization, Penn Treebank tokens, and amino acids). Future research could
broaden the analysis to a wider range of models, datasets, and units. Our analysis has also focused on
functional finite-state transducers and regular languages; future work could consider dynamically
built transducers and distributions over more expressive languages. Future work could also consider
stochastic maps, encoded by non-functional transducers—here, the notion of universality would need
to be adjusted. Finally, the speed of our algorithms and implementations may not suit every use case;
while getting the full distribution (for e.g. decoding or model comparisons) speeds of around 10-20
bytes per second are not prohibitive for many tasks, we will consider scaling this up in future work.

E QUOTIENT BOUND FOR PREFIX MONOTONE MAPS

The following proposition gives a bound for the size of the quotient when the map is prefix monotone.

'®Here, relation composition is given by f o ¢ & {(x, 2) | (z,y) € f, (y,2) € g}, f and g are relations.

17Pin (2025, Ch. XIX, sec. 2) gives an efficient method for constructing o f'.

8Choffrut (1977) gives such an algorithm, by using a power set construction on the input side as in the
determinization of non-deterministic finite automata. He shows it yields a finite machine if and only if the
automaton has bounded variation, the constraint that for any two strings whose prefix distance (the combined
length of the strings with the longest shared prefix removed) is bounded, then the output prefix distance is
also bounded. He also provides a testable condition for determinization, known as the twinning condition:
once two runs have read the same input prefix (i.e., we cut the input at the same point), then for every common
continuation, they append the same further output.

For readers familiar with finite-state automata, input-determinization of a copy-transducer is isomorphic to the
determinization of an equivalent finite-state automaton, see App. C.
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Proposition E.1. Let [: X" — V* be a strict-prefix monotone map. Then, for every y € V*:

L f 74 (y) = QW) \ L,ey Q(uy)
2. Uyey Qyy) € Qy) (X U {e})
3. 1Q()| < (1x]+ 1)
Proof. (1) Observe that (using Proposition 4.1) for every y € V*

Cly)=Pw) =f"wWu|]Puy=r"wul]cyy. (13)

yey yey
In particular, the minimality of Q(y) in P(y) implies that
Q) N || Qy) = 2w) n | ] (Quy)).
yey yey
Consequently, we obtain the identity /' (y) = C(y) \ L,cy C(yy) = (Qv)) \ L, ev(Qyy)),
which in turn yields the inclusion
o)\ || Qyy) = o)\ | ] (Qww)) € ' (w).
yey yey

For the reverse inclusion, let ' € f~'(y). Then there exists a unique x, € O(y) such that z, < ',
by definition of the quotient set. Since [ is strict-prefix monotone and f(x,) < f(x’) = y, we must
have x, = x'. This shows that f ~!(y) C O(y), and completes the proof of (1).

Q) Fixy € Y,y € YV* and let x € Q(yy). There exists a unique x,, € Q(y) such that =, < x. By
strict monotonicity, it follows that2°

|z, " ] < |f(@y) T (@) =y yyl =Tyl =1
which proves the claim.

(3) For any y € V* and any y € )/, we have from (2),

1Q(yy)| < (1X] + DIQ(y)]- (14)
Iterating this bound along any string y € J*, we have:
Q)| < (1X] + DI Qe)] = (|¥] + ). u

F PROOFS

Proposition 4.1. Ler f: X* — V* be any map. The following statements are equivalent: (i) f is
prefix monotone (ii) f({(x)) C (f(x)) forall x € X* (iii) P(f(x)) = C(f(x)) forall x € X* (iv) f
is prefix-continuous. The proofis given in App. F.

Proof. (1) = (2): Prefix monotonicity means that for any x, ' € X*, if we have that x < xa' then
f(x) X f(xx') and thus that there exists a y € V* such that f(xx’) = f(x)y. And since ' was
chosen arbitrarily (2) holds.

(2) = (3): Leta € X°. Suppose /() C (f(x)). Then, (x) € /' (f((x)))  P(f (). Note
that, for any ' € P(f(x)), P(/ (') € P(/(x)). Therefore, (z) € P(f(z')) € P(/(x)) and so
x' € C(f(x)). This shows that P(f(x)) = C(f(x)).

(3) = (4): By assumption, any element in the precover is an extension of a quotient element, and
thus a member in the cylinder over quotient elements.

(4) = (1): For ' € P(f(x)) we have by definition that f(x) < f(«’). Assuming f is prefix-
continuous, i.e., there are no remainder elements, then « < =’ implies ' € P(f(x))

2For two strings @, «’ such that 2 < ', the string 2 ~*2 denotes the unique string =’ such that xz"” = a’.
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Lemma 4.1. Let f be a finite-state transducer encoding  : X* — V*, and y € V*. If (i) there is a
finite number of paths in f that emit y and (ii) every state is either universal or has finite closure,
then Q(y) and R(y) are of finite size for all y € V*. The proof is given in App. F.

Proof. Lety € V* and II,, be the set of, not necessarily accepting, paths that emit exactly y. For
each w ¢ I, let x be the scanned input and s, the state reached after emitting y. Consider the

trimmed automaton P % trim(proj , (f[.])) consisting of all states and transitions on paths from
an initial state to some s, and from s, to a final state for some 7 € II,,. Note that the language
accepted by P may be larger than that of the precover since the automaton may accept prefixes of its
members, i.e., L(Px) 2 f~!(y)*). By assumption, every state in P is either universal or has finite
closure. We use II}; to denote the subsets of the paths that end in a universal state and II7, to denote
those that end in a state with finite closure. We can then decompose the precover explicitly as

FHwy) = | 2xLPr) = |J zL(projx(fis ) U | @rd™. (15)

welly, well, welly

Thus R(y) C Uwen; x L(projy(fis,))) and Q(y) C {xx: w € II}}. By assumption [II,| =
ITL," UTI,°| < oo so |Q(y)| < oc. By the finite-closure assumption |z L(proj v (f[s,))| < oo for
any w € I1,¢, so |R(y)| < oo.

In practice |TI,| < oo implies there exists no loop of the form (s = s). Note also that Eq. (15) does
not guarantee the two unions are disjoint; some elements on the left could be included in the right
union as made explicit in the proof. An algorithm following the above reading should thus ensure the
disjoint property in a post-processing step.

G ALGORITHMS

In §5 (Fig. 3), we introduce an algorithm that uses a transducer to compute the prefix decomposition
(R(y), Q(y)) for a string y. The algorithm first builds a transducer that only accepts members of the
precover P(y) and then determinizes it. This section introduces more practical variants that skip the
expensive determinization step and operate directly on the original transducer, without composing it
with the language y)/*. We also provide supplementary details and algorithms to evaluate probability
py(+), prefix probability py)(-), and its conditional form py(- | -) as described in §2.

G.1 NOTES ON UNIVERSALITY CHECKING

In §5.1 we introduce a transducer-based algorithm for deriving the decomposition of the precover.
Here we elaborate on the Continuity step and, in particular, the universality check. We note it
is computable, since universality is decidable for finite-state automata.?! For each state s, we
can test whether f|,) accepts X'* by checking its equivalence against a reference machine for ™.
To ensure we can check for universality at a single state, we deferminize P and trim away dead-
end paths. Without determinization, two paths may yield the same string and end up in different
states s; and so, where neither state is universal on its own, although their union covers the entire
language X'*. That is, where [f[5,] # A™* and [f,,] # &, but [f1o,] U [f[s,]] = A*. A non-
deterministic transducer could misclassify such strings as remainder elements, leading to a suboptimal
decomposition. Determinization merges such states, ensuring that a string is universal if and only if
the single state it reaches, for a given input, is universal.

G.2 LAZY DETERMINIZATION

In Fig. 9 (left), we give an algorithm that enumerates the paths of the transducer proj . (f o y)*)
without explicit determinization. Instead, the algorithm implicitly tracks power states. A power state

2 Efficient algorithms for this include antichain-based simulation (De Wulf et al., 2006), bisimulation up to
congruence (Bonchi & Pous, 2015), and classical equivalence checking (Meyer & Stockmeyer, 1972).
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S represents the set of all possible states the transducer may occupy after scanning a string «. For
the current power state, the algorithm iterates over every input symbol x € X'*, gathers all outgoing
transitions that scan x, and takes the e-closure of their target states to form the next power state

S’. The resulting edges S — S’ are analogous to those that explicit determinization with subset
construction would create. To determine whether a string belongs to the quotient or the remainder,
we check whether the power state is universal (see Fig. 9 on the right). Otherwise, we check whether
any individual state of .S is final before adding the string to the remainder.

35 def lazy_decomposition(y): so def powerstate_universal(f,S):
36 # Build FST encoding [P]=P(y) e (S,X,V,T,ILF)«f

37 P« projy(foyl™) 61 s+ State() # A new state
38 (_7_3_7T7|7F) — P 62 S/ (—SU{S}

3 Q< QUEUE() o T+ TU{(s>s)s €S}

0  Q.push((l,e)) o (SX,V, T 1LF)

a (R,Q) « (0, 0) 6s return is_universal(f’,s)

2 while [Q| > O: 66

43 (S,z) < Q.pop() o7 def eps_closure(S):

44 if powerstate_universal(S): 6 closure «

a5 Q.add(z) 0 Q< QUEUE(S)

46 continue 70 while |[Q] > 0:

4 if SNF#0: R.add(x) 7 s" < Q.pop()

48 for 2/ € X: 7 if s’ in closure:

49 S’ + next_powerstate(S, ') 73 continue

50 Q.push((S",x 2')) 74 closure.add(s")

st return (R, Q) 75 for (s' = 8") e T(s,¢):

s2 def next_powerstate(S,z'): 76 Q.add(s")

Lz o ... 1 return closure
53 # S5 — S is a determ. transition

sa ST«
ss  for s in eps_closure(S):

56 for (s LN §') e T(s,a'):
57 S’ .update(eps_closure({s'}))
ss  return S’

Figure 9: An algorithm (left) that computes the optimal decomposition without explicitly determiniz-
ing the machine.

G.3 A RECURSIVE ALGORITHM THAT OPERATES DIRECTLY ON THE FST

We now consider a recursive approach for enumerating the prefix decomposition. Let y € V*
and y € V. Since (Q(yy)) S (Q(y)), we have P(yy) = ((Q(v)) N (Qyy))) U R(yy). This
means that once we have computed the prefix decomposition (R(y), Q(y)) for a string y € V*, the
decomposition for any extension yy, where y € )/, can be obtained with incremental work. The
algorithm in Fig. 10 (left) performs a recursive enumeration of the quotient and remainder, where
each recursive call is realized using a cache lookup. Note that we only store exact matches in the
cache to limit memory usage and ensure the cache is prefix-free.

Further, recall that, in §5.1, we composed f with y)* to get a transducer that only accepts strings
in the prefix decomposition. For many transducers, this is an expensive operation that must be
repeated for every target sequence. Instead, we would like to operate directly on f without the initial
composition. Doing so requires careful bookkeeping of partial outputs. Fortunately, it allows us to
precompute the set of universal states.

The algorithm proceeds in two phases. The first phase identifies the paths in f whose output v’
covers the target, i.e., ¥y’ = y. Similar to the algorithm in App. G.2, we group partial paths by the
scanned input symbol z, so each power state corresponds to a unique input prefix. However, instead
of tracking only the power state .S, we maintain a frontier set F of pairs (s, y’) that record the current
state s and the output sequence vy’ emitted in that state. We then discard any partial paths whose
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emitted output cannot cover the target. In the second phase, once a path has produced a covering
output, we stop applying the output-based filter. For each such path, we form the corresponding

power state by grouping all transitions that share the same input S — S, as in the algorithm given in
Fig. 9 (left).

In contrast to previous algorithms, we process all active candidate paths simultaneously at each
iteration, followed by a pruning step to discard low-probability candidates. Although pruning makes
the algorithm practical, it results in an approximation of the prefix probability of the target sequence,
as we discard elements of the prefix decomposition with low mass. Details of the pruning strategies
are provided in App. G.4.

78 def lazy_cached_decomp(y, cache): 104 def get_cached(y, cache):
7 (—a —— Ta Ia F) — f 105 Y1 YnN <Y
0 (R,Q)« (0,0) 06 for i in range(V,1,—1):
st Q< get_cached(y, cache) 107 Yi Y1 Ui
s2  while |Q| > 0: 108 if vy, in cache: return cachely;]
8 Qc < 0 # New candidates w0 return {({(s,e) | s €l},e)}
84 for (F,z) in Q: )
. match < {(s,u') € F | v/ = v} 1o def eps_closure_out(F):

) ; i closure < )
86 exact < {(s,y') €match | y' =y} 0 « QUEUE(F)
87 if |exact| > 0: # Update cache . )

113 while |Q] > 0:
88 cache[y].add((exact,x)) ;Y
89 if |match| > 0: o (s Y ) = Q.pop()
% S« {s|(s,y') € match} ne o AF 8 I closure:
91 if powerstate_universal(S): /
117 closure.add(s")

92 Q.add((match, x)) ey
o continue 118 for (s — s”? € T(d,e):
o if SNF#0: 119 Q.add((s”,v'y))
o R.add((match, z)) 120 return closure
96 for 2/ € X: 121 def next_frontier_out(F,z):
97 F' +next_frontier_out(F,z') 122 F < eps_closure_out(F)
98 F +{(s,y") e F'| 3 F 0
9 (V' =2y) Vv (y=2vy")} s for (s,y) in F:
100 if |7[>0: . 125 for (s =5 §') € T(s,z):
101 Q¢ .add((F',z2")) 126 Fadd((s', yy))
102 Q < prune(Qc) 127 F' < eps_closure_out(F’)

103 return (R, Q) 128 return F'

Figure 10: A lazy, cached, fully FST-based approach that does not use composition.

G.4 PROBABILITY MASS PRUNING

To make probability calculations relying on the algorithm practical but potentially inexact, we use
a threshold-based pruning strategy, which sorts candidates in Q by their prefix probability and then
discards those whose cumulative probability mass falls below a specified threshold 7. Smaller
values of 7 retain more candidates, whereas larger values improve efficiency at the risk of discarding
relevant candidates. Furthermore, we use an adaptive threshold that grows with the size of the
candidate set. Given a hyperparameter np;, and n = |Q|, if n < np;, we use the base threshold T,
otherwise the threshold increases at a rate controlled by a hyperparameter o and is capped by another
hyperparameter 7p.x. Additionally, we introduce an optional hard size cap npax on the candidate set,
that keeps only the top-nyax candidates by their probability. The (optional) pruning strategy is given
in Fig. 11 on the left with the adaptive threshold given on the right.

Note that our pruning strategy may occasionally reach dead ends at high pruning thresholds, where
no valid extension remains. In such cases, we apply a backtracking algorithm that retraces the cache
and incrementally relaxes the threshold until a viable extension is found.
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129 def prob_mass_prune(ﬁ,r,a,TmaX,npiv,nmax): 141 def score(m,ﬂ): # memoized

130 def prune(Q): 142 T ITp X

131 w [scor‘e(:mﬂ) | (L,x) €Q] w3 if M =0:

132 n<\Q, Z+ > w, w+w/Z 144 return 1

133 Tnew <— adapt_thld(n, 7, &, Tnax, Mpiv) 145 p < score(xy - Tpr—1)

134 0 < argsort(w) # w,(1) < < Wo(p) e return p-py(zar | 1 2pr—1)
135 Ci + 2521 We(5) (k=1,..,n) 147 def adapt_thld(n, 7, o, Thax, Mpiv) :
136 kr., < min{k € [n] | Cx > Tnew } g if n < npjy:

137 Neap ¢ 1 — MiN(Ngax, 1) + 1 149 return 7

138 Ikeep A {U(]) | Jjz max(anew’ ncap) } 150 Tnew <= T (%)0‘

139 return [Q[i] for i in lyeepl 151 return min(Thew, Tnax)

140 return prune

Figure 11: Probability mass pruning algorithm (left); memoized scoring function and adaptive
pruning threshold (right).

G.5 COMPUTING PROBABILITIES — IMPLEMENTING THE LANGUAGE MODEL INTERFACE

Given a language model py and a transducer f, the algorithm given in Fig. 10 recursively enumerates
the remainder R (y) and quotient Q(y) for a sequence y. We now make it explicit how we employ
the interface defined in §2; the algorithms given in Fig. 12 show how to compute py (y), Dy (y),
and the next character distribution py,(- | 7). The direct computation of (- | ) loops over every
symbol y € ) U {EOS} and is therefore expensive.

To avoid this, we present a faster version for computing the next character distribution that exploits
the recursive structure of the quotient and remainder (see App. G.3). We start by describing an
abstract version of the algorithm, which is given in Fig. 13 on the left.

The algorithm computes the prefix decomposition for the given target string v and then iterates over
all elements of Q(y) and R(y). For each emitted output y’ where |y’| > |y| we accumulate the
probability mass for the respective symbols y'|,, 1. Any elements of Q(y) not scored in this pass,
i.e., where |y’| = |y|, are further expanded until a universal power state is reached. We do not expand
the remainder elements, since their universal extensions are already contained in Q(y).

The complete transducer-based version of this algorithm is given in Fig. 13 on the right. It uses a
similar procedure as the algorithm Fig. 10 for maintaining the frontier F of state-output pairs.

152 def prefix_prob(y,]ﬁ): 162 def prob(y,ﬂ):

155 (R, Q) + decomposition(y) 163 (R, Q) + decomposition(y)
154 E)y — 0 164 Py < 0

iss. for (L,x) in Q: 65 for (F,z) in QUR:

s By« score(a, i) w if GLY)EFy=y);
157 Py Py t P 167 p, < P, + score( 7@)
1iss  for (_,a’) in R: 168 return py”R7Q

159 p « score(x’,px) i N

160 Py Py + -ﬁ(EOS ‘ :B/) 160 def next_dist(y,px):

1 p<+ {y:0 for y € YU{EOS}}

: —
m Z,x < prefix_prob(y,px)
2 for y' € Y U{EOS}:

. =

173 P yy s * < prefix_prob(yy’,px)
174 ply' 1+ ?yy//Z
175 return p

p
161 return ?y,R,Q

=

Figure 12: Algorithms for computing py}(-), py(-) and p3;(- | v).
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176 def abstract_Fast_next_dist(y,p_>X): 205 def fast_next_dist(y,]ﬂ?):

1 P {y:0 for y € YU{EOS}} w6 def score_tgt(F,x):
1 Z,R,Q <+ prefix_prob(yﬂ) 207 Drew — {1}
179 Q < QUEUE() 208 Y < {¥|jy+1 1 (5,9) € Fy =y}
o for (s,z,y') in Q: 209 for y €Y: Do, Lyl score(w,ﬁ)/Z
181 if |y’ > |yl 210 return B,.,
182 U Yyl ar p+ {y:0 for ¢ € YU{EOS}}
183 plyl += score(ac,p_>x)/Z w2 Z,R,Q <+ prefix_prob(y,px)
184 else: 3 Q0
185 Q.add((s,xz,y')) as for (F,z) in Q:
156 for (s,x,y’) in R: 215 Drew < Score_tgt(F,x)
187 if |y > |yl 216 if Poew 7 {}:
188 U= Y |y)+1 217 merge (D, Prey)
189 plyl += score(wEOS,ﬂ)/Z 218 else:
190 while |Q| > 0: 219 Q.add((F,x))
191 (8,:13,’!//) <~ Q.pop(): 20 for (]:,ZB) in R:
192 for r € X 21 merge(p, score_tgt(F, LEOS))
193 for y e y; 222 while |Q| >0:
194 U= Y'Yly|+1 23 Q0 .
195 if (xz) C P(yi): 24 for (F,z) in Q:
196 ply]l += score(x,px)/Z 25 for x € X: .
197 continue 26 F' + next_frontier_out(F,x)
198 elif zaz € P(yj): 27 S {s|(s,v) e F,y' -y}
199 pLyl += score(wEOS,H)/Z 228 if powerstate_universal(S):
200 Qc -push((s, zx,yy)) 229 Poew ¢ score_tgt(F', wx)
201 return p 230 if Drew # {}:

o 231 merge(P, Dpey)
202 def merge (P, Prey) : 3 continue
203 f°£ Y 1N Preyt B 233 elif SNF #0:
204 PLyl < PLyl + PreyLy] 234 merge (P, score_tgt(F’, zzEOS))

235 Q¢ .add((F', xzx))
236 Q + prune(Q¢)

237 return p

Figure 13: Algorithms for computing efficiently computing py)(- | v).

H RELATED WORK

Modern language models define probability distributions over sequences of tokens (see §2). For
efficiency and vocabulary (a.k.a. their alphabet) management, they usually rely on sub-word schemes
such as BPE (Sennrich et al., 2016; Gage, 1994) or Unigram (Kudo, 2018). Although these approaches
have been remarkably successful, their units often don’t coincide with linguistic boundaries, and any
given string typically admits an exponential number of variations of tokenizations with non-zero
probability mass under the language model. Recent work has tackled this issue by enforcing canonical
tokenization to remove probability mass from noncanonical encodings (Vieira et al., 2025b), while
Geh et al. (2024) have shown that aggregating the probability mass of noncanonical tokenization
choices carries a useful signal that can boost downstream accuracy.

Sub-word segmentation also gives rise to the prompt-boundary problem (Vieira et al., 2025a), where
imperceptible changes to the final characters of a prompt (e.g., appending a single whitespace)
can push the encoded token sequence onto a completely different path in token space, causing the
model to abandon otherwise highly probable continuations. To overcome these issues, Vieira et al.
(2025a) introduce an algorithm for transforming token-based language models into language models
over characters. Although their contribution centers around characters, the underlying idea can
be generalized. Various applications could make use of a method for accurately converting the
probability mass learned over subword tokens onto other types of units, such as bytes, words, or
morphemes in NLP, or amino acids in computational biology.
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In psycholinguistics, for instance, researchers often require fine-grained estimates of surprisal, e.g.,
when predicting a reader’s likelihood of skipping a word, based on how predictable its first three
characters are (Rayner et al., 1982; Blanchard et al., 1989). To this end, a number of recent studies
have tackled the challenges posed by subword tokenization in modern language models (Nair &
Resnik, 2023; Beinborn & Pinter, 2023; Pimentel & Meister, 2024; Oh & Schuler, 2024; Giulianelli
et al., 2024). For example, recent studies (Oh & Schuler, 2024; Pimentel & Meister, 2024) have
argued that leading whitespace tokenization introduces a confound in surprisal estimates and instead,
advocate for incorporating the probability of trailing whitespaces into such calculations.

Furthermore, Pimentel & Meister (2024) gives a bespoke procedure for converting token-based
language models to word-based language models. However, their method does not model the
contextually sensitive nature of English word segmentation, e.g., it treats both periods in Ex. (1)
identically, where English orthography does not. Additionally, the justification of the procedure
requires that there exists a set of distinguished end-of-word markers that appear at the end of a token,
if at all. We now consider how such a transducer can be constructed. Let f,, be a transducer that
converts a token alphabet to a character alphabet D be the set of delimiters. The transducer fp is
given in Fig. 14. Given a language model px over X, we can then compose them into a transducer
px o fo o fp to get a transduced language model over separator-delimited words. However, such
an approach would be rather naive. Unfortunately, delimiter-based separation would not be able to
distinguish when the dot should be its own symbols or not as in ex. (3)

d:d, VdeD xzx, YeeX\D
x:_x, YreX\D

()

dd, VdeD

Figure 14: A simple FST that segments character streams into words without contextual information,
inserting _, at the start of each word.

The delimiter-based approach also breaks for most BPE-based language models due to clustering
1
of delimiter candidates. For instance, GPT-40’s alphabet contains the token 14335, Which consists
1
solely of end-of-word symbols. Under PTB guidelines, for example, ;4330 should be broken into three
consecutive orthographic words ! ! ! . In contrast, this paper takes the position that the proper

tokenization scheme for psychoili_n'gmﬁ modeling should be specified based on the goals of the
study and not based on the properties of any one specific tokenizer.

Tokenization challenges are not unique to modeling natural language. In computational biology,
DNA, RNA, and protein sequences are long, unsegmented strings over small alphabets that pose
challenges in tokenization. Researchers thus alternate between different tokenization schemas, such
as k-mers, learned subwords, and motif-aware segmenters (Ji et al., 2021; Nguyen et al., 2023; Dotan
et al., 2024; Wang et al., 2024; Qiao et al., 2024). Because foundational models are often trained
under different tokenization schemas, their predictions cannot easily be compared or reused across
different tasks.

Transducer-based approaches to tokenization are well-established—WordPiece (Wu et al., 2016)
can be implemented as a transducer (Song et al., 2021), and deterministic finite automata have been
constructed for BPE (Berglund & van der Merwe, 2023; Berglund et al., 2024). Moreover, transducers
also have a long history in language modeling (Mohri, 1997) and have been adopted for constrained
decoding, where an FST enforces lexical or structural constraints (Allauzen et al., 2014; Ghazvininejad
et al., 2016; Stahlberg et al., 2019; Willard & Louf, 2023; Koo et al., 2024; Cognetta et al., 2025).
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In this study, we generalize the character-level conversion and extend Vieira et al. (2025a) to a
framework that allows transforming a language model to another language model beyond the limited
setting of strict-prefix monotonic mappings. We support conversations between sets of units and
unit-preserving transformations, provided that the mapping between them can be described by a
finite-state transducer. We give algorithms for doing so accurately and efficiently, and present a
formal framework that outlines the conditions under which a mapping between two sets of units can
be performed exactly, along with practical algorithms.

I CONSTRUCTING THE PTB TOKENIZER

We construct the PTB FST by encoding each tokenizer rule?? as an FST that segments character
sequences by inserting a distinguished separator symbol SEP ¢ ). Note that the resulting transduced
language model is thus not a true distribution over PTB tokens, but over characters and separators
corresponding to the same boundaries that the PTB tokens would have. This is a pragmatic decision,
as the PTB tokenizer can tokenize any sentence into orthographic words. In other words, it would
accept an infinite vocabulary. Such a transducer can be built on the fly and would be equivalent to
one with infinitely many states. While nothing prevents such a transducer from being constructed and
used, we stick to the finite version in the scope of this paper. An example of such a rule is given in
Fig. 5, which inserts SEP after a comma if it is not followed by a digit. We then compose these FSTs
into a single transducer (f ;). Note that context-dependent rules, such as the one given in Fig. 5,
introduce non-universal states. For example, state g2 only accepts « € X'\ {0-9, }. In fact, out of the
197 states in f ¢, just 31 are universal.

J DETAILS ON TRANSDUCERS USED IN EXPERIMENTS

Tab. 2 contains the number of states, universal states, and transitions for the transducers described in
§6. We construct all finite-state transducers using Pynini (Gorman, 2016). Note that for experiments
using the Penn Treebank FST (f1,), we realize px o f, using GenlLM.bytes, thereby keeping the
number of states and arcs constant.

Table 2: Number of states, universal states, and transitions.

Model \ States  Universal States Transitions

Tokens to Characters

Dept2 © T 75,723 75,723 125,979
PllamaiB © T 176,990 176,990 305,244
PllamasB © T 176,990 176,990 305,244
Tokens to Words
fotb 197 31 14,584
Dgpt2 © fao 'Fptb 197 31 14,584
Pllama1B © T © fpip 197 31 14,584
PllamasB © fa o fptb 197 31 14,584
DNA to amino acids
1’:dnaLZaLaL 21 21 84
Ddna ©Fdna2aa 21 21 84

K EXPERIMENTAL SETUP

Here we detail the experimental setup for reproducing the experiments in §6 and §6.

ZSee https://www.nltk.org/_modules/nltk/tokenize/treebank.html#TreebankWordTokenizer for
the full specification.
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K.1 DATASETS

For the experiments in §6 and §6, we choose the first 10 paragraphs (excluding headers) of the test
split in the wikitext-103-v1 dataset (Merity et al., 2017) (corresponding to the first 7684 bytes)
from the (¥ Hugging Face datasets library. We use the first 256 bytes of the same dataset and split to
run the experiments in §6. For the experiments in §6, we sample 65 human proteins®?, each consisting
of 4-12 amino acids, with their accession numbers given in Tab. 3.

Table 3: Accession numbers used in this study.

COHLZ5 P01858 PODPI4 PODUSO  P84464
P84465 PODOYS5 P67857 P67858 P67859
P81826 P23210 P85003 P84071 P86168
COHJF1 ~ COHJGO P02729 P81010 P86909
P86922 B3EWES PODMM6 PODQM6 PODQM7
P12481 P85002 B3EWR3  P01358 P02728
POC005 PODKX?2 PODMM7 PODQMY9 PODX30
P22103 P84200 P84785 P84868 P86600
ABC8X2 B3AOL6 B3EUR5 COHIM6  COHLK7
PODJC3  PODJF4 P69208 P85444 P85870
P86942 AOAOAOMTS89 B3EWSO  COHIJB6  COHLS84
COHLS8  POC8I8 PODQH7 PODQHS PODQX4
PODQX5  P58805 P69437 P82820 P83127

K.2 MODELS

We conduct experiments using GPT-2 Large (Radford et al., 2019), Llama 3.2-1B, and Llama 3.1-
8B?* from the ¥ Hugging Face hub (Wolf et al., 2020). We use the GenLM library?® and the vLLM
(Kwon et al., 2023) backend to efficiently evaluate the models.

For the experiments in §6, we use GenlLM.bytes®® to convert token-level models into byte-level
models and compose them with f,;;,. We use a beam size of K=5 and a pruning threshold of 0.001.
For the experiments in §6, we train a custom GPT-2 Small model on a human DNA dataset?’. Note
that we set the token set to X = {A,C, G, T}, eliminating the need for composing the model with a
transducer f, that maps from subword tokens to characters. For training parameters, see Tab. 4, for
training and validation metrics, see Tab. 5.

K.3 PARAMETERS

For all experiments, we use the pruning heuristic described in App. G.4 with the parameters Tyax =
0.4, np;y = 100 and o = 0.7. For the experiments in §6 we report the results for different values of
nax € {5000, 10000, 15000, 20000}. For all other experiments, we set npa = 00

K.4 GPU USAGE

All experiments in §6 were run on a single NVIDIA GeForce RTX 4090 GPU with 24GB of memory.

23ht’cps: //www.uniprot.org/uniprotkb?query=Human

24 Available under openai/gpt2-large, meta-1llama/Llama-3.2-1B and meta-llama/Llama-3.1-8B at
https://huggingface. co.

25ht’cps://github.com/genlm/genlm—backend

26ht’cps://github.com/genlm/genlm—bytes

Yhttps://huggingface.co/datasets/simecek/Human_DNA_ve.
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Table 4: Training Hyperparameters.

Table 5: Training and Validation Metrics.

Parameter Value Step Epoch Train Loss ValLoss Acc (%)
Learning Rate 0.0003 5k 0.69 1.1252 1.1206 47.45
Optimizer AdamW 10k 1.38 1.0835 1.0814 49.91

51 =0.9, B2 = 0.999, 15k 2.07 1.0641 1.0639 51.03

€= le—8 20k 2.76 1.0563 1.0547 51.63
Learning Rate Scheduler Linear 25k 3.45 1.0504 1.0486 52.04
Warm-up Steps 1000 30k 4.14 1.0439 1.0439 52.33
Train Batches (per device) 64 35k 4.84 1.0425 1.0407 52.54
Eval Batches (per device) 8 40k 5.53 1.0365 1.0380 52.71
Total Train Batches 256 (262,144 tokens) 45k 6.22 1.0325 1.0361 52.84
Total Eval Batches 32 50k 6.91 1.0322 1.0341 52.96
Epochs 10 55k 7.60 1.0307 1.0328 53.05
Seed 42 60k 8.29 1.0267 1.0316 53.13
Distributed Training Multi-GPU (4 devices) 65k 8.98 1.0273 1.0306 53.20
Mixed Precision Native AMP 70k 9.67 1.0270 1.0299 53.24

L EXPERIMENTAL RESULTS

Here we provide complementary results to the experiments presented in §6.

L.1

JENSEN-SHANNON DISTANCE

We benchmark how well the algorithm given in §5 approximates the baselines when using high
pruning thresholds 7 in the probability mass pruning described in App. G.4. For all three settings
px o fq (Tab. 7 and Fig. 6), px o fo o e (Tab. 8 and Fig. 6), and py o fanazaa (Tab. 9), we observe
decreasing Jensen-Shannon distances, at the cost of throughput (bytes per second). Note that runtimes
become less consistent for higher thresholds (7 >1e-4) as these settings frequently lead to dead ends
and require backtracking (see App. G.3). Importantly, larger models are not slower, as the scoring of
the candidates is not the main computational bottleneck.

Table 6: Average Jensen—Shannon distance (JSD) and bytes per second for various thresholds 7 using
px o f,, against a reference distribution from Vieira et al. (2025a) with a beam size of K=60. 95%
confidence intervals are given in parentheses.

Dept2 © Fa Pllama1B © fo Pllamass © fo
T average JSD/byte | average JSD/byte | average JSD/byte
le-1 | 7.8e-2 (7.4e-2, 8.1e-2) | 6.7¢-2 (6.4e-2,7.0e-2) | 5.2e-2 (5.0e-2, 5.5¢-2)
3e-2 | 7.4e-2(7.1e-2,7.8e-2) | 6.2e-2 (5.9e-2,6.5¢-2) | 4.8e-2 (4.6e-2, 5.0e-2)
le-2 | 6.1e-2 (5.8e-2, 6.3e-2) | S5.4e-2 (5.1e-2,5.6e-2) | 4.3e-2 (4.1e-2, 4.5¢-2)
3e-3 | 3.0e-2(2.8e-2,3.2e-2) | 3.3e-2 (3.1e-2, 3.5¢-2) | 3.0e-2 (2.8e-2, 3.2e-2)
le-3 | 1.5e-2 (1.4e-2,1.7e-2) | 1.6e-2 (1.4e-2,1.7e-2) | 1.1le-2 (1.0e-2, 1.3e-2)
3e-4 | 6.5e-3 (5.6e-3,7.6e-3) | 5.7¢-3 (4.8e-3, 6.8¢-3) | 4.3e-3 (3.5¢-3, 5.2e-3)
le-4 | 3.8e-3 (2.9e-3,4.7e-3) | 2.5e-3 (2.0e-3, 3.2e-3) | 1.4e-3 (1.1e-3, 1.8e-3)
3e-5 | 8.5e-4 (5.6e-4, 1.3e-3) | 9.2¢-4 (6.9¢e-4, 1.2e-3) | 8.1e-4 (5.1e-4, 1.2e-3)
le-5 | 7.4e-4 (4.3e-4, 1.2e-3) | 3.8e-4 (2.7e-4,5.2e-4) | 3.8e-4 (2.2e-4, 6.4e-4)
3e-6 | 6.7e-4 (3.1e-4, 1.1e-3) | 3.2e-4 (2.2e-4,4.5¢e-4) | 2.0e-4 (1.4e-4,2.7e-4)
le-6 | 2.7e-4 (1.4e-4,4.7e-4) | 3.0e-4 (2.0e-4,4.3e-4) | 1.9e-4 (1.2e-4, 2.6e-4)
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Table 7: Average Jensen—Shannon distance (JSD) and bytes per second for various thresholds 7 and a

reference (7 =1e-6) using px o f. 95% confidence intervals are given in parentheses.

Dept2 © Fa

average JSD / byte

bytes / sec

Pllama1B © fo

average JSD / byte

bytes / sec

le-1
3e-2
le-2
3e-3
le-3
3e-4
le-4
3e-5
le-5
3e-6
le-6

7.8e-2 (7.4e-2, 8.1e-2)
7.4e-2 (7.0e-2, 7.7e-2)
6.0e-2 (5.7e-2, 6.3e-2)
3.0e-2 (2.8¢e-2, 3.2e-2)
1.5e-2 (1.3e-2, 1.7¢-2)
6.2e-3 (5.2e-3, 7.2e-3)
3.5e-3 (2.7e-3, 4.4¢-3)
5.8e-4 (3.4e-4, 9.3e-4)
5.0e-4 (2.3e-4, 8.7e-4)
4.5e-4 (9.1e-5, 9.4e-4)

22.02 (13.88, 36.15)
22.31 (1272, 41.71)
26.08 (13.91, 51.18)
27.67 (17.50, 49.67)
29.60 (18.88, 51.40)
21.91 (13.66, 37.44)
26.10 (24.85, 27.39)
15.33 (14.69, 16.03)
9.66 (9.25, 10.09)
6.10 (5.85, 6.39)
2.52 (2.41,2.64)

6.7e-2 (6.3e-2, 7.0e-2)
6.1e-2 (5.8¢e-2, 6.4¢-2)
5.4e-2 (5.1e-2, 5.6e-2)
3.3e-2 (3.1e-2, 3.5¢-2)
1.5e-2 (1.4e-2, 1.7e-2)
5.4e-3 (4.4e-3, 6.4¢-3)
2.3e-3 (1.7e-3, 2.9¢-3)
6.0e-4 (4.1e-4, 8.4e-4)
7.1e-5 (4.2e-5, 1.1e-4)
1.7e-5 (7.2e-6, 3.2e-5)

38.76 (30.81, 48.63)
39.73 (30.65, 51.48)
25.61 (15.06, 45.38)
42.08 (29.25, 59.36)
46.25 (29.10, 75.78)
49.40 (40.14, 59.56)
37.42 (29.84, 43.84)
23.54 (22.37, 24.84)
16.62 (15.83, 17.42)
10.40 (9.97, 10.86)
5.41 (5.19, 5.65)

PllamagB © 1co¢

average JSD / byte

bytes / sec

5.2e-2 (5.0e-2, 5.5¢-2)
4.8e-2 (4.5¢-2, 5.0e-2)
4.3e-2 (4.1e-2, 4.5¢-2)
2.9e-2 (2.8e-2, 3.1e-2)
1.1e-2 (1.0e-2, 1.3e-2)
4.1e-3 (3.4e-3, 5.0e-3)
1.2¢-3 (8.8e-4, 1.6e-3)
6.3e-4 (3.1e-4, 9.9e-4)
1.9¢-4 (5.5¢-5, 4.3e-4)
1.0e-5 (6.8¢-6, 1.4e-5)

42.87 (32.92, 57.03)
41.40 (30.70, 54.70)
34.24 (19.37, 56.79)
30.55 (20.06, 48.56)
35.00 (20.96, 56.28)
25.95 (12.88, 53.91)
40.15 (38.14, 42.33)
25.70 (22.68, 27.97)
18.43 (17.64, 19.30)
12.35 (11.83, 12.84)
7.77 (.45, 8.12)
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Table 8: Average Jensen—Shannon distance (JSD) and bytes per second for various thresholds 7 and a

reference (7 =le-6) using px o fo © fpyn. 95% confidence intervals are given in parentheses.

ppt20fa0f tb
(3 P

average JSD / byte

bytes / sec

Pllama1B © fa © Fpib
p

average JSD / byte

bytes / sec

le-1
3e-2
le-2
3e-3
le-3
3e-4
le-4
3e-5
le-5
3e-6
le-6

5.6e-3 (5.1e-3, 6.2¢-3)
1.9e-3 (1.7e-3, 2.2e-3)
8.8e-4 (7.0e-4, 1.2¢-3)
3.4de-4 (2.7e-4, 4.7e-4)
1.7e-4 (1.0e-4, 3.0e-4)
7.4e-5 (3.5¢-5, 1.5e-4)
1.6e-5 (1.3e-5, 2.1e-5)
6.2e-6 (4.6e-6, 9.0e-6)
2.0e-6 (1.7e-6, 2.5¢-6)
6.7e-7 (6.1e-7, 7.7e-7)

32.91 (31.78, 33.98)
30.74 (29.98, 31.50)
30.29 (29.51, 31.12)
27.67 (26.95, 28.37)
28.01 (27.20, 28.91)
26.29 (25.50, 27.00)
22.34 (21.69, 22.95)
16.19 (15.50, 16.83)
9.59 (9.02, 10.21)
4.20 (3.78, 4.63)
2.52(2.32,2.77)

5.1e-3 (4.5¢e-3, 5.7¢-3)
1.9¢-3 (1.5¢-3, 2.3e-3)
8.0e-4 (6.1e-4, 1.1e-3)
3.1e-4 (2.3e-4, 4.7e-4)
1.4e-4 (9.4e-5,2.2¢e-4)
5.5e-5 (3.3e-5, 9.3¢-5)
1.7e-5 (1.4e-5, 2.2¢-5)
7.5e-6 (5.7e-6, 1.0e-5)
2.8e-6 (2.5¢-6, 3.3e-6)
1.4e-6 (1.2e-6, 1.8e-6)

33.08 (21.15, 58.03)
53.87 (52.51, 55.42)
49.09 (47.80, 50.42)
45.28 (44.07, 46.50)
37.22 (35.44, 38.84)
36.42 (35.57, 37.32)
28.42 (27.58, 29.20)
16.65 (16.00, 17.40)
11.79 (11.12, 12.45)
7.06 (6.63, 7.53)
4.38 (4.07,4.72)

PllamagB © 1:oz o f~p‘cb

average JSD / byte

bytes / sec

4.3e-3 (3.8¢-3, 5.0e-3)
1.6e-3 (1.3e-3, 2.0e-3)
5.9e-4 (5.1e-4, 7.4e-4)
2.8e-4 (2.0e-4, 4.1e-4)
1.5e-4 (8.4e-5, 2.8e-4)
5.3e-5 (3.1e-5, 9.4¢-5)
1.6e-5 (1.2e-5, 2.4e-5)
5.6e-6 (4.4e-6, 7.5¢-6)
2.6e-6 (1.9¢e-6, 3.9¢-6)
8.3e-7 (7.4e-7, 9.6e-7)

30.37 (29.48, 31.19)
27.92 (27.25, 28.64)
26.14 (25.50, 26.81)
24.23 (23.64, 24.88)
21.21 (20.68, 21.79)
20.19 (19.71, 20.69)
18.54 (18.12, 18.96)
1433 (13.93, 14.74)
10.33 (9.92, 10.74)
6.40 (6.02, 6.83)
4.41 (4.10,4.72)
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Table 9: Average Jensen—Shannon distance (JSD) and bytes per second for various thresholds 7 and a
reference (7 =1e-6) using px © fanazaa. 95% confidence intervals are given in parentheses. We limit
the size of the candidate set to mitigate the combinatorial blow-up with increasing sequence length.

Pdna © fdnaQaa (nmax = 5000) Pdna © 'Fdna2aa (nmax = IOOOO)
T average JSD / byte byte / sec \ average JSD / byte byte / sec
le-1| 4.9e-3 (3.9e-3,5.9e-3) 24.31(21.16,28.25)| 5.1e-3 (4.0e-3, 6.3e-3)  44.33 (38.29, 52.75)
3e-2| 2.0e-3(1.4e-3,2.6e-3) 24.04 (18.51,32.81)| 2.1e-3(1.5e-3,2.8e-3) 23.45(17.86,31.51)
le-2| 8.4e-5(5.9¢e-5, 1.1e-4) 12.55 (8.83, 19.52) 1.1e-4 (8.2e-5, 1.5e-4) 12.07 (8.64, 18.96)
3e-3| 1.4e-5(9.1e-6, 1.9¢-5) 10.98 (7.68, 17.42) 1.4e-5 (9.2e-6, 2.0e-5) 8.51(5.63, 15.35)
le-3| 4.0e-6 (2.3e-6, 5.9¢-6) 10.57 (7.46, 15.76) 3.9e-6 (2.3e-6, 5.9e-6) 8.11 (5.39, 14.43)
3e-4| 2.8e-7(1.7e-7,4.2e-7) 10.34 (7.29, 15.85) 2.3e-7 (1.3e-7, 3.6e-7) 7.84 (5.22, 14.16)
le-4| 7.6e-8 (3.0e-8, 1.3e-7) 10.39 (7.52, 15.90) 3.2e-8 (1.7e-8, 4.9e-8) 8.24 (5.48, 14.22)
3e-5| 2.1e-8 (5.0e-9, 4.5e-8) 10.29 (7.47, 16.18) 1.3e-8 (5.1e-9, 2.1e-8) 8.44 (5.62,14.41)
le-5| 4.2e-9(9.2e-10,8.3e-9) 10.30(7.40, 15.89) | 4.2e-9 (9.2e-10, 8.5¢-9) 8.48 (5.82, 14.70)
3e-6 | 3.5e-10 (0.0e+00, 9.0e-10) 10.36 (7.34, 16.22) | 3.5¢-10 (0.0e+00, 9.0e-10)  8.50 (5.70, 14.98)
le-6 1.17 (1.06, 1.31) 0.70 (0.62, 0.78)
Pdna © fdnaQaa (nmax = 15000) Pdna © 'FdnaQaa (nmax = 20000)
T average JSD / byte byte / sec | average JSD / byte byte / sec
le-1| 5.2e-3 (4.2e-3,6.2e-3) 47.07 (40.13,54.66) | 5.2e-3 (4.1e-3, 6.3e-3)  47.99 (41.76, 56.14)
3e-2| 2.2e-3(l.6e-3,2.8e-3) 23.67(18.30,32.60)| 2.2e-3 (1.6e-3,2.9e-3) 25.89 (20.38, 35.54)
le-2| 1.3e-4 (8.9e-5, 1.8e-4) 12.44 (8.65, 19.50) 1.4e-4 (8.9¢e-5, 1.9e-4) 12.82 (9.09, 19.69)
3e-3| 1.6e-5(1.1e-5, 2.2e-5) 8.66 (5.60, 15.33) 1.8e-5 (1.2e-5, 2.3e-5) 8.94 (5.77,15.76)
le-3| 4.2e-6 (2.6e-6, 5.8e-6) 5.90 (3.51, 12.80) 5.1e-6 (3.3e-6, 7.1e-6) 5.88 (3.59, 13.27)
3e-4| 2.3e-7(1.3e-7,3.4e-7) 5.07 (3.05, 12.07) 3.2e-7 (1.8e-7, 4.7e-7) 4.91 (2.96, 12.98)
le-4| 2.5e-8 (1.3e-8, 4.1e-8) 4.77 (2.84,11.74) 3.1e-8 (1.6e-8, 4.8e-8) 4.57 (2.65, 10.69)
3e-5| 1.1e-8 (3.7e-9, 1.8e-8) 4.73 (2.85, 10.47) 1.5e-8 (7.2e-9, 2.3e-8) 4.42 (2.52,10.83)
le-5| 4.2e-9(9.2e-10,8.3e-9)  4.57 (2.53, 10.82) 6.1e-9 (2.2e-9, 1.1e-8) 4.18 (2.47, 10.06)
3e-6 | 3.5e-10 (0.0e+00, 9.0e-10)  4.51 (2.59, 11.05) | 3.5e-10 (0.0e+00, 9.0e-10)  4.05 (2.27,9.51)
le-6 0.47 (0.42, 0.52) 0.39 (0.35, 0.44)

L.2 BENCHMARKING THE QUOTIENT

Table 10: Average Jensen—Shannon distance (JSD) for 7 =1e-4 after randomly converting n% of the
universal states to non-universal.

PllamalB © ch
| Converted States average JSD / byte

Dgpt2 © o

% Converted | Converted States average JSD / byte

0 0 0

5 3786 3.4e-3 (2.2e-3, 4.9¢-3) 8849 1.8e-2 (1.4e-2, 2.2e-2)
10 7572 2.1e-2 (1.7e-2, 2.5e-2) 17699 1.4e-2 (1.1e-2, 1.7e-2)
15 11358 2.9e-2 (2.5e-2, 3.4e-2) 26548 1.6e-2 (1.3e-2, 1.9e-2)
20 15144 5.3e-2 (4.7e-2, 6.0e-2) 35398 5.1e-2 (4.5e-2, 5.7e-2)
25 18930 5.2e-2 (4.6e-2, 5.8e-2) 44247 6.4e-2 (5.7e-2,7.1e-2)

Pgpt2 © fcz o fptb Pllama1lB © fcx o fptb

% Converted | Converted States average JSD /byte | Converted States average JSD / byte
0 0 0
5 1 2.7e-7 (2.2e-7, 3.3e-7) 1 9.0e-7 (6.7e-7, 1.3e-6)
10 3 5.8e-5 (1.4e-5, 1.1e-4) 3 3.6e-5 (1.3e-5, 6.7¢-5)
15 4 1.1e-2 (9.9e-3, 1.2e-2) 4 9.3e-6 (1.9¢-6, 2.0e-5)
20 6 1.1e-2 (1.0e-2, 1.3e-2) 6 1.1e-3 (5.5e-4, 1.9¢-3)
25 7 - 7 1.1e-2 (9.9e-3, 1.3e-2)

L.3 CROSS-ENTROPY

We repeat the experiments from §6 in Tab. 11, this time evaluating the cross-entropy loss using the
same dataset. Because this metric does not require computing the full distribution over the next
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symbol, we observe a large speedup. Many applications rely on calculating sequence or prefix
probabilities; these numbers are indicative of the performance and accuracy trade-offs in such settings.
The JSD-numbers, on the other hand, correspond to the time it would take to do full decoding.

Table 11: Average Cross-Entropy for various thresholds 7.

T Bytes/s Bits/byte Cross-entropy
Mean 95% CI Mean 95% CI Mean 95% CI

Dept2 © o

le-1  54.60 (56.23,108.78)  1.2273  (1.1322,1.2894) 0.8507  (0.7860, 0.8917)
3e-2  73.70 (74.99, 125.08)  1.2470  (1.1694, 1.2966) 0.8644  (0.8088, 0.8992)
le-2  83.40 (79.40,114.86)  1.1701  (1.1085,1.2092) 0.8110 (0.7652, 0.8383)
3e-3  96.50 (91.86,128.42)  1.1130 (1.0652,1.1500) 0.7715  (0.7388, 0.7979)
le-3  81.90 (77.90, 96.14) 1.0782  (1.0258, 1.1223)  0.7473  (0.7120, 0.7777)
3e-4  49.80 (47.50, 54.26) 1.0456  (0.9963,1.1039) 0.7248  (0.6924,0.7611)
le-4  19.60 (24.42, 34.33) 1.0288  (0.9877,1.0768) 0.7131  (0.6822, 0.7477)
3e-5 17.30 (16.15, 19.62) 1.0129  (0.9757,1.0562) 0.7021 (0.6756, 0.7326)
le-5 11.10 (10.03, 13.28) 1.0127  (0.9771, 1.0503) 0.7020 (0.6760, 0.7280)
3e-6 6.90 (6.24,9.27) 1.0162  (0.9811, 1.0584) 0.7044  (0.6790, 0.7355)

Pllama1B © fo

le-1 116.70 (109.18,165.89) 1.0595 (0.9453,1.1047) 0.7344  (0.6614, 0.7690)
3e-2  155.10 (145.12,203.50) 1.0858 (0.9770, 1.1307) 0.7526  (0.6743, 0.7896)
le-2 14230 (134.66,202.59) 1.0458 (0.9916, 1.0799) 0.7249  (0.6888, 0.7524)
3e-3  165.00 (157.14,201.86) 0.9672 (0.8978,1.0067) 0.6704  (0.6270, 0.6982)
le-3  150.50 (144.11,184.43) 0.9057 (0.8445,0.9413) 0.6278  (0.5891, 0.6543)
3e-4  87.60 (83.48,102.28)  0.8564 (0.8101, 0.8895) 0.5936 (0.5653, 0.6178)
le-4  48.70 (46.29, 57.93) 0.8415 (0.7961, 0.8678)  0.5833  (0.5526, 0.6025)
3e-5 2740 (25.57, 33.84) 0.8394  (0.7942,0.8688) 0.5818  (0.5530, 0.6037)
le-5 19.60 (18.68, 21.82) 0.8388  (0.7949,0.8617) 0.5814  (0.5535, 0.6001)
3e-6  12.50 (11.85, 13.98) 0.8353  (0.7901, 0.8633)  0.5790  (0.5488, 0.6004)

PllamasB © fo

le-1  83.90 (79.37,120.86)  0.8637  (0.6849, 0.9268) 0.5987  (0.4796, 0.6442)
3e-2 10090  (94.98,128.25) 0.8644 (0.6925,0.9279) 0.5991 (0.4736, 0.6414)
le-2 117.10 (111.90,135.80) 0.8398 (0.6890, 0.9044) 0.5821 (0.4710, 0.6243)
3e-3 10480  (99.09,125.66) 0.8171  (0.6604, 0.8765) 0.5664  (0.4726, 0.6054)
le-3 101.90  (97.85,122.57) 0.7325 (0.6059,0.7772)  0.5077  (0.4242, 0.5372)
3e-4 7290 (68.89, 90.38) 0.7067  (0.5866,0.7583) 0.4899  (0.4114, 0.5238)
le-4 45.10 (41.32, 60.47) 0.7001  (0.5738,0.7446) 0.4852 (0.4081, 0.5182)
3e-5  30.50 (28.59, 38.91) 0.6944  (0.5821,0.7404) 0.4813  (0.4024,0.5118)
le-5  20.60 (19.15, 26.25) 0.6928  (0.5795,0.7415) 0.4802  (0.4023, 0.5095)
3e-6 1420 (13.62, 16.96) 0.6911  (0.5796,0.7383) 0.4790 (0.4010, 0.5093)

L.4 FINE-TUNING VS. TRANSDUCING

To further benchmark our approach, we compare transduction against fine-tuning, a standard method
for adapting pretrained language models to new data. We select a simple transformation: converting a
pretrained model into one over lowercased strings, using the transducer depicted in Fig. 1. Specifically,
we evaluate four variants of pgpio: (i) the original model, (ii) a fine-tuned model trained on 50M tokens
of lowercased data sampled from GPT2-large until validation loss increased, (iii) a byte-adapted
model where the embedding matrix is replaced to operate directly on the 256 bytes and special
symbols, and (iv) our transduced model applied at the byte level. We use sampled data to prevent
overfitting on a given domain during the fine-tuning.

We evaluate these models on 100 paragraphs (24,925 bytes) from a dataset of recent Wikipedia
articles (written in the last three years), which are known not to be part of the training data and report
the perplexity in bits per byte, with 95% confidence intervals obtained by bootstrapping. Fine-tuning
was performed on a single H100 GPU for approximately a day, depending on early stopping. We
note that we do not conduct a comprehensive hyper-parameter search but select what we deem to be
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reasonable hyperparameters. We use a warm-up of 2000 steps, a learning rate of Se-5, a batch size of
32, a context window of 1024 tokens, and evaluate every 100 steps with early stopping patience set to
5. The directly fine-tuned model took around 4 epochs, while the byte-adapted model with the new
embedding matrix was still improving minimally. After 24 hours of training, it was stopped since the
performance was very far from the fine-tuned model and the transduced model. The results in Tab. 12
show that our transducer-based approach yields the highest performance. All pairwise differences are
significant at p < 0.001. Even if the byte-adaptation might get close to the fine-tuned model over
weeks or months of training, this serves as an example of why transducing a model directly is so
lucrative. Transduction does not require training, nor hyperparameter tuning and the results may still
be better.

Table 12: Mean bits/byte with 95% confidence intervals.

Run Mean bits/byte £ CI (95%)
Baseline 1.22 +0.03
Finetuned 1.14 + 0.03
ByteAdapted 1.59 +£ 0.05
Transduced (ours) 1.02 + 0.04
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