
000
001
002
003
004
005
006
007
008
009
010
011
012
013
014
015
016
017
018
019
020
021
022
023
024
025
026
027
028
029
030
031
032
033
034
035
036
037
038
039
040
041
042
043
044
045
046
047
048
049
050
051
052
053

Under review as a conference paper at ICLR 2026

TRANSDUCING LANGUAGE MODELS

Anonymous authors
Paper under double-blind review

ABSTRACT

Modern language models define distributions over strings, but their outputs are
not always suited to downstream task. For instance, a model generating byte-pair
strings may not be suitable when word-level predictions are needed, and a DNA
model may not fit applications requiring amino acids. In such cases, a deterministic
string-to-string transformation can convert the model’s output to the desired
form. This is a familiar pattern in probability theory: applying a function f to
a random variable X ∼ p yields a transformed random variable f(X) with an
induced distribution. While such transformations are occasionally used in language
modeling, they are not treated as yielding new, fully functional language models.
We formalize this perspective and introduce a general framework for language
models derived from deterministic string-to-string transformations. Focusing
on transformations representable as finite-state transducers—a commonly used
state-machine abstraction for efficient string-to-string mappings—we develop
algorithms that compose a language model with an FST to marginalize over
source strings mapping to a given target. This allows us to propagate probabilities
through the transducer without altering model parameters and to condition on
transformed outputs. We present an exact algorithm, an efficient approximation,
and a theoretical analysis. We conduct experiments in three domains: converting
token-level language models to character-level language models, token-level
language models to word-level models, and deriving amino-acid models from
DNA models. This demonstrates inference-time adaptation of pretrained language
models to match application-specific output requirements.

1 INTRODUCTION

Language models (LMs) define distributions over strings. Yet, the strings they produce often fail to
align with the requirements of downstream applications, leading practitioners to apply ad hoc post-
processing. We call this the string mismatch problem. For example, in natural language processing,
modern language models typically generate byte-pair encoded strings (Sennrich et al., 2016), while
downstream tasks may require words or characters instead (see Ex. (2), below). Similarly, DNA
language models generate nucleobase sequences, but many biological applications require strings of
the corresponding amino acids (see Ex. (5), below).

Adding a string-to-string transformation to a generation pipeline is a practical and common engineer-
ing solution. Such as normalizing output, or mapping bytes to UTF-8. Formally, this defines a new
language model over transformed strings. However, while sampling remains straightforward—simple
operations like computing the probability of a transformed variable are no longer available, and
conditioning on transformed strings is off the table. Consider, for instance, the mapping from a string
in any casing to its lowercase version, as in the use-case depicted in Fig. 1. While lowercasing a given
input is trivial, converting the original distribution to a distribution over lowercased words, is not.

In this work, we promote string-to-string transformations to first-class citizens in the language
modeling pipeline. We enable direct reasoning about the transformed distributions of string-valued
random variables and introduce practical algorithms that operate on the transformed models at
inference time. This approach to the string mismatch problem is principled, modular, and often far
more achievable than retraining a language model to generate transformed strings directly. Moreover,
the transformations often guarantee adherence to the requirements of the downstream applications.

We now provide a motivating example in the context of a language model over English utterances.
Consider the following sentence:

1

054
055
056
057
058
059
060
061
062
063
064
065
066
067
068
069
070
071
072
073
074
075
076
077
078
079
080
081
082
083
084
085
086
087
088
089
090
091
092
093
094
095
096
097
098
099
100
101
102
103
104
105
106
107

Under review as a conference paper at ICLR 2026

(1) Dr. Lemaître was flabbergasted. Hello

hello

HE | LL | O
hell | o
Hell | o
H | ello
hell | O
Hell | O
he | llo
Hel | lo

...

4.1e-07

3.1e-08

1.9e-08

3.4e-10

1.8e-10

1.1e-10

7.4e-12

7.2e-12

4.7e-12

4.2e-12

hello 4.6e-07

Figure 1: GPT-2 probabilities for the
BPE token strings that, when lower-
cased, match hello. The total probabil-
ity of all such sequences is at the bottom.

The byte-pair encoding used by GPT4o (OpenAI, 2024)
encodes Ex. (1) as the following string of tokens:

(2)
Dr
5822

.
13

␣L
451

ema
4603

\C3\AEtre
29135

␣was
673

␣fl
1548

ab
378

berg
9667

asted
23030

.
13

␣\F0\9F\A4
93643

\AF
107

The segmentation of Ex. (1) into tokens induced by the
byte-pair encoding is based on character substring fre-
quency. However, many applications would benefit from
a different choice of units. For instance, in computational
psycholinguistics (e.g., (Giulianelli et al., 2024)) and con-
trolled generation (e.g., (Lew et al., 2023; Xefteri et al.,
2025)). This also holds if one wishes to derive distribu-
tions over grammatical words, such as those defined by
the Penn Treebank (PTB) annotation guidelines (Marcus
et al., 1993), a variation of which is shown below:

(3) DR. LEMAÎTRE WAS FLABBERGASTED .

For other applications, e.g., spelling correction, we might also wish to represent Ex. (2) using a string
of characters or UTF-8 byte representation as follows: 1

(4)
D
68

r
114

.
46

␣
32

L
76

e
101

m
109

a
97

\C3
195

\AE
174

t
116

r
114

e
101

␣
32

w
119

a
97

s
115

␣
32

f
102

l
108

a
97

b
98

b
98

e
101

r
114

g
103

a
97

s
115

t
116

e
101

d
100

.
46

␣
32

\F0
240

\9F
159

\A4
164

\AF
175

In genetics, we have another example of varying representations. Consider the DNA sequence given
in Ex. (5). The sequence is one of many that translate into the hormone oxytocin, typically represented
by the amino acid sequence in Ex. (6), as represented below, along with their integer encodings:

(5)
T
3

G
1

T
3

T
3

A
0

C
2

A
0

T
3

A
0

C
2

A
0

A
0

A
0

A
0

T
3

T
3

G
1

T
3

C
2

C
2

T
3

C
2

T
3

A
0

G
1

G
1

T
3

(6)
C
1

Y
19

I
7

Q
13

N
11

C
1

P
12

L
9

G
5

Transforming a language model is, in general, non-trivial, and success depends heavily on the com-
plexity of the mapping. Recent papers explore methods for obtaining probabilities over bytes using
subword models (Phan et al., 2024; Hayase et al., 2025, inter alia). In particular, Vieira et al. (2025a)
addresses this problem in the case of strict-prefix monotone transformations, such as converting token-
based models into character-based ones. This paper generalizes that approach to handle more complex
conversions—where target units need not be direct constituents of the source units as in ex. (6).

We introduce a foundational framework for such conversions, involving the composition of pretrained
language models and string-to-string functions, encoded by transducers, referred to as transduced
language models. We develop exact and approximate algorithms for efficient sampling, scoring,
and conditioning on transformed strings, all without modifying the underlying language model.

To validate our approach, we construct FSTs for the three use cases above: (i) by converting tokens
to characters, (ii) inserting orthographic boundaries following the Penn Treebank tokenizer, and
(iii) converting DNA sequences to sequences over amino acids. We then employ commonly used
pretrained language models over the input units of the FSTs, and compose them with the FSTs
to obtain language models over the output tokens. Finally, we use these settings to benchmark the
theoretical and algorithmic contributions. In particular, we find that using an approximation of the
exact algorithm is sufficient to obtain a good approximation at a fraction of the computational cost.

1Note that UTF-8 allows multiple encodings of some strings. For example, the character î can be encoded
composed (\C3\AE) or decomposed(i\CC\82). See https://unicode.org/reports/tr15/.

2

https://unicode.org/reports/tr15/

108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161

Under review as a conference paper at ICLR 2026

2 BACKGROUND

We now introduce core background material. A glossary of our notation is given in App. A.

STRINGS. Let X be an alphabet (i.e., a finite, non-empty set). Let X ∗ denote the set of all
finite strings over X , including the empty string εX . When there is no risk of ambiguity with other
alphabets, we simply write ε. We use x,x′ ∈ X ∗ to denote strings and Z,Z ′ ⊆ X ∗ to denote sets of
strings. Let xx′ denote concatenation, similarly, we define the concatenation of sets of strings as
ZZ ′ def= {xx′ | x ∈ Z,x′ ∈ Z ′}, and in the singleton case as xZ ′ def= {x}Z ′, and Zx′ def= Z{x′}. We
write x ⪯ x′ when x is a prefix of x′, and x ≺ x′ when it is a strict prefix.

LANGUAGE MODELS. A language model pX is a probability distribution over a set of strings
X ∗. Let EOS /∈ X be a special end-of-string symbol. We define the prefix probability of pX as the
probability that a string X ∼ pX starts with a given prefix x2, and the conditional prefix probability
as fractions:

−→pX (x) def=
∑

x′∈X∗

pX (xx′) −→pX (x′ | x) def=
−→pX (xx′)
−→pX (x)

−→pX (EOS | x) def=
pX (x)
−→pX (x)

(1)

when −→pX (x) > 0; otherwise we set −→pX (x′ | x) def= 0 and −→pX (EOS | x) def= 1. Therefore, −→pX (· | x)
is a probability distribution over X ⊔ {EOS} for all x ∈ X ∗, 3 where ⊔ is used to indicate that
X and {EOS} are disjoint. Using this structure, any language model pX may be factorized as
pX (x) = −→pX (EOS | x)∏|x|

t=1
−→pX (xt | x<t) where each −→pX (xt | x<t) corresponds to the probability

of xt ∈ X ⊔ {EOS}, given the prefix x<t ∈ X ∗.4 This factorization defines a left-to-right generative
process: starting from x equals ε, we repeatedly sample x′ ∼ −→pX (· | x); if x′ = EOS, we stop,
otherwise we update x to xx′. Conditional generation simply starts from the conditioning prefix
instead of the empty string. We refer to these operations as the interface to the language model pX .

CYLINDRICAL SETS. Cylindrical sets define strings with a given prefix and are inherent to the
definition of prefix probabilities. Let Z,Z ′ ⊆ X ∗, we define the cylinder over Z as ⟨Z⟩ def= ZX ∗.
We say that Z is cylindrical if Z = ⟨Z⟩. Note that the union of cylinder sets is a cylinder set.
We define the basic cylinder for x as ⟨x⟩ def= ⟨{x}⟩. The prefix-base operation pf(Z) is defined
by pf(Z) def= {x ∈ Z : ∄x′ ∈ Z such that x′ ≺ x}. The prefix-base operation uniquely partitions
⟨Z⟩ into basic cylinders over pf(Z). We say that Z is prefix-free if pf(Z) = Z. Crucially,
for all x,x′ ∈ pf(Z) where x ̸= x′, the basis sets are disjont ⟨x⟩ ∩ ⟨x′⟩ = ∅ and exhaustive,⋃

x∈pf(Z)⟨x⟩ = ⟨Z⟩. Thus, pf(Z) is a set of representative elements such that ⟨Z⟩ = ⊔
x∈pf(Z)⟨x⟩.

TRANSDUCERS. A transducer is a state-machine that encodes string-to-string relations f ⊆
X ∗×Y∗. Transducers are a key component in our work, when we express a relationship defined by f
as a transducer, we expose the computational structure required for developing efficienct algorithms.
Formally, a finite-state transducer5 (FST) f is a tuple (S,X ,Y,T, I,F) where S is a finite set of
states and X ,Y are alphabets of input and output symbols. The sets I,F ⊆ S are the initial and final
states. T ⊆ S×(X∪{ε})×(Y∪{ε})×S is a set of transitions. We render transitions (s, x, y, s′) ∈ T

as s
x:y−−→ s′, we say the transition scans x and emits y. We denote the set of outgoing transitions

from state s with T(s), and T(s, x) to denote the set of outgoing transitions from s that scan for x.6

The transducer f defines a set of paths Π. Each path π ∈ Π is a sequence of transitions of the form
s0

x1:y1−−−→ s1
x2:y2−−−→ s2 ··· sN−1

xN :yN−−−−→ sN . We sometimes describe π as a generalized transition
s0

x:y
⇝ sN that scans x = x1x2 ··· xN and emits y = y1y2 ··· yN , suppressing the intermediate

transitions. We call π an accepting path if s0 ∈ I and sN ∈ F. The relation defined by f is given by
JfK def= {(x,y) | (s x:y

⇝ s′) ∈ Π: s ∈ I, s′ ∈ F}, i.e., each accepting path contributes (not necessarily
uniquely) a pair of scanned and emitted strings. We give more details about transducers in App. C

2Note that the prefix probability is not a probability distribution over X ∗, but the probability of the event x ⪯ X ,
i.e., −→pX (x) = PrX∼pX [x ⪯ X].

3However, note that −→pX (· | ··· EOS ···) is undefined.
4See Cotterell et al. (2024, Theorem 2.4.2) for a proof.
5We refer to Pin (2021, Ch. 2 & 3) for a detailed treatment of transducers.
6I.e., T(s′′) def= {(s x:y−−→ s′) ∈ T : s = s′′}, and T(s′′, x′′) def= {(s x:y−−→ s′) ∈ T : s = s′′, x = x′′}.

3

162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215

Under review as a conference paper at ICLR 2026

0

A : a
B : b

...

Z : z

a : a
b : b

...

z : z

−→pY(ab) = −→pX (AB) + −→pX (Ab) + −→pX (aB) + −→pX (ab)

0

1

2

3

X∖{b}

b

b:ε

a

b

b
X∖{b, d} b:ε

b:ε

ad:ungood

X∖{b, a
}

−→pY(ba) =
∑

x∈X∗\{d} pX (bax) + pX (ba)

Figure 2: Two examples of transformations: (Left) A transducer that maps alphabetic strings to their
lowercase form. Each lowercase output corresponds to a set of input strings that differ only in casing.
(Right) A newspeak (Orwell, 1949) transducer, where the word ‘bad’ is not permitted. So ⟨bad⟩ does
not contribute to −→pY(ba). We use a single symbol for copy transitions, e.g., b to denote b : b.

3 TRANSDUCED LANGUAGE MODELS

A transduced language model pY arises from applying a string-to-string transformation f : X ∗ →
Y∗, encoded by a transducer f, to a string drawn from a source language model pX . Formally, if
X ∼ pX , then f(X) has the following probability mass function:

pY(y)
def= Pr

X∼pX
[y = f(X)] =

∑
x∈f−1(y)

pX (x) (2)

where f−1(y) is the preimage of y, f−1(y) def= {x ∈ X ∗ : y = f(x)}. Put differently, in Eq. (2),
we sum over the strings x such that f(x) = y. Unfortunately, evaluating pY(y) exactly using Eq. (2)
is generally intractable, even though exact sampling from pY is efficient.

Like all language models, a transduced language model pY has prefix and conditional prefix probabil-
ity functions. The prefix probability −→pY is given by

−→pY(y) def= Pr
X∼pX

[y ⪯ f(X)] =
∑

x∈P(y)

pX (x) (3)

where P(y) is the precover of y, w.r.t. f , defined as P(y) def= {x ∈ X ∗ : y ⪯ f(x)}.7,Here, we sum
over the strings x that transform to strings f(x) that have y as a prefix, y ⪯ f(x).

Prefix probabilities allow us to define conditional probabilities over string prefixes, giving a factoriza-
tion of a string’s probability (see §2). This enables efficient conditional generation from a language
model via a simple left-to-right autoregressive sampling procedure. We develop a method in §4 that
allows us to compute the sum in Eq. (3) in finite time for a general class of mappings, such as those
mentioned in the introduction (i.e., normalizing text, inserting orthographic word boundaries, or
converting DNA to amino-acid sequences). In §5, we present algorithms to compute these quantities.

4 DECOMPOSING THE PRECOVER

In §3, we saw that if we can sum over the precover of y, we can calculate −→pY(y) =
∑

x∈P(y) pX (x)

(Eq. (3)), unlocking an interface to the transduced language model. This sum may have an infinite
number of terms, preventing us from applying the full equation in practice. Consider the transducer in
Fig. 2 (left) that lowercases a string. For the string ab, the precover is given by the infinite setP(ab) =
⟨{AB, Ab, aB, ab}⟩. Recall that −→pX (x) =

∑
x′∈⟨x⟩ pX (x′) (§2). Following Eq. (3), we get the deriva-

tion (4a-4d). Eq. (4d) has a remarkable property: if we can decompose the precover into a union of ba-
sis sets, we can express the target prefix probability as a sum of prefix probabilities on the source side.
7Note that the precover depends on f , we suppress this dependency when it is clear from context.

4

216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269

Under review as a conference paper at ICLR 2026

−→pY(ab) =
∑

x∈P(ab)

pX (x) (4a)

=
∑

x′∈{AB,Ab,aB,ab}

∑
x∈⟨x′⟩

pX (x) (4b)

= −→pX (AB) +−→pX (Ab) (4c)

+−→pX (aB) +−→pX (ab) (4d)

−→pY(ba) =
∑

x∈⟨ba⟩\⟨bad⟩

pX (x) (5a)

=
∑

x∈
⋃

x∈X\{d}⟨bax⟩∪{ba}

pX (x) (5b)

= pX (ba) +
∑

x∈X\{d}

−→pX (bax) (5c)

The transducer on the right in Fig. 2 converts any mention of the word bad into the word ungood
while all other substrings remain the same, meaning that ⟨ba⟩ ̸⊆ P(ba) since bad ∈ ⟨ba⟩. This is an
example of a transducer for which a decomposition into prefix probabilities is not always possible.
Instead, we can at most decompose the precover of ba into a union of disjoint sets, one of which is
the union of basis sets, and the other its complement in the precover. We refer to the former set as the
quotient, and the latter as the remainder. The prefix probability of ba is derived in equations (5a-5c).
The final step illustrates a computational shortcut—for any y we can decompose −→pY(y):

−→pY(y) =
∑

x∈R(y)︸ ︷︷ ︸
Remainder

pX (x) +
∑

x∈Q(y)︸ ︷︷ ︸
Quotient

−→pX (x). (6)

The reader who is convinced by these examples and is eager to see the algorithm for calculating Eq. (6)
can jump to §5. We give a formal definition of the remainder and quotient in the next section, derive the
general decomposition, and consider when the computational shortcut can be calculated in finite time.

4.1 THE PREFIX DECOMPOSITION OF THE PRECOVER

Let f : X ∗ → Y∗ be a map. For each y ∈ Y∗, define C(y) def= {x ∈ X ∗ | ⟨x⟩ ⊆ P(y)} , as the
largest cylinder contained in P(y). By construction, this is the union of all basic cylinders fully
included in P(y). We then define the quotient and remainder of y with respect to f as

Q(y) def= pf(C(y)) and R(y) def= P(y) \ C(y). (7)

The pair (R(y), Q(y)) is called the prefix decomposition of P(y). We then get

−→pY(y) =
∑

x∈P(y)

pX (x) =
∑

x∈R(y)⊔C(y)

pX (x) (8a, by definition)

=
∑

x∈R(y)

pX (x) +
∑

x∈Q(y)

∑
x′∈X∗

pX (xx′) (8b)

=
∑

x∈R(y)

pX (x) +
∑

x∈Q(y)

−→pX (x). (8c)

This generalizes the example given in Eq. (5a-5c, 6). We next consider when the terms are finite.

4.2 SUFFICIENT CONDITIONS FOR FINITE QUOTIENTS AND REMAINDERS

We say that a map f : X ∗ → Y∗ is strict-prefix monotone if and only if ∀x,x′ ∈ X ∗ : x ≺ x′ =⇒
f(x) ≺ f(x′). Similarly f is prefix monotone if and only if x ⪯ x′ =⇒ f(x) ⪯ f(x′). We say
that a map f is prefix-continuous if, for every y ∈ Y∗, the set P(y) is cylindrical. Equivalently

P(y) = ⟨Q(y)⟩ ⇐⇒ R(y) = ∅. (9)

This assumption allows Vieira et al. (2025a) to effectively omit the remainder elements. We make
this clear in the following proposition:
Proposition 4.1. Let f : X ∗ → Y∗ be any map. The following statements are equivalent: (i) f is
prefix monotone (ii) f(⟨x⟩) ⊆ ⟨f(x)⟩ for all x ∈ X ∗ (iii) P(f(x)) = C(f(x)) for all x ∈ X ∗ (iv) f
is prefix-continuous. The proof is given in App. F.

5

270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323

Under review as a conference paper at ICLR 2026

Proposition 4.1 shows how our work generalizes and extends Vieira et al. (2025a); our framework
encompasses the strict-prefix monotone case, as well as enabling more expressive transformations.
These are practical results. An empty (or finite) remainder and a finite quotient set mean that we
get a finite-time computable interface to the transduced language model using the decomposition in
Eq. (8c) and the interface described in §2. What remains is to consider when the remainder is finite.

We saw above that prefix monotonicity implies an empty remainder and, in App. E, that it implies
a bounded quotient. This ensures that −→pY(y) (Eq. (8c)) can be computed in finite time for y ∈ Y∗.
Lemma 4.1 considers functions that need not be prefix monotone, yet guarantee a finite remainder
and quotient. It relies on the notion of a finite closure. We say that a transducer f has finite closure
at s if the relation defined by force-starting at the state is finite, i.e., if |Jf[s]K| <∞.

Lemma 4.1. Let f be a finite-state transducer encoding f : X ∗ → Y∗, and y ∈ Y∗. If (i) there is a
finite number of paths in f that emit y and (ii) every state is either universal or has finite closure,
then Q(y) andR(y) are of finite size for all y ∈ Y∗. The proof is given in App. F.

Next, we consider efficient algorithms for prefix decompositions and probability approximations.

5 ALGORITHMS

We now present algorithms for calculating precover decompositions by taking advantage of the explicit
structure of a transducer that encodes the function. Combined with Eq. (8c), these enable an interface
to transduced language models. We then propose a pruning-based beam-search approximation.

To illustrate the general approach, we first give an abstract algorithm (on the left in Fig. 3) for
decomposing the precover. The algorithm explicitly enumerates x ∈ X ∗, starting from the empty
string and proceeding from shortest to longest. Only when a quotient element is reached, or a conflict
with the target sequence occurs, does the algorithm stop enumerating extensions of the element. Each
prefix x undergoes three sequential checks following the definition of the precover:

Continuity If ⟨x⟩ ⊆ P(y), then x is attributed to the quotient Q(y) and we do not extend it.

Discontinuity If x /∈ Q(y) but x ∈ P(y), we place it in the remainderR(y) and continue to extend.

Candidacy If x /∈ Q(y), we consider which single-symbol extensions are on track to reach the
precover. Only extensions that might cover y are retained.

Since strings are processed from shortest to longest, each element has no prefix already in the
quotient—since all prefixes of the current element were already considered, and if found to be in the
quotient, not extended. Once the queue is exhausted, the algorithm returns the prefix decomposition.

5.1 TRANSDUCER-BASED ALGORITHM WITH DETERMINISM AND PROJECTION

The high-level algorithm in §5 relies on the three checks to compute the optimal decomposition. In
practice, we represent the transformation f with a transducer f (see §2 and App. C for details on the
notation and definitions used in this section). We now describe a transducer-based implementation.

Continuity. We wish to assess whether x ∈ Q(y) holds when y ⪯ f(x). To do so, we test whether
any state reached after scanning x is universal—that is, whether the transducer, when force started at
that state, accepts all strings in X ∗. More details on the universality check are given in App. G.1.

Discontinuity. In case Continuity does not pass, x /∈ Q(y), we consider whether x ∈ R(y). It
suffices to check whether the state reached after scanning x is final, i.e., if f accepts x and y ⪯ f(x).

Candidacy. We compose f with a yY copy-transducer and project the composition onto the input
side, obtaining projX (f ◦ yY∗).8 This machine, denoted by P, accepts exactly the precover of y
w.r.t. f and discards all strings that cannot cover the target y, allowing us to omit the explicit check
whether x is a candidate for covering y, i.e., whether x is a prefix of some element in P(y).9

8A copy-transducer is one where every transition emits the same symbol as it scans, see §2 and App. C for
details on the input projection and the construction of copy transducers.

9This can also be expressed as P(y) = f−1(yY∗) = Jf ◦ yY∗K.

6

324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377

Under review as a conference paper at ICLR 2026

1 def abstract_decomposition(y):
2 Q← QUEUE()
3 Q.push(ε)
4 (R,Q)← (∅, ∅)
5 while |Q| > 0:
6 x← Q.pop()
7 if ⟨x⟩ ⊆ P(y):
8 Q.add(x)
9 continue

10 if x ∈ P(y):
11 R.add(x)
12 for x′ ∈ X:
13 if ∃x′′ ∈ X ∗ : xx′x′′ ∈ P(y):
14 Q.push(xx′)
15 return (R,Q)
16 def is_universal(f, s):
17 return (Jf[s]K = X ∗)

18 def determinized_decomposition(y):
19 # Determ. FST encoding JPK = P(y)
20 P← trim(determinize(projX (f ◦ yY∗)))
21 (_, _, _,T, I,F)← P
22 Q← QUEUE()
23 for s ∈ I: Q.push((s, ε))
24 (R,Q)← (∅, ∅)
25 while |Q| > 0:
26 (s,x)← Q.pop()
27 if is_universal(P, s):
28 Q.add(x)
29 continue
30 if s ∈ F:
31 R.add(x)
32 for (_ x′

−→ s′) ∈ T(s):
33 Q.push((s′,xx′))
34 return (R,Q)

Figure 3: (Left) An abstract algorithm for deriving the decomposition of the precover. (Right) A
transducer-based implementation.

Putting It All Together. Fig. 3 (right) presents the algorithm. Starting at the initial state, the paths in
P are enumerated. Every accepted path P contributes to the precover. At a universal state, the scanned
input x is added to the quotient Q(y) and not expanded further. If it enters a nonuniversal accepting
state, we add x to the remainderR(y) and continue to extend. The quotient is prefix-free since we
detect if the state is universal as early as possible and continue on lines 9 and 29. The checks on lines
10 and 31 ensure precover membership, and that x is added to the remainder if not in the quotient.
Since the remainder is defined by set difference (Eq. (7)), the algorithm returns a valid remainder.

5.2 OPTIMIZATIONS FOR SCALABILITY

Lazy determinization. In practice, explicit determinization is often computationally expensive for
large transducers. In App. G.2 (Fig. 9), we present an alternative algorithm that lazily determinizes
on the fly by maintaining power states—the set of all possible states reachable after scanning a prefix.
A string that covers the target sequence is added to the quotient exactly when the power state is
universal. When it is not, it is added to the remainder if any single states in the power state are final.

Memoization and precomputation. In App. G.3, we propose two additional optimizations: a
memoized recursion that derives the precover of a single symbol extension, yy, starting from a
precomputed decomposition for the prefix y. We also employ a direct enumeration of the quotient
and remainder using the transducer f, bypassing the often costly composition with the copy transducer.
This allows for efficient precomputation of universal states and caching of transducer properties.

Approximation via probability mass pruning. When the precover decomposition grows large, it
becomes time-consuming to enumerate and expensive to score. In these cases, we rely on a probability
mass pruning strategy that sorts candidates based on prefix probability and removes those whose
cumulative probability mass falls below a specified threshold τ . The strategy is described in App. G.4.

6 EXPERIMENTS

We now consider three examples of transduced language models. For each use case, we follow
the approach in Vieira et al. (2025a) and measure the Jensen–Shannon divergence (JSD) between
the distributions obtained using the approximation via probability mass pruning mentioned in
§5.2 and a reference distribution we get by choosing a low pruning threshold τ . We also report
cross-entropy loss in App. L.3, indicative of the cost of getting probabilities of specific sequences
as opposed to getting the full distribution. We conduct experiments using GPT-2 Large (pgpt2)
(Radford et al., 2019), LlaMA 3.2-1B (pllama1B) and LlaMA 3.1-8B (pllama8B) (Llama Team, 2024),

7

378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431

Under review as a conference paper at ICLR 2026

and a DNA-model that we train over the human genome (pdna).10 For the experiments in §6, we
use 11 to convert token-level models into byte-level models. See App. K for details
on the training and evaluation setup, and App. J for details on the transducers we consider.

Recall that a transduced language model pY is characterized by a source model pX and a transducer
f encoding some function f (§3). To make this dependency explicit, we also write pX ◦ f def= pY and
refer to the act as composing. All experiments are done using the optimizations described in §5.2
(outlined in Fig. 10), and the algorithms computing the language model interface given in Fig. 13.

From Tokens to Characters. We now revisit the algorithm for converting models over tokens to
models over characters, as presented by Vieira et al. (2025a). This algorithm can be realized by a
simple transducer fα which consists of O(|X |) states. Specifically, the transducer contains a chain
for each token present in the input vocabulary X . An example of such a machine is given in Fig. 4.

q0

q1

q2

q3

q4

q5

␣ca
t:␣

ε:c

ε:aε:t

Dog:Dε:o

ε:g

···

Figure 4: An FST for converting a token model
into a character model. Paths for ␣cat, and Dog.

q0 q1 q2
,:, ε:SEP

,:,d:d, ∀d ∈ {0–9}

x:x, ∀x ∈ X \ {,} y:y, ∀y ∈ X \ {0–9,}

Figure 5: An FST that inserts a separator (SEP)
after commas followed by a non-digit character.

We benchmark the algorithms in §5 using the transducers pgpt2 ◦ fα, pllama1B ◦ fα, and pllama8B ◦ fα
on the first ten paragraphs of the wikitext-103-v1 dataset (Merity et al., 2017) (corresponding
to the first 7684 bytes). As shown in Fig. 6 (left) and Tab. 7 in App. L, lower pruning thresholds
(τ) give lower JSD values at the cost of throughput, measured in bytes per second12. We confirm
that the JSD values are similar to those achieved by Vieira et al. (2025a) in App. L, Tab. 6.

6 12 18 24
0.0

1.5e-3
3e-3

4.5e-3
pgpt2 ◦ fα

16 24 32

plla1B ◦ fα

16 24 32 40

plla8B ◦ fα

5 10 15 20
0.0

8e-6
1.6e-5
2.4e-5

pgpt2 ◦ fα ◦ fptb

6 12 18 24

plla1B ◦ fα ◦ fptb

8 12 16

plla8B ◦ fα ◦ fptb

JS
D

Speed (bytes per second)

τ =3e-6 τ =1e-5 τ =3e-5 τ =1e-4

Figure 6: Average Jensen–Shannon distance (JSD) and throughput (bytes/s) across thresholds τ
(relative to τ = 10−6). Left: pX ◦ fα. Right: pX ◦ fα ◦ fptb. Bars show 95% bootstrapped CIs.

From Tokens to Orthographic Word Boundaries. The next use case we consider is the
conversion of language models over subwords to language models over orthographic words. The
precise definition of what constitutes such a word varies depending on the application. In some
settings, contractions such as “wouldn’t” should be treated as a single unit. While in other settings,
a more natural segmentation would split it in two: “would” and “n’t”. The proposed approach can
accommodate any definition that can be described with a transformation in the form of a transducer.

Linguistic tokenizers, such as the PTB tokenizer (Marcus et al., 1993), use contextual information to
segment raw English text into linguistically meaningful units, suitable for downstream NLP tasks.We
construct an FST encoding the PTB tokenizer, fptb, details are in App. I. An example of a rule in
the transducer is given in Fig. 5, which inserts SEP after a comma if a digit does not follow.

10Links to models: https://huggingface.co/openai-community/gpt2-large, https://huggingface.
co/meta-llama/Llama-3.2-1B, https://huggingface.co/meta-llama/Meta-Llama-3-8B.

11https://github.com/genlm/genlm-bytes
12For higher thresholds τ >1e-4 (Tab. 7), throughput is less consistent.When this occurs, we relax the threshold

and recompute the decomposition until a valid path is found (see App. G.4).

8

https://huggingface.co/datasets/Salesforce/wikitext
https://huggingface.co/openai-community/gpt2-large
https://huggingface.co/meta-llama/Llama-3.2-1B
https://huggingface.co/meta-llama/Llama-3.2-1B
https://huggingface.co/meta-llama/Meta-Llama-3-8B
https://github.com/genlm/genlm-bytes

432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485

Under review as a conference paper at ICLR 2026

Composing pX ◦ fα ◦ fptb yields a transduced language model, which maps subword tokens to PTB
tokens. To reduce the state count of the composed FST and improve efficiency, we represent pX ◦ fα
using the byte-transformed models from 13. In Fig. 6 (right), we plot the average JSD
against the throughput for different thresholds τ , using the dataset from §6. As with the experiments
in §6, we observe lower JSD at lower thresholds, albeit at the cost of throughput. For experiments
using higher thresholds, see App. L, Tab. 8.

Converting DNA Models to Models Over Amino Acids. To model the translation from
DNA to proteins, we use a transducer that converts sequences of the four DNA nucleotides
to sequences over the twenty-two amino acids. That is we have X = {A, C, G, T} and
Y =

{
A, R, N, D, C, Q, E, G, H, I, L, K, M, F, P, S, T, W, Y, B, Z, *

}
. The transducer fdna2aa (partially

shown in App. B) maps each codon-sequence corresponding to three nucleotides to a corresponding
amino acid, with multiple codons often encoding the same amino acid. Let pdna ◦ fdna2aa denote
the transduced model that converts DNA nucleotides into amino acids. To evaluate our approach,
we sample 65 human proteins14.In Tab. 9, we show the average JSD and throughput for different
thresholds τ . Note that this transducer is particularly challenging since the set of candidates in the
decomposed precover grows exponentially with the sequence length. To mitigate the combinatorial
blow-up, we cap the candidate-set size and report throughput and JSD while varying the cap.

Table 1: Average Jensen–Shannon distance (JSD) for
τ =1e-4 after converting n% of the universal states
to non-universal. See Tab. 10 for results with pgpt2
and Tab. 2 for the number of states.

% pllama1B ◦ fα pllama1B ◦ fα ◦ fptb
Conv. States avg. JSD / byte States avg. JSD / byte

0 0 (not applicable) 0 (not applicable)
5 8849 1.8e-2 ± 4.0e-3 1 9.9e-7 ± 3.2e-7

10 17699 1.4e-2 ± 3.0e-3 3 4.0e-5 ± 2.7e-5
15 26548 1.6e-2 ± 3.0e-3 4 1.1e-5 ± 9.1e-6
20 35398 5.1e-2 ± 6.0e-3 6 1.2e-3 ± 6.8e-4
25 44247 6.4e-2 ± 7.0e-3 7 1.1e-2 ± 1.5e-3

Benchmarking the Quotient. We bench-
mark the value of the computational shortcut
inherent in the prefix decomposition de-
scribed in §4.1, which allows us to decompose
the precover into remainder and quotient
representatives. We generate suboptimal
decompositions by randomly selecting a
proportion of the universal states in the trans-
ducer (see §4) and treat them as non-universal
states in our algorithms (see §5). This
gradually decreases the size of the quotient
and increases the remainder correspondingly.
Tab. 1 shows the average JSD between the
original and modified distributions over the
first 256 bytes of the wikitext-103-v1 dataset (Merity et al., 2017). For each value of n we repeat
the sampling of new non-universal states five times, and report the mean JSD. The distributions
diverge quickly, and after converting approximately 20-25% of universal states, the algorithm keeps
running into dead ends and can no longer recover any valid sequence.

Training on The Target Domain. There are many reasons why one might prefer transducing a
language model instead of training a new one. For instance, the inductive bias of shared semantic sub-
words may result in a better model, as the popularity of BPE demonstrates. We confirm this by training
byte-level models and comparing them to a transduced model in App. L.4. Training a model may
also be unfeasible or impractical for, e.g., prototyping. Finally, we may simply want to know how a
specific model behaves under a transformation or different units, e.g., for comparison between models.

7 CONCLUSION

We have introduced a foundational framework for transforming language models into new language
models using transducers. In particular, this allows one to convert language models defined over
one set of units into models over another using transducers. Empirically, we have shown that our
beam-search approximation efficiently transduces token-based LLMs into models over characters,
words, and even amino acids, without requiring retraining. Our theoretical analysis characterizes the
conditions under which such mappings can be performed exactly. The proposed approach is an effec-
tive way to repurpose existing language models and accurately compute probabilities for any kind of
unit and transformation defined via a transducer. We discuss the limitations of our approach in App. D.

13https://github.com/genlm/genlm-bytes implementing (Vieira et al., 2025a).
14Sampled from https://www.uniprot.org/uniprotkb?query=Human, see Tab. 3 for the accession numbers.

9

https://huggingface.co/datasets/Salesforce/wikitext
https://github.com/genlm/genlm-bytes
https://www.uniprot.org/uniprotkb?query=Human

486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539

Under review as a conference paper at ICLR 2026

REFERENCES

Cyril Allauzen, Bill Byrne, Adrià de Gispert, Gonzalo Iglesias, and Michael Riley. Pushdown
automata in statistical machine translation. Computational Linguistics, 40(3), September 2014.
doi: 10.1162/COLI_a_00197. URL https://aclanthology.org/J14-3008/.

Lisa Beinborn and Yuval Pinter. Analyzing Cognitive Plausibility of Subword Tokenization. In
Proceedings of the Conference on Empirical Methods in Natural Language Processing, 2023. URL
https://aclanthology.org/2023.emnlp-main.272/.

Martin Berglund and Brink van der Merwe. Formalizing BPE Tokenization. In Proceedings of the
International Workshop on Non-Classical Models of Automata and Applications, volume 388,
2023. URL https://cgi.cse.unsw.edu.au/~eptcs/paper.cgi?NCMA2023.4.pdf.

Martin Berglund, Willeke Martens, and Brink van der Merwe. Constructing a BPE Tokenization
DFA. In Implementation and Application of Automata, 2024. ISBN 978-3-031-71112-1. URL
https://link.springer.com/chapter/10.1007/978-3-031-71112-1_5.

Jean Berstel. Transductions and Context-Free Languages, volume 38. Teubner, Stuttgart, Germany,
1979. URL https://www.worldcat.org/oclc/06364613.

Harry E. Blanchard, Alexander Pollatsek, and Keith Rayner. The acquisition of parafoveal word
information in reading. Perception & Psychophysics, 46(1), 1989. ISSN 0031-5117. URL
https://link.springer.com/content/pdf/10.3758/BF03208078.pdf.

Filippo Bonchi and Damien Pous. Hacking nondeterminism with induction and coinduction. Com-
munications of the ACM, 2015. URL https://doi.org/10.1145/2713167.

Christian Choffrut. Une caracterisation des fonctions sequentielles et des fonctions sous-sequentielles
en tant que relations rationnelles. Theoretical Computer Science, 5(3), 1977. ISSN 0304-3975.
URL https://doi.org/10.1016/0304-3975(77)90049-4.

Marco Cognetta, David Pohl, Junyoung Lee, and Naoaki Okazaki. Pitfalls, Subtleties, and Techniques
in Automata-Based Subword-Level Constrained Generation. In Tokenization Workshop, Vancouver,
Canada, 2025. URL https://openreview.net/forum?id=DFybOGeGDS. To appear.

Ryan Cotterell, Anej Svete, Clara Meister, Tianyu Liu, and Li Du. Formal aspects of language
modeling, 2024. URL https://arxiv.org/abs/2311.04329.

M. De Wulf, L. Doyen, T. A. Henzinger, and J. F. Raskin. Antichains: a New Algorithm for Checking
Universality of Finite Automata. In Proceedings of the International Conference on Computer
Aided Verification, Berlin, Heidelberg, 2006. URL https://doi.org/10.1007/11817963_5.

Edo Dotan, Gal Jaschek, Tal Pupko, and Yonatan Belinkov. Effect of tokenization on transformers for
biological sequences. Bioinformatics, 40(4), 2024. ISSN 1367-4811. URL https://doi.org/
10.1093/bioinformatics/btae196.

Philip Gage. A new algorithm for data compression. The C Users Journal archive, 12, 1994. URL
https://api.semanticscholar.org/CorpusID:59804030.

Renato Geh, Honghua Zhang, Kareem Ahmed, Benjie Wang, and Guy Van Den Broeck. Where
is the signal in tokenization space? In Yaser Al-Onaizan, Mohit Bansal, and Yun-Nung Chen
(eds.), Proceedings of the 2024 Conference on Empirical Methods in Natural Language Processing,
Miami, Florida, USA, November 2024. Association for Computational Linguistics. URL https:
//aclanthology.org/2024.emnlp-main.230/.

Marjan Ghazvininejad, Xing Shi, Yejin Choi, and Kevin Knight. Generating topical poetry. In Jian Su,
Kevin Duh, and Xavier Carreras (eds.), Proceedings of the 2016 Conference on Empirical Methods
in Natural Language Processing, Austin, Texas, November 2016. Association for Computational
Linguistics. doi: 10.18653/v1/D16-1126. URL https://aclanthology.org/D16-1126/.

Mario Giulianelli, Luca Malagutti, Juan Luis Gastaldi, Brian DuSell, Tim Vieira, and Ryan Cotterell.
On the proper treatment of tokenization in psycholinguistics. In Proceedings of the Conference on
Empirical Methods in Natural Language Processing, 2024. URL https://aclanthology.org/
2024.emnlp-main.1032.

10

https://aclanthology.org/J14-3008/
https://aclanthology.org/2023.emnlp-main.272/
https://cgi.cse.unsw.edu.au/~eptcs/paper.cgi?NCMA2023.4.pdf
https://link.springer.com/chapter/10.1007/978-3-031-71112-1_5
https://www.worldcat.org/oclc/06364613
https://link.springer.com/content/pdf/10.3758/BF03208078.pdf
https://doi.org/10.1145/2713167
https://doi.org/10.1016/0304-3975(77)90049-4
https://openreview.net/forum?id=DFybOGeGDS
https://arxiv.org/abs/2311.04329
https://doi.org/10.1007/11817963_5
https://doi.org/10.1093/bioinformatics/btae196
https://doi.org/10.1093/bioinformatics/btae196
https://api.semanticscholar.org/CorpusID:59804030
https://aclanthology.org/2024.emnlp-main.230/
https://aclanthology.org/2024.emnlp-main.230/
https://aclanthology.org/D16-1126/
https://aclanthology.org/2024.emnlp-main.1032
https://aclanthology.org/2024.emnlp-main.1032

540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593

Under review as a conference paper at ICLR 2026

Kyle Gorman. Pynini: A Python library for weighted finite-state grammar compilation. In Proceedings
of the SIGFSM Workshop on Statistical NLP and Weighted Automata, 2016. URL https://
aclanthology.org/W16-2409/.

Jonathan Hayase, Alisa Liu, Noah A. Smith, and Sewoong Oh. Sampling from your language model
one byte at a time. In Tokenization Workshop, 2025. URL https://openreview.net/forum?
id=DM8D9Nq9uO.

Yanrong Ji, Zhihan Zhou, Han Liu, and Ramana V Davuluri. DNABERT: Pre-trained Bidirectional
Encoder Representations from Transformers model for DNA-language in genome. Bioinformatics,
37(15), 2021. ISSN 1367-4803. URL https://doi.org/10.1093/bioinformatics/btab083.

Terry Koo, Frederick Liu, and Luheng He. Automata-based constraints for language model decoding.
In First Conference on Language Modeling, 2024. URL https://openreview.net/forum?id=
BDBdblmyzY.

Taku Kudo. Subword regularization: Improving neural network translation models with multiple
subword candidates. In Proceedings of the Annual Meeting of the Association for Computational
Linguistics (Volume 1: Long Papers), 2018. URL https://aclanthology.org/P18-1007/.

Woosuk Kwon, Zhuohan Li, Siyuan Zhuang, Ying Sheng, Lianmin Zheng, Cody Hao Yu, Joseph Gon-
zalez, Hao Zhang, and Ion Stoica. Efficient memory management for large language model serving
with pagedattention. In SOSP, 2023. URL https://doi.org/10.1145/3600006.3613165.

Alexander K. Lew, Tan Zhi-Xuan, Gabriel Grand, and Vikash Mansinghka. Sequential monte
carlo steering of large language models using probabilistic programs. In ICML 2023 Workshop:
Sampling and Optimization in Discrete Space, 2023. URL https://openreview.net/forum?
id=Ul2K0qXxXy.

(Meta) Llama Team. The Llama 3 Herd of Models, 2024. URL https://arxiv.org/abs/2407.
21783.

Mitchell P. Marcus, Beatrice Santorini, and Mary Ann Marcinkiewicz. Building a large annotated
corpus of English: The Penn Treebank. Computational Linguistics, 1993. URL https://
aclanthology.org/J93-2004/.

Stephen Merity, Caiming Xiong, James Bradbury, and Richard Socher. Pointer Sentinel Mix-
ture Models. In International Conference on Learning Representations, 2017. URL https:
//openreview.net/forum?id=Byj72udxe.

A. R. Meyer and L. J. Stockmeyer. The equivalence problem for regular expressions with squaring
requires exponential space. In Proceedings of the Annual Symposium on Switching and Automata
Theory, 1972. URL https://doi.org/10.1109/SWAT.1972.29.

Mehryar Mohri. Finite-state transducers in language and speech processing. Computational Linguis-
tics, 23(2), 1997. URL https://aclanthology.org/J97-2003/.

Sathvik Nair and Philip Resnik. Words, Subwords, and Morphemes: What Really Matters in
the Surprisal-Reading Time Relationship? In Findings of the Association for Computational
Linguistics: EMNLP, 2023. URL https://aclanthology.org/2023.findings-emnlp.752/.

Eric Nguyen, Michael Poli, Marjan Faizi, Armin W Thomas, Michael Wornow, Callum Birch-
Sykes, Stefano Massaroli, Aman Patel, Clayton M. Rabideau, Yoshua Bengio, Stefano Ermon,
Christopher Re, and Stephen Baccus. HyenaDNA: Long-Range Genomic Sequence Modeling at
Single Nucleotide Resolution. In Proceedings of the Conference on Neural Information Processing
Systems, 2023. URL https://openreview.net/forum?id=ubzNoJjOKj.

Byung-Doh Oh and William Schuler. Leading Whitespaces of Language Models’ Subword Vocabu-
lary Pose a Confound for Calculating Word Probabilities. In Proceedings of the Conference on
Empirical Methods in Natural Language Processing, 2024. URL https://aclanthology.org/
2024.emnlp-main.202/.

OpenAI. Tiktoken: A fast BPE tokeniser for OpenAI’s models, 2024. URL https://github.com/
openai/tiktoken.

11

https://aclanthology.org/W16-2409/
https://aclanthology.org/W16-2409/
https://openreview.net/forum?id=DM8D9Nq9uO
https://openreview.net/forum?id=DM8D9Nq9uO
https://doi.org/10.1093/bioinformatics/btab083
https://openreview.net/forum?id=BDBdblmyzY
https://openreview.net/forum?id=BDBdblmyzY
https://aclanthology.org/P18-1007/
https://doi.org/10.1145/3600006.3613165
https://openreview.net/forum?id=Ul2K0qXxXy
https://openreview.net/forum?id=Ul2K0qXxXy
https://arxiv.org/abs/2407.21783
https://arxiv.org/abs/2407.21783
https://aclanthology.org/J93-2004/
https://aclanthology.org/J93-2004/
https://openreview.net/forum?id=Byj72udxe
https://openreview.net/forum?id=Byj72udxe
https://doi.org/10.1109/SWAT.1972.29
https://aclanthology.org/J97-2003/
https://aclanthology.org/2023.findings-emnlp.752/
https://openreview.net/forum?id=ubzNoJjOKj
https://aclanthology.org/2024.emnlp-main.202/
https://aclanthology.org/2024.emnlp-main.202/
https://github.com/openai/tiktoken
https://github.com/openai/tiktoken

594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647

Under review as a conference paper at ICLR 2026

George Orwell. Nineteen Eighty-Four. Secker & Warburg, 1949. URL https://en.wikipedia.
org/wiki/Nineteen_Eighty-Four.

Buu Phan, Marton Havasi, Matthew Muckley, and Karen Ullrich. Understanding and mitigating
tokenization bias in language models, 2024. URL https://arxiv.org/abs/2406.16829.

Tiago Pimentel and Clara Meister. How to compute the probability of a word. In Proceedings
of the Conference on Empirical Methods in Natural Language Processing, 2024. URL https:
//aclanthology.org/2024.emnlp-main.1020/.

Jean-Éric Pin. Mathematical Foundations of Automata Theory. Pin, Jean-Éric, 2025. URL https:
//www.irif.fr/~jep/PDF/MPRI/MPRI.pdf.

Jean-Éric Pin. Handbook of Automata Theory. European Mathematical Society Publishing House,
Zürich, Switzerland, 2021. ISBN 978-3-98547-006-8. URL https://doi.org/10.4171/
Automata.

Lifeng Qiao, Peng Ye, Yuchen Ren, Weiqiang Bai, chaoqi liang, Xinzhu Ma, Nanqing Dong, and
Wanli Ouyang. Model Decides How to Tokenize: Adaptive DNA Sequence Tokenization with
MxDNA. In The Thirty-eighth Annual Conference on Neural Information Processing Systems,
2024. URL https://openreview.net/forum?id=AQ1umQL7dZ.

Alec Radford, Jeff Wu, Rewon Child, David Luan, Dario Amodei, and Ilya Sutskever.
Language Models are Unsupervised Multitask Learners. OpenAI blog, 1(8), 2019.
URL https://cdn.openai.com/better-language-models/language_models_are_
unsupervised_multitask_learners.pdf.

Keith Rayner, Arnold D. Well, Alexander Pollatsek, and James H. Bertera. The availability of useful
information to the right of fixation in reading. Perception & Psychophysics, 31(6), 1982. URL
https://doi.org/10.3758/BF03204186.

Rico Sennrich, Barry Haddow, and Alexandra Birch. Neural Machine Translation of Rare Words
with Subword Units. In Proceedings of the Annual Meeting of the Association for Computational
Linguistics, 2016. URL https://aclanthology.org/P16-1162/.

Xinying Song, Alex Salcianu, Yang Song, Dave Dopson, and Denny Zhou. Fast WordPiece Tokeniza-
tion. In Proceedings of the Conference on Empirical Methods in Natural Language Processing,
2021. URL https://aclanthology.org/2021.emnlp-main.160/.

Felix Stahlberg, Christopher Bryant, and Bill Byrne. Neural grammatical error correction with
finite state transducers. In Jill Burstein, Christy Doran, and Thamar Solorio (eds.), Proceedings
of the 2019 Conference of the North American Chapter of the Association for Computational
Linguistics: Human Language Technologies, Volume 1 (Long and Short Papers), Minneapolis,
Minnesota, June 2019. Association for Computational Linguistics. doi: 10.18653/v1/N19-1406.
URL https://aclanthology.org/N19-1406/.

Tim Vieira, Ben LeBrun, Mario Giulianelli, Juan Luis Gastaldi, Brian DuSell, John Terilla, Timothy J.
O’Donnell, and Ryan Cotterell. From language models over tokens to language models over
characters. In Proceedings of the International Conference on Machine Learning, 2025a. URL
https://arxiv.org/abs/2412.03719.

Tim Vieira, Tianyu Liu, Clemente Pasti, Yahya Emara, Brian DuSell, Benjamin LeBrun, Mario
Giulianelli, Juan Luis Gastaldi, John Terilla, Timothy J. O’Donnell, and Ryan Cotterell. Language
models over canonical byte-pair encodings. In Forty-second International Conference on Machine
Learning, 2025b. URL https://openreview.net/forum?id=eCVrfVDNSY.

Ning Wang, Jiang Bian, Yuchen Li, Xuhong Li, Shahid Mumtaz, Linghe Kong, and Haoyi Xiong.
Multi-purpose RNA language modelling with motif-aware pretraining and type-guided fine-tuning.
Nat. Mac. Intell., 6(5), 2024. URL https://doi.org/10.1038/s42256-024-00836-4.

Brandon T. Willard and Rémi Louf. Efficient Guided Generation for Large Language Models, 2023.
URL https://arxiv.org/abs/2307.09702.

12

https://en.wikipedia.org/wiki/Nineteen_Eighty-Four
https://en.wikipedia.org/wiki/Nineteen_Eighty-Four
https://arxiv.org/abs/2406.16829
https://aclanthology.org/2024.emnlp-main.1020/
https://aclanthology.org/2024.emnlp-main.1020/
https://www.irif.fr/~jep/PDF/MPRI/MPRI.pdf
https://www.irif.fr/~jep/PDF/MPRI/MPRI.pdf
https://doi.org/10.4171/Automata
https://doi.org/10.4171/Automata
https://openreview.net/forum?id=AQ1umQL7dZ
https://cdn.openai.com/better-language-models/language_models_are_unsupervised_multitask_learners.pdf
https://cdn.openai.com/better-language-models/language_models_are_unsupervised_multitask_learners.pdf
https://doi.org/10.3758/BF03204186
https://aclanthology.org/P16-1162/
https://aclanthology.org/2021.emnlp-main.160/
https://aclanthology.org/N19-1406/
https://arxiv.org/abs/2412.03719
https://openreview.net/forum?id=eCVrfVDNSY
https://doi.org/10.1038/s42256-024-00836-4
https://arxiv.org/abs/2307.09702

648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701

Under review as a conference paper at ICLR 2026

Thomas Wolf, Lysandre Debut, Victor Sanh, Julien Chaumond, Clement Delangue, Anthony Moi,
Pierric Cistac, Tim Rault, Remi Louf, Morgan Funtowicz, Joe Davison, Sam Shleifer, Patrick von
Platen, Clara Ma, Yacine Jernite, Julien Plu, Canwen Xu, Teven Le Scao, Sylvain Gugger, Mariama
Drame, Quentin Lhoest, and Alexander Rush. Transformers: State-of-the-Art Natural Language
Processing. In Proceedings of the Conference on Empirical Methods in Natural Language Process-
ing: System Demonstrations, 2020. URL https://aclanthology.org/2020.emnlp-demos.6.

Yonghui Wu, Mike Schuster, Zhifeng Chen, Quoc V. Le, Mohammad Norouzi, Wolfgang Macherey,
Maxim Krikun, Yuan Cao, Qin Gao, Klaus Macherey, Jeff Klingner, Apurva Shah, Melvin Johnson,
Xiaobing Liu, Łukasz Kaiser, Stephan Gouws, Yoshikiyo Kato, Taku Kudo, Hideto Kazawa, Keith
Stevens, George Kurian, Nishant Patil, Wei Wang, Cliff Young, Jason Smith, Jason Riesa, Alex
Rudnick, Oriol Vinyals, Greg Corrado, Macduff Hughes, and Jeffrey Dean. Google’s Neural
Machine Translation System: Bridging the Gap between Human and Machine Translation, 2016.
URL https://arxiv.org/abs/1609.08144.

Vicky Xefteri, Tim Vieira, Ryan Cotterell, and Afra Amini. Syntactic control of language models
by posterior inference. In Findings of the Association for Computational Linguistics: ACL, 2025.
URL https://arxiv.org/abs/2506.07154.

13

https://aclanthology.org/2020.emnlp-demos.6
https://arxiv.org/abs/1609.08144
https://arxiv.org/abs/2506.07154

702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755

Under review as a conference paper at ICLR 2026

A NOTATION GLOSSARY

Notation Gloss

ε Empty string
EOS End-of-string symbol
x, x′ ∈ X Symbols in the source alphabet X
x,x′ ∈ X ∗ Source strings
X ∗ Set of all source strings
Z,Z ′ ⊆ X ∗ Sets of source strings
xx′ Concatenation (strings)
ZZ ′ Concatenation (sets of strings)

y,y′ ∈ Y∗ Target strings
y, y′ ∈ Y Symbols in the target alphabet
Y∗ Set of all target strings
f : X ∗ → Y∗ Transformation from source strings X ∗ to target strings Y∗

x ⪯ x′ x is a prefix of x′

x ≺ x′ x is a strict prefix of x′

⟨Z⟩ Cylinder set spanned by Z
pf(Z) Prefix-base of Z

pX Language model over source strings X ∗

X X ∗-valued random variable X ∼ pX−→pX Prefix probability of pX
pY Language model over target strings Y∗

f(X) Y∗-valued random variable f(X) ∼ pY−→pY Prefix probability of pY
f Transducer implementation of f
↪→ S Set of states
↪→ X Input alphabet
↪→ Y Output alphabet
↪→ T Set of transitions
↪→ I ⊆ S Set of initial states
↪→ F ⊆ S Set of final states
↪→ U ⊆ S Set of universal states
s, s′ ∈ S States
(s

x:y−−→ s′) ∈ T Transition from s to s′ that scans x and emits y
T(s) ⊆ T Outgoing transitions from state s
Π Set of all paths
π ∈ Π Path
(s

x:y
⇝ s′) ∈ Π Path from s to s′ that scans x and emits y

f ◦ f′ Transducer composition
f ◦ f ′ Relation composition
projX (f) Input projection
f[s] Force-start f in state s
yY∗ Either a copy-transducer that accepts yY∗ or the corresponding relation.
f ◦ yY∗ A transducer whose paths are restricted to those that accept yY∗.

f−1(y) Preimage of the target string y (§3)
f−1(Y) The preimage of a set Y , {f−1(y) | y ∈ Y} (§3)
P(y) Precover of the target string y (§3)
C(y) The largest cylinder set contained in P(y) (§4)
Q(y) Quotient (§4)
R(y) Remainder (§4)

A.1 EXAMPLE DECOMPOSITIONS

We give two concrete examples of decompositions and prefix probabilities.

14

756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809

Under review as a conference paper at ICLR 2026

Example 1. The transducer below merges consecutive backticks (``) into a quotation mark (") but
otherwise keeps the symbols a and ` fixed. It can be seen as a minimal example of text normalization.

f =

 q0 q1 q2
` :ε ε :`

` :"

a :aa :a

 (10a)

When computing the prefix probability −→pY(`), sequences starting with two backticks get mapped to a
quote and thus do not appear in the precover. Instead, a single backtick remains in the remainder,
while a backtick followed by a goes into the quotient, as any further extensions preserve the initial
backtick. We thus have (by visually canceling out continuations that get mapped to quotation marks),

P(`) = {`,��̀̀,��```,���` ` a, ...} ∪ {` a, ` a` , ` aa, ...} (10b)
= {`} ⊔ {`a}X ∗ (10c)

Thus, −→pY(`) = pX (`) +−→pX (` a). Similarly, we have P(") = {` }X ∗ and thus −→pY(") = −→pY(` `).

Example 1 demonstrates the efficiency of using the remainder and the quotient; both sets only have a
single element, yet they fully specify what probabilities contribute to P(`). There are, however, edge
cases that do not lend themselves to such efficient cover functions.
Example 2. Consider the following mapping f and its representation as a transducer f:

f(an) = bn if n is even else cn f =


q0

q2

q1

q3

a:b

a:b

a:c

a:c


(11a)

with X = {a} and Y = {b, c}. The precover for b is given by

P(b) = {�ε, �a, aa,��aaa, aaaa,���aaaaa, aaaaaa, ...} (11b)

This example is, unfortunately, challenging for our approach as the remainder set is not finite:

R(b) =
{
a2n | n > 0

}
,Q(b) = ∅ (11c)

In other words, the mapping never releases the evenness constraint, and we sum forever.

Finally, we give an example of a simple transducer with a single remainder element in Example 3
Example 3. Consider the following mapping f , visualized in Fig. 7.

f(an) = bn if n ̸= 2 else c (12a)

X = {a} and Y = {b, c}. Suppose we want to compute the prefix probability −→pY(b).
P(b) = {a,��aa, aaa, aaaa, aaaaa, ...} (12b)

R(b) = {a} ,Q(b) = {aaa} (12c)

Thus,

−→pY(b) =
∑

x∈R(b)

pX (x) +
∑

x∈Q(b)

−→pX (x) (12d)

= pX (a) +−→pX (aaa) (12e)

15

810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863

Under review as a conference paper at ICLR 2026

q0 q1

q2

q3

q4

q5 q6 q7

a:ε

ε:b

a:ε ε:c

a:b ε:b ε:b

a:b

Figure 7: An FST that maps n occurrences of ’a’ to the same number of ’b’s, except when the input
is exactly two ’a’s, which are mapped to ’c’.

B TRANSDUCER DIAGRAMS

DNA to amino acid transducer. The DNA to amino-acid transducer, described in §6 is partially
shown in App. B.

q0 qA

qAA

qAC

qAG

qAT

A:ε

C,G,T:ε

A:ε

C:ε

G:ε

T:ε

A:K, C:N, G:K, T:N

Figure 8: An FST for converting DNA sequences to amino acids. Each triplet of nucleobases maps to
one of 20 different amino acids. We only show a proportion of the machine.

C BACKGROUND ON TRANSDUCERS

Transducer variants. We say a transducer is functional if it defines a function, and partially
functional if it defines a partial function. A transducer is input-deterministic if for every state s ∈ S,
|T(s, ε)| = 0 and |T(s, x)| ≤ 1 for all x ∈ X . For input-deterministic transducers, each source string
x ∈ X ∗ has at most one accepting path that scans x and, therefore, can emit at most one target string
y ∈ Y∗. Thus, every input-deterministic transducer defines a (partial) function. A copy-transducer
is one where every transition emits the same symbol as it scans, i.e., every transition is of the form
s

x:x−−→ s′. We abbreviate copy-transitions as s
x−→ s′.15 Copy-transducers define partial identity

functions: they map each string in a designated subset to itself, and drop all others. In the same way
that we abbreviate copy-transitions, we may implicitly map them to a set of strings via (x,x) 7→ x.

15For readers familiar with finite-state automata, every copy-transducer is isomorphic to an acceptor.

16

864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917

Under review as a conference paper at ICLR 2026

Operations. Transducers support composition: given transducers f and f′, their composition
f ◦ f′ is a transducer denoting Jf ◦ f′K def= JfK ◦ Jf′K.1617 We denote a transducer that encodes
the relationship JfK ◦ {(y′,y′) | y′ ∈ ⟨y⟩} with f ◦ yY∗. In general, we omit defining these
type coercions explicitly when it should be clear from context what is meant. We define the
input projection operation encoding the relationship JprojX (f)K = {(x,x) | (x, ·) ⊆ JfK} as
projX (f) def= (S,X ,X , {(s x:x−−→ s′) | s x:y−−→ s′ ∈ T}, I,F), which is a copy-transducer. Let f[s]
denote the operation of force-starting f in state s, f[s]

def= (S,X ,Y,T, {s},F); this operation yields a
machine defining the set of source–target suffix pairs that are generated by paths starting at a given
s and ending in a final state. We say that a state s is universal if JprojX (f[s])K = X ∗. Let U ⊆ S
denote the set of universal states.

Our algorithms use an input-determinization transformation determinize(f) that maps a (partially)
functional transducer f to an equivalent one that is input-deterministic. In general, such a mapping
is not always realizable with a finite number of states.18 However, in the special case of copy-
transducers, input-determinization is always possible, but may result in exponential blowup in the
worst case.19 We use trim(f) to denote a trimming operation that removes all states and edges that
do not appear on any accepting path. These are standard operations that are implemented in any FST
library, more details can be found in (Pin, 2021; 2025).

Visual notation. We use diagrams like those shown in Fig. 2 to represent transducers. Transitions
without source states denote initial states; double-lined states indicate final states. Transitions
s

x:y−−→ s′ are shown as arrows between states.

Limitations. Finite-state transducers define the class of rational relations (Berstel, 1979, Ch. III).
Because FSTs only have finitely many states, they are inherently limited in the relations they can
represent. For example, FSTs cannot perform transformations that require unbounded matching
or counting. In contrast, transducers with unbounded memory extend beyond the rational class,
offering greater expressive power, but come with increased complexity and often undecidability of
key properties, such as universality (see §5.1) and App. G.1.

D LIMITATIONS

Although our framework enables transduction of any language model to any unit of interest, given
a valid transducer, we test only a limited combination of architectures (GPT-2 and Llama 3) and
target specific units (alphabetization, Penn Treebank tokens, and amino acids). Future research could
broaden the analysis to a wider range of models, datasets, and units. Our analysis has also focused on
functional finite-state transducers and regular languages; future work could consider dynamically
built transducers and distributions over more expressive languages. Future work could also consider
stochastic maps, encoded by non-functional transducers—here, the notion of universality would need
to be adjusted. Finally, the speed of our algorithms and implementations may not suit every use case;
while getting the full distribution (for e.g. decoding or model comparisons) speeds of around 10-20
bytes per second are not prohibitive for many tasks, we will consider scaling this up in future work.

E QUOTIENT BOUND FOR PREFIX MONOTONE MAPS

The following proposition gives a bound for the size of the quotient when the map is prefix monotone.

16Here, relation composition is given by f ◦ g def= {(x, z) | (x, y) ∈ f, (y, z) ∈ g}, f and g are relations.
17Pin (2025, Ch. XIX, sec. 2) gives an efficient method for constructing f ◦ f′.
18Choffrut (1977) gives such an algorithm, by using a power set construction on the input side as in the

determinization of non-deterministic finite automata. He shows it yields a finite machine if and only if the
automaton has bounded variation, the constraint that for any two strings whose prefix distance (the combined
length of the strings with the longest shared prefix removed) is bounded, then the output prefix distance is
also bounded. He also provides a testable condition for determinization, known as the twinning condition:
once two runs have read the same input prefix (i.e., we cut the input at the same point), then for every common
continuation, they append the same further output.

19For readers familiar with finite-state automata, input-determinization of a copy-transducer is isomorphic to the
determinization of an equivalent finite-state automaton, see App. C.

17

918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971

Under review as a conference paper at ICLR 2026

Proposition E.1. Let f : X ∗ → Y∗ be a strict-prefix monotone map. Then, for every y ∈ Y∗:

1. f−1(y) = Q(y) \⊔y∈Y Q(yy)
2.

⊔
y∈Y Q(yy) ⊆ Q(y) (X ⊔ {ε})

3. |Q(y)| ≤ (|X |+ 1)
|y|

Proof. (1) Observe that (using Proposition 4.1) for every y ∈ Y∗

C(y) = P(y) = f−1(y) ⊔
⊔
y∈Y
P(yy) = f−1(y) ⊔

⊔
y∈Y
C(yy). (13)

In particular, the minimality of Q(y) in P(y) implies that

Q(y) ∩
⊔
y∈Y
Q(yy) = Q(y) ∩

⊔
y∈Y
⟨Q(yy)⟩.

Consequently, we obtain the identity f−1(y) = C(y) \ ⊔y∈Y C(yy) = ⟨Q(y)⟩ \ ⊔y∈Y⟨Q(yy)⟩,
which in turn yields the inclusion

Q(y) \
⊔
y∈Y
Q(yy) = Q(y) \

⊔
y∈Y
⟨Q(yy)⟩ ⊆ f−1(y).

For the reverse inclusion, let x′ ∈ f−1(y). Then there exists a unique xq ∈ Q(y) such that xq ⪯ x′,
by definition of the quotient set. Since f is strict-prefix monotone and f(xq) ⪯ f(x′) = y, we must
have xq = x′. This shows that f−1(y) ⊆ Q(y), and completes the proof of (1).

(2) Fix y ∈ Y , y ∈ Y∗ and let x ∈ Q(yy). There exists a unique xy ∈ Q(y) such that xy ⪯ x. By
strict monotonicity, it follows that20

|xy
−1x| ≤ |f(xy)

−1f(x)| = |y−1yy| = |y| = 1

which proves the claim.

(3) For any y ∈ Y∗ and any y ∈ Y , we have from (2),

|Q(yy)| ≤ (|X |+ 1)|Q(y)|. (14)

Iterating this bound along any string y ∈ Y∗, we have:

|Q(y)| ≤ (|X |+ 1)|y||Q(ε)| = (|X |+ 1)|y|. ■

F PROOFS

Proposition 4.1. Let f : X ∗ → Y∗ be any map. The following statements are equivalent: (i) f is
prefix monotone (ii) f(⟨x⟩) ⊆ ⟨f(x)⟩ for all x ∈ X ∗ (iii) P(f(x)) = C(f(x)) for all x ∈ X ∗ (iv) f
is prefix-continuous. The proof is given in App. F.

Proof. (1)⇒ (2): Prefix monotonicity means that for any x,x′ ∈ X ∗, if we have that x ⪯ xx′ then
f(x) ⪯ f(xx′) and thus that there exists a y ∈ Y∗ such that f(xx′) = f(x)y. And since x′ was
chosen arbitrarily (2) holds.

(2) ⇒ (3): Let x ∈ X ∗. Suppose f(⟨x⟩) ⊆ ⟨f(x)⟩. Then, ⟨x⟩ ⊆ f−1(f(⟨x⟩)) ⊆ P(f(x)). Note
that, for any x′ ∈ P(f(x)), P(f(x′)) ⊆ P(f(x)). Therefore, ⟨x′⟩ ⊆ P(f(x′)) ⊆ P(f(x)) and so
x′ ∈ C(f(x)). This shows that P(f(x)) = C(f(x)).
(3)⇒ (4): By assumption, any element in the precover is an extension of a quotient element, and
thus a member in the cylinder over quotient elements.

(4) ⇒ (1): For x′ ∈ P(f(x)) we have by definition that f(x) ⪯ f(x′). Assuming f is prefix-
continuous, i.e., there are no remainder elements, then x ⪯ x′ implies x′ ∈ P(f(x)).

■
20For two strings x,x′ such that x ⪯ x′, the string x−1x′ denotes the unique string x′′ such that xx′′ = x′.

18

972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025

Under review as a conference paper at ICLR 2026

Lemma 4.1. Let f be a finite-state transducer encoding f : X ∗ → Y∗, and y ∈ Y∗. If (i) there is a
finite number of paths in f that emit y and (ii) every state is either universal or has finite closure,
then Q(y) andR(y) are of finite size for all y ∈ Y∗. The proof is given in App. F.

Proof. Let y ∈ Y∗ and Πy be the set of, not necessarily accepting, paths that emit exactly y. For
each π ∈ Πy, let xπ be the scanned input and sπ the state reached after emitting y. Consider the
trimmed automaton Pπ

def= trim(projX (f[sπ])) consisting of all states and transitions on paths from
an initial state to some sπ and from sπ to a final state for some π ∈ Πy. Note that the language
accepted by Pπ may be larger than that of the precover since the automaton may accept prefixes of its
members, i.e., L(Pπ) ⊇ f−1(yY∗). By assumption, every state in Pπ is either universal or has finite
closure. We use Πu

y to denote the subsets of the paths that end in a universal state and Πc
y to denote

those that end in a state with finite closure. We can then decompose the precover explicitly as

f−1(yY∗) =
⋃

π∈Πy

xπL(Pπ) =
⋃

π∈Πc
y

xπL(projX (f[sπ])) ∪
⋃

π∈Πu
y

xπX ∗. (15)

Thus R(y) ⊆ ⋃
π∈Πc

y
xπL(projX (f[sπ])) and Q(y) ⊆ {xπ : π ∈ Πu

y}. By assumption |Πy| =
|Πy

u ∪ Πy
c| <∞ so |Q(y)| <∞. By the finite-closure assumption |xL(projX (f[sπ]))| <∞ for

any π ∈ Πy
c, so |R(y)| <∞.

■

In practice |Πy| <∞ implies there exists no loop of the form (s
x:ε−−→ s). Note also that Eq. (15) does

not guarantee the two unions are disjoint; some elements on the left could be included in the right
union as made explicit in the proof. An algorithm following the above reading should thus ensure the
disjoint property in a post-processing step.

G ALGORITHMS

In §5 (Fig. 3), we introduce an algorithm that uses a transducer to compute the prefix decomposition
(R(y),Q(y)) for a string y. The algorithm first builds a transducer that only accepts members of the
precover P(y) and then determinizes it. This section introduces more practical variants that skip the
expensive determinization step and operate directly on the original transducer, without composing it
with the language yY∗. We also provide supplementary details and algorithms to evaluate probability
pY(·), prefix probability −→pY(·), and its conditional form −→pY(· | ·) as described in §2.

G.1 NOTES ON UNIVERSALITY CHECKING

In §5.1 we introduce a transducer-based algorithm for deriving the decomposition of the precover.
Here we elaborate on the Continuity step and, in particular, the universality check. We note it
is computable, since universality is decidable for finite-state automata.21 For each state s, we
can test whether f[s] accepts X ∗ by checking its equivalence against a reference machine for X ∗.
To ensure we can check for universality at a single state, we determinize P and trim away dead-
end paths. Without determinization, two paths may yield the same string and end up in different
states s1 and s2, where neither state is universal on its own, although their union covers the entire
language X ∗. That is, where Jf[s1]K ̸= X ∗ and Jf[s2]K ̸= X ∗, but Jf[s1]K ∪ Jf[s2]K = X ∗. A non-
deterministic transducer could misclassify such strings as remainder elements, leading to a suboptimal
decomposition. Determinization merges such states, ensuring that a string is universal if and only if
the single state it reaches, for a given input, is universal.

G.2 LAZY DETERMINIZATION

In Fig. 9 (left), we give an algorithm that enumerates the paths of the transducer projX (f ◦ yY∗)
without explicit determinization. Instead, the algorithm implicitly tracks power states. A power state

21Efficient algorithms for this include antichain-based simulation (De Wulf et al., 2006), bisimulation up to
congruence (Bonchi & Pous, 2015), and classical equivalence checking (Meyer & Stockmeyer, 1972).

19

1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079

Under review as a conference paper at ICLR 2026

S represents the set of all possible states the transducer may occupy after scanning a string x. For
the current power state, the algorithm iterates over every input symbol x ∈ X ∗, gathers all outgoing
transitions that scan x, and takes the ε-closure of their target states to form the next power state

S′. The resulting edges S x′

−→ S′ are analogous to those that explicit determinization with subset
construction would create. To determine whether a string belongs to the quotient or the remainder,
we check whether the power state is universal (see Fig. 9 on the right). Otherwise, we check whether
any individual state of S is final before adding the string to the remainder.

35 def lazy_decomposition(y):
36 # Build FST encoding JPK = P(y)
37 P← projX (f ◦ yY∗)
38 (_, _, _,T, I,F)← P
39 Q← QUEUE()
40 Q.push((I, ε))
41 (R,Q)← (∅, ∅)
42 while |Q| > 0:
43 (S,x)← Q.pop()
44 if powerstate_universal(S):
45 Q.add(x)
46 continue
47 if S ∩ F ̸= ∅: R.add(x)
48 for x′ ∈ X:
49 S′ ← next_powerstate(S, x′)
50 Q.push((S′,xx′))
51 return (R,Q)
52 def next_powerstate(S, x′):

53 # S
x′

−→ S′ is a determ. transition
54 S′ ← ∅
55 for s in eps_closure(S):

56 for (s
x′

−→ s′) ∈ T(s, x′):
57 S′.update(eps_closure({s′}))
58 return S′

59 def powerstate_universal(f, S):
60 (S,X ,Y,T, I,F)← f
61 s← State() # A new state
62 S′ ← S ∪ {s}
63 T′ ← T ∪ {(s ε−→ s′)|s′ ∈ S}
64 f′ ← (S′,X ,Y,T′, I,F)
65 return is_universal(f′, s)
66

67 def eps_closure(S):
68 closure ← ∅
69 Q← QUEUE(S)
70 while |Q| > 0:
71 s′ ← Q.pop()
72 if s′ in closure:
73 continue
74 closure.add(s′)
75 for (s′

ε−→ s′′) ∈ T(s′, ε):
76 Q.add(s′′)
77 return closure

Figure 9: An algorithm (left) that computes the optimal decomposition without explicitly determiniz-
ing the machine.

G.3 A RECURSIVE ALGORITHM THAT OPERATES DIRECTLY ON THE FST

We now consider a recursive approach for enumerating the prefix decomposition. Let y ∈ Y∗

and y ∈ Y . Since ⟨Q(yy)⟩ ⊆ ⟨Q(y)⟩, we have P(yy) = (⟨Q(y)⟩ ∩ ⟨Q(yy)⟩) ⊔ R(yy). This
means that once we have computed the prefix decomposition (R(y),Q(y)) for a string y ∈ Y∗, the
decomposition for any extension yy, where y ∈ Y , can be obtained with incremental work. The
algorithm in Fig. 10 (left) performs a recursive enumeration of the quotient and remainder, where
each recursive call is realized using a cache lookup. Note that we only store exact matches in the
cache to limit memory usage and ensure the cache is prefix-free.

Further, recall that, in §5.1, we composed f with yY∗ to get a transducer that only accepts strings
in the prefix decomposition. For many transducers, this is an expensive operation that must be
repeated for every target sequence. Instead, we would like to operate directly on f without the initial
composition. Doing so requires careful bookkeeping of partial outputs. Fortunately, it allows us to
precompute the set of universal states.

The algorithm proceeds in two phases. The first phase identifies the paths in f whose output y′

covers the target, i.e., y′ ⪰ y. Similar to the algorithm in App. G.2, we group partial paths by the
scanned input symbol x, so each power state corresponds to a unique input prefix. However, instead
of tracking only the power state S, we maintain a frontier set F of pairs (s,y′) that record the current
state s and the output sequence y′ emitted in that state. We then discard any partial paths whose

20

1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133

Under review as a conference paper at ICLR 2026

emitted output cannot cover the target. In the second phase, once a path has produced a covering
output, we stop applying the output-based filter. For each such path, we form the corresponding
power state by grouping all transitions that share the same input S x−→ S′, as in the algorithm given in
Fig. 9 (left).

In contrast to previous algorithms, we process all active candidate paths simultaneously at each
iteration, followed by a pruning step to discard low-probability candidates. Although pruning makes
the algorithm practical, it results in an approximation of the prefix probability of the target sequence,
as we discard elements of the prefix decomposition with low mass. Details of the pruning strategies
are provided in App. G.4.

78 def lazy_cached_decomp(y, cache):
79 (_, _, _,T, I,F)← f
80 (R,Q)← (∅, ∅)
81 Q← get_cached(y, cache)
82 while |Q| > 0:
83 QC ← ∅ # New candidates
84 for (F ,x) in Q:
85 match← {(s,y′) ∈ F | y′ ⪰ y}
86 exact← {(s,y′) ∈ match | y′ = y}
87 if |exact| > 0: # Update cache
88 cache[y].add((exact,x))
89 if |match| > 0:
90 S ← {s | (s,y′) ∈ match}
91 if powerstate_universal(S):
92 Q.add((match,x))
93 continue
94 if S ∩ F ̸= ∅:
95 R.add((match,x))
96 for x′ ∈ X:
97 F ′ ← next_frontier_out(F , x′)
98 F ′ ← {(s,y′′) ∈ F ′ |
99 (y′′ ⪯ y) ∨ (y ⪯ y′′)}

100 if |F ′| > 0:
101 QC.add((F ′,xx′))
102 Q← prune(QC)
103 return (R,Q)

104 def get_cached(y, cache):
105 y1 ··· yN ← y
106 for i in range(N, 1,−1):
107 yi ← y1 ··· yi
108 if yi in cache: return cache[yi]
109 return {({(s, ε) | s ∈ I}, ε)}
110 def eps_closure_out(F):
111 closure ← ∅
112 Q← QUEUE(F)
113 while |Q| > 0:
114 (s′,y′)← Q.pop()
115 if s′ in closure:
116 continue
117 closure.add(s′)

118 for (s′
ε:y−−→ s′′) ∈ T(s′, ε):

119 Q.add((s′′,y′y))
120 return closure

121 def next_frontier_out(F , x):
122 F ← eps_closure_out(F)
123 F ′ ← ∅
124 for (s,y) in F:
125 for (s

x:y−−→ s′) ∈ T(s, x):
126 F ′.add((s′,yy))
127 F ′ ← eps_closure_out(F ′)
128 return F ′

Figure 10: A lazy, cached, fully FST-based approach that does not use composition.

G.4 PROBABILITY MASS PRUNING

To make probability calculations relying on the algorithm practical but potentially inexact, we use
a threshold-based pruning strategy, which sorts candidates in Q by their prefix probability and then
discards those whose cumulative probability mass falls below a specified threshold τ . Smaller
values of τ retain more candidates, whereas larger values improve efficiency at the risk of discarding
relevant candidates. Furthermore, we use an adaptive threshold that grows with the size of the
candidate set. Given a hyperparameter npiv and n = |Q|, if n ≤ npiv we use the base threshold τ ,
otherwise the threshold increases at a rate controlled by a hyperparameter α and is capped by another
hyperparameter τmax. Additionally, we introduce an optional hard size cap nmax on the candidate set,
that keeps only the top-nmax candidates by their probability. The (optional) pruning strategy is given
in Fig. 11 on the left with the adaptive threshold given on the right.

Note that our pruning strategy may occasionally reach dead ends at high pruning thresholds, where
no valid extension remains. In such cases, we apply a backtracking algorithm that retraces the cache
and incrementally relaxes the threshold until a viable extension is found.

21

1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187

Under review as a conference paper at ICLR 2026

129 def prob_mass_prune(−→pX , τ, α, τmax, npiv, nmax):
130 def prune(Q):
131 w ← [score(x,−→pX) | (_,x) ∈ Q]
132 n← |Q|, Z ←∑n

i=1 wi, w ← w/Z
133 τnew ← adapt_thld(n, τ, α, τmax, npiv)
134 σ ← argsort(w) # wσ(1) ≤ ··· ≤ wσ(n)

135 Ck ←
∑k

j=1 wσ(j) (k = 1, ... , n)

136 kτnew ← min{ k ∈ [n] | Ck > τnew }
137 ncap ← n−min(nmax, n) + 1
138 Ikeep ← {σ(j) | j ≥ max(kτnew , ncap) }
139 return [Q[i] for i in Ikeep]
140 return prune

141 def score(x,−→pX): # memoized
142 x1 ··· xM ← x
143 if M = 0:
144 return 1
145 p← score(x1 ··· xM−1)
146 return p · −→pX (xM | x1 ··· xM−1)

147 def adapt_thld(n, τ, α, τmax, npiv):
148 if n ≤ npiv:
149 return τ
150 τnew ← τ · (n

npiv
)α

151 return min(τnew, τmax)

Figure 11: Probability mass pruning algorithm (left); memoized scoring function and adaptive
pruning threshold (right).

G.5 COMPUTING PROBABILITIES – IMPLEMENTING THE LANGUAGE MODEL INTERFACE

Given a language model pX and a transducer f, the algorithm given in Fig. 10 recursively enumerates
the remainderR(y) and quotient Q(y) for a sequence y. We now make it explicit how we employ
the interface defined in §2; the algorithms given in Fig. 12 show how to compute pY(y), −→pY(y),
and the next character distribution −→pY(· | y). The direct computation of −→pY(· | y) loops over every
symbol y ∈ Y ∪ {EOS} and is therefore expensive.

To avoid this, we present a faster version for computing the next character distribution that exploits
the recursive structure of the quotient and remainder (see App. G.3). We start by describing an
abstract version of the algorithm, which is given in Fig. 13 on the left.

The algorithm computes the prefix decomposition for the given target string y and then iterates over
all elements of Q(y) and R(y). For each emitted output y′ where |y′| > |y| we accumulate the
probability mass for the respective symbols y′

|y|+1. Any elements of Q(y) not scored in this pass,
i.e., where |y′| = |y|, are further expanded until a universal power state is reached. We do not expand
the remainder elements, since their universal extensions are already contained in Q(y).
The complete transducer-based version of this algorithm is given in Fig. 13 on the right. It uses a
similar procedure as the algorithm Fig. 10 for maintaining the frontier F of state-output pairs.

152 def prefix_prob(y,−→pX):
153 (R,Q)← decomposition(y)
154

−→p y ← 0
155 for (_,x) in Q:
156 p ← score(x,−→pX)
157

−→p y ← −→p y + p
158 for (_,x′) in R:
159 p ← score(x′,−→pX)
160

−→p y ← −→p y + p · −→pX (EOS | x′)
161 return −→p y,R,Q

162 def prob(y,−→pX):
163 (R,Q)← decomposition(y)
164 py ← 0
165 for (F ,x) in Q∪R:
166 if (∃(_,y′) ∈ F : y = y):
167 py ← py + score(x,−→pX)
168 return py,R,Q
169 def next_dist(y,−→pX):
170 p← {y′ : 0 for y′ ∈ Y ∪ {EOS}}
171 Z, ∗ ← prefix_prob(y,−→pX)
172 for y′ ∈ Y ∪ {EOS}:
173

−→p yy′ , ∗ ← prefix_prob(yy′,−→pX)
174 p[y′]← −→p yy′/Z
175 return p

Figure 12: Algorithms for computing −→pY(·), pY(·) and −→pY(· | y).

22

1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241

Under review as a conference paper at ICLR 2026

176 def abstract_fast_next_dist(y,−→pX):
177 p← {y′ : 0 for y′ ∈ Y ∪ {EOS}}
178 Z,R,Q ← prefix_prob(y,−→pX)
179 Q← QUEUE()
180 for (s,x,y′) in Q:
181 if |y′| > |y|:
182 ŷ ← y′

|y|+1

183 p[ŷ] += score(x,−→pX)/Z
184 else:
185 Q.add((s,x,y′))
186 for (s,x,y′) in R:
187 if |y′| > |y|:
188 ŷ ← y′

|y|+1

189 p[ŷ] += score(xEOS,−→pX)/Z
190 while |Q| > 0:
191 (s,x,y′)← Q.pop():
192 for x ∈ X:
193 for y ∈ Y:
194 ŷ ← y′y|y|+1

195 if ⟨xx⟩ ⊆ P(yŷ):
196 p[ŷ] += score(x,−→pX)/Z
197 continue
198 elif xx ∈ P(yŷ):
199 p[ŷ] += score(xEOS,−→pX)/Z
200 QC.push((s,xx,yy))
201 return p

202 def merge(p, pnew):
203 for y in pnew:
204 p[y] ← p[y] + pnew[y]

205 def fast_next_dist(y,−→pX):
206 def score_tgt(F ,x):
207 pnew ← {}
208 Y ← {y′

|y|+1 | (s,y′) ∈ F ,y′ ≻ y}
209 for y ∈ Y : pnew[y]← score(x,−→pX)/Z
210 return pnew
211 p← {y′ : 0 for y′ ∈ Y ∪ {EOS}}
212 Z,R,Q ← prefix_prob(y,−→pX)
213 Q← ∅
214 for (F ,x) in Q:
215 pnew ← score_tgt(F ,x)
216 if pnew ̸= {}:
217 merge(p, pnew)
218 else:
219 Q.add((F ,x))
220 for (F ,x) in R:
221 merge(p, score_tgt(F ,xEOS))
222 while |Q| > 0:
223 Q′C ← ∅
224 for (F ,x) in Q:
225 for x ∈ X:
226 F ′ ← next_frontier_out(F , x)
227 S ← {s | (s,y′) ∈ F ′,y′ ≻ y}
228 if powerstate_universal(S):
229 pnew ← score_tgt(F ′,xx)
230 if pnew ̸= {}:
231 merge(p, pnew)
232 continue
233 elif S ∩ F ̸= ∅:
234 merge(p, score_tgt(F ′,xxEOS))
235 QC.add((F ′,xx))
236 Q← prune(QC)
237 return p

Figure 13: Algorithms for computing efficiently computing −→pY(· | y).

H RELATED WORK

Modern language models define probability distributions over sequences of tokens (see §2). For
efficiency and vocabulary (a.k.a. their alphabet) management, they usually rely on sub-word schemes
such as BPE (Sennrich et al., 2016; Gage, 1994) or Unigram (Kudo, 2018). Although these approaches
have been remarkably successful, their units often don’t coincide with linguistic boundaries, and any
given string typically admits an exponential number of variations of tokenizations with non-zero
probability mass under the language model. Recent work has tackled this issue by enforcing canonical
tokenization to remove probability mass from noncanonical encodings (Vieira et al., 2025b), while
Geh et al. (2024) have shown that aggregating the probability mass of noncanonical tokenization
choices carries a useful signal that can boost downstream accuracy.

Sub-word segmentation also gives rise to the prompt-boundary problem (Vieira et al., 2025a), where
imperceptible changes to the final characters of a prompt (e.g., appending a single whitespace)
can push the encoded token sequence onto a completely different path in token space, causing the
model to abandon otherwise highly probable continuations. To overcome these issues, Vieira et al.
(2025a) introduce an algorithm for transforming token-based language models into language models
over characters. Although their contribution centers around characters, the underlying idea can
be generalized. Various applications could make use of a method for accurately converting the
probability mass learned over subword tokens onto other types of units, such as bytes, words, or
morphemes in NLP, or amino acids in computational biology.

23

1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295

Under review as a conference paper at ICLR 2026

In psycholinguistics, for instance, researchers often require fine-grained estimates of surprisal, e.g.,
when predicting a reader’s likelihood of skipping a word, based on how predictable its first three
characters are (Rayner et al., 1982; Blanchard et al., 1989). To this end, a number of recent studies
have tackled the challenges posed by subword tokenization in modern language models (Nair &
Resnik, 2023; Beinborn & Pinter, 2023; Pimentel & Meister, 2024; Oh & Schuler, 2024; Giulianelli
et al., 2024). For example, recent studies (Oh & Schuler, 2024; Pimentel & Meister, 2024) have
argued that leading whitespace tokenization introduces a confound in surprisal estimates and instead,
advocate for incorporating the probability of trailing whitespaces into such calculations.

Furthermore, Pimentel & Meister (2024) gives a bespoke procedure for converting token-based
language models to word-based language models. However, their method does not model the
contextually sensitive nature of English word segmentation, e.g., it treats both periods in Ex. (1)
identically, where English orthography does not. Additionally, the justification of the procedure
requires that there exists a set of distinguished end-of-word markers that appear at the end of a token,
if at all. We now consider how such a transducer can be constructed. Let fα be a transducer that
converts a token alphabet to a character alphabet D be the set of delimiters. The transducer fD is
given in Fig. 14. Given a language model pX over X , we can then compose them into a transducer
pX ◦ fα ◦ fD to get a transduced language model over separator-delimited words. However, such
an approach would be rather naïve. Unfortunately, delimiter-based separation would not be able to
distinguish when the dot should be its own symbols or not as in ex. (3)

q0 q1

d:d, ∀d ∈ D

x: x, ∀x ∈ X \D

x:x, ∀x ∈ X \D

d:d, ∀d ∈ D

Figure 14: A simple FST that segments character streams into words without contextual information,
inserting at the start of each word.

The delimiter-based approach also breaks for most BPE-based language models due to clustering

of delimiter candidates. For instance, GPT-4o’s alphabet contains the token
!!!
10880, which consists

solely of end-of-word symbols. Under PTB guidelines, for example,
!!!
10880 should be broken into three

consecutive orthographic words ! ! ! . In contrast, this paper takes the position that the proper
tokenization scheme for psycholinguistic modeling should be specified based on the goals of the
study and not based on the properties of any one specific tokenizer.

Tokenization challenges are not unique to modeling natural language. In computational biology,
DNA, RNA, and protein sequences are long, unsegmented strings over small alphabets that pose
challenges in tokenization. Researchers thus alternate between different tokenization schemas, such
as k-mers, learned subwords, and motif-aware segmenters (Ji et al., 2021; Nguyen et al., 2023; Dotan
et al., 2024; Wang et al., 2024; Qiao et al., 2024). Because foundational models are often trained
under different tokenization schemas, their predictions cannot easily be compared or reused across
different tasks.

Transducer-based approaches to tokenization are well-established—WordPiece (Wu et al., 2016)
can be implemented as a transducer (Song et al., 2021), and deterministic finite automata have been
constructed for BPE (Berglund & van der Merwe, 2023; Berglund et al., 2024). Moreover, transducers
also have a long history in language modeling (Mohri, 1997) and have been adopted for constrained
decoding, where an FST enforces lexical or structural constraints (Allauzen et al., 2014; Ghazvininejad
et al., 2016; Stahlberg et al., 2019; Willard & Louf, 2023; Koo et al., 2024; Cognetta et al., 2025).

24

1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349

Under review as a conference paper at ICLR 2026

In this study, we generalize the character-level conversion and extend Vieira et al. (2025a) to a
framework that allows transforming a language model to another language model beyond the limited
setting of strict-prefix monotonic mappings. We support conversations between sets of units and
unit-preserving transformations, provided that the mapping between them can be described by a
finite-state transducer. We give algorithms for doing so accurately and efficiently, and present a
formal framework that outlines the conditions under which a mapping between two sets of units can
be performed exactly, along with practical algorithms.

I CONSTRUCTING THE PTB TOKENIZER

We construct the PTB FST by encoding each tokenizer rule22 as an FST that segments character
sequences by inserting a distinguished separator symbol SEP /∈ Y . Note that the resulting transduced
language model is thus not a true distribution over PTB tokens, but over characters and separators
corresponding to the same boundaries that the PTB tokens would have. This is a pragmatic decision,
as the PTB tokenizer can tokenize any sentence into orthographic words. In other words, it would
accept an infinite vocabulary. Such a transducer can be built on the fly and would be equivalent to
one with infinitely many states. While nothing prevents such a transducer from being constructed and
used, we stick to the finite version in the scope of this paper. An example of such a rule is given in
Fig. 5, which inserts SEP after a comma if it is not followed by a digit. We then compose these FSTs
into a single transducer (fptb). Note that context-dependent rules, such as the one given in Fig. 5,
introduce non-universal states. For example, state q2 only accepts x ∈ X \ {0–9,}. In fact, out of the
197 states in fptb, just 31 are universal.

J DETAILS ON TRANSDUCERS USED IN EXPERIMENTS

Tab. 2 contains the number of states, universal states, and transitions for the transducers described in
§6. We construct all finite-state transducers using Pynini (Gorman, 2016). Note that for experiments
using the Penn Treebank FST (fptb), we realize pX ◦ fα using , thereby keeping the
number of states and arcs constant.

Table 2: Number of states, universal states, and transitions.

Model States Universal States Transitions
Tokens to Characters

pgpt2 ◦ fα 75,723 75,723 125,979
pllama1B ◦ fα 176,990 176,990 305,244
pllama8B ◦ fα 176,990 176,990 305,244

Tokens to Words
fptb 197 31 14,584
pgpt2 ◦ fα ◦ fptb 197 31 14,584
pllama1B ◦ fα ◦ fptb 197 31 14,584
pllama8B ◦ fα ◦ fptb 197 31 14,584

DNA to amino acids
fdna2aa 21 21 84
pdna ◦fdna2aa 21 21 84

K EXPERIMENTAL SETUP

Here we detail the experimental setup for reproducing the experiments in §6 and §6.

22See https://www.nltk.org/_modules/nltk/tokenize/treebank.html#TreebankWordTokenizer for
the full specification.

25

https://www.nltk.org/_modules/nltk/tokenize/treebank.html#TreebankWordTokenizer

1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403

Under review as a conference paper at ICLR 2026

K.1 DATASETS

For the experiments in §6 and §6, we choose the first 10 paragraphs (excluding headers) of the test
split in the wikitext-103-v1 dataset (Merity et al., 2017) (corresponding to the first 7684 bytes)
from the Hugging Face datasets library. We use the first 256 bytes of the same dataset and split to
run the experiments in §6. For the experiments in §6, we sample 65 human proteins23, each consisting
of 4-12 amino acids, with their accession numbers given in Tab. 3.

Table 3: Accession numbers used in this study.

C0HLZ5 P01858 P0DPI4 P0DUS0 P84464
P84465 P0DOY5 P67857 P67858 P67859
P81826 P23210 P85003 P84071 P86168
C0HJF1 C0HJG0 P02729 P81010 P86909
P86922 B3EWE5 P0DMM6 P0DQM6 P0DQM7
P12481 P85002 B3EWR3 P01358 P02728
P0C005 P0DKX2 P0DMM7 P0DQM9 P0DX30
P22103 P84200 P84785 P84868 P86600
A8C8X2 B3A0L6 B3EUR5 C0HJM6 C0HLK7
P0DJC3 P0DJF4 P69208 P85444 P85870
P86942 A0A0A0MT89 B3EWS0 C0HJB6 C0HL84
C0HL88 P0C8I8 P0DQH7 P0DQH8 P0DQX4
P0DQX5 P58805 P69437 P82820 P83127

K.2 MODELS

We conduct experiments using GPT-2 Large (Radford et al., 2019), Llama 3.2-1B, and Llama 3.1-
8B24 from the Hugging Face hub (Wolf et al., 2020). We use the library25 and the
(Kwon et al., 2023) backend to efficiently evaluate the models.

For the experiments in §6, we use 26 to convert token-level models into byte-level
models and compose them with fptb. We use a beam size of K=5 and a pruning threshold of 0.001.
For the experiments in §6, we train a custom GPT-2 Small model on a human DNA dataset27. Note
that we set the token set to X = {A, C, G, T}, eliminating the need for composing the model with a
transducer fα that maps from subword tokens to characters. For training parameters, see Tab. 4, for
training and validation metrics, see Tab. 5.

K.3 PARAMETERS

For all experiments, we use the pruning heuristic described in App. G.4 with the parameters τmax =
0.4, npiv = 100 and α = 0.7. For the experiments in §6 we report the results for different values of
nmax ∈ {5000, 10000, 15000, 20000}. For all other experiments, we set nmax =∞

K.4 GPU USAGE

All experiments in §6 were run on a single NVIDIA GeForce RTX 4090 GPU with 24GB of memory.

23https://www.uniprot.org/uniprotkb?query=Human
24Available under openai/gpt2-large, meta-llama/Llama-3.2-1B and meta-llama/Llama-3.1-8B at
https://huggingface.co.

25https://github.com/genlm/genlm-backend
26https://github.com/genlm/genlm-bytes
27https://huggingface.co/datasets/simecek/Human_DNA_v0.

26

https://huggingface.co/datasets/Salesforce/wikitext
https://www.uniprot.org/uniprotkb?query=Human
https://huggingface.co/openai-community/gpt2-large
https://huggingface.co/meta-llama/Llama-3.2-1B
https://huggingface.co/meta-llama/Llama-3.1-8B
https://huggingface.co
https://github.com/genlm/genlm-backend
https://github.com/genlm/genlm-bytes
https://huggingface.co/datasets/simecek/Human_DNA_v0

1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457

Under review as a conference paper at ICLR 2026

Table 4: Training Hyperparameters.

Parameter Value

Learning Rate 0.0003
Optimizer AdamW

β1 = 0.9, β2 = 0.999,
ϵ = 1e−8

Learning Rate Scheduler Linear
Warm-up Steps 1000
Train Batches (per device) 64
Eval Batches (per device) 8
Total Train Batches 256 (262,144 tokens)
Total Eval Batches 32
Epochs 10
Seed 42
Distributed Training Multi-GPU (4 devices)
Mixed Precision Native AMP

Table 5: Training and Validation Metrics.

Step Epoch Train Loss Val Loss Acc (%)

5k 0.69 1.1252 1.1206 47.45
10k 1.38 1.0835 1.0814 49.91
15k 2.07 1.0641 1.0639 51.03
20k 2.76 1.0563 1.0547 51.63
25k 3.45 1.0504 1.0486 52.04
30k 4.14 1.0439 1.0439 52.33
35k 4.84 1.0425 1.0407 52.54
40k 5.53 1.0365 1.0380 52.71
45k 6.22 1.0325 1.0361 52.84
50k 6.91 1.0322 1.0341 52.96
55k 7.60 1.0307 1.0328 53.05
60k 8.29 1.0267 1.0316 53.13
65k 8.98 1.0273 1.0306 53.20
70k 9.67 1.0270 1.0299 53.24

L EXPERIMENTAL RESULTS

Here we provide complementary results to the experiments presented in §6.

L.1 JENSEN–SHANNON DISTANCE

We benchmark how well the algorithm given in §5 approximates the baselines when using high
pruning thresholds τ in the probability mass pruning described in App. G.4. For all three settings
pX ◦ fα (Tab. 7 and Fig. 6), pX ◦ fα ◦ fptb (Tab. 8 and Fig. 6), and pX ◦ fdna2aa (Tab. 9), we observe
decreasing Jensen-Shannon distances, at the cost of throughput (bytes per second). Note that runtimes
become less consistent for higher thresholds (τ >1e-4) as these settings frequently lead to dead ends
and require backtracking (see App. G.3). Importantly, larger models are not slower, as the scoring of
the candidates is not the main computational bottleneck.

Table 6: Average Jensen–Shannon distance (JSD) and bytes per second for various thresholds τ using
pX ◦ fα against a reference distribution from Vieira et al. (2025a) with a beam size of K=60. 95%
confidence intervals are given in parentheses.

pgpt2 ◦ fα pllama1B ◦ fα pllama8B ◦ fα
τ average JSD / byte average JSD / byte average JSD / byte

1e-1 7.8e-2 (7.4e-2, 8.1e-2) 6.7e-2 (6.4e-2, 7.0e-2) 5.2e-2 (5.0e-2, 5.5e-2)
3e-2 7.4e-2 (7.1e-2, 7.8e-2) 6.2e-2 (5.9e-2, 6.5e-2) 4.8e-2 (4.6e-2, 5.0e-2)
1e-2 6.1e-2 (5.8e-2, 6.3e-2) 5.4e-2 (5.1e-2, 5.6e-2) 4.3e-2 (4.1e-2, 4.5e-2)
3e-3 3.0e-2 (2.8e-2, 3.2e-2) 3.3e-2 (3.1e-2, 3.5e-2) 3.0e-2 (2.8e-2, 3.2e-2)
1e-3 1.5e-2 (1.4e-2, 1.7e-2) 1.6e-2 (1.4e-2, 1.7e-2) 1.1e-2 (1.0e-2, 1.3e-2)
3e-4 6.5e-3 (5.6e-3, 7.6e-3) 5.7e-3 (4.8e-3, 6.8e-3) 4.3e-3 (3.5e-3, 5.2e-3)
1e-4 3.8e-3 (2.9e-3, 4.7e-3) 2.5e-3 (2.0e-3, 3.2e-3) 1.4e-3 (1.1e-3, 1.8e-3)
3e-5 8.5e-4 (5.6e-4, 1.3e-3) 9.2e-4 (6.9e-4, 1.2e-3) 8.1e-4 (5.1e-4, 1.2e-3)
1e-5 7.4e-4 (4.3e-4, 1.2e-3) 3.8e-4 (2.7e-4, 5.2e-4) 3.8e-4 (2.2e-4, 6.4e-4)
3e-6 6.7e-4 (3.1e-4, 1.1e-3) 3.2e-4 (2.2e-4, 4.5e-4) 2.0e-4 (1.4e-4, 2.7e-4)
1e-6 2.7e-4 (1.4e-4, 4.7e-4) 3.0e-4 (2.0e-4, 4.3e-4) 1.9e-4 (1.2e-4, 2.6e-4)

27

1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1490
1491
1492
1493
1494
1495
1496
1497
1498
1499
1500
1501
1502
1503
1504
1505
1506
1507
1508
1509
1510
1511

Under review as a conference paper at ICLR 2026

Table 7: Average Jensen–Shannon distance (JSD) and bytes per second for various thresholds τ and a
reference (τ =1e-6) using pX ◦ fα. 95% confidence intervals are given in parentheses.

pgpt2 ◦ fα pllama1B ◦ fα
τ average JSD / byte bytes / sec average JSD / byte bytes / sec

1e-1 7.8e-2 (7.4e-2, 8.1e-2) 22.02 (13.88, 36.15) 6.7e-2 (6.3e-2, 7.0e-2) 38.76 (30.81, 48.63)
3e-2 7.4e-2 (7.0e-2, 7.7e-2) 22.31 (12.72, 41.71) 6.1e-2 (5.8e-2, 6.4e-2) 39.73 (30.65, 51.48)
1e-2 6.0e-2 (5.7e-2, 6.3e-2) 26.08 (13.91, 51.18) 5.4e-2 (5.1e-2, 5.6e-2) 25.61 (15.06, 45.38)
3e-3 3.0e-2 (2.8e-2, 3.2e-2) 27.67 (17.50, 49.67) 3.3e-2 (3.1e-2, 3.5e-2) 42.08 (29.25, 59.36)
1e-3 1.5e-2 (1.3e-2, 1.7e-2) 29.60 (18.88, 51.40) 1.5e-2 (1.4e-2, 1.7e-2) 46.25 (29.10, 75.78)
3e-4 6.2e-3 (5.2e-3, 7.2e-3) 21.91 (13.66, 37.44) 5.4e-3 (4.4e-3, 6.4e-3) 49.40 (40.14, 59.56)
1e-4 3.5e-3 (2.7e-3, 4.4e-3) 26.10 (24.85, 27.39) 2.3e-3 (1.7e-3, 2.9e-3) 37.42 (29.84, 43.84)
3e-5 5.8e-4 (3.4e-4, 9.3e-4) 15.33 (14.69, 16.03) 6.0e-4 (4.1e-4, 8.4e-4) 23.54 (22.37, 24.84)
1e-5 5.0e-4 (2.3e-4, 8.7e-4) 9.66 (9.25, 10.09) 7.1e-5 (4.2e-5, 1.1e-4) 16.62 (15.83, 17.42)
3e-6 4.5e-4 (9.1e-5, 9.4e-4) 6.10 (5.85, 6.39) 1.7e-5 (7.2e-6, 3.2e-5) 10.40 (9.97, 10.86)
1e-6 (not applicable) 2.52 (2.41, 2.64) (not applicable) 5.41 (5.19, 5.65)

pllama8B ◦ fα
τ average JSD / byte bytes / sec

1e-1 5.2e-2 (5.0e-2, 5.5e-2) 42.87 (32.92, 57.03)
3e-2 4.8e-2 (4.5e-2, 5.0e-2) 41.40 (30.70, 54.70)
1e-2 4.3e-2 (4.1e-2, 4.5e-2) 34.24 (19.37, 56.79)
3e-3 2.9e-2 (2.8e-2, 3.1e-2) 30.55 (20.06, 48.56)
1e-3 1.1e-2 (1.0e-2, 1.3e-2) 35.00 (20.96, 56.28)
3e-4 4.1e-3 (3.4e-3, 5.0e-3) 25.95 (12.88, 53.91)
1e-4 1.2e-3 (8.8e-4, 1.6e-3) 40.15 (38.14, 42.33)
3e-5 6.3e-4 (3.1e-4, 9.9e-4) 25.70 (22.68, 27.97)
1e-5 1.9e-4 (5.5e-5, 4.3e-4) 18.43 (17.64, 19.30)
3e-6 1.0e-5 (6.8e-6, 1.4e-5) 12.35 (11.83, 12.84)
1e-6 (not applicable) 7.77 (7.45, 8.12)

28

1512
1513
1514
1515
1516
1517
1518
1519
1520
1521
1522
1523
1524
1525
1526
1527
1528
1529
1530
1531
1532
1533
1534
1535
1536
1537
1538
1539
1540
1541
1542
1543
1544
1545
1546
1547
1548
1549
1550
1551
1552
1553
1554
1555
1556
1557
1558
1559
1560
1561
1562
1563
1564
1565

Under review as a conference paper at ICLR 2026

Table 8: Average Jensen–Shannon distance (JSD) and bytes per second for various thresholds τ and a
reference (τ =1e-6) using pX ◦ fα ◦ fptb. 95% confidence intervals are given in parentheses.

pgpt2 ◦ fα ◦ fptb pllama1B ◦ fα ◦ fptb
τ average JSD / byte bytes / sec average JSD / byte bytes / sec

1e-1 5.6e-3 (5.1e-3, 6.2e-3) 32.91 (31.78, 33.98) 5.1e-3 (4.5e-3, 5.7e-3) 33.08 (21.15, 58.03)
3e-2 1.9e-3 (1.7e-3, 2.2e-3) 30.74 (29.98, 31.50) 1.9e-3 (1.5e-3, 2.3e-3) 53.87 (52.51, 55.42)
1e-2 8.8e-4 (7.0e-4, 1.2e-3) 30.29 (29.51, 31.12) 8.0e-4 (6.1e-4, 1.1e-3) 49.09 (47.80, 50.42)
3e-3 3.4e-4 (2.7e-4, 4.7e-4) 27.67 (26.95, 28.37) 3.1e-4 (2.3e-4, 4.7e-4) 45.28 (44.07, 46.50)
1e-3 1.7e-4 (1.0e-4, 3.0e-4) 28.01 (27.20, 28.91) 1.4e-4 (9.4e-5, 2.2e-4) 37.22 (35.44, 38.84)
3e-4 7.4e-5 (3.5e-5, 1.5e-4) 26.29 (25.50, 27.00) 5.5e-5 (3.3e-5, 9.3e-5) 36.42 (35.57, 37.32)
1e-4 1.6e-5 (1.3e-5, 2.1e-5) 22.34 (21.69, 22.95) 1.7e-5 (1.4e-5, 2.2e-5) 28.42 (27.58, 29.20)
3e-5 6.2e-6 (4.6e-6, 9.0e-6) 16.19 (15.50, 16.83) 7.5e-6 (5.7e-6, 1.0e-5) 16.65 (16.00, 17.40)
1e-5 2.0e-6 (1.7e-6, 2.5e-6) 9.59 (9.02, 10.21) 2.8e-6 (2.5e-6, 3.3e-6) 11.79 (11.12, 12.45)
3e-6 6.7e-7 (6.1e-7, 7.7e-7) 4.20 (3.78, 4.63) 1.4e-6 (1.2e-6, 1.8e-6) 7.06 (6.63, 7.53)
1e-6 (not applicable) 2.52 (2.32, 2.77) (not applicable) 4.38 (4.07, 4.72)

pllama8B ◦ fα ◦ fptb
τ average JSD / byte bytes / sec

1e-1 4.3e-3 (3.8e-3, 5.0e-3) 30.37 (29.48, 31.19)
3e-2 1.6e-3 (1.3e-3, 2.0e-3) 27.92 (27.25, 28.64)
1e-2 5.9e-4 (5.1e-4, 7.4e-4) 26.14 (25.50, 26.81)
3e-3 2.8e-4 (2.0e-4, 4.1e-4) 24.23 (23.64, 24.88)
1e-3 1.5e-4 (8.4e-5, 2.8e-4) 21.21 (20.68, 21.79)
3e-4 5.3e-5 (3.1e-5, 9.4e-5) 20.19 (19.71, 20.69)
1e-4 1.6e-5 (1.2e-5, 2.4e-5) 18.54 (18.12, 18.96)
3e-5 5.6e-6 (4.4e-6, 7.5e-6) 14.33 (13.93, 14.74)
1e-5 2.6e-6 (1.9e-6, 3.9e-6) 10.33 (9.92, 10.74)
3e-6 8.3e-7 (7.4e-7, 9.6e-7) 6.40 (6.02, 6.83)
1e-6 (not applicable) 4.41 (4.10, 4.72)

29

1566
1567
1568
1569
1570
1571
1572
1573
1574
1575
1576
1577
1578
1579
1580
1581
1582
1583
1584
1585
1586
1587
1588
1589
1590
1591
1592
1593
1594
1595
1596
1597
1598
1599
1600
1601
1602
1603
1604
1605
1606
1607
1608
1609
1610
1611
1612
1613
1614
1615
1616
1617
1618
1619

Under review as a conference paper at ICLR 2026

Table 9: Average Jensen–Shannon distance (JSD) and bytes per second for various thresholds τ and a
reference (τ =1e-6) using pX ◦ fdna2aa. 95% confidence intervals are given in parentheses. We limit
the size of the candidate set to mitigate the combinatorial blow-up with increasing sequence length.

pdna ◦ fdna2aa (nmax = 5000) pdna ◦ fdna2aa (nmax = 10000)
τ average JSD / byte byte / sec average JSD / byte byte / sec

1e-1 4.9e-3 (3.9e-3, 5.9e-3) 24.31 (21.16, 28.25) 5.1e-3 (4.0e-3, 6.3e-3) 44.33 (38.29, 52.75)
3e-2 2.0e-3 (1.4e-3, 2.6e-3) 24.04 (18.51, 32.81) 2.1e-3 (1.5e-3, 2.8e-3) 23.45 (17.86, 31.51)
1e-2 8.4e-5 (5.9e-5, 1.1e-4) 12.55 (8.83, 19.52) 1.1e-4 (8.2e-5, 1.5e-4) 12.07 (8.64, 18.96)
3e-3 1.4e-5 (9.1e-6, 1.9e-5) 10.98 (7.68, 17.42) 1.4e-5 (9.2e-6, 2.0e-5) 8.51 (5.63, 15.35)
1e-3 4.0e-6 (2.3e-6, 5.9e-6) 10.57 (7.46, 15.76) 3.9e-6 (2.3e-6, 5.9e-6) 8.11 (5.39, 14.43)
3e-4 2.8e-7 (1.7e-7, 4.2e-7) 10.34 (7.29, 15.85) 2.3e-7 (1.3e-7, 3.6e-7) 7.84 (5.22, 14.16)
1e-4 7.6e-8 (3.0e-8, 1.3e-7) 10.39 (7.52, 15.90) 3.2e-8 (1.7e-8, 4.9e-8) 8.24 (5.48, 14.22)
3e-5 2.1e-8 (5.0e-9, 4.5e-8) 10.29 (7.47, 16.18) 1.3e-8 (5.1e-9, 2.1e-8) 8.44 (5.62, 14.41)
1e-5 4.2e-9 (9.2e-10, 8.3e-9) 10.30 (7.40, 15.89) 4.2e-9 (9.2e-10, 8.5e-9) 8.48 (5.82, 14.70)
3e-6 3.5e-10 (0.0e+00, 9.0e-10) 10.36 (7.34, 16.22) 3.5e-10 (0.0e+00, 9.0e-10) 8.50 (5.70, 14.98)
1e-6 (not applicable) 1.17 (1.06, 1.31) (not applicable) 0.70 (0.62, 0.78)

pdna ◦ fdna2aa (nmax = 15000) pdna ◦ fdna2aa (nmax = 20000)
τ average JSD / byte byte / sec average JSD / byte byte / sec

1e-1 5.2e-3 (4.2e-3, 6.2e-3) 47.07 (40.13, 54.66) 5.2e-3 (4.1e-3, 6.3e-3) 47.99 (41.76, 56.14)
3e-2 2.2e-3 (1.6e-3, 2.8e-3) 23.67 (18.30, 32.60) 2.2e-3 (1.6e-3, 2.9e-3) 25.89 (20.38, 35.54)
1e-2 1.3e-4 (8.9e-5, 1.8e-4) 12.44 (8.65, 19.50) 1.4e-4 (8.9e-5, 1.9e-4) 12.82 (9.09, 19.69)
3e-3 1.6e-5 (1.1e-5, 2.2e-5) 8.66 (5.60, 15.33) 1.8e-5 (1.2e-5, 2.3e-5) 8.94 (5.77, 15.76)
1e-3 4.2e-6 (2.6e-6, 5.8e-6) 5.90 (3.51, 12.80) 5.1e-6 (3.3e-6, 7.1e-6) 5.88 (3.59, 13.27)
3e-4 2.3e-7 (1.3e-7, 3.4e-7) 5.07 (3.05, 12.07) 3.2e-7 (1.8e-7, 4.7e-7) 4.91 (2.96, 12.98)
1e-4 2.5e-8 (1.3e-8, 4.1e-8) 4.77 (2.84, 11.74) 3.1e-8 (1.6e-8, 4.8e-8) 4.57 (2.65, 10.69)
3e-5 1.1e-8 (3.7e-9, 1.8e-8) 4.73 (2.85, 10.47) 1.5e-8 (7.2e-9, 2.3e-8) 4.42 (2.52, 10.83)
1e-5 4.2e-9 (9.2e-10, 8.3e-9) 4.57 (2.53, 10.82) 6.1e-9 (2.2e-9, 1.1e-8) 4.18 (2.47, 10.06)
3e-6 3.5e-10 (0.0e+00, 9.0e-10) 4.51 (2.59, 11.05) 3.5e-10 (0.0e+00, 9.0e-10) 4.05 (2.27, 9.51)
1e-6 (not applicable) 0.47 (0.42, 0.52) (not applicable) 0.39 (0.35, 0.44)

L.2 BENCHMARKING THE QUOTIENT

Table 10: Average Jensen–Shannon distance (JSD) for τ =1e-4 after randomly converting n% of the
universal states to non-universal.

pgpt2 ◦ fα pllama1B ◦ fα
% Converted Converted States average JSD / byte Converted States average JSD / byte

0 0 (not applicable) 0 (not applicable)
5 3786 3.4e-3 (2.2e-3, 4.9e-3) 8849 1.8e-2 (1.4e-2, 2.2e-2)

10 7572 2.1e-2 (1.7e-2, 2.5e-2) 17699 1.4e-2 (1.1e-2, 1.7e-2)
15 11358 2.9e-2 (2.5e-2, 3.4e-2) 26548 1.6e-2 (1.3e-2, 1.9e-2)
20 15144 5.3e-2 (4.7e-2, 6.0e-2) 35398 5.1e-2 (4.5e-2, 5.7e-2)
25 18930 5.2e-2 (4.6e-2, 5.8e-2) 44247 6.4e-2 (5.7e-2, 7.1e-2)

pgpt2 ◦ fα ◦ fptb pllama1B ◦ fα ◦ fptb
% Converted Converted States average JSD / byte Converted States average JSD / byte

0 0 (not applicable) 0 (not applicable)
5 1 2.7e-7 (2.2e-7, 3.3e-7) 1 9.0e-7 (6.7e-7, 1.3e-6)

10 3 5.8e-5 (1.4e-5, 1.1e-4) 3 3.6e-5 (1.3e-5, 6.7e-5)
15 4 1.1e-2 (9.9e-3, 1.2e-2) 4 9.3e-6 (1.9e-6, 2.0e-5)
20 6 1.1e-2 (1.0e-2, 1.3e-2) 6 1.1e-3 (5.5e-4, 1.9e-3)
25 7 - 7 1.1e-2 (9.9e-3, 1.3e-2)

L.3 CROSS-ENTROPY

We repeat the experiments from §6 in Tab. 11, this time evaluating the cross-entropy loss using the
same dataset. Because this metric does not require computing the full distribution over the next

30

1620
1621
1622
1623
1624
1625
1626
1627
1628
1629
1630
1631
1632
1633
1634
1635
1636
1637
1638
1639
1640
1641
1642
1643
1644
1645
1646
1647
1648
1649
1650
1651
1652
1653
1654
1655
1656
1657
1658
1659
1660
1661
1662
1663
1664
1665
1666
1667
1668
1669
1670
1671
1672
1673

Under review as a conference paper at ICLR 2026

symbol, we observe a large speedup. Many applications rely on calculating sequence or prefix
probabilities; these numbers are indicative of the performance and accuracy trade-offs in such settings.
The JSD-numbers, on the other hand, correspond to the time it would take to do full decoding.

Table 11: Average Cross-Entropy for various thresholds τ .

τ Bytes/s Bits/byte Cross-entropy

Mean 95% CI Mean 95% CI Mean 95% CI

pgpt2 ◦ fα
1e-1 54.60 (56.23, 108.78) 1.2273 (1.1322, 1.2894) 0.8507 (0.7860, 0.8917)
3e-2 73.70 (74.99, 125.08) 1.2470 (1.1694, 1.2966) 0.8644 (0.8088, 0.8992)
1e-2 83.40 (79.40, 114.86) 1.1701 (1.1085, 1.2092) 0.8110 (0.7652, 0.8383)
3e-3 96.50 (91.86, 128.42) 1.1130 (1.0652, 1.1500) 0.7715 (0.7388, 0.7979)
1e-3 81.90 (77.90, 96.14) 1.0782 (1.0258, 1.1223) 0.7473 (0.7120, 0.7777)
3e-4 49.80 (47.50, 54.26) 1.0456 (0.9963, 1.1039) 0.7248 (0.6924, 0.7611)
1e-4 19.60 (24.42, 34.33) 1.0288 (0.9877, 1.0768) 0.7131 (0.6822, 0.7477)
3e-5 17.30 (16.15, 19.62) 1.0129 (0.9757, 1.0562) 0.7021 (0.6756, 0.7326)
1e-5 11.10 (10.03, 13.28) 1.0127 (0.9771, 1.0503) 0.7020 (0.6760, 0.7280)
3e-6 6.90 (6.24, 9.27) 1.0162 (0.9811, 1.0584) 0.7044 (0.6790, 0.7355)

pllama1B ◦ fα
1e-1 116.70 (109.18, 165.89) 1.0595 (0.9453, 1.1047) 0.7344 (0.6614, 0.7690)
3e-2 155.10 (145.12, 203.50) 1.0858 (0.9770, 1.1307) 0.7526 (0.6743, 0.7896)
1e-2 142.30 (134.66, 202.59) 1.0458 (0.9916, 1.0799) 0.7249 (0.6888, 0.7524)
3e-3 165.00 (157.14, 201.86) 0.9672 (0.8978, 1.0067) 0.6704 (0.6270, 0.6982)
1e-3 150.50 (144.11, 184.43) 0.9057 (0.8445, 0.9413) 0.6278 (0.5891, 0.6543)
3e-4 87.60 (83.48, 102.28) 0.8564 (0.8101, 0.8895) 0.5936 (0.5653, 0.6178)
1e-4 48.70 (46.29, 57.93) 0.8415 (0.7961, 0.8678) 0.5833 (0.5526, 0.6025)
3e-5 27.40 (25.57, 33.84) 0.8394 (0.7942, 0.8688) 0.5818 (0.5530, 0.6037)
1e-5 19.60 (18.68, 21.82) 0.8388 (0.7949, 0.8617) 0.5814 (0.5535, 0.6001)
3e-6 12.50 (11.85, 13.98) 0.8353 (0.7901, 0.8633) 0.5790 (0.5488, 0.6004)

pllama8B ◦ fα
1e-1 83.90 (79.37, 120.86) 0.8637 (0.6849, 0.9268) 0.5987 (0.4796, 0.6442)
3e-2 100.90 (94.98, 128.25) 0.8644 (0.6925, 0.9279) 0.5991 (0.4736, 0.6414)
1e-2 117.10 (111.90, 135.80) 0.8398 (0.6890, 0.9044) 0.5821 (0.4710, 0.6243)
3e-3 104.80 (99.09, 125.66) 0.8171 (0.6604, 0.8765) 0.5664 (0.4726, 0.6054)
1e-3 101.90 (97.85, 122.57) 0.7325 (0.6059, 0.7772) 0.5077 (0.4242, 0.5372)
3e-4 72.90 (68.89, 90.38) 0.7067 (0.5866, 0.7583) 0.4899 (0.4114, 0.5238)
1e-4 45.10 (41.32, 60.47) 0.7001 (0.5738, 0.7446) 0.4852 (0.4081, 0.5182)
3e-5 30.50 (28.59, 38.91) 0.6944 (0.5821, 0.7404) 0.4813 (0.4024, 0.5118)
1e-5 20.60 (19.15, 26.25) 0.6928 (0.5795, 0.7415) 0.4802 (0.4023, 0.5095)
3e-6 14.20 (13.62, 16.96) 0.6911 (0.5796, 0.7383) 0.4790 (0.4010, 0.5093)

L.4 FINE-TUNING VS. TRANSDUCING

To further benchmark our approach, we compare transduction against fine-tuning, a standard method
for adapting pretrained language models to new data. We select a simple transformation: converting a
pretrained model into one over lowercased strings, using the transducer depicted in Fig. 1. Specifically,
we evaluate four variants of pgpt2: (i) the original model, (ii) a fine-tuned model trained on 50M tokens
of lowercased data sampled from GPT2-large until validation loss increased, (iii) a byte-adapted
model where the embedding matrix is replaced to operate directly on the 256 bytes and special
symbols, and (iv) our transduced model applied at the byte level. We use sampled data to prevent
overfitting on a given domain during the fine-tuning.

We evaluate these models on 100 paragraphs (24,925 bytes) from a dataset of recent Wikipedia
articles (written in the last three years), which are known not to be part of the training data and report
the perplexity in bits per byte, with 95% confidence intervals obtained by bootstrapping. Fine-tuning
was performed on a single H100 GPU for approximately a day, depending on early stopping. We
note that we do not conduct a comprehensive hyper-parameter search but select what we deem to be

31

1674
1675
1676
1677
1678
1679
1680
1681
1682
1683
1684
1685
1686
1687
1688
1689
1690
1691
1692
1693
1694
1695
1696
1697
1698
1699
1700
1701
1702
1703
1704
1705
1706
1707
1708
1709
1710
1711
1712
1713
1714
1715
1716
1717
1718
1719
1720
1721
1722
1723
1724
1725
1726
1727

Under review as a conference paper at ICLR 2026

reasonable hyperparameters. We use a warm-up of 2000 steps, a learning rate of 5e-5, a batch size of
32, a context window of 1024 tokens, and evaluate every 100 steps with early stopping patience set to
5. The directly fine-tuned model took around 4 epochs, while the byte-adapted model with the new
embedding matrix was still improving minimally. After 24 hours of training, it was stopped since the
performance was very far from the fine-tuned model and the transduced model. The results in Tab. 12
show that our transducer-based approach yields the highest performance. All pairwise differences are
significant at p < 0.001. Even if the byte-adaptation might get close to the fine-tuned model over
weeks or months of training, this serves as an example of why transducing a model directly is so
lucrative. Transduction does not require training, nor hyperparameter tuning and the results may still
be better.

Table 12: Mean bits/byte with 95% confidence intervals.

Run Mean bits/byte ± CI (95%)

Baseline 1.22 ± 0.03

Finetuned 1.14 ± 0.03
ByteAdapted 1.59 ± 0.05

Transduced (ours) 1.02 ± 0.04

32

	Introduction
	Background
	Transduced Language Models
	Decomposing the Precover
	The Prefix Decomposition of the Precover
	Sufficient Conditions for Finite Quotients and Remainders

	Algorithms
	Transducer-Based Algorithm with Determinism and Projection
	Optimizations for Scalability

	Experiments
	Conclusion
	Notation Glossary
	Example Decompositions

	Transducer Diagrams
	Background on Transducers
	Limitations
	Quotient Bound for Prefix Monotone Maps
	Proofs
	Algorithms
	Notes on Universality Checking
	Lazy Determinization
	A Recursive Algorithm That Operates Directly on the FST
	Probability Mass Pruning
	Computing Probabilities – Implementing the Language Model Interface

	Related Work
	Constructing the PTB Tokenizer
	Details on Transducers Used in Experiments
	Experimental Setup
	Datasets
	Models
	Parameters
	GPU Usage

	Experimental Results
	Jensen–Shannon distance
	Benchmarking the Quotient
	Cross-Entropy
	Fine-Tuning vs. Transducing

