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Heterogeneous federated learning (Hetero-FL) is an emerging machine learning
framework that enables the training of collaborative models between devices with
varying capabilities and data without sharing raw data. In HFL, there are two
types of trainer that exhibit distinct behaviors: the Global Trainer (GTr), which
prioritizes average performance while lacking fine-grained client insights; the Local
Trainer (LTr), which addresses local issues and excels in local data, but struggles
with generalization. Thus, it is crucial to combine them, obtaining an admired GTr.
Unlike the prevalent personalization strategies that supplement GTr with LTr, our
work introduces a novel approach in which GTr and LTr collaborate adversarially.
The adversarial performance of the local trainer can unexpectedly enhance the over-
all performance of GTr in the combined global-local training process. Building on
a profound understanding of this adversarial cooperation, we propose an alternat-
ing training strategy named Fed A(dversarial) B(ased) (C)ooperation (FedABC),
utilizing a "G-L-G-L" framework. LTr increases the global loss, preventing GTr
from falling at local minimum points. Our comprehensive experiments show supe-
rior accuracy, up to 13.77%, and faster convergence than existing state-of-the-art
Hetero-FL methods. We validate the effectiveness and efficiency of our approach in
terms of fairness, generalizability, and long-term behavior. Ultimately, our proposed
method underscores the design of the training strategy of the Hetero-FL model, em-
phasizing adversarial cooperation between GTr and LTr in real-world scenarios.

1. Introduction
Recently, Federated Learning (FL) has become a widely used technique in machine learning due to
the large amount of data stored in various physical locations and the restrictions on data transmis-
sion imposed by security and privacy regulations. FL has been successfully applied to a variety of
scenarios, such as smart devices [1], cross-silo graph learning [2, 3], and cross-domain recommenda-
tion [4, 5], by allowing cooperative training in physically isolated data and clients. This enables the
use of distributed data and computing power to achieve a high-quality training effect.

Despite the success of FL, statistical heterogeneity of the data remains a major issue that affects
the performance of FL models. For example, FedAvg [1], updates a common global model with the
synchronization of local gradients every few training steps and the extraction of local information
during the two synchronizations, which we denote as the global trainer (GTr). The benefits of GTr is
that it enables collaborative learning using an averaged global model without sharing raw data.
However, updating a single common global model does not fit all heterogeneous local clients well.
The solely averaged global model can lead to a significant decrease in accuracy, especially when
each client has an extremely skew local dataset [6]. On the other hand, the local paradigm (LTr)
trains each client solely on its own data set, which perfectly captures the local representation, but
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ignores the additional information from other clients and the connection between them. Furthermore,
LTr trained with a limited amount of data would lead to poor generalization ability. Therefore, the
key to improving the effect of training is understanding the function of global and local information
in FL and how to use them intelligently.

(a) (b)

Figure 1: An motivation example with CIFAR10.

Recent research has focused on three primary strategies to address the challenge of statistical het-
erogeneity. The initial strategy is through fine-tuning, which involves adjusting the pre-trained FL
model using a specific local dataset [7–11]. Fine-tuning [9] can transition from global to local setting
once, but tends to lose global information over prolonged periods of local adaptation [12]. The second
strategy is the reduction of variance, which uses optimization methods to minimize variance between
clients [6, 13–17]. The variance in local gradients reflects the diversity of FL clients. Researchers
use optimization-driven techniques to mitigate variance during the training process. However, this
approach requires periodic computation of the entire gradient using all data samples to reduce data
variance, which introduces significant computational complexity. The third approach is the local
adapter, which uses local information for fast adaptation of GTr models [18–22]. These methods
correct the GTr by LTr information, which fail to discover the interaction between GTr and LTr thor-
oughly. These methods tend to find a balance of LTr to GTr, which does not directly resolve the
statistical heterogeneity.

This paper examines two questions related to FL training: Can we achieve better accuracy instead
of finding a balance between GTr and LTr, and what is the relationship between GTr and LTr, par-
ticularly in long-term FL training, cooperative or adversarial? To answer these questions, dedicated
research on the training behaviors of GTr and LTr is necessary. GTr aggregates local gradients de-
rived from local loss functions and local data sets in a weighted average fashion, but may overlook
fine-grained information specific to local data sets. LTr are well-suited to local datasets, but do not
generalize to global data sets. It is necessary to combine the advantages of both GTr and LTr.

A natural solution is fine-tuning the GTr pretrained model with LTr. Due to the game between
GTr and LTr, the fine-tuning model behaves between GTr and LTr in test loss while jumping to
a high test accuracy (Figure 1). Inspired by the concepts of multiscale and multilevel in signal
representation and the resolution of partial differential equations [23–28], this article presents the
development of an Adversary-Based Cooperation (ABC) training approach in FL (FedABC). This
involves a systematic alternation between GTr and LTr throughout the FL training process, with
stages of alternation predefined. GTr and LTr optimizers can be viewed as the two scale solvers for the
objective function naturally. We will especially focus on the adversarial training strategy that can
actually help organize the cooperation between GTr and LTr optimizers. The adversarial relation
of GTr and LTr is they have different learning directions. Both GTr and LTr solve optimization
problems with different data scales. GTr solves for a union of all clients data while LTr solves for
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its own data. The cooperative relationship lies in the fact that the information grasped by GTr and
LTr is complement. GTr tends to grasp the common information among clients while LTr focuses on
the individual fine-grained information. The main design logic is to alternatively use GTr and LTr to
gain both advantages. Concretely, when the LTr arrives the plateau, meaning that the fine-grained
information missed by the GTr tend to relatively small, we return to run GTr. And when GTr arrives
the plateau, we switch to LTr. The alternating between GTr and LTr trainers tend to enjoy fast
convergence in both global and local optimization.

We evaluate the proposed FedABC on four FL benchmarks compared to eight SOTA methods in
a heterogeneous FL setting. We show that FedABC achieves fast convergence and high accuracy
compared to all candidate SOTA methods. Specifically, FedABC improves test accuracy up to 7.47
% and 11.01% average compared to GTr and LTr respectively, and much fewer convergence steps to
achieve a good accuracy threshold compared to personalized FL frames.

In summary, our main contributions are summarized as follows:

• We observe a phenomenon that an alternating GTr and LTr strategy results in oscillation
in model performance, and this oscillation further helps the model to struggle to a better
accuracy.

• Our innovation, called FedABC, involves alternating between GTr and LTr in hetero-FL.
This approach leverages complementary information from both GTr and LTr to achieve fast
convergence and better accuracy.

• In practice, we have devised two different training strategies (FedABC-GL and FedABC-LG).
Extensive experiments demonstrate that both our approaches, FedABC-GL and FedABC-LG,
outperform the state-of-the-art heterogeneous federated learning algorithms in terms of ac-
curacy and convergence speed.

2. Related Work

2.1. Fine-tuning
The first is fine-tuning. Fine-tuning is a popular approach to adapting large-scale models to local
task-specific data sets. GTr trained by the FL strategy requires a large amount of data, many
local clients, and solid computing engines. Small companies or individuals may not be able to
afford the high training cost. An economical way to utilize large models for specific usages is to
fine-tune the federated pre-trained model on a local dataset. For example, [9] develop faster and
sparser algorithms to fine-tune large-scale pre-trained language models differentially privately. It
has been shown to enable device personalization [7] and freeze-base fine-tuning is a strategy to
apply a large-scale pre-trained model to lightweight mobile devices by freezing the base layers and
fine-tuning only the top layers [8]. Local-rank fine-tuning is a technique for discovering the low-
rank structure in large-scale federated models and fine-tuning the low-rank part in the local client,
which is widely used for fine-tuning large language models (LLMs), for example, the GPT series [9–
11, 29]. For fine-tuning LLMs, LoRA [30] shed light on parameter-efficient fine-tuning in the low-rank
subspace for transformer blocks. The variants of LoRA [31–35] extend low-rank adaption techniques
to efficiently adapt large models to devices with limited capacity [36] However, a potential problem
with fine-tuning is that the later stage LTr may erase or forget the information from the first stage
GTr training [12]. To address this, our proposed method interlaces the functions of GTr and LTr to
alleviate the degradation of effectiveness in fine-tuning.

2.2. Variance Reduction
The second way to improve performance in Hetero-FL scenario is to reduce the variance among
clients use variance reduction techniques. SVRG [37, 38], SAGA [39], SCSG [40], and SARAH [41]
are the main approaches to reducing variance for convex and non-convex optimization in a centralized
fashion. FedAdpt [13], Scaffold [14] and VRLSGD [15] employ the variance reduction technique in
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the distributed scenario. Cluster [16] groups the client population into groups when the FL reaches
a stationary point. FedProx [6] adds a proximal term to the loss function to bring the local gradients
back to the global one. SCAFFOLD [14] introduces control variates, known as gradient corrections,
to reduce the variance of client updates. CANITA [42] provides gradient compressed methods for a
convex setting, while MARINA [43] for non-convex ones. CONFIG and FRECON [44], incorporates
communication compression with a reduction in client variance to alleviate the large number of
heterogeneous clients in FL. However, these methods require an estimate of the gradient with full
samples to correct the local client’s gradient, which exerts a large computational complexity. To
address this, our method exaggerates the importance of LTr and motivates the GTr to find better
parameters.

2.3. Local Adapter
Personalized Federated Learning is a technique for quickly adapting deep neural networks for a
variety of applications, such as acoustic models [45] and visual models [46]. Federated multitask
learning [18] uses a mapping matrix to model the relationship between different tasks, in a convex
environment. VIRTUAL [19] uses the Bayesian network to parameterize the central server and all
local clients, and the variational methods to perform inference. FedEM [20] is a federated algorithm
similar to expectation maximization (EM) that requires the global trainer to learn M shared com-
plementary models, and each client learns its personalized linear weights. Ditto [21] updates the
gradient with a two-step local optimization, one for the global objective function and one for the local
global regularized objective function. Model-agnostic learning [22] attempts to learn global and local
information simultaneously, but does not perform enough local operations to capture fine-grained
features. In conclusion, in the most personalized FL framework, GTr and Local work together,
but ignore the essential adversarial relationship, which is necessary to achieve better accuracy. To
address this issue, we develop an interlacing scheme with a static exchange interval to enhance both
the GTr and Local functions.

3. Methodology
3.1. Problem
The optimization in a standard FL is described in the following. Suppose that we have m clients,
the client i holds data set Di. Due to data security and privacy regulations, the client i may not
share its private data outside the domain. For each client i, the local loss function can be defined
by its local data set Di and its local task.

fi(wi) = 1/Ni

∑
(xi,j ,yi,j)∈Di

fi,j(wi) = 1/Ni

∑
(xi,j ,yi,j)∈Di

ℓ (xi,j , yi,j , wi) , (1)

where (xi,j , yi,j) is the data pair in the local data set, Ni is cardinality of local dataset Di, wi is the
parameterization of the local model, ℓ is the objective function defined by the local task. The global
loss function is defined by

f(w) =
∑

i∈[m]

αifi(w), (2)

where w is the global model parameters, fi is the local loss function defined by Equation (1), αi is
the importance weights of the local loss function. Therefore, the local optimization problem is to
minimize the local loss function in each client argminwi

fi(wi) and the global optimization problem
is to minimize the global loss function, i.e., argminwf(w). There is an inconsistency between the two
optimization problems due to the different data scale.

3.2. Motivation
In standard FL training, local data are used to train the global model on each client to ensure that
the model parameters are suitable for each data set. An average operation is then used to collect
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Algorithm 1 Federated Adversary Based Cooperation (FedABC)
Input: w0

i initialization of local model; Di = {(xi,j , yi,j)} data set holds by Client;
Hyper-parameter: αi importance of local clients; βt

1 global learning rate; βt
2 local learning rate; B

batch size; E1 global update interval; E2 local update interval; T total iteration steps.
Output: wT model parameter at final step.

1: Alternatively update models with GTr and LTr Stages;
2: Global Trainer (GTr)
3: Client i samples a batch of data Bi of batchsize B;
4: while t ∈ E1 do
5: Compute gradient gt

i = 1/|Bi|
∑

j∈Bi
∇fi,j(wt

i);
6: Clients send local gradients gt

i to Server;
7: Server aggregate the local gradients gglobal =

∑
i∈[m] αigi;

8: Update global parameter wt+1 = wt − βt
1gt

global;
9: Server distributes global parameters wt+1 to Clients;

10: Client update local parameters wt+1
i ← wt+1;

11: end while
12: Local Trainer (LTr)
13: while t ∈ E2 do
14: Client i samples a batch of data Bi of batchsize B;
15: Compute gradient gt

local = 1/|Bi|
∑

j∈Bi
∇fi,j(wt

i);
16: Update local model parameter wt+1

i = wt
i − βt

2gt
local;

17: end while
18: return the trained global model parameter wT .

the knowledge from different clients to serve the global model. This procedure implies that the
global parameters obtained differ from those obtained locally and that the fine-grained information
obtained on each client may be lost during the average process. These local processes bring to
the systems a comprehensive knowledge of data from various clients. As the global training process
progresses, the gains of each epoch decrease and the locally obtained fine-grained information, which
the global operation may lose, accumulates. Therefore, additional local processes are needed to find
them. Quite surprisingly, local processes may not help the global training process. Our method
proposes an alternate training process as G-L-G-L, while each stage, GTr or LTr, consists of several
global or local training epochs. Increasingly lost fine-grained information is learned and accumulated
through a local training process. Unlike existing strategies, GTr and LTr updates co-occur. Our
methods process a static interval exchange between GTr and LTr. We design the interval exchange
strategy because the training for GTr and LTr needs several epochs to exert its influence on overall
performance. Learning both GTr and LTr in one step would omit the adversarial relation.

3.3. Solution
To resolve the inconsistency in the optimizations of LTr and GTr, we propose the following algorithm
FedABC. We describe the algorithm of our proposed Federated Adversary-Based Cooperation Global
Local (FedABC-GL) in Algorithm 1. We alternate between Global Trainer (GTr) and Local Trainer
(LTr) during each update stage. For each sample j of the client i, the sample-wise gradient at time
step t is gt

i,j = ∇fi,j(wt
i). For client i, the client-wise gradient at time step t is gt

i = 1/|Bi|
∑

j∈Bi
gi,j .

For GTr, the gradients are updated by aggregating the gradients of local clients, that is, gglobal =∑
i∈[m] αigi. For LTr, it updates the model parameters with one single gradient of client i, glocal = gi.

Let E1 denote the training epochs for GTr, while E2 denote the training epochs for LTr. Then we
have the alternative update formula as

wt+1 = wt − βt
1gglobal, t ∈ E1; (3)

wt+1 = wt − βt
2glocal, t ∈ E2. (4)

Algorithm 1 outlines the comprehensive procedures for GTr in Lines 4-11 and for LTr in Lines 13-17.
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Table 1: Overall averaged test accuracy with eleven methods and four data sets for HFL tasks.

Datasets FedAvg FedAdpt Cluster Local FedProx FedEM AFL Finetune-30 Finetune-60 FedABC-GL FedABC-LG

CIFAR10 80.85 81.64 77.04 80.69 72.84 85.81 76.80 84.13 84.46 90.12 89.45
CIFAR100 53.62 45.70 53.37 51.53 45.02 53.88 47.88 57.40 58.32 67.39 67.18
EMNIST 82.97 85.31 82.90 83.21 81.61 84.66 83.20 85.68 86.52 88.18 87.96
FEMNIST 80.05 51.12 67.68 67.01 56.75 76.53 81.02 60.25 70.45 81.16 76.12

Due to the duality of the two approaches, they share similar performance in most scenarios with
an interlacing training tendency. Furthermore, we analyze the roles of GTr and LTr in the train-
ing process of FedABC-GL and FedABC-LG. We observe consistent behaviors of GTr and LTr where
GTr improves the global learning accuracy and decreases the global loss, and LTr contributes to
increasing the global loss while pushing the model parameter to a better restart position. The mul-
tiscale concept in Algorithm 1 allows the selection of β1 and β2 at different scales, enabling the
GTr to capture global information and LTr to obtain local ones.

4. Evaluation
In this section, we perform comprehensive experiments to evaluate the model in order to address
the following essential research questions.

• RQ1. How effective are our methods (FedABC) compared to existing state-of-the-art hierar-
chical federated learning methods (SOTA)?

• RQ2. What are the roles of GTr and LTr, and how does the transition strategy contribute
to federated training?

• RQ3. What is the long-term behavior of the proposed methods compared to the existing
ones?

4.1. Experimental Setup
Initially, we describe the experimental parameters by outlining the configurations for five data sets
and eight comparative methods. In addition, we discuss the specifics of the model architectures and
hyperparameters for each experiment group.

4.1.1. Datasets

• CIFAR10: Contains 60,000 images in ten classes (6,000 training images and 1,000 test
images per class), each at 32x32 pixel resolution. Divided among ten clients.

• CIFAR100: Similar to CIFAR10 but with 100 classes, each having 600 training images and
100 test images. Also divided among ten clients.

• EMNIST: Comprises 1,120,000 training images and 560,000 handwritten digit test images
in 62 classes, at a resolution of 28x28 pixels. Divided among 100 clients.

• FEMNIST: Includes 260,000 training images and 87,000 test images of handwritten letters
from 10 classes, at a resolution of 28x28 pixels. Divided among 500 clients.

4.1.2. Baseline

Here we present the details of the eight methods compared. FedAvg [1] is the de facto method in
federated learning. Train multiple clients simultaneously and average the model parameters every
few steps, which can be viewed as a global trainer in our design. FedAdpt[13] is FedAvg with local
tuning. Cluster[16] group the client population into groups when FL reaches a stationary point.
FedProx[6] is FedAvg with a proximal term as the objective function. FedEM[20] is an EM-like
federated algorithm where the global trainer learns M shared complementary models and each client
learns its personalized linear weights. AFL[47] is an abbreviation for agnostic federated learning, in
which the objective of the global model is to approximate any target distribution that is made up
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of the distributions of local clients. Local is the isolated training paradigm in which each client is
trained solely on its local dataset, which can be seen as a local trainer in our design. Finetune-30
and Finetune-60 are the two-stage training paradigm with Global trainer (FedAvg) in the first 30
epochs and 60 epochs, respectively.

(a) CIFAR10 Accuracy (b) CIFAR100 Accuracy (c) EMNIST Accuracy (d) FEMNIST Accuracy

(e) CIFAR10 Loss (f) CIFAR100 Loss (g) EMNIST Loss (h) FEMNIST Loss

Figure 2: The overall convergence of FedABC-GL and FedABC-LG compared with selected existing FL
methods.

4.1.3. Model Architectures

The purpose of this study is to explore the roles of global and local training in FL and to devise an
update formula that is more effective than simply combining the two. Our primary concern is not
the creation of a new model structure. Therefore, we use the same model configurations as those
used in the previous study [20]. For CIFAR10 and CIFAR100, we utilize a pre-trained mobilenet-v2
with cross-entropy serving as the loss function. The sole distinction between the two data sets is
the class count, with CIFAR10 having 10 and CIFAR100 having 100. For EMNIST and FEMNIST,
we implement a two-layer CNN. For SHAKESPEARE, we employ a single-layer LSTM model to
predict the next word.

4.2. Overall Performance Improvement (RQ1)
In this section, we demonstrate the overall performance of FedABC and compare it with all baselines
using the metric ’Average Test Accuracy’ as shown in Table 1. Compared to existing federated learn-
ing algorithms, including GTr (FedAvg ), Local, fine-tuning methods (Finetune-30 and Finetune-60)
and personalized FL techniques (FedAdpt, FedEM, AFL, Cluster, and FedProx). More concretely,
we evaluated the final average test accuracy over five repetitions for all ten methods trained on
four different heterogeneously split datasets. To establish the superiority of our approaches over
the leading baselines, we perform a significance test where a p-value < 0.05 indicates a statistically
significant improvement by FedABC. From the experimental results presented in Table 1, we obtain
the following insight. Our methods (FedABC) significantly outperform nearly all baseline models, in-
cluding strong heterogeneous Federated Learning (FL) methods such as FedApt, AFL, and FedEM.
Notably, we improved the best test accuracy from 80.95% to 90.12% for CIFAR10 and from 53.62%
to 67.92% for CIFAR100. For EMNIST and FEMNIST, we observed an improvement in accuracy
of 6% compared to FedAvg, which we attribute to the interchanging training phase. Furthermore,
a better accuracy of the local paradigm leads to greater improvements with our proposed methods
(FedABCand FedABC-LG), thanks to the contributions of the local trainer.
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(a) Accuracy (10-30) (b) Loss (10-30) (c) Accuracy (10-10) (d) Loss (10-10)

Figure 3: Transition between LTr and GTr. The blue vertical line denotes one transition point, while
the silver vertical line denotes another transition point.

4.3. GL Strategy Struggles by Oscillation (RQ2)
4.3.1. Overfiting phenomenon

In this section, we investigate the effect of alternating between GTr and LTr on the transition in
the training landscape. From the experimental results in the selected datasets, we observe that
LTr (yellow line) tends to overfit at an early stage; for example, the yellow line begins to increase
at Epoch 10 with the CIFAR10 data set and at Epoch 40 with the FEMNIST data set. This
observation implies that LTr fits a local minimum in the training landscape, but cannot perform
better in the test landscape. On the other hand, GTr (blue line) tends to overfit later; for example,
the blue line begins to increase at epoch 80 with the CIFAR10 data set and does not increase with
the FEMNIST data set. The fine-tuning trainers (green and red lines) behave between LTr and
GTr, i.e., they decrease in the first training stage and start to increase when changing from GTr to
LTr. Our proposed methods FedABC-GL (brown) and FedABC-LG (purple) keep decreasing until the
alternating patterns appear. Our methods achieve the smallest test loss throughout the oscillation
stages among all methods.

4.3.2. Transition of LTr and GTr

Next, we present a detailed analysis of the transitions between the LTr and GTr. We present the
transition points with the test accuracy and the tendency for loss in Figure 3. One can observe the
roles of LTr and GTr from Figure 3. Specifically, for FedABC-GL (light blue curve), the blue vertical
line denotes the transition from GTr to LTr while the silver vertical line denotes the transition from
LTr to GTr. And the opposite for FedABC-LG (orange curve). When translates from GTr to LTr, the
accuracy increases while the loss decreases for FedABC-GL and FedABC-LG. However, for translation
from LTr to GTr, the accuracy decreases, while the loss increases. This phenomenon indicates
that GTr cannot spontaneously obtain the fine-grained information grasped by the output of LTr.
Furthermore, the orange curve with the G-10-L-30 stage tends to be flat at intervals of length 30,
which means the long term training with LTr although does not contribute to GTr metric but keep
the parameters in good position near it. For stage G-10-L-10, we observe that both FedABC-GL and
FedABC-LG struggle to find the best pattern and achieve the best accuracy as long as they arrive at
the alternating pattern.

4.3.3. Why the oscillation occurs and its benefits

The main motivation for FedABC is that neither GTr nor LTr training can be sufficient for all users.
Traditional personalized approaches try to find a balance between global and local trainers but do not
solve the problem. Training in a global fashion still leads to errors due to differences between users,
while training in a local fashion is hindered by the generalization error caused by the limited amount
of local data. The oscillation arises from the varying levels of information that GTr and LTr gather
during the training phase. GTr is attuned to the common attributes across all clients, whereas LTr is
focused on the distinct traits of an individual client. This variance in the descent direction induces
an oscillation in the iterative alternating process. An adversary can foster successful collaboration by
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(a) FedABC-GL (b) FedABC-LG (c) FedABC-GL (d) FedABC-LG

Figure 4: The influence of learning rates on CIFAR100 (left two images) and EMNIST (right two
images).

preventing a single trainer from getting trapped in a local minimum and simultaneously prompting
the two trainers to delve deeper into the data set. This is the reason why oscillation is believed to
enhance performance.

4.4. Long Term Behavior (RQ3)

(a) Test Loss

Figure 5: The long term test accuracy on FEMNIST training with FedABC-GL.

In this section, we examine the prolonged behavior of FedABC training. As stated earlier, LTr focuses
on moving towards the optimal point for each individual, while GTr aims to enhance the average
performance. By alternating between GTr and LTr, we notice an upward trend in the learning curve,
which results in better performance compared to GTr, LTr, and more personalized approaches. We
now investigate the long-term behavior for FedABC. To do this, we use an example on FEMNIST with
5000 training iterations and present the long-term convergence in Figure 5. LTr and GTr display an
increasing tendency and potential to jump, while FedABC-GL accelerates jumping in the early stage
of training and continues to oscillate between a high accuracy point and a low accuracy point after
jump. In particular, we also observe FedABC-GL to double ascent accuracy in long-term behavior.

5. Conclusion

This article introduces a new training paradigm, named FedABC, which combines GTr and LTr to
take advantage of both and reduce the drawbacks of each. We performed a special analysis of
adversary-based cooperation of GTr and LTr, which has been neglected in previous studies. Specifi-
cally, FedABC alternates between GTr and LTr at predetermined intervals. Several consecutive local
training steps reveal more detailed information and guide the global process to a new pattern that
cannot be generated spontaneously by GTr alone. We propose two dual approaches, FedABC-GL and
FedABC-LG, depending on whether GTr or LTr is used first. Comprehensive experiments show that
FedABC achieves higher accuracy, faster convergence compared to the existing SOTA. Further re-
search will explore a rigorous and quantitative analysis of the convergence behavior and training
dynamics of FedABC.

9



Acknowledgements
This work is supported by the National Natural Science Foundation of China (No. NSFC92370205,
12271512), the Zhejiang Province Key Research and Development Plan (No. 2024SSYS0010), and
the National Key Research and Development Program of China (No. 2023YFB2703700).

References
[1] Brendan McMahan, Eider Moore, Daniel Ramage, Seth Hampson, and Blaise Aguera y Ar-

cas. Communication-efficient learning of deep networks from decentralized data. In Artificial
intelligence and statistics, pages 1273–1282. PMLR, 2017.

[2] Chaochao Chen, Jun Zhou, Longfei Zheng, Huiwen Wu, Lingjuan Lyu, Jia Wu, Bingzhe Wu,
Ziqi Liu, Li Wang, and Xiaolin Zheng. Vertically federated graph neural network for privacy-
preserving node classification. In Lud De Raedt, editor, Proceedings of the Thirty-First Inter-
national Joint Conference on Artificial Intelligence, IJCAI-22, pages 1959–1965. International
Joint Conferences on Artificial Intelligence Organization, 7 2022. doi: 10.24963/ijcai.2022/272.
URL https://doi.org/10.24963/ijcai.2022/272. Main Track.

[3] Ning Zhang, Qian Ma, and Xu Chen. Enabling long-term cooperation in cross-silo federated
learning: A repeated game perspective. IEEE Transactions on Mobile Computing, 22(7):3910–
3924, 2023. doi: 10.1109/TMC.2022.3148263.

[4] Chaochao Chen, Huiwen Wu, Jiajie Su, Lingjuan Lyu, Xiaolin Zheng, and Li Wang. Differential
private knowledge transfer for privacy-preserving cross-domain recommendation. In Proceedings
of the ACM Web Conference 2022, WWW ’22, page 1455–1465, New York, NY, USA, 2022.
Association for Computing Machinery. ISBN 9781450390965. doi: 10.1145/3485447.3512192.
URL https://doi.org/10.1145/3485447.3512192.

[5] Wu Meihan, Li Li, Chang Tao, Eric Rigall, Wang Xiaodong, and Xu Cheng-Zhong. Fedcdr:
federated cross-domain recommendation for privacy-preserving rating prediction. In Proceedings
of the 31st ACM International Conference on Information & Knowledge Management, pages
2179–2188, 2022.

[6] Tian Li, Anit Kumar Sahu, Manzil Zaheer, Maziar Sanjabi, Ameet Talwalkar, and Virginia
Smith. Federated optimization in heterogeneous networks. Proceedings of Machine learning
and systems, 2:429–450, 2020.

[7] Kangkang Wang, Rajiv Mathews, Chloé Kiddon, Hubert Eichner, Françoise Beaufays,
and Daniel Ramage. Federated evaluation of on-device personalization. arXiv preprint
arXiv:1910.10252, 2019.

[8] Paweł Budzianowski and Ivan Vulić. Hello, it’s gpt-2–how can i help you? towards the use of pre-
trained language models for task-oriented dialogue systems. arXiv preprint arXiv:1907.05774,
2019.

[9] Da Yu, Saurabh Naik, Arturs Backurs, Sivakanth Gopi, Huseyin A Inan, Gautam Kamath,
Janardhan Kulkarni, Yin Tat Lee, Andre Manoel, Lukas Wutschitz, et al. Differentially private
fine-tuning of language models. arXiv preprint arXiv:2110.06500, 2021.

[10] Baolin Peng, Chunyuan Li, Pengcheng He, Michel Galley, and Jianfeng Gao. Instruction tuning
with gpt-4. arXiv preprint arXiv:2304.03277, 2023.

[11] Tuo Zhang, Tiantian Feng, Samiul Alam, Mi Zhang, Shrikanth S Narayanan, and Salman
Avestimehr. Gpt-fl: Generative pre-trained model-assisted federated learning. arXiv preprint
arXiv:2306.02210, 2023.

10



[12] Mohammad Samin Yasar and Tariq Iqbal. Coral: Continual representation learning for overcom-
ing catastrophic forgetting. In Proceedings of the 2023 International Conference on Autonomous
Agents and Multiagent Systems, pages 1969–1978, 2023.
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A. Hyper-parameters and Implementation Details
For a fair comparison, we follow the same hyperparameters as in the previous work [13, 16, 20].
For all datasets, we set the learning rate at η in {0.001, 0.005, 0.01, 0.03, 0.05, 0.1} and select the
best performance among the different learning rates to report overall performance. We also check
the influence of learning rates, especially for our methods. We set the batch size at 128 and the
iteration rounds at 200. For the FedEM [20] method, the number of mixture models is set to 3.
Hsu [48] uses Dirichlet sampling with a hyperparameter α to define the heterogeneous distribution
of the data and proposes a label-based Dirichlet partition method. An increase in α corresponds to
a more significant heterogeneity. In our experiments, all data sets were divided by α = 0.4. Our
experimental evaluations are conducted on a computational platform equipped with four NVIDIA
Tesla A100 GPUs. Each experiment is conducted five times, and the mean accuracy is displayed.

B. Long Term Behavior
In this section, we analyze the long-term behavior of the proposed methods in more data sets. We
present the test accuracy and loss for GTr (FedAvg), LTr (Local), and FedABC-GL in Figure 6 respec-
tively. First, we observe an increasing trend for all three methods in test accuracy. However, for test
loss, LTr tends to first decrease and then increase in both the CIFAR10 test loss and the EMNIST
test loss (Figure 6 (b) and (d)). This is the verfication that LTr solely shows a bad performance on
the generalization in general due to the small amount of training data it used. This is also the reason
that hinders LTr achieves comparable accuracy with the GTr For CIFAR10, LTr jumps around
2500 iteration steps, GTr gradually improves after 200 iterations, and FedABC-GL jumps around 110
iterations and fluctuates between 0.85 and 0.90 afterward. For EMNIST, all three methods show an
increasing trend in the early stage (before 200 epochs). After that, the test accuracy of LTr and
GTr remain around 0.835 and 0.823, respectively. In contrast, FedABC-GL quickly converges to
0.87 around 200 iteration steps and then varies between 0.83 and 0.87. After around 2500 iteration
steps, the green curve experiences a slight jump to around 0.875 (accuracy). We also observe the
double ascent phenomenon for test accuracy, while the double decent for test loss on CIFAR10 and
EMNIST.

(a) FedABC-GL (b) FedABC-LG

Figure 7: The fitting curve for train loss on CIFAR10.

C. Influence of Learning Rates
We investigate the influence of learning rates on FedABC-GL and FedABC-LG with three datasets.
Table 2 shows the highest test accuracy achieved with different learning rates. Generally, higher
learning rates lead to better convergence for most datasets. For instance, FedABC-GL obtained
67.39% accuracy on CIFAR100 with η = 0.05 and 88. 18%, 81. 07% in EMNIST and FEMNIST
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(a) CIFAR10 Accuracy

(b) CIFAR10 Loss

(c) EMNIST Accuracy

(d) EMNIST Loss

Figure 6: The long term test accuracy and loss on CIFAR10 and EMNIST.

with η = 0.1. FedABC-LG performed best on EMNIST with η = 0.1 and CIFAR10, FEMNIST with
η = 0.05. The test accuracy follows a roughly anti-U shape as the learning rate increases; it starts
by increasing and then decreases. More importantly, the range of accuracy influenced by learning
rates is large. By tuning the best learning rates, one can improve the accuracy of CIFAR100 up to
14.16 %. And for FEMNIST, we have a more significant improvement of up to 49. 08%.

(a) (b)

Figure 8: Violin Plots of Test Accuracy among 10 Clients on EMNIST. The upper graph shows
the comparisons of FedABC-GL with GTr trainer (FedAvg) and LTr (Local) trainer while the lower
graph shows the comparisons of FedABC-LG.
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Table 2: Influence on Learning Rates of Different Dataset
Datasets FedABC-GL

GL-0.0001 GL-0.001 GL-0.01 GL-0.03 GL-0.05 GL-0.1
CIFAR100 60.45 53.23 58.11 65.72 67.39 61.73
EMNIST 87.11 83.79 87.60 87.96 88.06 88.18
FEMNIST 31.99 11.46 44.06 70.14 76.04 81.07

FedABC-LG
LG-0.0001 LG-0.001 LG-0.01 LG-0.03 LG-0.05 LG-0.1

CIFAR100 57.11 54.27 62.98 66.48 67.18 59.18
EMNIST 87.15 83.77 87.55 87.91 87.92 87.96
FEMNIST 30.44 10.54 44.42 70.18 76.12 73.34

D. Convergence Speed Fitting
We investigated the convergence speed of FedABC-GL by fitting the train loss on the CIFAR10
dataset. We use the function f(x) = x/a + b to fit, where the values of a and b are 59.41 and
−99, 85, respectively. The red dots in Figure 7 represent the points we selected from the train loss
of FedABC-GL with learning rate η = 0.05. The blue curves correspond to the values taken from
the function f(x) = x/59.41 − 99.85. We omit the upward points and only consider the downward
points because of the oscillating nature. The reason why we use the train loss to fit the convergence
rate is that it accurately reflects the optimization procedure of the objective function, while the
test loss contains the generalization error term. The fitting results verify that our methods show a
convergence with a decay rate of O(1/n), while n is the number of iteration steps experimentally.
For FedABC-LG , we observe similar fitting results, while the fitting function is f(x) = x/4.26 + 0.46.

E. Fairness Improvement
In addition, we show the improvement in fairness of our techniques in comparison to FedAvg and
the Local using a violin plot (Figure 8). The two left columns illustrate the accuracy distribution
for both FedAvg and Local, whereas the final five columns depict the accuracy distribution for
FedABC-GL and FedABC-LG, across a range of learning rates, including {0.005, 0.01, 0.03, 0.05, 0.1}.
Upon examining Figure 8, it is evident that both the proposed methods including FedABC-GL and
FedABC-LG enhance the average accuracy among clients and decrease the standard deviation when
compared to FedAvg and Local. FedABC-GL demonstrates a steady enhancement in the distribution
of the mean accuracy between clients. FedABC-LG displays a nearly consistent improvement in the
same distribution; however, it exhibits a slight decrease in the mean accuracy when the learning rate
is elevated (for example, η = 0.1). This observation suggests that an increased learning rate could
lead to greater oscillations. Lastly, the Local method exhibits the narrowest difference between the
mean and median value of the accuracy distribution, indicating a less important impact of outliers
or extreme values on the comprehensive measure of the central tendency.

F. Large-scale Interlacing on Shakespeare
We can draw several conclusions from Figure 9. First, transitions have a varying impact on test and
training. When we switch from GTr to LTr, the training accuracy increases, but the test accuracy
decreases. In contrast, when we move from LTr to GTr, we see an improvement in the test accuracy
and a reduction in the training accuracy. Second, there is a direct relationship between loss and
accuracy. As the test loss decreases, the test accuracy increases. Third, there is a significant
discrepancy between training accuracy and test accuracy. Training accuracy can reach up to 0.95,
while test accuracy is only 0.45. This indicates an unavoidable generalization error. Lastly, learning
rates play a crucial role in the trainer’s rapid pattern recognition. A higher learning rate (η = 0.1,
represented by the blue line) allows the algorithm to identify the pattern more quickly. A lower
learning rate (η = 0.01, represented by the red line) results in slower pattern recognition, with the
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(a) (b) (c) (d)

(e) (f) (g) (h)

Figure 9: The first row presents a comparison between FedABC-GL, FedAvg, and Local. In the
second row, a comparison of FedABC-GLwith varying learning rates is depicted. The first column
illustrates the accuracy of the test. The second column represents the test loss. The train accuracy
is plotted in the third column, while the train loss is shown in the final column.

Table 3: A Comparison of C-Eval

Methods Stem Social Sciences Humanities Others Average Avg(hard)
Cent-LlaMa 24.5 25.6 25.5 24.4 24.9 23.4

FedABC-GL-LlaMa (ours) 25.8 25.7 25.5 26.3 25.8 24.5
FedABC-LG-LlaMa (ours) 24.5 27.3 25.7 25.1 25.4 21.9

FedProx-LlaMa 23.9 25.6 25.3 23.4 24.4 22.1
FedAvg-LlaMa 22.9 22.5 23.9 23.9 23.2 21.6

Base-LlaMa 21.6 23.4 23.9 23.3 22.8 20.3

search continuing through the initial 500 epochs before finally identifying the patterns. Once the
trainer identifies the patterns, the learning rate has minimal impact on the final results. This finding
aligns with the results from other vision datasets that we discuss in the main context.

G. An Extension to the Large-language Models
This section focuses on the role of FedABC in federated fine-tuning of large language models (LLMs),
specifically addressing the challenges posed by limited local data and privacy restrictions. Genera-
tive LLMs fine-tuned with instructions demonstrate strong generalization abilities, but performance
can suffer due to statistical heterogeneity among clients. To address this, we implement FedABC us-
ing LlaMa [49] and a parameter-efficient fine-tuning (PEFT) strategy with low-rank adaptation
(LoRA [30]). In each communication round, clients decompose the model’s attention layer into
low-rank matrices and send them to the server, which aggregates and returns the updated layers for
local model adjustments.

We perform an experimental evaluation among the base model (Base-LlaMa), the FedAvg fine-tuned
variant (FedAvg-LlaMa), the FedProx fine-tuned variant (FedProx-LlaMa), the FedABC-LG fine-
tuned variant (FedABC-LG-LlaMa), the FedABC-GL fine-tuned variant (FedABC-GL-LlaMa), and
the centralized fine-tuned variant (Cent-LlaMa). All evaluations comply with the Chinese multilevel
multidiscipline evaluation suite for foundation models (C-eval) [50], which structures all questions
with four options. The questions cover a wide spectrum of 52 different fields, extending from the
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humanities to the realms of science and engineering. We produce answers using either the base
models or the fine-tuned models and subsequently submit these answers to the online C-eval eval-
uation system to receive a score. The evaluation results presented in Table 3 demonstrate the
benefits of our methods (FedABC-GL and FedABC-LG) compared to the three fine-tuned approaches
and the foundation model. We utilize bold text to highlight the highest score for each subject and
underlined text to indicate the second highest score for each subject. The C-Eval results indicate
that all fine-tuned models outperform the base model, with FedAvg-LlaMa improving five subjects
and FedProx-LlaMa enhancing the ’Social Sciences’ score to 25.6. The centrally fine-tuned model
(Cent-LlaMa) consistently exceeds the performance of federated models, achieving scores of 24.5 in
’Stem’ and 23.4 in ’Avg(hard)’ due to its centralized training approach. Our methods, FedABC-GLand
FedABC-LG, advance Cent-LlaMa by an average of 2 points, with FedABC-GLleading in several cate-
gories while FedABC-LGnotably scores 27.3 in ’Social Sciences.’ Furthermore, FedABC-GLoutperforms
FedABC-LGin specific areas such as "plant protection" and "education science." To conclude, the mod-
els fine-tuned by our methods exhibit robust problem-solving capabilities for most subjects in the
LLM application.

H. Detailed C-Eval Results

Figure 10: C-evaluation of Large Language Model Fine-tuning

For a more detailed comparison, we selected 15 specific subjects for evaluation and present the
scores in Figure 10. Alpaca is another foundation model, refined from LlaMa [51]. A consis-
tent conclusion can be drawn from the results summarized in Figure 10. To be specific, all
test cases benefit from fine-tuning, as evidenced by the improved scores of the fine-tuned models
(FedABC-GL, FedABC-LG, and FedAvg) compared to the base models (LlaMa and Alpaca). Secondly,
FedAvg outperforms in assessments related to ’discrete mathematics’ and ’civil servant’, resulting
in the bell-shaped curve. Thirdly, FedABC-GL and FedABC-LG secure the highest scores in most
scenarios, including "modern Chinese history", "ideological and moral cultivation", and "high school
biology". Lastly, FedABC-GL outperforms its dual version FedABC-LG in certain contexts such as
"plant protection" and "education science", aligning with the experimental results we observed in
vision classification tasks (refer to Table 1). To conclude, the models fine-tuned by our methods
exhibit robust problem-solving capabilities for most subjects.
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