
R E S C I E N C E C
Replication / ML Reproducibility Challenge 2022

[Re] Reproducibility Study of “Label-Free Explainability
for Unsupervised Models”

Valentinos Pariza1, ID , Avik Pal1, ID , Madhura Pawar1, ID , and Quim Serra Faber1, ID
1University of Amsterdam, Amsterdam, The Netherlands – 1Equal contribution

Edited by
Koustuv Sinha,
Maurits Bleeker,

Samarth Bhargav

Received
04 February 2023

Published
20 July 2023

DOI
10.5281/zenodo.8173674

Reproducibility Summary

Scope of Reproducibility — In this work, we evaluate the reproducibility of the paper Label-
Free Explainability for Unsupervised Models by Crabbe and van der Schaar [1]. Our goal is
to reproduce the paper’s four main claims in a label‐free setting: (1) feature importance
scores determine salient features of a model’s input, (2) example importance scores
determine salient training examples to explain a test example, (3) interpretability of
saliency maps is hard for disentangled VAEs, (4) distinct pretext tasks don’t have inter‐
changeable representations.

Methodology — The authors of the paper provide an implementation in PyTorch for their
proposed techniques and experiments. We reuse and extend their code for our addi‐
tional experiments. Our reproducibility study comes at a total computational cost of
110 GPU hours, using an NVIDIA Titan RTX.

Results —We reproduced the original paper’s work through our experiments. We find
that the main claims of the paper largely hold. We assess the robustness and general‐
izability of some of the claims, through our additional experiments. In that case, we
find that one claim is not generalizable and another is not reproducible for the graph
dataset.

What was easy — The original paper is well‐structured. The code implementation is well‐
organized and with clear instructions on how to get started. This was helpful to under‐
stand the paper’s work and begin experimenting with their proposed methods.

What was difficult —We found it difficult to extrapolate some of the authors’ proposed
techniques to datasets other than those used by them. Also, we were not able to repro‐
duce the results for one of the experiments. We couldn’t find the exact reason for it by
running explorative experiments due to time and resource constraints.

Communicationwith original authors —Wereached out to the authors once about our queries
regarding one experimental setup and to understand the assumptions and contexts of
some sub‐claims in the paper. We received a prompt response which satisfied most of
our questions.

Copyright © 2023 V. Pariza et al., released under a Creative Commons Attribution 4.0 International license.
Correspondence should be addressed to Valentinos Pariza (valentinos.pariza@student.uva.nl)
The authors have declared that no competing interests exist.
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[Re] Reproducibility Study of “Label-Free Explainability for Unsupervised Models”

1 Introduction

Deep learning models are getting more and more advanced, making it difficult for hu‐
mans to understand and retrace how an algorithm arrives at a specific result. To solve
this problem, explanation methods were developed.
Post‐Hoc methods separate explanations frommodels allowing explanation methods to
be compatible with a variety of models [2]. They treat these models as “black boxes”
due to their increasing complexity. Most of the post‐hoc explanation techniques require
labels to explain black‐box outputs and thus they work only in a supervised setting.
The paper Label-Free Explainability for Unsupervised Models, by J. Crabbé and M. van der
Schaar [1] ’s goal is to explain black‐box outputs in a label‐free setting. The authors in‐
troduce two extensions for the Feature Importance and the Example Importance that
highlight influential features and training examples respectively for a black box to con‐
struct representations at inference time.

The contribution of our work is summarized as follows:
1. We reproduce the main experiments by Crabbé and Schaar [1] to reproduce their

main claims.
2. We conduct additional experiments to assess the robustness of label‐free tech‐

niques proposed by the authors. Since they originally experiment on image and
time‐series datasets, we extend their techniques to find salient features and train‐
ing samples for graphs and text datasets respectively.

3. We find that one of the authors’ claims is model‐specific when we introduce a
penalty term to the loss function of those models.

The code implementation of our study is publicly available1.

2 Scope of reproducibility

The original paper provides label‐free extensions of feature and example importance
methods. We identify the following main claims from the paper:
Claim 1 Label‐free feature importance scores allow us to determine salient features of

a model’s input that contribute to an output prediction.
Claim 2 Label‐free example importance scores allow us to determine salient training

examples that explain a test example.
Claim 3 Interpretability of saliency maps derived from disentangled VAE latent units is

hard and is unrelated to the strength of disentanglement between those units.
Claim 4 Distinct pretext tasks don’t have interchangeable representations, and for ex‐

ample importance, pretext tasks with labels have more different representa‐
tions than label‐free pretext tasks.

Claim 1 and Claim 2 are the hypotheses focusing directly on the proposed extensions.
Claim 3 focuses on the extent of application of Claim 1. Claim 4 addresses practical
utility of Claim 1 and Claim 2. Our additional experiments challenge the robustness of
Claim 1 and Claim 2 and the generalizability of Claim 3.

3 Methodology

We use the code provided by the authors, with some minor fixes (missing statements
to load libraries, and inconsistent function calls) [3]. The code is well‐structured and
documented. We extend the authors’ work by providing additional experiments and

1https://github.com/valentinosPariza/Re-Label-Free-XAI
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results. We discuss important concepts pertaining to the original paper in Sections 3.1
and 3.2 before we discuss technical aspects.

3.1 Going from Label to Label-Free Setting
For a supervised setting, feature space X and label space Y, make a black‐box model
f : X → Y. For label‐free setting, we train an autoencoder model with parameters
θ ∈ Θ using label‐free loss L : X ×Θ→ R on training set Dtrain = {xn|n ∈ N∗}, where
sample xn ∈ Rp. We then treat the encoder as black box f : X → H, that connects X
and latent spaceH ⊂ RdH , dH ∈ N∗ using encoder parameters θe.

Feature Importance — In a supervised setting, we calculate the weighted importance score
bi(f, x) for every input feature i ∈ dx by summing the importance scores across every
component of f (for classification, where we output j probabilities of j classes, we sum
across j components of f ). Similarly, for a label‐free setting, we calculate bi(f, x) by
summing importance scores of dH latent components.
To calculate the importance scores, the authors use well‐known attribution methods
(AMs) ‐ Saliency [4], Integrated Gradients (IG) [5] and Gradient Shap [6] which are imple‐
mented as part of the open source library, Captum [7].

Example Importance — A score cn is assigned to every training example xn based on it’s
importance in explaining a test example x ∈ X . The original paper introduces two
families of methods to compute them [1]:

1. Loss‐Based: This method simulates the shift in loss δnθL for a test example xwhen
a particular training example xn is removed. The δnθL is also defined as the score
cn for xn. In a supervised setting, we utilize the data label yn to evaluate the loss
for the entire model. But in a label‐free setting, we only rely on the representa‐
tions from the encoder and drop the decoder. Hence, we also decompose overall
parameter gradients as relevant (encoder) and irrelevant (decoder). We only con‐
sider shifts in the loss by relevant parameters. This is done by differentiating the
loss L with respect to θe.

2. Representation‐Based: This method assigns a score by analyzing latent represen‐
tations of training examples. In a supervised setting, we consider representations
as the output of an intermediate layer fe(x). The similarity between the represen‐
tation of test and training set examples can be quantified by reconstructing fe(x)

with fe(Dtrain) : fe(x) ≈
∑N

n=1 w
n(x) · fe(xn). The weight wn(x) is defined as the

score cn for xn. For a label‐free setting, we use encoder output, fe(x).

For loss‐based, the authors use the Influence Function [8] and TracIn [9] AMs. And for
representation‐based, the authors introduce two AMs ‐ DKNN and SimplEx [1].

3.2 Additional Experiments: Attribution Priors
Attribution prior encodes domain knowledge into a model [10]. The prior knowledge is
defined by a function Ω : Rp×n → R that gets an attribution matrix Φ. In this work,
we use pixel attribution prior which is a penalty function on pixel attributions, that pro‐
motes a high level of smoothness in the attributions by minimizing the total variation
of neighbouring pixel attributions. It was introduced by Erion et al. [10] and is defined
as:

Ωpixel(Φ(θ,X )) =
∑
l

∑
i,j

|ϕl
i+1,j − ϕl

i,j |+ |ϕl
i,j+1 − ϕl

i,j | (1)
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Here, ϕl
i,j is the attribution of i, j‐th pixel for l‐th training sample. Encoding prior knowl‐

edge of the model is done by adding Ω to the model’s loss function:

θ∗ = argmin
θ

L(θ;X , y) + λΩ(Φ(θ,X )) (2)

3.3 Model descriptions
Weuse the samemodels as used by the authors, except for the text and variational graph
autoencoder. Table 1 gives an overview of the models used. We train these models and
use the trained models during inference to find salient features and training samples.

Model Input Dataset # of Params Evaluated Claims

CNN Denoising Autoencoder∗ MNIST 87.1k 1, 2, 4
Tiny ImageNet 416.3k 1, 2

LSTM Reconstruction Autoencoder ECG5000 249.4k 1, 2SimCLR CIFAR‐10 12481.7k

β‐VAE∗ & TC‐VAE∗ MNIST 463.7k 3dSprites 502k

Text Autoencoder∗ AGNews 4048.1k 2
Variational Graph Autoencoder∗ Cora 46.8k 1

Table 1. Overview of models used. ∗ denotes models used for additional experiments. We use
MNIST’s autoencoder model for Tiny ImageNet with the input size set to 64 and dH = 16.

3.4 Datasets
The original paper’s experiments generate latent representations for the black‐boxmod‐
els. Table 1 denotes which dataset was used to train which model. Table 2 provides an
overview of these datasets. The authors use MNIST, ECG5000, CIFAR‐10, and dSprites
datasets in their experiments. Tiny ImageNet is a subset of the ImageNet dataset [11].
We use Tiny ImageNet to see whether Claim 1 and Claim 2 are satisfied on an image
dataset other than the ones used by authors. Cora dataset consists of academic publica‐
tions as nodes and citations between them as links. We use the Cora dataset to explain
graphs in a label‐free setting. For text explainability, we take a balanced subset of the
AGNews dataset while normalizing and tokenizing the text, keeping a maximum token
length of 64 [12].

Dataset Samples Classes DescriptionTraining Test

MNIST∗ 60K 10K 10 28x28 grayscale images of the digits [13]
ECG5000 4K 1K 2 Time Series ‐ 20 hour long ECG [14]
CIFAR‐10∗ 50K 10K 10 32x32 colour images [15]
dSprites∗� 73K n/a 6 64x64 grayscale images of 2D shapes [16]
Tiny ImageNet∗ 100K 10K 200 64×64 colour images [17]
AGNews∗ 10K 1.7K 4 Collection of news articles [18]

Nodes Edges
Cora∗ 2708 5429 7 Graph Based Citation Network. [19]

Table 2. Overview of datasets used. �‐ 2D shapes in the dataset were generated from six indepen‐
dent latent factors. ∗ ‐ datasets used for additional experiments.
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3.5 Hyperparameters
We use the same hyperparameters for all the experiments as the original paper [1]. The
hyperparameters for graph and text explainability are mentioned in the Appendix Sec‐
tions B.1.1 and C.1.2 respectively.

3.6 Experimental setup and code
We closely follow the setup of the original paper to reproduce their results [1]. We re‐
produce our claims quantitatively using the metrics described in Table 3. We mask im‐
portant pixels to find salient features in images. Likewise, we mask edges and isolate
important nodes to find salient nodes in graphs. The setup for graph and text explain‐
ability is detailed in Appendix Sections B.1 and C.1 respectively.
The authors’ Claim 3 addresses interpretability for disentangled VAE (d‐VAE) models.
The claim is based on experiments with two d‐VAE models, β‐VAE and TC‐VAE. We ex‐
tend this original setup to examine whether “interpretability is indeed hard” for these
two d‐VAEmodels. Ideally, we want to make each latent unit of our d‐VAEs pay attention
to distinct parts of the input. We attempt to do that by controlling their SM. Thus, we
provide a secondary objective for the SM that helps tune the model’s attention. This sec‐
ondary objective is achieved through the use of attribution priors (Section 3.2). We use
the penalty function of pixel attribution prior (Equation 1) for d‐VAE (β and TC) models.
We keep dH = 3 for MNIST.We train both these d‐VAEmodels with lossL as in Equation
2, β ∈ {1, 5, 10} and regularization parameter, λ ∈ {0.001, 0.005, 0.01, 0.1}. We select the
pixel attribution prior because it works very well [10]. It is simple and easy to compute.

Experiment Metric(s) Description

Feature Latent Shift: ||f(x)− f(m⊙ x+ (1−m)⊙ x̄||H
Importance shift is calculated for each feature xi while

maskingM important features with maskm.

Example Similarity The mean correct prediction
∑M

n=1 δy,yn/M
Importance Rate of labels ofM most important training

examples yn against label of test example y.

Comparison b/w Pearson Measures correlation between importance scores
saliency maps Correlation by taking covariance between them and dividing

by the product of their standard deviations.

Table 3. Overview of metrics used.

3.7 Computational requirements
We carried out our experiments on a cluster of nodes, each had an NVIDIA Titan RTX
GPU. Our reproducibility study required a total of 110 GPU hours, 90 for the original and
20 for the additional experiments (see Appendix A for more information).

4 Results

4.1 Results reproducing original paper

Claim 1: Label-Free Feature Importance — Claim 1 breaks into 4 sub‐claims as follows:
1. Latent shift increases sharply for perturbing a few most important features.
2. This increase decreases when we disturb less relevant pixels.
3. Latent shift by feature‐attribution methods is higher than that generated by perturb‐

ing random pixels.

ReScience C 9.2 (#11) – Pariza et al. 2023 5

https://rescience.github.io/


[Re] Reproducibility Study of “Label-Free Explainability for Unsupervised Models”

4. Integrated Gradients (IG) outperforms other methods.
Figure 1 shows the trends of latent shifts by 3 AMs ‐ IG, Saliency, and Gradient Shap for 3
black‐boxmodels. Theabove 4 sub‐claimsare reproducible verifying the reproducibility
of Claim 1 for MNIST and ECG5000. For CIFAR‐10, sub‐claim 3 is not reproducible. We
see this discrepancy in Figures 1c and 1d. We discuss why is that so in Section 5.

Claim 2: Label-Free Example Importance —We get the similarity rates for the three datasets
by varying the number of selected important training examples, as shown in Figure 2.
The downward trend of similarity rates indicates that similar training examples are as‐
signed higher importance scores. We also observe that representation‐based example
importance methods give much higher similarity measures for important training ex‐
amples than loss‐based methods. These results validate the consistency of the example
importance methods and we reproduce Claim 2.

(a)MNIST (b) ECG5000 (c) CIFAR‐10 (ours) (d) CIFAR‐10 (theirs)

Figure 1. Consistency check for label‐free feature importance.

(a)MNIST (b) ECG5000 (c) CIFAR‐10

Figure 2. Consistency check for label‐free example importance.

Claim 3: Latent Space Interpretability of Disentangled VAEs using saliency maps (SM) —We break
Claim 3 into two sub‐claims:
1. Interpretation and association of the d‐VAEmodel’s latent units with clear generative

factors is hard using their saliency maps (SM).
2. Interpretations with SM cannot be improved with the increase in disentanglement

between the latent units.
We examine the SM of eachmodel’s encoder’s latent units to verify these two sub‐claims.
Qualitative Result: We observe that a latent unit is sensitive to a given image while in‐
sensitive to a similar image (Figure 4a, Image 1 versus Image 2 for latent unit 1). The
latent unit’s focus changes completely between two similar images (Figure 4b, Image 1
versus Image 2 for latent unit 5). Several latent units focus on the same part of the image
(Image 3 of Figures 4a and 4b). These observations agree with the authors’ observations
and support sub‐claim 1. Figures 9 to 11 present the full list of SM used for comparisons.
Quantitative Result: Figure 3a shows that when we increase the disentanglement factor
β, it does not lead to a strong increase in decorrelation between the SM of different
latent units. Consequently, this suggests that SM are not appropriate for distinguishing
generative factors of latent units of d‐VAEs, thus proving sub‐claims 1 and 2.
Hence, our results agree with those of the authors; thus Claim 3 is reproducible.
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Claim 4: Comparing the learned Pretext Tasks Representations —We break Claim 4 into 3 sub‐
claims and also discuss the respective results of each of the sub‐claims as follows:
1. Distinct pretext tasks do not yield interchangeable explainability representations.

We see in Table 4a that the Pearson Correlation Coefficients (PCCs) for feature im‐
portance range between 0.32 and 0.44 (moderate positive correlation). PCCs range
between 0.06 and 0.13 (weak positive correlation) for example importance (Table 4b).
These are in accordance with the original paper and confirm the reproducibility of
the first sub‐claim.

2. For feature importance, the correlation between label‐free pretext tasks’ SM and clas‐
sification tasks’ SM is similar to the correlationbetween SMof label‐free pretext tasks.
We see in Table 4a that the PCCs between SM of classification and the other label‐free
pretext tasks are in the same range as the correlations between SM of only the label‐
free pretext tasks. Thus, we confirm the reproducibility of the second sub‐claim.

3. For example importance, the correlation between representations of label‐free pre‐
text tasks and the classification task is lower to the correlation between representa‐
tions of only label‐free pretext tasks. As seen in Table 4b the autoencoder‐classifier
correlations are the lowest, whilst the autoencoder‐autoencoder PCCs are higher, as
in the original paper. Hence, the third sub‐claim is also reproduced.

The analysis of qualitative results is present in Appendix Section E.1.

R D I
D 0.41± 0.02

I 0.33± 0.03 0.32± 0.01

C 0.44± 0.02 0.41± 0.02 0.33± 0.02

(a) Saliency maps (avg± std).

R D I
D 0.09± 0.02

I 0.13± 0.03 0.1± 0.03

C 0.09± 0.03 0.06± 0.03 0.09± 0.02

(b) Example Importance (avg± std).

Table 4. Pearson Correlation. R‐Reconstruction, D‐Denoising, I‐Inpainting, C‐Classification

(a)MNIST (b) dSprites (c)MNIST (λ = 0.005 )

Figure 3. PCC over pairs of saliency maps (Gradient Shap) from each combination of a model’s
latent unit for different values of β. Figure 3c uses attribution priors as explained in Section 3.6.

(a)MNIST (β‐VAE with β=10) (b) dSprites (TC‐VAE with β=1)

Figure 4. Saliency maps for each latent unit of the disentangled VAEs. The VAES selected were the
ones with the lowest PCC. ith saliency dimension highlights latent unit i.
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4.2 Results beyond original paper

Label Free Feature Importance —Weverify whether the 4 sub‐claims from Section 4.1.1 hold
for Tiny ImageNet and Cora datasets. Tiny Imagenet satisfies Claim 1 as seen in Figure
5a. For Cora, sub‐claims 3 and 4 are not reproducible as seen in Figure 5b. Graphs have
complicated spatial features (nodes, edges, sub‐graphs) which aren’t well explained by
AMs. This is because AMs rely heavily on computing gradients which causes gradient
saturation on discrete values of the adjacency matrix of graph [20]. From these results,
we conclude that the approach of generating latent shifts to compute feature importance
works well for images and time‐series data. AMs fail to explain graphs well.

Label Free Example Importance — The results obtained for the Tiny Imagenet dataset shown
in Figure 5c are consistent and similar to the results obtained in the case of MNIST in
Figure 2a and satisfy Claim 2. We observe a declining trend for similarity rate in the
case of AGNews’ text dataset for Figure 5d implying correct assignment of importance
scores for most similar training examples. The trends verify that representation‐based
methods work better than loss‐based methods but in the case of a higher percentage of
training examples selected, the SimplExmethod (representation‐based) declines rapidly
in performance compared to loss‐based methods.

(a) Tiny ImageNet (b) Cora (c) Tiny ImageNet (d) AGNews

Figure 5. Figures 5a and 5b are for Feature Importance and Figures 5c and 5d are for Example
Importance on additional datasets.

Challenging the Generalizability of Claim 3 with Attribution Priors — As discussed in Section 3.6,
we aim to improve the interpretability of d‐VAE models (β and TC) using pixel attribu‐
tion prior. In Figure 3c, we see the PCCs between SM of different latent units for the two
d‐VAEmodels with attribution priors. In this case, with the increase in β, there is a clear
decrease in the correlation between the latent units’ SM. This denotes that latent units
pay attention to different parts of the input image as we increase β. We see the same
observations for different values of λ in Figure 12. In conclusion, d‐VAEs with attribu‐
tion prior identify better the role of each latent unit with their SM (the interpretability
is not hard anymore). Furthermore, the interpretability of SM is related to the strength
of the disentanglement between the units. Thus, given our experiments, Claim 3 is not
reproducible for these two d‐VAE models when we use attribution priors. We present a
qualitative analysis with attribution priors in Appendix Section D.4.

5 Discussion

Wereproduce the same results for the experiments as the original paper except for the re‐
sult of CIFAR‐10’s experiment (Section 4.1.1). We communicated with the authors about
this discrepancy. They hinted that it may be due to the difference in model weights for
SimCLR. However, due to time and resource constraints, we could not investigate fur‐
ther by running more explorative experiments. We conclude that Claim 1 is partially
reproducible while others are completely reproducible.
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We now discuss the reproducibility of claims for our additional experiments. Claim
1 is not reproducible for graphs, discussed in Section 4.2.1. Claim 2 is reproducible for
Tiny ImageNet and text‐based AGNews dataset, discussed in Section 4.2.2. We find that
when we use attribution priors, Claim 3 is not generalizable to all d‐VAE models since it
is not reproducible for the two d‐VAE models (β and TC), as discussed in Section 4.2.3.

Through our additional experiments, we realize that there is scope for future work in
the following areas. The first one is the extension of feature‐importance methods to
explain spatial attributes of graphs (edges, subgraphs). The second one is improving
the interpretability of saliency maps for d‐VAE models other than β‐VAE and TC‐VAE,
by the use of attribution prior. Lastly, we note that running the Influence function (Sec‐
tion 3.1.2) to obtain an estimation of a shift in loss is time‐consuming when we have
large amounts of training samples (18 hours forN = 1000 time‐series training samples).
We also observe that the DKNNmethod gives a better (if not the best) measure of impor‐
tance scores while being computationally fast and we suggest using the same method
for further downstream tasks in future works. Overall, the experiments in the original
paper are reproduced, and their main claims seem reasonably substantiated but could
benefit from additional evidence in future research.

5.1 What was easy
The authors have significantly helped us to understand the problem, the suggested so‐
lution for the problem, and their claims, by providing a well‐structured paper that in‐
cludes detailed appendices consisting of mathematical proofs, implementation details,
and experiments. It was easy to begin experimenting with their proposed methods,
since the implementations provided are well‐organized and fairly documented, with
clear instructions on how to get started.

5.2 What was difficult
We found it difficult to extrapolate feature AMs to additional datasets. For example,
the majority of the methodologies for explaining graphs are (i) for supervised setting
[20] and (ii) the unsupervised setting of them is currently in development [21]. While
computing feature importance scores for Text Explainability, we encountered an issue
where the use of the embedding layer in our Text Autoencoder (see Appendix C.1) was
incompatible with available AMs within Captum [7]. Also, we couldn’t identify the right
configurations for the CIFAR‐10 experiment to reproduce similar trends as the original
paper for feature importance.

5.3 Communication with original authors
We reached out to the authors once about our queries regarding the discrepancy in re‐
sults for feature importance for the CIFAR‐10 experiment and to understand the assump‐
tions and contexts of some sub‐claims in the paper. We received a prompt response
which satisfied most of our questions.
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A Computational Costs of Experiments

Experiment Type Experiment Name Target Claim Section GPU Hours

Reproducibility
Study

rs‐exp 1 Claim 1 4.1.1 9
rs‐exp2 1 Claim 2 4.1.2 3
rs‐exp2 2 Claim 2 4.1.2 22
rs‐exp2 3 Claim 2 4.1.2 2

rs‐exp3 1 (GS) Claim 3 4.1.3 5
rs‐exp3 1 (IG) Claim 3 4.1.3 8
rs‐exp3 2 (GS) Claim 3 4.1.3 10
rs‐exp3 2 (IG) Claim 3 4.1.3 28

rs‐exp 4 Claim 4 4.1.4 3

Additional
Experiments

a‐exp 1 Claim 1 4.2.1 4
a‐exp 2 Claim 2 4.2.2 8
a‐exp 3 Claim 3 4.2.3 8

Table 5. Computational Cost for each experiment, measured in GPU hours.

The conducted Reproducibility Study Experiments (rs‐exp) of this work are:
rs‐exp 1 Consistency Check of label‐Free Feature Importance.
rs‐exp 2 Consistency Check of label‐free Example Importance.

rs‐exp2 1 MNIST.
rs‐exp2 2 ECG5000.
rs‐exp2 3 CIFAR10.

rs‐exp 3 Challenging authors’ assumptionswith disentangledVAEsusing IntegratedGra‐
dients (IG) & Gradient Shap (GS).
rs‐exp3 1 MNIST.
rs‐exp3 2 dSprites.

rs‐exp 4 Comparing the Explainability Representations from Different Pretext Tasks.

The conducted Additional Experiments (a‐exp) of this work are:
a‐exp 1 Label Free Feature Importance
a‐exp 2 Label Free Example Importance
a‐exp 3 Challenging the Generalizability of Claim 3 with Attribution Priors on MNIST

B Label Free Feature Importance

B.1 Graph Explainability

Model — Since we want to explain the graph in a label‐free unsupervised setting, we
choose to use a Variational Graph Autoencoder (VGAE) [22]. Table 6 describes the ar‐
chitecture of the model. We perform an edge‐link prediction task on the Cora citation
dataset. We train the VGAE to minimize the objective:

L = Eq(Z|X,A)[log p(A|Z)]−KL[q(Z|X,A)||p(Z)]

where A is the adjacency matrix, q(Z|X,A) is the distribution parameterized by the in‐
ference model of 2‐layer GCN. p(Z) is the Gaussian prior associated with N (0, I) and
KL is the KL‐divergence. We train for 200 epochs with patience 10 by using Pytorch’s
Adam optimizer with a learning rate = .01.

Feature Importance — As a baseline, we use an unconnected graph, A = 0. In the case of
images for theMNIST experiment, wemask important pixels by blackening them. In the
case of a graph, we mask important nodes, by isolating them. Algorithm 1 summarises
steps to compute the feature importance of nodes.
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Component Layer Type Hyperparameters Act. Func

Encoder GraphConv I/P Feats:1433 ; O/P Feats:32 ReLU
I/P Feats:32 ; O/P Feats:16 ReLU

Reparameterisation
Trick

The output of encoder contains µ and logσ.
The latent representation is then generated via

h = µ(x) + σ(x)⊙ ϵ, ϵ ∼ N (0, 1)

Decoder Inner Product Decoder Sigmoid

Table 6. Variational Graph Autoencoder Architecture. The last column denotes the activation func‐
tion used. I/P Feats means Input Features. O/P Feats means output features.

Algorithm 1: Label Free Feature Importance for Graph
Data: Undirected Graph G = (V, E) and its adjacency matrix A with N = |V| nodes.

Black‐box f : X → H, Feature importance method ai(·, ·) : A(HG)× G → RN .
Result: Label‐Free Feature Importance for nodes bi(f,G).

1 Convert black‐box model f to a model that is usable for captum attribution method
[23] ;

2 Compute & normalize node attributions of size |V| ;
3 Apply the Mask ;
4 Calculate latent shift ;
5 Repeat steps 1‐3 for different rates of perturbation to induce while masking ;

Result Discussion — The work [20] corroborates our finding that the feature attribution
methods are not the right indicator for explaining graphs. The issue of gradient satu‐
ration worsens for discrete inputs such as graph adjacency matrices. Future work in
this direction can address two issues: (1) Currently, the focus is on explaining graphs
for tasks such as node classification. We need a more robust, generalized solution that
explains a particular latent representation of the graph, and which graph’s attributes
(nodes, edges, or subgraphs) are influential. (2) Development of a framework for the pre‐
vious issue. Appendix section A of [20] also addresses the issues we faced while comput‐
ing important nodes for a particular latent representation. They discuss a ’workaround’
to use single‐instance explanations to explain a multi‐instance explanation (latent rep‐
resentation in our case). We implemented that in our code base.

B.2 Changes in masking and baseline inputs
We redefine the masking and baseline inputs for the experiments on MNIST using the
following approaches:

Change in masking — In the original experiment, the variablem is set to 0 or 1 depending
on whether the feature xi to mask is important (xi is important when its score is in
the top M values as calculated by attribution methods). In the new case, considering a
feature pixel xi and a feature map x, we do the masking as follows:
m← 0
if xi is an important pixel then
mi ← (1− xi)/max(x)

else
mi ← 1

end if
Instead of completely zeroing out an important pixel, we set themask to a value inversely
proportional to its importance.
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Change in baseline —When we assign blame to a certain cause, we consider the absence
of the cause as a baseline for comparing outcomes. In the original experiment, a black
image is used as the baseline x̄. Instead of setting all pixels of x̄ to 0, we set the pixel x̄i

as follows (consider x to be the input image with xi being its feature pixel):

• We do masking as Appendix Section B.2.1 and set the baseline image pixels to:

x̄i = (1− xi)/max(x) (3)

• To the above extension, we also add noise to the baseline image:

x̄i = N (0, 1) ∗ (1− xi)/max(x) (4)

(a) Change in mask variable (b) Change in baseline (Equation 3) (c) Change in baseline (Equation 4)

Figure 6. Consistency check for label‐free feature importance (Changes in baseline and masking)

Result Discussion —None of the trends (Section 4.1.1) in Figure 6 are satisfied. The shift
remains constant for Figures 6a and 6b after 10% of perturbations, which suggests that
our changes lead to gradient saturation. This leads us to understand why the mask and
baselines are assigned values that are independent of the input.

C Label Free Example Importance

C.1 Text Explainability

Tokenizer —We train a BertWordPieceTokenizer model from Huggingface’s Tokenizers
[24] library using our training texts. We keep the vocabulary size at 10000 while also
keeping a minimum token frequency of 2. We then use this trained tokenizer model to
tokenize our train and test dataset.

Model —Weadapt the architecture for text autoencoder from [25]. Figure 7 shows an illus‐
tration of the final architecture. The layers and their corresponding hyperparameters
we use are summarized in Table 7. For our experiments, we keep the latent dimensions
(also referred to as context vector) at 128. We use the negative log‐likelihood loss (NLL‐
Loss) to train on a number of classes equal to vocabulary size. We also make use of the
”Teacher Forcing” concept of using the actual target as inputs to the decoder instead of
the last prediction of the decoder, 50% of the time. We train themodel for 8 epochs with
a learning rate of 0.01 and a Stochastic Gradient Descent optimizer.
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Figure 7. Text autoencoder architecture used for text explainability.

Component Layer Type Hyperparameters Act. Func

Encoder Embedding I/P Feats:10000 ; O/P Feats:128
GRU I/P Feats:128 ; O/P Feats:128

Decoder
Embedding I/P Feats:10000 ; O/P Feats:128 ReLU

GRU I/P Feats:128 ; O/P Feats:128
Linear I/P Feats:128 ; O/P Feats:10000 LogSoftmax

Table 7. Layers and hyperparameters for text autoencoder model. The last column denotes the
activation function used. I/P Feats means Input Features. O/P Feats means output features.

D Interpreting the latent units of VAEs with saliency maps

D.1 Additional Quantitative Results for Result on Claim 3 - Section 4.1.3

(a)MNIST (b) dSprites

Figure 8. Pearson Correlations over pairs of SM of distinct latent units computed with Integrated
Gradients for different values of β.
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D.2 Additional Qualitative Results for Result on Claim 3 - Section 4.1.3

Figure 9. Saliency maps computed with Gradient Shap from the TC‐VAE with β=1 on dSprites.
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Figure 10. Saliency maps computed with Gradient Shap for β‐VAE with β=10 on MNIST (Part 1).
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Figure 11. Saliency maps computed with Gradient Shap for β‐VAE with β=10 on MNIST (Part 2).
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D.3 Additional Quantitative Results for Result Section 4.2.3

(a)MNIST (λ = 0.1) (b)MNIST (λ = 0.01) (c)MNIST (λ = 0.001)

Figure 12. Pearson Correlations over pairs of SM of distinct latent units with Gradient Shap for
different values of β. The models use attribution priors with a regularization parameter, λ.

D.4 Additional Qualitative Results for Result Section 4.2.3
In Figures 13 & 14, we see the saliency maps (SM) of the latent units of TC‐VAE with
β=10 and λ=0.001 on the MNIST Dataset. We see figures for λ=0.005, in Figures 15 & 16.
Comparing Figures 10 & 11, we see that each latent unit of the TC‐VAE with attribution
prior tends to focus on distinct parts of the input image, with less intersection than the
latent units of the β‐VAE with no attribution prior. We observe the following cases:
1. For the TC‐VAE (β=10 & λ=0.005) in Figure 15, for the digit 6, latent unit 2 focuses

more on the bottom‐right part, whereas the latent unit 3 focuses on the top and left
part. On the other hand, for the β‐VAE (β=10 & no prior) in Figure 10, the latent units
1 and 3 focus on somewhat different parts of the digit 6, but there is a significant
intersection in the regions they focus on.

2. For the TC‐VAE (β=10 & λ=0.005) in Figure 15, for the digit 8, latent unit 1 focuses
more on the center and upper part of the digit, whereas the latent unit 3 focuses on
the bottom part. On the other hand, for the β‐VAE (β=10 & no prior) in Figure 10, the
latent units 1 and 2 focus on almost the same regions.

The observations above seem to be even stronger for the TC‐VAE with β=10 and smaller
λ than before, equal to 0.001. Similar observations for SM of the latter model compared
to the SM of the β‐VAE with β=10 and no prior can be made:
1. For the TC‐VAE (β=10 & λ=0.001) in Figure 13, for the digit 4, latent unit 1 focuses

more on towards the corners and edge‐points of the digit whereas the latent unit 3
focuses on the vertical main line of the digit 4.

2. For the β‐VAE (β=10 & no prior) in Figure 10, the latent units 1 and 2 focus on some‐
what different parts, but there is a significant intersection in the regions they focus
on (e.g., the top‐right edge‐point).

In conclusion, the prior attribution seems to have the ability to train a model such that
its latent units focus on distinct parts with no significant overlapping of the regions they
focus on.
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Figure 13. Saliency maps with Gradient Shap for TC‐VAE with β=10, λ=0.001 on MNIST (Part 1).

ReScience C 9.2 (#11) – Pariza et al. 2023 19

https://rescience.github.io/


[Re] Reproducibility Study of “Label-Free Explainability for Unsupervised Models”

Figure 14. Saliency maps with Gradient Shap for TC‐VAE with β=10, λ=0.001 on MNIST (Part 2).
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Figure 15. Saliency maps with Gradient Shap for TC‐VAE with β=10, λ=0.005 on MNIST (Part 1).
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Figure 16. Saliency maps with Gradient Shap for TC‐VAE with β=10, λ=0.005 on MNIST (Part 2).
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D.5 Use Case: Evaluating Label-Free Feature Importance on the Attribution Prior VAEs
Below you see two tables with the mean (Table 8) and standard deviation (Table 9) of
representation shifts of five runs, for different configurations of models (defined by
rows) and different percentages of pixel perturbations applied after training those mod‐
els (columns 5,10,..., 100) on the MNIST Dataset. The last column shows the test error
of the trained model derived from the test set of the MNIST Dataset.

Model β λ 5 10 20 50 80 100 Test Loss

TC‐VAE

1

0 0.58 2.84 15.96 28.35 28.35 28.35 176.4
0.005 0.65 3.19 15.21 25.4 25.4 25.4 178.8
0.01 0.7 3.47 18.05 31.66 31.66 31.66 176.7
0.1 0.64 2.94 12.81 19.24 19.24 19.24 176.9

5

0 0.83 2.8 9.08 14.11 14.11 14.11 169.8
0.005 0.77 2.83 11.29 17.89 17.89 17.89 172.7
0.01 0.84 3.19 13.76 22.8 22.8 22.8 169
0.1 0.86 2.49 8.7 13.49 13.49 13.49 168.8

10

0 1.17 3.16 9.73 15.04 15.04 15.04 156.41
0.005 0.96 2.79 7.91 11.27 11.27 11.27 154.42
0.01 0.95 2.7 10.22 17.21 17.21 17.21 155.93
0.1 0.79 2.15 6.9 11.07 11.07 11.07 155.42

β‐VAE

1

0 0.86 5.12 24.97 40.81 40.81 40.81 176.4
0.005 0.67 3.11 14.49 23.22 23.22 23.22 178.8
0.01 0.6 2.72 14.19 25.28 25.28 25.28 176.7
0.1 0.5 2.37 11.14 17.37 17.37 17.37 176.9

5

0 0.85 2.32 6.42 8.92 8.92 8.92 169.8
0.005 0.8 2.76 12.27 20.62 20.62 20.62 172.7
0.01 1.07 3.53 11.5 16.82 16.82 16.82 169
0.1 0.75 2.37 8.15 13.01 13.01 13.01 168.8

10

0 0.51 1.34 4.55 7.35 7.35 7.35 156.41
0.005 0.72 1.97 4.93 6.4 6.4 6.4 154.42
0.01 0.7 1.8 4.4 6.07 6.07 6.07 155.93
0.1 0.63 1.56 3.72 4.92 4.92 4.92 155.42

Table 8. Mean representation shifts over 5 runs for percentages of pixel perturbations for the mod‐
els β‐VAE, and TC‐VAE on theMNIST dataset with different disentanglement factor β and different
regularization parameter, λ. The λ is for weighting the importance of the attribution prior to the
model’s loss function (See Equation 1). λ = 0 denotes that no attribution prior is used. The Test
Loss is the loss of the model reconstructing the MNIST test dataset. The numbers 5,10,..., 100
represent the percentage of the important pixels of each input image perturbed.
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Model β λ 5 10 20 50 80 100

TC‐VAE

1

0 0.35 1.45 3.75 1.03 1.03 1.03
0.005 0.22 0.81 1.83 1.32 1.32 1.32
0.01 0.18 0.7 2.19 1.95 1.95 1.95
0.1 0.16 0.62 1.49 1.52 1.52 1.52

5

0 0.16 0.35 0.78 0.81 0.81 0.81
0.005 0.15 0.55 1.78 1.12 1.12 1.12
0.01 0.25 0.69 1.43 0.97 0.97 0.97
0.1 0.13 0.37 1.12 0.78 0.78 0.78

10

0 0.1 0.27 0.7 0.41 0.41 0.41
0.005 0.08 0.2 0.51 0.46 0.46 0.46
0.01 0.1 0.23 0.52 0.37 0.37 0.37
0.1 0.08 0.21 0.39 0.37 0.37 0.37

β‐VAE

1

0 0.18 0.8 2.5 1.5 1.5 1.5
0.005 0.22 0.85 2.18 1.3 1.3 1.3
0.01 0.22 0.98 2.73 2.01 2.01 2.01
0.1 0.22 0.82 1.62 1.3 1.3 1.3

5

0 0.21 0.55 1.21 0.8 0.8 0.8
0.005 0.22 0.7 1.84 0.88 0.88 0.88
0.01 0.19 0.72 2.23 1.19 1.19 1.19
0.1 0.13 0.39 1.05 1.57 1.57 1.57

10

0 0.29 0.67 1.72 0.95 0.95 0.95
0.005 0.19 0.46 1 0.64 0.64 0.64
0.01 0.18 0.56 2.07 1.36 1.36 1.36
0.1 0.16 0.39 1.24 1.12 1.12 1.12

Table 9. Standard Deviation of the representation shifts over 5 runs for Table 8.

E Representations Learnt on Pretext Tasks

E.1 Qualitative analysis overview
We perform an extensive qualitative analysis by comparing the output saliency maps
and top examples. Below in this section, we include figures of some notable cases of top
examples and their saliency maps. Multiple groups of images are collected for different
runs on the dataset.
In the case of the saliency maps, it is indeed true that for the same image, there are
notable differences across different pretext tasks, since the highlighted regions are not
the same. On the other hand, in the case of example importance the conclusion that “the
top examples are rarely similar across various pretext tasks” does not coincide with the
observations of the reproduced outputs. As seen in Figure 17, most of the top examples
correspond to the right number, although in some images they do not coincide. Finally,
we observe the synergy between the top examples and the feature importance.

Qualitative claim Status
Saliency maps differences Confirmed
Top example differences Unconfirmed
Synergy Confirmed

Table 10. Qualitative analysis
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Saliency Reconstruction Saliency Denoising Saliency Inpainting Saliency Classification

Saliency Reconstruction Saliency Denoising Saliency Inpainting Saliency Classification

Saliency Reconstruction Saliency Denoising Saliency Inpainting Saliency Classification

Saliency Reconstruction Saliency Denoising Saliency Inpainting Saliency Classification

Saliency Reconstruction Saliency Denoising Saliency Inpainting Saliency Classification

Saliency Reconstruction Saliency Denoising Saliency Inpainting Saliency Classification

Saliency Reconstruction Saliency Denoising Saliency Inpainting Saliency Classification

Saliency Reconstruction Saliency Denoising Saliency Inpainting Saliency Classification

Saliency Reconstruction Saliency Denoising Saliency Inpainting Saliency Classification

Saliency Reconstruction Saliency Denoising Saliency Inpainting Saliency Classification

Figure 17. Reproduced label‐free saliency maps for various pretext tasks (Run 0)
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Test Image Top Image Reconstruction Top Image Denoising Top Image Inpainting Top Image Classification

Test Image Top Image Reconstruction Top Image Denoising Top Image Inpainting Top Image Classification

Test Image Top Image Reconstruction Top Image Denoising Top Image Inpainting Top Image Classification

Test Image Top Image Reconstruction Top Image Denoising Top Image Inpainting Top Image Classification

Test Image Top Image Reconstruction Top Image Denoising Top Image Inpainting Top Image Classification

Test Image Top Image Reconstruction Top Image Denoising Top Image Inpainting Top Image Classification

Test Image Top Image Reconstruction Top Image Denoising Top Image Inpainting Top Image Classification

Test Image Top Image Reconstruction Top Image Denoising Top Image Inpainting Top Image Classification

Test Image Top Image Reconstruction Top Image Denoising Top Image Inpainting Top Image Classification

Test Image Top Image Reconstruction Top Image Denoising Top Image Inpainting Top Image Classification

Figure 18. Reproduced label‐free top examples for various pretext tasks (Run 0)
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