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Abstract

Diffusion models have demonstrated the ability to generate biologically plausible
proteins that are dissimilar to any proteins seen in nature, enabling unprecedented
capability and control in de novo protein design. However, current state-of-the-
art diffusion models generate protein structures, which limits the scope of their
training data and restricts generations to a small and biased subset of protein space.
We introduce a general-purpose diffusion framework, EvoDiff, that combines
evolutionary-scale data with the conditioning capabilities of diffusion models for
controllable protein generation in sequence space. EvoDiff generates high-fidelity,
diverse, structurally-plausible proteins that cover natural sequence and functional
space. Critically, EvoDiff can generate proteins inaccessible to structure-based
models, such as those with disordered regions, and design scaffolds for functional
structural motifs, demonstrating the universality of our sequence-based formulation.
We envision that EvoDiff will expand capabilities in protein engineering beyond
the structure-function paradigm toward programmable, sequence-first design.

1 Introduction

Evolution has yielded a diversity of functional proteins. Deep generative models learn from this
diversity to generate valid and novel proteins, with the ultimate goal of tailoring function to solve
outstanding modern-day challenges, such as the development of targeted therapeutics or engineered
enzymes (Fig. 1A) [1, 2]. Diffusion models provide a particularly powerful generative modeling
framework that generates high-quality, diverse samples that can be conditioned on a variety of design
objectives [3–6]. Indeed, today’s most biologically-plausible in silico-designed proteins come from
diffusion models of protein structure [7–15]. These models fit in the structure-based design paradigm
of first generating a structure that fulfills desired constraints and then designing a sequence that folds
to that structure. However, sequence, not structure, is the universal protein design space. Every
protein is completely defined by and synthesized as an amino-acid sequence, which then determines
function through an ensemble of structural conformations and amino-acid chemistry. However, not
every protein folds into a static structure [16–18]. Further, structural data (ca. 200k structures in PDB)
is available for a sparse, biased subset of proteins (ca. billions of unique natural proteins; Fig. 1A),
limiting the capacity of structure-based models to learn the full diversity of protein functional space.

We combine evolutionary-scale datasets with diffusion models to develop a powerful new generative
modeling framework, EvoDiff, for controllable protein design from sequence data alone (Fig. 1).
Given the natural framing of proteins as sequences of tokens, we use a discrete diffusion framework in
which a forward process iteratively corrupts a protein sequence by changing its amino acid identities,
and a learned reverse process, parameterized by a neural network, predicts the changes made at each
iteration (Fig. 1B) and can be used to generate new sequences starting from random noise (Fig. 1C).
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Figure 1: Protein sequence generation with evolutionary diffusion. (A) (Left) Evolution has
sampled a tiny fraction of possible protein sequences. Experimental structures exist for even fewer
proteins. (Right) EvoDiff is a generative discrete diffusion model trained on natural protein sequences.
(B) EvoDiff’s controlled corruption and learned denoising processes. In masked corruption, input
tokens are masked in an order-agnostic fashion (bottom, left). In discrete corruption, inputs are
corrupted via a Markov process controlled by a transition matrix of amino acid mutation frequencies
(bottom, right). (C) EvoDiff enables unconditional generation of sequences or MSAs. (D) Control-
lable design with EvoDiff by conditioning on MSAs (left); inpainting (middle); or scaffolding (right).

Because of its grounding in a universal design space, EvoDiff unconditionally generates high-quality,
diverse proteins and, via conditioning, enables evolution-guided design of novel sequences, inpainting
of functional motifs, and motif scaffolding without any explicit structural information (Fig. 1D).

2 Discrete diffusion models of protein sequence

EvoDiff is the first generative diffusion model for protein design trained on evolutionary-scale
sequence data. We investigated two types of forward processes for diffusion over discrete data modal-
ities: order-agnostic autoregressive diffusion (EvoDiff-OADM, Methods) [19] and discrete denoising
diffusion probabilistic models (EvoDiff-D3PM, Methods) [20] (Fig. 1B). In EvoDiff-OADM, one
amino acid is converted to a special mask token at each step in the forward process (Fig. 1B). In
EvoDiff-D3PM, the forward process corrupts sequences by sampling mutations according to a transi-
tion matrix, such that after T steps the sequence is indistinguishable from a uniform sample over the
amino acids (Fig. 1B). In the reverse process for both, a neural network model is trained to undo the
previous corruption. The trained model can then generate new sequences starting from sequences of
masked tokens (EvoDiff-OADM) or of uniformly-sampled amino acids (EvoDiff-D3PM) (Fig. 1C).

To facilitate direct and quantitative model comparisons, we trained all EvoDiff sequence models on
42M sequences from UniRef50 [21] using a dilated convolutional neural network architecture of either
38M- or 640M-parameters [22]. We calculated each model’s test-set perplexity, which reflects its
ability to capture the distribution of natural sequences and generalize to unseen sequences (Methods).
EvoDiff-OADM learns to reconstruct the test set more accurately than two tested EvoDiff-D3PM
variants employing uniform and BLOSUM62-based transition matrices and is the only model variant
where performance scales with increased model size (Table S1; Fig. S1).

3 Results

Structural plausibility of generated sequences. We investigated whether EvoDiff could generate
new protein sequences that were individually valid and structurally plausible, via a workflow that
evaluates the foldability of sequences generated by EvoDiff (Fig. S2). We generated 1000 sequences
from each EvoDiff sequence model with lengths drawn from the empirical distribution of lengths
in the training set. We compared EvoDiff’s generations to sequences generated from a left-to-right
autoregressive language model (LRAR) with the same architecture and training set as EvoDiff and
from protein masked language models such as ESM-2 [23] (Figs. 2A-B, S3, S4; Table S2).
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Figure 2: EvoDiff generates realistic and structurally-plausible protein sequences. (A-B) Distri-
butions of foldability (A) and self-consistency (B) metrics for sequences from the test set, EvoDiff
models, and baselines (n=1000 per model). (C) Sequence pLDDT vs. scPerplexity for sequences
from the test set (grey, n=1000) and the 640M-parameter OADM model EvoDiff-Seq (blue, n=1000).
(D) Predicted structures and metrics for select structurally plausible generations from EvoDiff-Seq.

We assessed the foldability of individual sequences by predicting their corresponding structures
using OmegaFold [24] and computing the average predicted local distance difference test (pLDDT)
across the whole structure (Fig. 2A, S5). pLDDT reflects the confidence in the structure prediction
for each residue. While pLDDT scores above 70 are often considered to be high confidence, low
pLDDT can be consistent with intrinsically disordered regions (IDRs) of proteins [25]. As an
additional metric of structural plausibility, we computed a self-consistency perplexity (scPerplexity)
by redesigning each predicted structure with the inverse folding algorithm ESM-IF [26] and computing
the perplexity against the original generated sequence (Fig. 2B; Table S2). While no generative
model approaches the test set values for foldability and self-consistency, EvoDiff-OADM outperforms
EvoDiff-D3PM and improves when increasing the model size (Fig. 2A-C; Table S2). We thus select
the 640M-parameter EvoDiff-OADM model for downstream analysis and hereafter refer to it as
EvoDiff-Seq. Analysis of samples from EvoDiff-Seq illustrates their structural plausibility and
novelty, demonstrating that EvoDiff generates protein sequences that are individually valid (Fig. 2D).

Biological properties of generated sequence distributions. We next evaluated how well the
distribution of designed protein sequences covered natural protein space. To assess coverage over
sequence and functional properties, we embedded each generated sequence using ProtT5 [27],
a protein language model benchmarked for imputing GO annotations [28], and calculated the
embedding space Fréchet distance between a set of generated sequences and the test set, where
lower distance reflects better coverage (Figs. S6-S8; Table S1). Both qualitatively and quantitatively,
EvoDiff-Seq generates proteins that better recapitulate natural sequence and functional diversity than
sampling from a state-of-the-art protein masked language model (ESM-2) or predicting sequences
from structures generated by a state-of-the-art structure diffusion model (RFdiffusion) (Fig. S6A).

We evaluated structural properties by computing 3-state secondary structures [29] for each residue in
generated sequences and examining the resulting distributions of structural properties (Figs. S6B, S9).
EvoDiff-Seq generates proportions of strands and disordered regions similar to those in natural
sequences, while ESM-2 and RFdiffusion both generate proteins enriched in helices (Fig. S6B). We
assessed the novelty of our generations and found that, on average, a sequence from EvoDiff-Seq has
a Hamming distance of 0.83 from the most similar training sequence of the same length (Table S1).
These results show that EvoDiff’s diffusion objective and evolutionary-scale training data are both
necessary to generate novel sequences that cover protein sequence, functional, and structural space.
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Conditional sequence generation for controllable design. EvoDiff’s OADM diffusion framework
induces a natural method for conditional generation by fixing some subsequences and inpainting
the remainder. Because the model is trained to generate proteins with an arbitrary decoding order,
this is accomplished by simply masking and decoding the desired portions. We applied EvoDiff’s
power for controllable protein design across three scenarios (Fig. 1D): conditioning on evolutionary
information from MSAs (Fig. S10-S12), inpainting functional domains such as IDRs (Fig. S13-S15),
and scaffolding structural motifs (Fig. 3). To condition on evolutionary information, we designed
and trained EvoDiff MSA models using the MSA Transformer [30] architecture on the OpenFold
dataset [31] (Table S3; Fig. S11). By performance we select the OADM-Max model as EvoDiff-MSA
and demonstrate its ability to generate sequences conditioned on an MSA (Fig. S10; Table S4).

Scaffolding functional motifs. Thus far, the primary application of deep generative models of
protein structure is their ability to scaffold binding and catalytic motifs: given 3D motif coordinates,
these models can often generate a structural scaffold that holds the motif in precisely the 3D geometry
needed for function [10, 14, 32]. Given that the fixed motif includes information on its residue
identities, we investigated whether a structural model is actually necessary for motif scaffolding.

We used conditional generation with EvoDiff to generate scaffolds for 17 motif-scaffolding prob-
lems [10] by fixing the functional motif, supplying only the motif’s amino-acid sequence as condi-
tioning information, and then decoding the remainder of the sequence (Fig. 1D, 3A-C). The problems
include simple “inpainting”, viral epitopes, receptor traps, small molecule and protein binding sites,
and enzyme active sites. We compared the performance of EvoDiff, which uses only sequence
information, to the state-of-the-art structure model RFdiffusion, by using OmegaFold to predict
structures for our generated sequences as well as for sequences inverse-folded from RFdiffusion
structures (Fig. 3A-B). We find almost no correlation between the problem-specific success rates of
EvoDiff and RFdiffusion, showing that the two may have orthogonal strengths (Fig. 3A-B). EvoDiff-
Seq and EvoDiff-MSA generate successful scaffolds for 8 and 13 of the 17 problems, respectively
(Table S5, S6). Successful scaffolds from EvoDiff demonstrate the qualitative and quantitative quality
of generated proteins and predicted structures for select functional motifs (Fig. 3D-E). These results
show that EvoDiff can scaffold structural motifs via conditional generation in sequence space alone.
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4 Conclusion

We present EvoDiff, a diffusion modeling framework capable of generating high-fidelity, diverse, and
novel proteins with the ability to condition on sequence constraints. Because it operates in the univer-
sal protein design space, EvoDiff can sample diverse and plausible proteins, generate intrinsically
disordered regions, and scaffold structural motifs using only sequence information, challenging a
paradigm in structure-based protein design. EvoDiff is the first framework to demonstrate the power
of diffusion modeling over evolutionary-scale protein sequence space. EvoDiff may enable new
abilities in controllable protein design by reading and writing function in the language of proteins.
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Appendix: Methods and Supplementary Information

Diffusion models Diffusion models are a class of generative models that learn to generate data from
noise. They consist of a forward corruption process and a learned reverse denoising process. The
forward process is a Markov chain of diffusion steps q(xt|xt�1) that corrupts an input (x0) over T
timesteps such that xT is indistinguishable from random noise. The learned reverse denoising process
p✓(xt�1|xt) is parameterized by a model such as a neural network and generates new data from
noise. Discrete diffusion models have previously been developed over binary random variables [3],
developed over categorical random variables with uniform transition matrices [33, 34], linked to
autoregressive models [19], and optimized for use with transition matrices [20].

This work presents models from two different discrete diffusion frameworks – order-agnostic autore-
gressive diffusion models (OADMs) and discrete denoising diffusion probabilistic models (D3PMs) –
on protein sequences and multiple sequence alignments (MSAs).

Discrete Denoising Diffusion Probabilistic Models (D3PMs) Discrete denoising diffusion prob-
abilistic models (D3PMs) operate by defining a transition matrix Q such that, over T timesteps,
discrete inputs (i.e. protein amino-acid sequences for EvoDiff) are iteratively corrupted via a con-
trolled Markov process until they constitute samples from a uniform stationary distribution at time
T . This section describes the D3PM process and loss for a single categorical variable x in one-hot
format. The forward corruption process is described by:

q(xt|xt�1) = Cat(xt; p = xt�1Qt). (1)

This allows for efficient training via efficient computation of q(xt|x0) and q(xt�1|xt). The D3PM
approach can emulate a masked modeling process by choosing a transition matrix with an absorbing
state (e.g., [MASK]; [20]). However, in this work, the D3PM formulation is only used for discrete
corruption because masking corruption via OADM generally outperforms absorbing-state D3PM [19].
EvoDiff includes two discrete corruption schemes: one based on a uniform transition matrix (D3PM-
Uniform) and one based on a biologically-informed transition matrix (D3PM-BLOSUM).

EvoDiff-D3PM models are trained via a hybrid loss function

L� = Lvb + �Lce. (2)

This loss combines a variational lower bound Lvb on the negative log likelihood

Lvb = Eq(x0)
[DKL [q(xT |x0)kp(xT )]| {z }

LT

+
TX

t=2

Eq(xt|x0)
[DKL [q(xt�1|xt, x0)kp✓(xt�1|xt)]]| {z }

Lt�1

+

�Eq(x1|x0)
[log(p✓(x0|x1)]| {z }
L0

]. (3)

and a cross-entropy loss Lce on p✓(x0|xt). Investigation of the impact of � on model performance
revealed minimal improvement to sample generation quality when � > 0, consistent with the findings
of the original D3PM paper [20]. Thus �=0 and T=500 were used in all D3PM experiments.

Lvb has three terms. LT measures whether the corruption reaches the stationary distribution p(xT ) at
time T and does not depend on ✓. Next consider the remaining two terms Lt�1 and L0, which depend
on ✓. Following the original D3PM paper, p̃✓(x̃0|xt) is directly predicted by the neural network.
To compute the loss at timesteps 0 < t < T , the terms q(xt�1|xt, x0) and p✓(xt�1|xt) must be
computed from xt, x0, and p̃✓(x̃0|xt) using Markov properties

Defining Qt = Q1Q2 · · ·Qt:

q(xt�1|xt, x0) = Cat

 
xt�1; p =

xtQ>
t � x0Qt�1

x0Qtx
>
t

!
(4)

p✓(xt�1|xt) _
X

x̃0

q(xt�1, xt|x̃0)p̃✓(x̃0|xt) (5)
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where � represents an element-wise product. For Equation 5 rules of conditional probability and
Markov properties are used to define q(xt�1, xt|x̃0) in terms of xt and x̃0:

q(xt�1, xt|x̃0) = Cat
�
xt�1; p = xtQ

>
t � x̃0Qt�1

�
(6)

Putting everything together, at each step of training a corruption timestep is sampled according to
t ⇠ U(1, . . . , T � 1). xt is then sampled via q(xt|x0) ⇠ Cat

�
xt; p = x0Qt

�
for every residue in

the input protein, and the neural network predicts p̃✓(x̃0|xt). Note that, while the corruption and
loss are computed independently over each residue, the neural network predicts p̃ in the context of
the entire sequence. If t = 1, only the loss L0 is used, reflecting a standard negative log likelihood.
Otherwise, Equations 4 and 5 are used to compute the loss Lt�1.

Sampling from a trained model begins with the noised xT , where each residue is randomly sampled
from a uniform distribution over amino acids. xt�1 is then iteratively sampled via p✓(xt�1|xt) as
described in Equation 5. For all models, generated sequences are sampled to match the distribution
of sequence lengths in the training set, going up to 2048 residues as the maximum length.

EvoDiff-D3PM-Uniform Many strategies exists to schedule corruption in D3PMs. EvoDiff-D3PM-
Uniform employs the simplest case – a uniform corruption scheme. Specifically, EvoDiff-D3PM-
Uniform models implement a doubly stochastic, uniform transition matrix Qt with a corruption
schedule (T � t + 1)�1 from Sohl-Dickstein et al. [3], so that information is linearly corrupted
between xt and x0 for all t < T .

EvoDiff-D3PM-BLOSUM EvoDiff-D3PM-BLOSUM implements a transition matrix derived from
BLOSUM62 matrices of amino acid substitution frequencies [35]. BLOSUM matrices are derived
from observed alignments across highly conserved regions of protein families and thus provide the
relative frequencies of amino acids and their substitution probabilities.

Rows that represent uniform transition probabilities for non-standard amino acid codes (J, O, U)
and for < GAP > tokens in the MSA input case are included in addition to standard amino acids.
BLOSUM substitution frequencies are converted to a matrix of transition probabilities by performing
a Softmax over the frequencies and then normalizing over rows and columns via the Sinkhorn-Knopp
algorithm to obtain a doubly stochastic matrix. In this scheme, the gradual corruption of a single
sequence to random noise is simulated in a way that prioritizes conserved evolutionary relationships
of amino acid mutations. A �-schedule was implemented to taper the number of mutations over time
for timesteps up to T=500, specifically via an empirical schedule that corrupts half the sequence
content by half of T (t=250) (Fig. S16). This schedule was chosen to approximate the linear rate of
mutations observed over 500 timesteps in the uniform transition matrix case, shown in Fig. S16b.

Order-Agnostic Autoregressive Diffusion Models (OADMs) Order-agnostic autoregressive dif-
fusion models (OADMs) generalize absorbing-state D3PM and left-to-right autoregressive models
(LRARs) [19]. This section describes the OADM process and loss for a sequence x of L categorical
variables. In the case of EvoDiff, L is the sequence length.

LRARs factorize a high-dimensional joint distribution p(x) into the product of L univariate distribu-
tions using the probability chain rule:

log p(x) =
LX

t=1

log p(xt|x<t) (7)

where x<t = x1, x2, . . . xt�1. LRARs are typically parametrized using a triangular dependency
structure, such as causal masking in a transformer or CNN, in order to allow parallelized computation
of all the conditional distributions in the likelihood during training. LRARs learn to generate
sequences in a pre-specified left-to-right decoding order, which may be non-obvious for modalities
such as proteins and does not allow conditioning on arbitrary fixed subsequences.

LRARs can be expanded into a diffusion framework via two subtle changes. Following the exposition
in Hoogeboom et al., [19], the first change is to allow order-agnostic decoding. In an order-agnostic
autoregressive model, a decoding order � is first sampled uniformly from all possible decoding
orders SL. At time step t in the forward process, x�(L�t) is masked. The log-likelihood for an
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order-agnostic autoregressive model is derived using Jensen’s inequality:

log p(x) = logE�⇠U(SL)p(x|�) � E�⇠U(SL) log p(x|�)

� E�⇠U(SL)

LX

t=1

log p(x�(t)|x�(<t))

The next change involves an objective that optimizes over arbitrary decoding orders one timestep at
a time in the style of modern diffusion models, without requiring a neural network that enforces a
triangular or causal dependency structure. This is accomplished by replacing the summation over t
by an expectation that is appropriately re-weighted.

log p(x) � E�⇠U(SL)

LX

p=1

log p(x�(t)|x�(<t))

= E�⇠U(SL)L · Et⇠U(1,...,L) log p(x�(t)|x�(<t))

= L · Et⇠U(1,...,L)E�⇠U(SL)

1

L� t+ 1

X

k2�(�t)

log p(xk|x�(<t))

The overall expected log likelihood log p(x) can be thought of according to a series of likelihoods,
each captured in the loss at step t, Lt:

Lt =
1

L� t+ 1
E�⇠U(SL)

X

k2�(�t)

log p(xk|x�(<t)). (8)

Thus, the overall expected log likelihood is lower bounded as:

log p(x) � Et⇠U(1,...,L) [L · Lt] (9)

A neural network can be efficiently trained to learn the reverse process p✓(x�(t)|x�(<t)) by randomly
masking a set of t tokens at each iteration and minimizing the reweighted loss, allowing the model
to learn from predictions of all masked positions at each timestep. By learning one model over
all possible decoding orders, OADM allows for conditioning by fixing arbitrary subsequences at
generation time. Sequences were generated unconditionally from OADM models by beginning with
an all-mask sequence as input, randomly sampling a decoding order, and sampling each token from
the predicted probability distribution.

Left-to-right autoregressive and masked language models are diffusion models The connection
between autoregressive models and diffusion models has been described previously [19, 20]. Left-to-
right autoregressive (LRAR) diffusion models implement a masked modeling process that is akin to a
process which iteratively and deterministically masks all tokens to the right of the sampled token xt,
where the current diffusion timestep t is equivalent to the number of tokens masked over the entire
sequence length, with all tokens masked at the final timestep T = L.

Likewise, masked language models (MLMs) are equivalent to only learning one step t of OADM:

LMLM =
1

L� t+ 1
E�⇠U(SL)

X

k2�(�t)

log p(xk|x�(<t)). (10)

Thus, the OADM setup generalizes LRAR models by considering all possible decoding orders rather
than left-to-right decoding, while the MLM learning task is equivalent to only training on one step of
the OADM diffusion process.

Datasets Sequence-only EvoDiff models were trained on UniRef50 [21] which contains approxi-
mately 45 million protein sequences. The UniRef50 release and train/validation/testing splits from
CARP [22] were used to facilitate comparisons between models. Sequences longer than 1024 residues
were randomly subsampled to 1024 residues. Multiple sequence alignment (MSA) EvoDiff models
were trained on OpenFold [31], which contains 401,381 MSAs for 140,000 unique Protein Data Bank
(PDB) chains and 16,000,000 UniClust30 clusters. To construct the MSAs used to train EvoDiff,
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lowercase characters were removed to restore the alignments, as the queries do not contain gap
characters. Next, MSAs that contained sequences with more than 512 consecutive < GAP > tokens as
well as MSAs that contained fewer than 64 sequences per alignment were filtered out. This filtering
resulted in 382,296 total MSAs, which were then randomly split into 372,296 training and 10,000
validation MSAs.

MSA subsampling for training EvoDiff-MSA models To optimize for memory constraints during
training, MSAs were subsampled to 64 sequences and a maximum sequence length of 512. MSAs
shorter than 512 sequences were padded to a sequence length of 512, but MSAs containing fewer
than 64 sequences were excluded from training. For MSAs with more than 64 sequences, two
subsampling schemes were implemented: random (“Rand.”) and MaxHamming (“Max”). The
random subsampling scheme (“Rand.”) randomly samples 64 sequences from the MSA, making sure
that the reference/query sequence (i.e. the first sequence) is always included. The “Max” subsampling
scheme greedily selects for sequence diversity in the 64 sequence subset by iteratively selecting
the sequence that maximizes the minimum Hamming distance to the sequences already selected.
The Hamming distance measures the distance between two sequences, denoted by the number of
amino acids that differ between aligned sequences. Subsampling to maximize the Hamming distance
enabled input of an MSA rich with evolutionarily diverse sequences to EvoDiff-MSA models.

Modeling, architecture, and training details For sequences, the EvoDiff denoising model adopts
a ByteNet-style CNN architecture [36] previously shown to perform similarly to transformers for
protein sequence masked language modeling tasks [22]. All models are implemented in PyTorch [37].
In EvoDiff-OADM models, the diffusion timestep is implicitly encoded in the number of masked
positions. EvoDiff-D3PM models use a 1D sinusoidal encoding [38] to denote the timestep for each
input. All sequence models were trained with the Adam optimizer [39], a learning rate of 1e-4 with
linear warmup over 16,000 steps, and dynamic batching to optimize GPU usage. EvoDiff’s small
sequence models implement a ByteNet-style architecture with ca. 38M parameters. Large models
were scaled to a ByteNet architecture of ca. 640M parameters by increasing the model dimension
d from 1020 to 1280, increasing the encoder hidden dimension from d/2 to d, and increasing the
number of layers from 16 to 56.

38M parameter models were trained on 8 32GB NVIDIA V100 GPUs; 640M parameter models were
trained on 32 (2x16) 32GB NVIDIA V100 GPUs. The maximum number of tokens per GPU in
each batch was reduced from 40,000 to 6,000 to accommodate training the larger 640M parameter
models. 38M parameter models were trained for approximately 2 weeks and saw ca. 3e14 tokens over
700,000 training steps. 640M parameter models were trained for as long as computationally feasible
to achieve the best results possible; models saw between ca. 1e10 and 1e17 tokens over ca. 400,000-
2,000,000 training steps. The D3PM-BLOSUM model stopped improving after approximately 12
days of training. The D3PM-Uniform and OADM models were trained for 23 days without reaching
convergence.

For MSAs, the EvoDiff denoising model adopts a 100M parameter MSA Transformer architecture
[30]. As with the single sequence models, EvoDiff-MSA-OADM models implicitly encode the
diffusion timestep; EvoDiff-MSA-D3PM models include an additional sinusoidal timestep embedding.
All MSA models were trained with the Adam optimizer with a learning rate of 1e-4 and linear warmup
over 15,000 steps. EvoDiff MSA models were trained on 16 32GB NVIDIA V100 GPUs for 10 days
and saw ca. 3e9 tokens over 55,000 training steps.

Baseline models To enable direct comparison, the left-to-right autoregressive (LRAR) and CARP
baselines were trained with the same CNN architectures on the same dataset as EvoDiff sequence
models. For LRAR, the convolution modules have a causal mask to prevent information leakage.
For additional MLM baselines, sequences were sampled from the protein MLMs ESM-1b [40]
and ESM-2 [23], which were trained on different releases of UniRef50. ESM-1b and ESM-2 both
generated many “unknown” amino acids (X); performance was improved results by manually setting
the logits for X to inf. Sequences were sampled from MLMs by treating the MLM as an OADMs
and beginning from an all-mask state. For the structure-based diffusion baselines, sequences were
obtained from FoldingDiff [8] and RFdiffusion [10] by first unconditionally generating structures and
then using ESM-IF [26] to design their sequences. For MSA baselines, new query sequences were
generated from ESM-MSA [30] by treating it as an OADM and sampling from an all-mask starting
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query sequence. CCMgen [41] with default parameters was used to train and generate from Potts
models of validation MSAs from OpenFold.

Computation of test-set perplexities Perplexity was calculated by uniformly sampling a timestep
for each test sequence, corrupting the sequence according to each diffusion model, predicting the
sequence x0 at t = 0 by passing inputs once through each trained model, and then computing the
perplexity. For D3PM models, the perplexity is:

PerpD3PM = Et⇠U(1,...,T ) exp

 
� 1

L

LX

i

log p✓(x0|xt)

!
(11)

For OADMs, the perplexity is:

PerpOADM = ·Et⇠U(1,...,L)E�⇠U(SD) exp

2

4 �1

L� t+ 1

X

k2�(�t)

log p(xk|x�(<t))

3

5 (12)

To enable model comparison, perplexities for MLMs (CARP, ESM-1b, ESM-2) were computed as if
they are OADMs.

And for LRAR models, the perplexity is:

PerpLRAR = exp

"
�

LX

t=1

log p(xt|x<t)

#
(13)

Calculated D3PM perplexities were on average higher as t ! T and lower as t ! 1, and masked
perplexities were similarly higher for a greater number of masked tokens per sequence, i.e., as
t ! Lmasked (Fig. S1, S11). Lower perplexities indicated improved performance and generalization
capacity.

Evaluation of structural plausibility The structural plausibility pipeline (Fig. 2A) evaluates both
the foldability and self-consistency of a given sequence. Foldability was evaluated by averaging
the per-residue confidence score, reported as pLDDT by OmegaFold, across the entire sequence.
Sequence self-consistency, denoted scPerpelxity, describes how likely the generated sequence is to
correspond to the predicted structure. Self-consistency was measured by taking structures predicted
for a sequence from OmegaFold, running them through ESM-IF, and calculating the perplexity
between the ESM-IF predicted-sequence and the original generated sequence.

The novelty of generated sequences was evaluated relative to training data seen by the model, by
computing the Hamming distance between each generated sequence and every training-set sequence
of the same sequence length. The minimum of these Hamming distances, representing the closest
sequence seen by the model during training, was reported for each sequence.

Computation of functional and structural features To evaluate sequence coverage, ProtT5
embeddings were computed for each of 1,000 generated protein sequences and 10,000 sequences
sampled from the test set using the Tools from Protein Prediction for Interpretation of Hallucinated
Proteins (PPIHP) package [42]. The resulting distributions of sequence embeddings (i.e., representing
the corresponding distributions of sequences) were compared via the Fréchet ProtT5 distance (FPD),

FPD = ||µtest � µgen||2 +Tr(Ctest + Cgen � 2
p

CtestCgen) (14)

where, given the embedding space feature vectors for the test and generated distributions, µ is the
feature-wise mean for each set of sequences, C is the respective covariance matrix, and Tr refers to
the trace linear algebra operation, defined as the sum of the elements along the main diagonal of a
square matrix. Embeddings were visualized in 2D via uniform manifold approximation and projection
(UMAP), fit to the test data and with n_neighbors=25. The number of neighbors hyperparameter
was selected to favor local similarities in place of global ones, in order to appropriately visualize the
corresponding differences in embedding space and FPD measured for each model.
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Structural features of generated sequences were evaluated via the ProtTrans [27] CNN predictor
model to assign a 3-state secondary structure definition from DSSP (helix, strand, or other) to each
residue in a protein. The fraction of predicted ‘helix’, ‘strand’, or ‘other’ was computed (the three
values sum to 1 per sequence). The resulting multivariate distributions of secondary structure features
(computed over 1000 generated or natural sequences) were visualized via kernel density estimation.
The KL divergence between the mean values across the 3-state predictions for the generated and test
sets was used to quantitatively evaluate the distribution of secondary-structures assigned for each
model.

Evolution-guided generation with EvoDiff-MSA Starting with either a random or MaxHamming
subsampled MSA, new query sequences were generated by sampling from an all-mask starting query
sequence. The generated query sequence was evaluated relative to the corresponding original query
sequence using the same tools and workflow described in Evaluation of structural plausibility. Each
generated sequence was additionally evaluated for similarity relative to its reference MSA, which
is comprised of a query sequence and alignment sequences. The % similarity of each generated
sequence relative to its parent MSA was computed as the maximum % similarity over all sequences in
the original MSA. Specifically, for a pair of sequences, the % similarity was computed by calculating
the number of shared residue identities (accounting for both amino-acid identity and position index
in the sequence), and for a given generated sequence the maximum value of these % similarities was
determined. Across generated sequences both the CDF and mean of maximum % similarity were
reported. Generated sequences were additionally evaluated for structural similarity relative to their
original query sequences. Structures were predicted for each of the generated query sequences and
the original query sequences using OmegaFold. Structural similarity was measured via the template
modeling score (TM-score) [43] for the two predicted structures following structural alignment:

TM-score = max

2

64
1

Lgen

LcommonX

i

1

1 +
⇣

di
d0(Ltrue)

⌘2

3

75 (15)

where Lgen is the length of the generated query sequence; Lcommon is the number of shared residues;
di is the distance between the ith pair of residues; Ltrue is the length of the true query sequence; and
d0(Ltrue) = 1.24 3

p
Ltrue � 15� 1.8 is a distance scale for normalization.

Generation of intrinsically disordered regions (IDRs) IDR generation and analysis leveraged a
publicly available dataset of 15,996 human IDRs and their orthologs [44]. This dataset was generated
by running SPOT-Disorder v1 [45] on the human proteome and applying the predicted IDR positions
to an MSA of likely-similar-function orthologs (determined using an evolutionary distance heuristic),
curated from the larger set of orthologs contained in the OMA database [46]. The resulting dataset
only contained IDRs, not full protein sequences, and thus IDR sequences were mapped back to the
MSAs of full protein sequences in OMA in order to provide context about the sequence regions
surrounding the IDRs.

For input to EvoDiff models, the full sequence of an IDR-containing human protein was treated as
the query sequence, and a corresponding MSA was constructed by subsampling 63 other sequences
from all the query’s orthologs. All sequences were subsampled to 512 residues in length, with the
following criteria maintained. Subsampling criteria were that the subsampled query sequence contain
at least 1 IDR, and that the total IDR region was less than half the total length of the subsampled
sequence (LIDR  256). For IDR generation from EvoDiff-Seq, the query sequence with the IDR
region masked was provided as the only input to EvoDiff-Seq, which then generated new residues
for the masked region (i.e., the region corresponding to the true IDR). For IDR generation from
EvoDiff-MSA, the query sequence with the IDR region masked, aligned to the rest of the MSA, was
provided as input to EvoDiff-MSA, which then generated new residues for the masked region.

The resulting generations, containing putative IDRs, were input to DR-BERT, a protein language
model fine-tuned for disorder prediction [47], to obtain per-residue disorder scores ranging from 0-1
(less to more disordered). A single-sequence IDR predictor (DR-BERT) was used in place of MSA-
based IDR scoring methods, because of an observed bias towards higher disorder scores with MSA-
based methods – e.g., random uniform sampling of residues in the masked query positions still resulted
in a prediction of disorder given the presence of the orthologs in the alignment. Disorder scores
for true IDRs, generated IDRs, scrambled IDRs, and randomly generated IDRs were computed to
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evaluate the performance of DR-BERT predictions. The randomly-sampled baseline was constructed
by randomly sampling amino acids over an IDR region; the scrambled baseline was constructed by
shuffling the existing amino acids over an IDR region into a scrambled permutation. In all cases
(true IDRs, generated IDRs, scrambled and random baselines), the entire protein sequence was input
to DR-BERT for scoring. Since DR-BERT is for single-sequences, for putative IDRs generated
by EvoDiff-MSA, the entire query sequence was inputted into DR-BERT, with < GAP > tokens
eliminated, to obtain per-residue disorder scores. Lastly, a direct comparison between the original
IDR and the generated putative IDR was conducted by calculating the % sequence similarity between
the fraction of shared residues between the two IDR regions.

Motif scaffolding Scaffolding performance was evaluated on a recently published benchmark [10]
of 25 scaffolding problems across 17 unique proteins.

In our scaffolding benchmark, each unique protein was treated as 1 example, for a total of 17 unique
scaffolding examples. 100 samples were generated for each unique scaffolding example. For proteins
6E6R, 6EXZ, 7MRX, and 5TRV, which were the 4 examples evaluated at 3 different scaffolding
lengths in RFdiffusion [10], the number of successes across these three different scaffolding lengths
were averaged to facilitate comparisons between RFDiffusion and EvoDiff.

To generate a scaffold with EvoDiff-Seq, a scaffold length between 50-100 residues (exclusive of the
motif) was sampled uniformly; the motif was placed randomly within the length; and scaffold residues
were generated from EvoDiff-Seq conditioned on the provided motif residues. In this approach, on
average, protein sequences generated by EvoDiff-Seq were longer (between 45 and 194 residues in
length) than those inverse-folded from structures generated by RFdiffusion, which range from 30-152
residues in total length inclusive of the length of the motif.

For scaffolding with EvoDiff-MSA, MSAs for each sequence corresponding to the original PDB
structure were generated using the tools from AlphaFold [48] and then subsampled to 64 sequences,
and a maximum of 150 residues in length, where the original sequence obtained from the PDB
crystal structure was assigned as the query sequence. In cases where the scaffolding examples
were shorter than 150 residues, sequences were padded with a < GAP > token, to allow EvoDiff to
generate longer-scaffolds. Sequences generated by EvoDiff-MSA were between 56 and 150 residues
in length, inclusive of the motif and scafffold. For each scaffolding example, a common set of 100
subsampled MSAs, where 50 were randomly subsampled and 50 were subsampled via MaxHamming,
was used commonly across EvoDiff-MSA (Max), EvoDiff-MSA (Random), and ESM-MSA. That is,
an individual generation trial for each model corresponded to a unique MSA from the common set of
100 MSAs constructed for a scaffolding example. At inference time, all non-motif residues in the
query sequence were masked, and new residues in these locations were generated by EvoDiff-MSA.

OmegaFold was used to predict structures corresponding to sequences generated by EvoDiff. A
generation was counted as ‘successful’ if its predicted structure had a pLDDT � 70 and a motifRMSD
 1.0Å relative to the original motif crystal structure. Note that these success criteria are cutoffs
proposed by structure-based models [10] and adopted here to facilitate comparison. The motifRMSD
was computed as the RMSD between the alpha-carbons of the motif in the original crystal structure
and the predicted structure for the scaffolded motif.
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EvoDiff-D3PM-BLOSUM 38M EvoDiff-D3PM-Uniform 38M EvoDiff-OADM 38M

EvoDiff-D3PM-BLOSUM 640M EvoDiff-D3PM-Uniform 640M EvoDiff-OADM 640M

LR-AR 38M CARP 38M ESM-1b-650M

LR-AR 640M CARP 640M ESM2-650M

Figure S1: Perplexity as a function of corruption step for EvoDiff sequence models. Test-set
perplexities at sampled intervals of the degree of corruption, specifically the diffusion timestep for
D3PM models, the fraction of masked residues for OADM and masked language models, and the
fraction of evaluated sequence for LRAR models. Intervals reflect evenly spaced windows of 50
timesteps for D3PM models or 10% masking for masked models.
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Figure S3: Summary statistics for structural plausibility metrics for sequence models. (A-B)

Distribution of pLDDT and scPerplexity metrics for sequences from the test set, 38M parameter
EvoDiff and baseline models (A), and 640M parameter EvoDiff and baseline models (B) (n=1000
sequences per model). Test and Random baselines are reproduced in (A) and (B) for reference.
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Figure S4: Sequence pLDDT versus self-consistency perplexity for EvoDiff sequence models.

(A-B) Results for sequences from 38M parameter EvoDiff, baseline models, and test data plotted
alone (A), and 640M parameter EvoDiff and baseline models (B) (various colors, n=1000), except
for EvoDiff-OADM-640M (EvoDiff-Seq, shown in Fig. 2C), relative to sequences from the test set
(grey, n=1000). The self-consistency perplexity (ESM-IF Perplexity) is computed using sequences
inverse-folded by ESM-IF.
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Figure S5: Per-residue pLDDT for representative proteins generated by EvoDiff-Seq. pLDDT
scores computed based on the OmegaFold predicted structures, for individual residues in representa-
tive high-fidelity generations from EvoDiff-Seq (Fig. 2E). Points are colored by pLDDT (0-100, red
to blue).
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Figure S6: Generated protein sequences capture natural distributions of protein functional and

structural features. (A) UMAP of ProtT5 embeddings, with Fréchet ProtT5 distance (FPD), of
natural sequences from the test set (grey, n=1000) and of generated sequences from EvoDiff-Seq
(blue, n=1000) and ESM-2 (red, n=1000), and inferred sequences inverse-folded from structures from
RFdiffusion (orange, n=1000). (B) Distributions of structural features from DSSP 3-state predictions
of generations (n=1000), and their Kullback-Leibler (KL) divergence relative to the test set.
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LR-AR 38M EvoDiff-OADM 38M EvoDiff-D3PM-Uniform 38M

EvoDiff-D3PM-BLOSUM 38M CARP 38M

Figure S7: Coverage of sequence and functional space for generated distributions from 38M

parameter EvoDiff sequence models and baselines. UMAP of ProtT5 embeddings, annotated with
FPD, of natural sequences from test set (grey, n= 1000 plotted) and of generated sequences from
EvoDiff 38M parameter models and baselines (various colors, n=1000).
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LR-AR 640M EvoDiff-D3PM-Uniform 640M EvoDiff-D3PM-BLOSUM 640M

CARP 640M ESM-1b 650M FoldingDiff

Valid Random

Figure S8: Coverage of sequence and functional space for generated distributions from 640M

parameter EvoDiff sequence models and baselines. UMAP of ProtT5 embeddings, annotated with
FPD, of natural sequences from test set (grey, n= 1000) and of generated sequences from EvoDiff
640M parameter models and baselines (various colors, n=1000). A visualization of sequences from
the validation set (dark grey, n=1000) is included for reference. The visualization for the 640M
OADM model is excluded due to inclusion in Fig. S6A.
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LRAR D3PM BLOSUM D3PM Uniform CARP

ESM-1b FoldingDiff Random

LRAR D3PM BLOSUM D3PM Uniform

CARP

OADM

38M Models A

640M Models B

Figure S9: Structural features in generated sequences from all sequence models. (A-B) Multi-
variate distributions of helix and strand features in sequences from 38M (A) and 640M (B) parameter
models, and baselines based on DSSP 3-state predictions and annotated with the KL divergence
relative to the test set (n=1000 samples from each model). In (B), the distribution for the 640M
OADM model is excluded (see Fig. S6B); the distribution for random sequences (n=1000) is provided
as reference.
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Figure S10: EvoDiff-MSA enables evolution-guided sequence generation. (A) A new sequence
is generated from EvoDiff-MSA via diffusion over only the query component. Generations are
evaluated for diversity and self-consistency and for the quality and consistency of their predicted
structures. (B-E) Distributions of pLDDT (B), scPerplexity (C), sequence similarity (D; dashed line
at 25%), and TM-score (E; dashed line at 0.5) for sequences from the validation set, EvoDiff-MSA,
ESM-MSA, and a Potts model (n=250 sequences per model; box plots show median and interquartile
range). (F) Sequence pLDDT versus scPerplexity for sequences from the validation set (grey, n=250)
and EvoDiff-MSA (blue, n=250). (G) Predicted structures and metrics for structurally plausible
generations from EvoDiff-MSA.
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EvoDiff-MSA-D3PM-BLOSUM 
(Rand sampling)

EvoDiff-MSA-D3PM-Uniform
(Rand sampling)

EvoDiff-MSA-OADM
(Rand sampling)

EvoDiff-MSA-D3PM-BLOSUM 
(Max sampling)

EvoDiff-MSA-D3PM-Uniform
(Max sampling)

EvoDiff-MSA-OADM
(Max sampling)

ESM-MSA-1b
(Max sampling)

Figure S11: Perplexity as a function of corruption step for EvoDiff MSA models. Test-set MSA
perplexities at sampled intervals of the degree of corruption, specifically the diffusion timestep
for D3PM models and the fraction of masked residues for OADM and ESM models. The test-set
evaluated for each model was sampled using the same sampling scheme assigned during training.
Intervals reflect evenly spaced windows of 50 timesteps for D3PM models or 10% masking for
masked models.
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EvoDiff-MSA-OADM 
(Rand  sampling)

ESM-MSA-1b
(Max sampling) Potts

Figure S12: Sequence pLDDT versus scPerplexity for EvoDiff MSA models, for sequences from
the validation set (grey, n=250) and evaluated MSA models (various colors, n=250), except for
EvoDiff-OADM-MSA-Max (EvoDiff-MSA, shown in Fig. S10F).
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Figure S13: EvoDiff generates intrinsically disordered regions. (A) A new IDR sequence is
generated from EvoDiff-Seq or EvoDiff-MSA by inpainting disordered residues in the query sequence.
DR-BERT is then used to predict disorder scores for the original and regenerated sequences. (B)

Distributions of disorder scores over disordered and structured regions for sequences with true (grey),
inpainted (blue), and randomly-sampled (red) IDRs (n=100 sequences per condition; box plots show
median and interquartile range). (C) Distribution of sequence similarity relative to the original
IDR for generated IDRs from EvoDiff-Seq (blue, dashed) and EvoDiff-MSA (blue, solid) (n=100;
dashed line at 25%). (D-E) Predicted disorder scores and corresponding sequences for representative
generated (top row) and true (bottom row) IDRs from EvoDiff-Seq (D) and EvoDiff-MSA (E).
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Figure S14: Baseline performance of DR-BERT evaluator. (A-C) Distributions of DR-BERT
predicted disorder scores across disordered and structured regions for sequences with true (A),
scrambled (B), and randomly sampled (C) IDRs (n=100).
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Figure S15: Performance of DR-BERT evaluator on disorder regions. (A-B) Disorder scores
predicted by DR-BERT for true (x-axis) vs. generated (y-axis) IDRs for the same given sequence, for
generations from EvoDiff-Seq (A) and EvoDiff-MSA (B). Each dot represents an individual IDR
(n=100). The Pearson R is given for each of EvoDiff-Seq and EvoDiff-MSA.
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Figure S16: Details of EvoDiff-D3PM corruption schemes. The top and bottom rows correspond to
EvoDiff-D3PM-Uniform and EvoDiff-D3PM-BLOSUM, respectively. (A) Visualization of EvoDiff-
D3PM transition matrices. (B) Evolution of the number of mutations accrued as a function of the
diffusion timestep t for a sample input. (C) Evolution of � as a function of the diffusion timestep
t. (D) Evolution of DKL [q(xt|x0)kp(xT )] as a function of the diffusion timestep t, indicating
convergence to a uniform stationary distribution at t = 500 as DKL approaches zero.
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Table S1: Performance of EvoDiff sequence models. The reconstruction KL (Recon KL) was
calculated between the distribution of amino acids in the test set and in generated samples (n=1000).
The perplexity was computed on 25k samples from the test set. The minimum Hamming distance to
any train sequence of the same length (Hamming) is reported for each model as the mean ± standard
deviation over the generated samples. Fréchet ProtT5 distance (FPD) was calculated between the test
set and generated samples. The secondary structure KL (SS KL) was calculated between the means
of the predicted secondary structures of the test and generated samples.

Model parameters Recon KL perplexity Hamming FPD SS KL

Test - 9.92e-41 - 0.00392 0.101 1.37e-51

D3PM BLOSUM 38M 1.77e-2 17.16 0.83 ± 0.05 1.42 3.30e-5
D3PM Uniform 38M 1.48e-3 18.82 0.83 ± 0.05 1.31 3.73e-5
OADM 38M 1.11e-3 14.61 0.83 ± 0.07 0.92 1.61e-4
D3PM BLOSUM 640M 3.73e-2 15.74 0.83 ± 0.05 1.53 4.96e-4
D3PM Uniform 640M 2.90e-3 18.47 0.83 ± 0.05 1.35 2.13e-4
OADM 640M 1.26e-3 13.05 0.83 ± 0.08 0.88 1.48e-4

LRAR 38M 7.90e-4 12.38 0.82 ± 0.06 0.86 1.61e-4
CARP 38M 5.71e-1 25.13 0.74 ± 0.07 6.30 2.72e-3
LRAR 640M 7.01e-4 10.41 0.83 ± 0.06 0.63 1.76e-5
CARP 640M 3.56e-1 31.77 0.84 ± 0.05 1.78 5.03e-3
ESM-1b 3 650M 4.91e-1 53.49 0.83 ± 0.06 6.67 5.48e-4
ESM-2 3 650M 5.00e-1 68.39 0.84 ± 0.06 6.79 3.05e-3

FoldingDiff 4 14M 5.49e-2 - - 1.64 1.76e-3
RFdiffusion 5 60M 7.19e-2 - - 1.96 5.98e-3

Random - 1.65e-1 20 0.85 ± 0.04 3.16 1.90e-4
1 Calculated between the test set and validation set.
2 Reported value is the minimum Hamming distance between any two natural sequences of the
same length in UniRef50.
3 Due to model constraints, the maximum sequence length sampled was 1022.
4 For the FoldingDiff baseline, 1000 structures generated by FoldingDiff were randomly selected,
and the corresponding 1000 inferred sequences were inverse-folded using ESM-IF. These
sequences are between lengths of 50 and 128 residues.
5 For the RFdiffusion baseline, 1000 structures were generated corresponding to the UniRef
train distribution length, and 1000 corresponding sequences were inverse-folded using ESM-IF.
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Table S2: Structural plausibility metrics for EvoDiff sequence models and baselines. Metrics are
reported as the mean ± standard deviation for 1000 generated samples for each model.

Model Params ESM-IF ProteinMPNN OmegaFold
scPerplexity scPerplexity pLDDT

Test - 8.04 ± 4.04 3.09 ± 0.63 68.25 ± 17.85

D3PM Blosum 38M 12.38 ± 2.06 3.80 ± 0.49 42.76 ± 14.55
D3PM Uniform 38M 12.03 ± 2.04 3.77 ± 0.50 42.37 ± 14.39
OADM 38M 11.61 ± 2.38 3.72 ± 0.50 43.78 ± 14.18
D3PM Blosum 640M 11.86 ± 2.21 3.73 ± 0.48 44.14 ± 13.80
D3PM Uniform 640M 12.29 ± 2.05 3.78 ± 0.49 41.65 ± 14.32
OADM 640M 11.53 ± 2.50 3.71 ± 0.52 44.46 ± 14.62

LRAR 38M 11.61 ± 2.38 3.64 ± 0.56 48.26 ± 14.87
CARP 38M 9.68 ± 2.56 3.66 ± 0.62 50.79 ± 12.06
LRAR 640M 10.99 ± 2.63 3.59 ± 0.54 48.71 ± 15.47
CARP 640M 14.13 ± 2.42 4.05 ± 0.52 41.56 ± 14.35
ESM-1b 650M 13.90 ± 2.44 3.47 ± 0.68 58.07 ± 15.64
ESM-2 650M 14.02 ± 2.87 3.58 ± 0.69 50.70 ± 15.67

Random - 14.68 ± 1.97 3.96 ± 0.50 39.97 ± 14.05

Table S3: Validation-set perplexities for EvoDiff MSA models. The perplexity is calculated
based on the ability of each model to reconstruct a subsampled MSA from the validation set. “Max
Perplexity” and “Rand. Perplexity” indicate MaxHamming and Random subsampling, respectively,
for construction of the validation MSA.

Corruption Subsampling Params Max Perplexity Rand. Perplexity

D3PM BLOSUM Random 100M 11.35 8.31
D3PM BLOSUM Max 100M 10.98 7.61
D3PM Uniform Random 100M 10.14 6.77
D3PM Uniform Max 100M 10.06 6.66
OADM Random 100M 6.05 3.64
OADM Max 100M 6.14 3.60

ESM-MSA-1b Max 100M 11.20 5.89

Table S4: Performance of EvoDiff MSA models in generating query sequences conditioned on

MSAs. Metrics are reported as the mean ± standard deviation over 250 generated samples for each
model.

Model scPerplexity pLDDT Seq. similarity TM score

Valid 5.93 ± 3.19 73.99 ± 17.80 14.58 ± 21.64 1 -

OADM (Rand) - Rand MSA 9.41 ± 2.61 55.99 ± 14.75 6.13 ± 9.88 0.49 ± 0.23
OADM (Max) - Max MSA 9.38 ± 2.57 57.08 ± 16.01 6.74 ± 11.00 0.50 ± 0.23
OADM (Max) - Rand MSA 9.59 ± 2.69 54.95 ± 16.83 6.55 ± 10.49 0.46 ± 0.23

ESM-MSA-1b 10.05 ± 2.92 51.64 ± 16.54 7.13 ± 11.60 0.40 ± 0.23
Potts 10.34 ± 2.26 55.46 ± 13.82 12.01 ± 17.19 0.17 ± 0.10

1 Sequence similarity is calculated between the original query sequence and all the sequences in the
MSA.
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Table S5: Scaffolding performance of EvoDiff-Seq. Number of scaffolding successes out of 100
generations for RFdiffusion, EvoDiff-Seq, the LRAR baseline, the CARP baseline, and randomly
sampled scaffolds (Random), for each of 17 scaffolding problems. The bottom row contains the total
number of successful scaffolds generated per model.

PDB RFdiffusion EvoDiff-Seq LRAR CARP Random

1BCF 100 24 0 4 0
6E6R 71 16 7 3 1
2KL8 88 0 1 1 0
6EXZ 42 0 0 0 0
1YCR 74 13 12 10 7
6VW1 69 1 0 0 0
4JHW 0 0 0 0 0
5TPN 61 0 0 0 0
4ZYP 40 0 0 0 0
3IXT 25 23 22 13 7
7MRX 7 0 0 0 0
1PRW 8 68 70 54 5
5IUS 2 0 0 0 0
5YUI 0 4 0 0 0
5WN9 0 0 0 0 2
1QJG 0 0 0 0 0
5TRV 22 0 0 0 0

Total 610 149 112 85 22

Table S6: Scaffolding performance of EvoDiff-MSA. Number of scaffolding successes out of 100
generations for RFdiffusion, EvoDiff-MSA (Max), EvoDiff-MSA (Random), and the ESM-MSA
baseline, for each of 17 scaffolding problems. The bottom row contains the total number of successful
scaffolds generated per model.

PDB RFdiffusion EvoDiff-MSA EvoDiff-MSA ESM-MSA
(Max) (Random)

1BCF 100 100 98 99
6E6R 71 87 63 96
2KL8 88 11 31 42
6EXZ 42 86 87 73
1YCR 74 3 0 0
6VW1 69 4 3 4
4JHW 0 0 0 0
5TPN 61 0 0 0
4ZYP 40 0 0 0
3IXT 25 1 0 5
7MRX 7 72 68 66
1PRW 8 48 46 92
5IUS 2 3 1 7
5YUI 0 58 44 70
5WN9 0 0 0 0
1QJG 0 34 22 38
5TRV 22 15 12 12

Total 610 522 475 604
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