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Abstract

Supervised fine-tuning (SFT) is a crucial step001
for large language models (LLMs), enabling002
them to align with human instructions and en-003
hance their capabilities in downstream tasks.004
Increasing substantially instruction data is a di-005
rect solution to align the model with a broader006
range of downstream tasks or notably improve007
its performance on a specific task. However,008
we find that large-scale increases in instruc-009
tion data can damage the world knowledge010
previously stored in LLMs. To address this011
challenge, we propose LoRAMoE, a novelty012
framework that introduces several low-rank013
adapters (LoRA) and integrates them by us-014
ing a router network, like a plugin version of015
Mixture of Experts (MoE). It freezes the back-016
bone model and forces a portion of LoRAs to017
focus on leveraging world knowledge to solve018
downstream tasks, to alleviate world knowl-019
edge forgetting. Experimental results show that,020
as the instruction data increases, LoRAMoE021
can significantly improve the ability to process022
downstream tasks, while maintaining the world023
knowledge stored in the LLM 1.024

1 Introduction025

Supervised fine-tuning (SFT) provides a pivotal026

technique to make large language models (LLMs)027

follow human instructions and improve their per-028

formance of downstream tasks (Chung et al., 2022;029

Ouyang et al., 2022). Although some studies (Zhou030

et al., 2023; Cao et al., 2023) indicate that LLMs031

trained on a little data can follow instructions well,032

increasing the amount of data is a straightforward033

way to enhance their ability to multiple downstream034

tasks or improve their performance on a specific035

task, as shown in the left of Figure 1.036

However, the large-scale increase in instruc-037

tion data can destroy the world knowledge stored038

in LLMs, as illustrated in the right of Figure 1.039

1 The code will be made available upon publication.
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Figure 1: (Left) With the number of fine-tuning data
increases from 10K to 3M, the performance of many
downstream tasks is significantly improved. (Right)
With the amount of instruction data increasing, fine-
tuning the language models results in a decline in per-
formance on the benchmarks that measure their world
knowledge, such as TriviaQA (Han et al., 2019), Natural
Questions (Kwiatkowski et al., 2019). The details of
training implementation can be seen in Section 2.1.

Specifically, as the amount of instruction data 040

increases, we observe a notable decline in per- 041

formance on Closed-Book Question Answering 042

(CBQA) datasets, which are used to measure world 043

knowledge in LLMs (Touvron et al., 2023; Nee- 044

man et al., 2022). In the paradigm of supervised 045

fine-tuning, the conflict between maintaining world 046

knowledge inside LLMs and improving their per- 047

formance on downstream tasks by scaling up in- 048

struction data has not been thoroughly examined. 049

In this paper, we propose LoRAMoE, a novelty 050

framework for SFT, to enhance the models’ capa- 051

bility of solving downstream tasks, while alleviat- 052

ing world knowledge forgetting during the training 053

phase. LoRAMoE is a Mixture-of-Experts-style 054

(MoE-style) plugin, which introduces several low- 055

rank adapters (LoRA (Hu et al., 2021)) as experts 056

and integrates them by using a router network. The 057

router network automatically assigns weights to ex- 058

perts, which can improve the LLM’s performance 059

on multiple downstream tasks. 060

To demonstrate the efficacy of our proposed 061
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Figure 2: Performance on the various tasks after expanding the amount of fine-tuning data. For most of the
downstream tasks (e.g., NLI and summarization), with the expansion of training data, performance on these tasks
remains stable after improvement. Whereas, for the world knowledge benchmark, a significant decline can be
witnessed after a large amount of instruction data.

method, we conduct extensive experiments across062

a range of downstream tasks. Experiment results063

show that LoRAMoE can significantly improve064

LLM’s ability to address the various downstream065

tasks by fine-tuning the model on a large amount066

of instruction data, while maintaining the world067

knowledge stored in the model. In addition, we068

further evaluate our method by visualizing the ex-069

pert weight for tasks. The result indicates that070

LoRAMoE adequately alleviates world knowledge071

forgetting and achieves an improvement of mod-072

els by fostering collaboration among experts. The073

main contributions of our paper are as follows:074

1. We find that significantly increasing the075

amount of instruct data during the SFT phase076

can damage the world knowledge inside the077

LLMs. The need for improvement in down-078

stream tasks by scaling up instruction data079

conflicts with maintaining the world knowl-080

edge inside the model.081

2. We introduce LoRAMoE, a novelty frame-082

work for SFT, which introduces LoRAs as083

experts and integrates them by the router. Lo-084

RAMoE can enhance the model’s ability to085

address downstream tasks, while alleviating086

the world knowledge forgetting.087

3. Extensive Experiments demonstrate the effi-088

cacy of our proposed approach in multi-tasks089

and mitigating the forgetting of world knowl- 090

edge inside the model. The visualizing ex- 091

periment shows that LoRAMoE can achieve 092

an improvement by fostering collaboration 093

among experts. 094

2 Motivation 095

In this section, we verify that a large-scale SFT 096

can cause irreversible damage to world knowledge 097

within the LLMs while improving the LLMs’ per- 098

formance in various downstream tasks. 099

2.1 A Diverging Trend 100

We constructed a dataset containing seven cate- 101

gories of tasks with a total of five million training 102

samples, and used it to conduct SFT on a Llama- 103

2-7B model. The implementation details are de- 104

scribed in Appendix A. During the expansion of 105

fine-tuning data, we observed a diverging trend 106

in the performance across two types of tasks, as 107

shown in Figure 2: 108

Across downstream tasks such as summariza- 109

tion, Natural Language Inference (NLI), machine 110

translation, and others, the performance of the 111

fine-tuned model initially showed a magnificent 112

increase and eventually stabilized at a promising 113

level. However, when it comes to closed-book QA 114

(CBQA) tasks that are used as world knowledge 115

benchmark (Touvron et al., 2023; Neeman et al., 116
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Figure 3: Performance on world knowledge benchmarks
after training on CBQA solely. Its performance rises
greatly after training with very few samples and remains
relatively stable thereafter.

2022), the model’s performance catastrophically117

declines under the baseline Notably, with the train-118

ing data expanding, a contiguous decline can be119

witnessed. Moreover, this decline will occur ear-120

lier if the test set is filtrated. Appendix B case121

with a larger dataset including more tasks shows122

an even steeper drop on world knowledge bench-123

marks, although performance remains competitive124

on others.125

2.2 The Irreversible Knowledge Forgetting126

In this section, we dissect the reason behind the de-127

cline on these world knowledge benchmarks during128

the expansion of fine-tuning data. We find this re-129

sults from the occurrence of irreversible knowledge130

forgetting inside the LLM.131

The performance on world knowledge bench-132

marks highly relies on the knowledge and skills133

learned during pre-training phase. To investi-134

gate the relationship between the performance on135

world knowledge benchmarks and the knowledge136

embedded in pre-trained models (Petroni et al.,137

2019; Roberts et al., 2020; AlKhamissi et al., 2022),138

we conduct fine-tuning solely on the CBQA dataset139

with 250k samples and run evaluation on the test140

sets without train-test overlap. Results in Figure141

3 show initial training boosts performance signif-142

icantly, especially the first 1% (approximately 1k143

samples), with limited gains thereafter. This is be-144

cause early fine-tuning aligns existing knowledge145

with new instructions, improving CBQA results.146

However, due to minimal training-testing data over-147

lap, adding more samples doesn’t further enhance148

performance. Thus, a model’s benchmark success149

Task Name Baseline SFT solely
on CBQA

Two-stage
Fine-tuning

TriviaQA 33.5 36.22 13.7
NQ 7.8 12.8 3.6

HotpotQA 11.2 16.1 7.1

Table 1: Performance from left to right: LlaMA-2-
7B, model tuned on CBQA, and model tuned on 3M
instructions then on CBQA. Despite further tuning
on CBQA, the large-scale SFT model’s knowledge-
answering doesn’t improve, staying below the baseline.

relies on world knowledge acquired from the pre- 150

training. 151

Given this, it is naturally assumed that the dimin- 152

ished performance on knowledge benchmark 153

stems from the damage of knowledge stored in 154

the LLM due to large-scale instruction tuning. 155

To verify the hypothesis, we sequentially fine-tuned 156

a model using two datasets, first excluding CBQA 157

data, then with CBQA data. Results presented in 158

Table 1 show a great decline in knowledge capa- 159

bilities versus the original LLM. This indicates 160

that the world knowledge within the model was 161

compromised during the first stage of large-scale 162

fine-tuning, resulting in the model’s inability to 163

forge the alignment between human instructions 164

and the already destroyed knowledge in the subse- 165

quent stage of fine-tuning solely with CBQA. 166

To sum up, the pursuit of enhancing performance 167

on downstream tasks through the expansion of 168

training data conflicts the preservation of world 169

knowledge within the model in vanilla SFT. 170

3 LoRAMoE 171

In this section, we elaborate on the methodologi- 172

cal details of LoRAMoE, which is an MoE-style 173

plugin and introduced Localized Balancing Con- 174

straint during the training phase to alleviate the 175

world knowledge, as shown in Figure 4. 176

3.1 Architecture 177

The left of Figure 4 illustrates the forward process 178

of the standard MoE architecture (Shazeer et al., 179

2016; Fedus et al., 2021; Lepikhin et al., 2020). 180

In the MoE, the router assigns weights of experts 181

according to the data, allowing them to divide their 182

labor to complete the forward process (Jacobs et al., 183

1991). The key sight of LoRAMoE is that we freeze 184

the backbone model to maintain world knowledge 185

and introduce experts to leverage this knowledge 186

to address tasks, while improving the performance 187
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Figure 4: The architecture of LoRAMoE, compared with classic MoE. LoRAMoE utilizes multiple LoRAs as
adaptable experts and a router to gate them in the FFN layer of every transformer block. During the training process,
only the experts and the router are optimized.

on multiple downstream tasks. Additionally, we188

utilize the LoRA (Hu et al., 2021) as the architec-189

ture of the expert to improve training and inference190

efficiency.191

Formally, for the traditional transformers archi-192

tecture, the forward propagation process of the193

feed-forward neural (FFN) network block can be194

simplified as follows:195

f(x) = x+ fFNN(x). (1)196

The matrix operation of the linear layer in this for-197

ward propagation can be expressed as:198

o = Wx = W0x+∆Wx (2)199

where W0 ∈ Rdin×dout represents the parameter ma-200

trix of the backbone model and ∆W ∈ Rdin×dout201

denotes the updated parameter during the training202

phase. For LoRAMoE, we replace the linear layer203

in the FFN block with the MoE-style plugin, which204

makes experts collaborate to address tasks. Dur-205

ing the training phase, we freeze the backbone to206

maintain the world knowledge and only update207

∆W . Consider the LoRAMoE layer containing208

N experts, which is denoted as {Ei}Ni=1, the for-209

ward process of the layer can be mathematically210

expressed as follows:211

o = W0x+∆Wx = W0x+

N∑
i=1

G(x)iEi(x) (3)212

where Ei(·) and G(·) = Softmax(xWg) repre- 213

sent the i-th expert and the router in the LoRAMoE 214

layer, respectively. The Wg is the trainable parame- 215

ter matrix of the route network. By this, the experts 216

and the outer work in tandem, enabling the experts 217

to develop varied capabilities and efficiently handle 218

diverse types of tasks. 219

In addition, LoRA has been proven to be both 220

effective and efficient for the SFT phase of LLMs 221

(Wang et al., 2023a; Liu et al., 2022; Pan et al., 222

2022). To enhance the efficiency and resource con- 223

servation of the fine-tuning process, we replace the 224

parameter matrix of the experts with a low-rank 225

format. Specifically, the matrix ∆WE ∈ Rdin×dout 226

of the expert E(·) in the LoRAMoE layer can be 227

written as follows: 228

∆WE = BA (4) 229

where A ∈ Rdin×r, B ∈ Rr×dout , and the rank 230

r ≪ min(din, dout). LoRA contributes to a signifi- 231

cant reduction in the trainable parameters, thereby 232

enhancing efficiency and saving costs during the 233

fine-tuning process. 234

Overall, the forward process of the LoRAMoE 235

layer replaced the traditional FFN layer can be 236
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Figure 5: The coefficient of variation for the experts
of the unconstrained LoRAMoE progressively esca-
lates and sustains at a high value, i.e., approximately
three, similar to the phenomenon observed at Shazeer
et al. (2016). This indicates that the router assigns large
weights to the same few experts.

represented as:237

o = W0x+
α

r

N∑
i=1

ωi ·BiAix (5)238

where ωi denotes the weight of i-th expert and239

α is the constant hyper-parameter, approximately240

equivalent to the learning rate.241

3.2 Localized Balancing Constraint242

The imbalance of the experts’ utilization is a typ-243

ical problem in MoE (Shazeer et al., 2016; Fedus244

et al., 2021), which is also observed in our proposed245

method, as shown in Figure 5. The conventional246

solution is balancing expert utilization (Shazeer247

et al., 2016), which involves making the coefficient248

of variation of the experts’ importance as the loss249

function. However, this method assumes all the250

training samples are under the same distribution,251

which ignores the fact that samples may be from dif-252

ferent distributions such as the question-answering253

task and other downstream tasks, more detailed254

analysis and conceptual proof in Appendix C.255

Considering the mixed characteristics of data dis-256

tributions are important, during the training phase,257

we introduce localized balancing constraint, a nov-258

elty balancing expert utilization method to make a259

portion of experts focus more on leveraging world260

knowledge to solve tasks. As shown in Figure 6,261

during the fine-tuning phase, we softly constrain262

experts to concentrate on two aspects, one of which263

focuses on leveraging world knowledge by learn-264

ing on its related datasets, while another focuses265

Balancing
Expert Utilization

Localized Balancing Constraint

Balancing
Expert Utilization

Figure 6: Localized balancing constraint. We softly
force experts to focus on two types, one for leveraging
world knowledge by learning on its related tasks, and
another for concentrating on other downstream tasks.
Meanwhile, the experts in solving the same aspect are
balancing.

on other downstream tasks. In addition, all experts 266

within the same aspects are balanced such as bal- 267

ancing expert utilization. 268

Formally, we define the importance matrix Q of 269

the LoRAMoE layer and Qn,m denotes the sum of 270

router values of the n-th expert for the m-th train- 271

ing sample in a batch, which can be represented as 272

follows: 273

Qn,m =

Tm∑
j=1

G(xj)i =
exp(ωj

i /τ)∑N
k=1 exp(ω

j
i /τ)

(6) 274

where N and Tm denote the number of experts 275

and the number of tokens of m-th training sample, 276

respectively. xj is the hidden input of the j-th token. 277

We then define the coefficient matrix I with the 278

same size of Q, corresponding to the importance 279

matrix Q. In,m denotes the importance coefficient 280

of Qn,m, which can be written as follows: 281

In,m =

{
1 + δ, Typee(n) = Types(m)
1− δ, Typee(n) ̸= Types(m)

(7) 282

where δ ∈ [0, 1] controls the degree of imbalance 283

between experts types. Typee(n) and Types(m) 284

are pre-defined target type of n-th expert and the 285

task type of m-th training sample in a batch, re- 286

spectively. 287

We categorize the instruction data into two dis- 288

tinct types: world knowledge-related tasks such as 289

TriviaQA, and other downstream tasks such as Flo- 290

res. Then, we enable a portion of experts to learn 291

on world knowledge-related tasks to align human 292

instructions with world knowledge, while making 293

other experts focus more on enhancing the perfor- 294

mance of downstream tasks. Formally, suppose 295

5



that Ii,k and Ij,k denote the importance coefficient296

of the i-th and j-th expert for the k-th sample, re-297

spectively. If experts are in the same group, their298

values at corresponding positions in the coefficient299

matrix are identical, i.e., Ii,k = Ij,k. This indi-300

cates that these experts have the same importance301

because they are assigned to focus on learning the302

same type of tasks. On the contrary, the values303

of experts from distinct groups at their coefficient304

matrix are different, i.e., Ii,k ̸= Ij,k.305

The localized balancing constraint loss Llbc is306

defined to measure the dispersion of the weighted307

importance matrix Z = I ◦Q, which can be math-308

ematically represented as:309

Llbc =
σ2(Z)

µ(Z)
(8)310

where σ2(Z) and µ(Z) represent the variance and311

mean of Z, respectively. Specifically, if a spe-312

cific sample is from the world knowledge-related313

dataset, experts focusing on solving this type will314

have larger values in the coefficient matrix I. Op-315

timizing the loss Llbc reducing can make corre-316

sponding experts learn more from this sample and317

be assigned a larger weight by the router. Mean-318

while, experts solving the same type of task are319

balanced such as Shazeer et al. (2016). In addi-320

tion, the constraint is soft to encourage cooperation321

among experts to preserve the capacity for general-322

ization.323

Overall, localized balancing constraint Llbc324

achieves a localized balance between two types of325

experts: one specializes in leveraging world knowl-326

edge by training more on world knowledge-related327

datasets, while the other concentrates on various328

downstream tasks. The loss of LoRAMoE can be329

represented as follows:330

Ltotal = L+ βLlbc (9)331

where L is the next-token prediction loss of LLMs332

and β controls the strength of localized balancing333

constraint. In the training phase, we freeze the334

backbone model and the trainable parameters are335

only those of the experts and routers within the336

LoRAMoE layers. In the inference process, the337

router automatically assigns weights to all experts,338

which avoids the need for pre-specified data types.339

4 Experiments340

4.1 Experiment Setup341

In this section, we introduce the training implemen-342

tation for LoRAMoE. We only replace the linear343

layer in the feed-forward neural network of LLM 344

with the LoRAMoE layer, initializing each layer 345

with six experts, of which three experts are dedi- 346

cated to addressing downstream tasks, and the other 347

three are responsible for leveraging world knowl- 348

edge in the base model by learning on its related 349

tasks. The hyperparameters for control constraint 350

strength β and degree of imbalance δ are both set 351

to 0.1. For LoRA settings, the α, and r are set to 352

32 and four for the main result, respectively. The 353

dropout is 0.05, and the learning rate is 2e − 4. 354

The training dataset is the 3 million set the same 355

as the one described in Appendix A, so as the eval- 356

uation settings. We freeze the parameters of the 357

base model, rendering only the experts and router 358

in LoRAMoE trainable. The batch size per node is 359

set to 16. 360

4.2 Main Results 361

Table 2 displays the performance of LoRAMoE and 362

compares this result with the outcomes of directly 363

applying SFT to the model or utilizing LoRA tun- 364

ing. The results show that the language model with 365

LoRAMoE gets good performance on both world 366

knowledge benchmarks and others, indicating its ef- 367

fectiveness in avoiding knowledge forgetting while 368

improving multi-tasking abilities. 369

For world knowledge benchmarks, contrary to 370

the catastrophic collapse seen in Section 2, Lo- 371

RAMoE not only avoids this issue but also sur- 372

passes the model fine-tuned solely with the CBQA 373

dataset. LoRAMoE shows a significant perfor- 374

mance boost on world knowledge benchmarks over 375

vanilla SFT, with up to a 63.9% improvement and 376

an average increase of 35.3%. 377

For other downstream tasks, LoRAMoE is capa- 378

ble of achieving performance close to or even sur- 379

passing that of direct SFT. For instance, in all read- 380

ing comprehension tasks (i.e., Race, ReCoRD, mul- 381

tiRC), LoRAMoE achieved superior performance. 382

We also compare our method against PEFT by 383

single LoRA. The knowledge forgetting also oc- 384

curred during the single LoRA-tuning, as it is es- 385

sentially the same as vanilla SFT (Hu et al., 2021). 386

Compared with a single LoRA, multiple collabo- 387

rative LoRAs in LoRAMoE enhance both world 388

knowledge retention and multitasking performance. 389

They offer an average boost of 30.9% in world 390

knowledge benchmarks and 8.4% in other down- 391

stream tasks. 392

Besides, Llbc improves outcomes for LoRAMoE 393

in the vast majority of tasks, both world knowledge 394
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Task Name Baseline SFT solely on
CBQA SFT LoRA LoRAMoE LoRAMoE

(with Llbc)
WSC 65.4 - 76.0 65.4 71.2 70.2

winogrande 61.7 - 71.2 64.3 66.3 69.6
Flores 0.1 - 24.3 26.6 26.4 25.9
Xsum 19.7 - 34.7 34.5 34.8 33.2

Race-middle 30.5 - 89.1 78.8 84.5 90.0
Race-high 30.4 - 86.1 75.3 80.6 86.5

RTE 52.7 - 88.1 77.3 80.9 87.4
ReCoRD 29.4 - 84.8 83.2 84.3 85.9

AX-g 52.0 - 84.8 76.1 81.7 87.1
multiRC 44.0 - 86.7 81.4 87.3 87.9
TriviaQA 52.2 57.8 51.1 47.8 55.3 58.1

NQ 18.5 28.6 24.5 16.2 23.8 28.0
Filtered TriviaQA 33.5 36.2 21.6 33.4 38.5 35.4

Filtered NQ 7.8 12.8 7.3 11.6 13.4 12.0
HotpotQA 11.2 16.1 13.4 10.7 14.4 16.1

Table 2: Results of LoRAMoE. Contrary to direct full fine-tuning and the use of LoRA-tuning that exhibits reduced
performance on world knowledge benchmarks after training, our approach ensures simultaneous growth of both
world knowledge benchmarks and other downstream tasks.

benchmarks and others. Notably, for reading com-395

prehension, NLI, and the original CBQA dataset,396

the benefits of this method were quite substantial,397

up to 17.6%. This indicates capability partition-398

ing in the expert group benefits the performance in399

multi-task learning.400

# Experts # LoRA
Rank

# Trainable
Param.

Avg.
Results

6 4 0.57% 58.21
4 4 0.38% 55.84
8 4 0.76% 56.58

6 8 1.07% 58.11
6 16 2.08% 58.86

Table 3: Performance of LoRAMoE varies with the num-
ber of experts and LoRA rank across all test sets. This
includes the average results on both the world knowl-
edge benchmark and all other downstream tasks. Lo-
RAMoE shows stability to parameter changes.

4.3 Sensitivity Analysis401

In this section, we analyze the parameter sensitivity402

of LoRAMoE. Keeping other settings constant, we403

vary the number of experts and the rank of LoRA.404

The average performance with varied parameter405

settings on all test sets including the world knowl-406

edge benchmark and all other downstream tasks is407

shown in Table 3. In Appendix D there are detailed408

results.409

As the number of trainable parameters increases,410

HotpotQA

Filtered NQ

WSC

Filtered TriviaQA

Flores

Race-high

ReCoRD

Experts type 1 Experts type 2

Figure 7: Visualization of routers’ weight on different
types of data, where type 1 refers to the experts dedi-
cated to aligning the world knowledge in the base model
with the human instruction and type 2 refers to the ex-
perts that focus on downstream tasks. The utilization
rate of the type of experts diverged significantly across
tasks.

performance is generally stable. the number of 6 411

experts is the most beneficial choice, as more ex- 412

perts do not lead to higher performance. While the 413

increase in LoRA rank improves the model’s capa- 414

bilities somewhat, it brings about an exponential 415

rise in trainable parameters. 416

4.4 Visualizing the Experts Utilization 417

To confirm the effectiveness of LoRAMoE in spe- 418

cializing the experts with two types, we visualize 419

their weight assigned by the router when encoun- 420

tered with data from downstream tasks and knowl- 421

edge benchmarks respectively, as illustrated in Fig- 422

ure 7. 423
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There is a distinct contrast in the utilization424

of the two types of experts when dealing with425

world knowledge benchmarks and other down-426

stream tasks. This suggests that the routers can427

automatically allocate specific tasks to experts428

with corresponding abilities during the inference429

phase. Specifically, the experts requested to lever-430

age world knowledge are greatly employed in431

world knowledge benchmarks (e.g., TriviaQA, Nat-432

ural Questions, and HotpotQA), underscoring their433

vital role in preventing world knowledge forgetting.434

This corresponds to the fact we state in Section 2435

that supervised fine-tuning boosts the model’s ca-436

pabilities in these tasks by associating pre-stored437

world knowledge in the model with human instruc-438

tions. On the other hand, experts assigned to focus439

on enhancing performance in downstream tasks440

are given increased prominence when encountering441

these tasks. Through this visualized result, we find442

that some downstream tasks still require experts of443

another type. It is reasonable. For example, in read-444

ing comprehension tasks, the knowledge learned445

by the model during pre-training can better assist446

in making factual judgments. This phenomenon is447

even more pronounced in language-based tasks. In448

the WSC task (Levesque et al., 2012), the router449

allocates an average of about 45% of its attention450

to the experts responsible for world knowledge.451

5 Related Work452

Parameter-Efficient Fine-tuning. With the size453

of language models growing larger, parameter-454

efficient fine-tuning (PEFT (He et al., 2021)) has455

become crucial for resource savings. Researchers456

have proposed several approaches such as LoRA457

(Hu et al., 2021), adapters (Houlsby et al., 2019),458

and prompt learning (Lester et al., 2021), to en-459

hance fine-tuning efficiency. PEFT based on low-460

rank adapters (Hu et al., 2021) is popular and461

widely used, which introduces two trainable low-462

rank matrices in each fully connected layer, to463

achieve significant savings in training resources464

without adding additional inference computation465

cost. We apply low-rank techniques to the structure466

of experts to save resource consumption.467

Mixture-of-Experts. The mixture of Experts468

(MoE) replaces the feed-forward neural network469

layer with sparsely activated experts, which sig-470

nificantly enlarges the model without remarkably471

increasing the computational cost (Jacobs et al.,472

1991). Currently, the token-level MoE architectures473

are widely used in pre-trained language models 474

and vision models (Shazeer et al., 2016; Lepikhin 475

et al., 2020; Du et al., 2022; Riquelme et al., 2021). 476

In addition, researchers (Zhou et al., 2022; Chi 477

et al., 2022) aim to investigate the router selection 478

problem in MoE. Unlike these efforts to expand 479

the model size and address the selection problem, 480

we propose an MoE-style framework for multi- 481

task learning and maintaining the world knowledge 482

stored in LLMs. 483

Multi-LoRA Architecture. Researchers also 484

have utilized multiple LoRAs for enhanced model 485

performance. Huang et al. (2023) propose LoraHub 486

to choose different LoRA combinations for task 487

generalization. MOELoRA (Liu et al., 2023) lever- 488

age LoRA and MoE for task-specific tuning and 489

multitasking, especially in healthcare. However, 490

these methods need the data type as the input dur- 491

ing the inference phase, which limits the applica- 492

tion of the model to other tasks. Chen et al. (2023a) 493

first introduces multiple LoRA serving systems and 494

Sheng et al. (2023) proposes S-LoRA, a system 495

that can serve thousands of LoRA adapters from 496

a single machine. Chen et al. (2023b) introduces 497

several experts to enhance the model’s ability for 498

multimodal learning. Unlike these approaches, Lo- 499

RAMoE introduces an MoE-style plugin and Local- 500

ize Balancing Constraint to tackle world knowledge 501

forgetting in LLMs, while enhancing the model’s 502

ability to multi-task learning. 503

6 Conclusion 504

In this paper, we first delve into the conflict be- 505

tween improving LLM’s performance on down- 506

stream tasks by scaling up data during the SFT 507

phase and discouraging world knowledge forget- 508

ting. To address this conflict, we then introduce Lo- 509

RAMoE, a novelty framework for SFT, which intro- 510

duces LoRAs as experts and integrates them by the 511

router. Extensive experimental results demonstrate 512

that LoRAMoE can foster collaboration among ex- 513

perts to enhance the model’s performance of down- 514

stream tasks, while preserving the world knowl- 515

edge inside it. 516

7 Limitations 517

In this section, we discuss the potential limitations 518

of our proposed method LoRAMoE. Firstly, al- 519

though we have demonstrated the effectiveness of 520

LoRAMoE in alleviating world knowledge forget- 521

ting while enhancing the downstream ability of the 522

8



LLMs with SFT, we limit the model size to 7B due523

to resource and time constraints. Further work will524

be conducted on the larger LLMs, to understand the525

influence of large-scale SFT on these LLMs and526

to boost their multitasking abilities. Secondly, the527

localized balancing constraint can softly constrain528

the type of experts and balance the experts utiliza-529

tion. However, we haven’t studied the case where530

there are more experts types for a more fine-grained531

task category. Future work will be conducted on a532

more fine-grained understanding of the influence533

of SFT and the utilization of LoRAMoE.534
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Task Name # Train # Test Task Type

TriviaQA (Han et al., 2019) 78785 254 closed-book QA
NQ (Kwiatkowski et al., 2019) 104071 357 closed-book QA
HotpotQA (Qi et al., 2019) 72798 5622 closed-book QA
WSC (Levesque et al., 2012) 554 146 coreference resolution
WinoGrande (Sakaguchi et al., 2021) 40398 1767 coreference resolution
Flores (Guzmán et al., 2019) 0 1600 machine translation
WMT 2 500000 - machine translation
RTE 3 2490 3000 NLI
ReCoRD (Zhang et al., 2018) 100730 10000 reading comprehension
AX-g 4 0 356 NLI
multiRC (Khashabi et al., 2018) 27243 9693 reading comprehension
anli r1/r2/r3 (Liu et al., 2020) 162874 - NLI
qqp (Wang et al., 2017) 363846 - NLI
Xsum (Narayan et al., 2018) 204045 11334 single-document summarization
Race (Lai et al., 2017) 87866 4934 reading comprehension
duorc-selfRC (Saha et al., 2018) 60721 - reading comprehension
AG-news (Zhang et al., 2015) 120000 - topic classification
yelp review (Zhang et al., 2015) 650000 - sentiment classification
openai tldr 5 232188 - summarization

Table 4: Details about the tasks in our fine-tuning dataset. "-" means we do not use the test set of this dataset for
evaluation.
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A Details about Experiment762

Implementation763

Datasets. The seven tasks are closed-book ques-764

tion answering (CBQA), coreference resolution,765

natural language inference (NLI), abstract summa-766

rization, multi-lingual translation, reading compre-767

hension, and text classification. Table 4 shows768

the composition of the 3-million-sample dataset. 769

The five million fine-tuning data we use includes 770

three million versions and their variants from data 771

augmentation strategies. The 1-million-sample ver- 772

sion is the subset of the original 3-million-sample 773

dataset. 774

Evaluation. We utilize the opencompass6 775

framework to run the evaluation process on the 776

aforementioned tasks. Notably, considering previ- 777

ous work that has noted train-test overlap in CBQA 778

datasets (Lewis et al., 2020), we elaborately se- 779

lect parts of the CBQA dataset without train-test 780

overlap for our testing set, namely Filtered NQ and 781

Filtered TriviaQA, to analyze the world knowledge 782

of models better. 783

B The World Knowledge of LLM Further 784

Declines after Being Trained with More 785

Data 786

With the task types increasing, there is an inevitable 787

trend to increase the amount of SFT training data. 788

To further verify that a large-scale SFT training 789

process can lead to knowledge forgetting of LLM 790

as stated in Section 2, we construct a much larger 791

dataset containing ten million training samples. In 792

addition to the dataset from the previous section, 793

we also added the following tasks: 794

6https://opencompass.org.cn/
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• Named Entity Recognition: sampled from795

Wang et al. (2023b). Contains 17 different796

NER tasks.797

• Program Execution: sampled from Wang et al.798

(2022). Contains 90 different tasks requiring799

the LLM to understand the instructions about800

a program and execute it.801

• Question Generation: sampled from a existing802

huggingface dataset 7. Given a context, the803

LLM needs to generate an appropriate ques-804

tion based on the answer.805

• Text2sql: sampled from two existing hugging-806

face datasets8. Given a description in natural807

language, the LLM needs to generate an ap-808

propriate sequence of SQL.809

• Toxic Classification: sampled from a existing810

huggingface datasets9.811

After training the LLaMa-2-7b on this 10-812

million-sample dataset with the same experiment813

setup with Appendix A, we find the LLM exhibit814

a greater knowledge-forgetting but a promising815

performance in other tasks apart from knowledge816

benchmarks.817

C Mixed Distribution Dilemmas for818

Expert Balancing819

When fine-tuning MoE without any constraints,820

the router mechanism often converges to a state821

in which a small number of experts receive a dis-822

proportionately large share of preferences by the823

router, as depicted in Figure 5. This imbalance824

among experts presents a challenge to correct, as825

experts that receive greater routing weights in the826

early stages of training undergo more rapid opti-827

mization, thereby garnering increased preferences828

from the router. A similar phenomenon has been829

documented in the work presented in Shazeer et al.830

(2016) and Fedus et al. (2021).831

A conventional solution for balancing experts832

utilization involves employing the coefficient of833

variation of the experts’ importance as the loss func-834

tion, aimed at equalizing the significance of each835

expert (Shazeer et al., 2016). This solution assumes836

7https://huggingface.co/datasets/qa_zre
8https://huggingface.co/datasets/Clinton/

Text-to-sql-v1, https://huggingface.co/datasets/
cfq

9https://huggingface.co/datasets/google/civil_
comments

Task Name Baseline Result
NER 42.1 82.2

Program Execution 18.7 78.5
Toxic Classification 96 97.4

Question Generation 46.2 61.1
Text2sql 56 96.2

WSC 65.4 70.2
winogrande 61.7 66.1

Flores 0.1 26.0
Xsum 19.7 33.2

Race-middle 30.5 87.0
Race-high 30.4 83.3

RTE 52.7 87.4
ReCoRD 29.5 56.6

AX-g 52.0 87.9
multiRC 44.0 86.0

TriviaQA 52.2 30.9
NQ 18.5 14.2

Filtered TriviaQA 33.5 15.7
Filtered NQ 7.8 5.0
HotpotQA 11.2 7.6

Table 5: Performance of Llama-2-7B after vanilla SFT
with a 10-million-sample datasets. There is a much
more severe decrease in the performance on the CBQA
tasks, while a great enhancement in other tasks com-
pared with the baseline.

that the distribution of training samples for optimis- 837

ing MoE is a single distribution, which inherently 838

eliminates the necessity of considering the diverse 839

origins of data distribution. Specifically, this tra- 840

ditional approach simplifies the modeling process 841

by assuming homogeneity in data sources that of- 842

ten do not align with fine-tuning data containing 843

both factual knowledge QA and other downstream 844

tasks. Therefore, such simplification can lead to 845

significant biases, particularly when encountering 846

datasets with varied distributional characteristics. 847

Traditional balancing constraints, which aim to 848

allocate a uniform distribution of training samples 849

across all experts, can lead to inaccurate param- 850

eter estimation. This is because such constraints 851

do not account for the intrinsic differences in data 852

representation and importance across various cat- 853

egories. Recognizing the disparate nature of data 854

distributions, LoRAMoE strategically assigns data 855

to experts, not uniformly, but based on the observed 856

imbalances. This allocation is governed by a set 857

of weights that are calibrated to reflect the varying 858

significance and representation of different data 859

categories within the overall dataset. 860

Such a specialized allocation method is pivotal in 861

addressing the challenges posed by uneven data dis- 862

tributions. By tailoring the distribution of training 863
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Task Name # Expert=8
# rank=4

# Expert=4
# rank=4

# Expert=6
# rank=8

# Expert=6
# rank=16

WSC 71.2 76.0 70.2 76.9
winogrande 69.8 56.0 69.5 70.9

Flores 25.0 25.8 26.1 26.3
Xsum 32.8 33.3 33.7 34.0

Race-middle 90.3 84.2 90.3 90.5
Race-high 87.1 80.7 87.3 87.2

RTE 84.5 80.1 88.1 85.2
ReCoRD 85.6 85.5 86.0 86.1

AX-g 88.8 77.5 88.2 85.7
multiRC 77.2 87.6 81.1 87.3

TriviaQA 54.4 57.8 58.2 58.9
NQ 25.6 27.9 27.8 28.2

Filtered TriviaQA 30.7 35.8 36.7 34.3
Filtered NQ 11.5 13.4 12.0 15.4
HotpotQA 14.5 16.0 16.4 16.5

Table 6: Detailed result on sensitivity study.

samples to each expert based on the inherent dispar-864

ities in the data, LoRAMoE facilitates a more accu-865

rate and representative parameter estimation. This866

nuanced approach to data distribution allows for a867

more effective fitting of the model to diverse data868

subsets, significantly enhancing the model’s predic-869

tive accuracy and generalization capability. This870

strategy is particularly effective in scenarios where871

data imbalance could otherwise lead to skewed872

learning and generalization errors, ensuring that873

each data category is appropriately represented and874

modeled within the overall system.875

To illustrate the concept with a simplified model,876

let’s assume our training data is sampled from a877

mixture of two Gaussian distributions. The means878

(µ1, µ2) and variances (σ2
1, σ

2
2) of these distribu-879

tions are implicit. The proportion of training data880

from each distribution is denoted as p1andP2 where881

p1 + p2 = 1, without loss of generality, we assume882

that p1 ≤ p2. When a MoE model fits the proposed883

distribution with balanced weights m, the likeli-884

hood of the model given the data can be expressed885

as:886

L(X) =
∏

x∈X1

(
mN

(
x;µ′

1, σ
′2
1

)
887

+(1−m)N
(
x;µ′

2, σ
′2
2

))
888

×
∏

x∈X2

(
mN

(
x;µ′

1, σ
′2
1

)
889

+(1−m)N
(
x;µ′

2, σ
′2
2

))
, (10)890

where Card(X1) : Card(X2) = p1 : p2.891

Using N1(x) and N2(x) for N
(
x;µ

′
1, σ

′2
1

)
and 892

N
(
x;µ

′
2, σ

′2
2

)
, 893

The optimal mean value for µ
′
1 satisfies the fol- 894

lowing conditions, whose value is 0 when the fitted 895
distribution is in the same family of mixed distribu- 896
tions N(θ, p1) as the sampling distribution: 897

∂ logL(X)

∂µ′
1

=
∑

x∈X1∪X2

∂

∂µ′
1

log (mN1(x) 898

+(1−m)N2(x)) 899

=
∑

x∈X1∪X2

(
x− µ′

1

σ′2
1

)
900

× mN1(x)

mN1(x) + (1−m)N2(x)
, (11) 901

In equation 10, we can replace part of the summa- 902
tion with the empirical estimate of the mean of the 903
input x. For an ideal routing network, there must 904
exist a distribution Ni such that the data allocated 905
to this distribution is independently and identically 906
distributed with one of the peaks in the sampling 907
distribution. Let’s assume this distribution to be N2. 908
In this case, if m ≥ p1, then the fitting result for dis- 909
tribution µ1′ will be µ′

1 = (p1µ1+(m−p1)µ2)/m. 910
Based on the chain rule of differential derivation, 911
we end up with: 912

d logL

dm
=
∂ logL

∂µ′
1

dµ′
1

dm
913

=

( ∑
x∈X1∪X2

(
x− µ′

1

σ′2
1

)
914

× mN1(x)

mN1(x) + (1−m)N2(x)

)
915

× p1(µ2 − µ1)

m2
916

≤0, (12) 917

13



The inverse result can be derived similarly.918

Therefore, the best training error is achieved only919

when the mixing coefficient m of the prior distri-920

bution is consistent with the actual sampling distri-921

bution weight p1.922

D Detalied Results of Sensitivity Study923

Table 6 shows the detailed results presented in Sec-924

tion 4.3.925
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