
000
001
002
003
004
005
006
007
008
009
010
011
012
013
014
015
016
017
018
019
020
021
022
023
024
025
026
027
028
029
030
031
032
033
034
035
036
037
038
039
040
041
042
043
044
045
046
047
048
049
050
051
052
053

Under review as a conference paper at ICLR 2026

TABKDE: SIMPLE AND SCALABLE TABULAR DATA
GENERATION WITH KERNEL DENSITY ESTIMATES

Anonymous authors
Paper under double-blind review

ABSTRACT

Tabular data generation considers a large table with multiple columns – each
column comprised of numerical, categorical, or sometimes ordinal values. The
goal is to produce new rows for the table that replicate the distribution of rows from
the original data – without just copying those initial rows. The last 3 years has
seen enormous progress on this problem, mostly using computational expensive
methods that employ one-hot encoding, VAEs, and diffusion.
This paper describes a new approach to the problem of tabular data generation. By
employing copula transformations and modeling the distribution as a kernel density
estimate we can nearly match the accuracy and privacy-preservation achievements
of the previous methods, but with almost no training time. Our method is very
scalable, and can be run on data sets orders of magnitude larger than prior art on
a simple laptop. Moreover, because we employ kernel density estimates, we can
store the model as a coreset of the original data – we believe the first for generative
modeling – and as a result, require significantly less space as well. Our code is
available here: http://github.com/tabkde/tabkde-main

1 INTRODUCTION

Tabular data is a fundamental format in many domains, including finance, healthcare, and social
sciences, and has seen much recent attention (Fonseca and Bacao, 2023; Assefa et al., 2021; Hernandez
et al., 2022; Ouyang et al., 2023), focusing on challenges in scalability and accuracy in its diverse
structural characteristics (Xu et al., 2019; Borisov et al., 2023; Liu et al., 2023). Unlike image or text
data, which follow well-defined spatial or sequential relationships, tabular data consists of mixture of
varied features that may be numerical, categorical, or ordinal. This heterogeneity poses difficulties in
modeling feature dependencies and joint distributions effectively. Traditional generative approaches,
such as GANs and VAEs, have been applied with mixed success, and may need to paired with careful
preprocessing and one-hot encoding, which can lead to an explosion in dimensionality and loss of
information (Xu et al., 2019; Zhang et al., 2024). Moreover, adversarial training in GANs can be
unstable (Arjovsky and Bottou, 2017), while VAEs may struggle to generate realistic samples due to
overly simplistic latent space assumptions (Dai and Wipf, 2019).

Copula-based data generators Patki et al. (2016); Majdara and Nooshabadi (2020) provide another
approach towards transforming differently structured and scaled columns into common format.
The synthetic data vault (SDV) Patki et al. (2016) includes generative modeling through a variety
of approaches including low-rank modeling, GANs, and vine-copula Meyer et al. (2021). This
framework can achieve improved fidelity, but sometimes at a heavy computational expense.

Diffusion models have recently emerged as powerful generative frameworks, demonstrating impres-
sive performance in domains such as image synthesis and molecular generation (Ho et al., 2020;
Rombach et al., 2022; Dhariwal and Nichol, 2021; Morehead and Cheng, 2024; Luo et al., 2024).
These models operate by progressively transforming noise into structured data through a learned
denoising process. Recent advances, such as TabDDPM (Kotelnikov et al., 2023), TABSYN (Zhang
et al., 2024), and TABDIFF Shi et al. (2025) have made significant progress in adapting diffusion
to the tabular setting. TabDDPM (Kotelnikov et al., 2023) applies a diffusion model directly to
tabular data, effectively capturing complex distributions but requiring a high number of sampling
steps. TABSYN (Zhang et al., 2024) introduced a latent-space diffusion approach (similar to stable
diffusion model approach (Rombach et al., 2022)): it first encodes categorical features with a one-hot

1

http://github.com/tabkde/tabkde-main

054
055
056
057
058
059
060
061
062
063
064
065
066
067
068
069
070
071
072
073
074
075
076
077
078
079
080
081
082
083
084
085
086
087
088
089
090
091
092
093
094
095
096
097
098
099
100
101
102
103
104
105
106
107

Under review as a conference paper at ICLR 2026

encoding, then invokes a VAE to map to a structured representation before applying a diffusion model.
This approach has demonstrated remarkable improvements in synthetic data quality, outperforming
previous methods in terms of statistical fidelity. TABDIFF (Shi et al., 2025) extends this by applying
a discrete state-space diffusion for the categorical features.

Challenges with the synthetic tabular data generation. Ultimately, effective tabular data gen-
eration needs to over come three challenges. First, it should achieve high accuracy in how the
distribution of data it generates aligns with heldout data along marginal, pairwise correlations, and
full joint distributional measurements. Most prior methods without diffusion are not able to hit
high levels of accuracy. Second, it should preserve privacy of the test data; it cannot just generate
synthetic data too similar to the data it was trained on. For instance, SMOTE (Chawla et al., 2002)
while successful in other metrics, often re-generates training data, or very close to it. Third, it should
be scalable and efficient; that is, it should be able to easily handle very large training sets, and –
more challengingly – data with many categories. Methods based on one-hot encoding like TABSYN
can run out of memory with large numbers of categories, and diffusion-based approaches can be
relatively slow to train. No prior method achieves all three desiderata; see Table 1.

1.1 OUR CONTRIBUTION

We propose a new approach to tabular data generation, TABKDE, that achieves all three desiderata; see
Table 1. Notably, it only uses classic tools (carefully assembled): copula transformation, covariance
estimation, kernel density estimation. We argue this simplicity improves the interpretability, and we
demonstrate (in Section 3) that while nearly-matching SOTA accuracy and privacy it significantly
reduces the computational cost in training and generation. It has the following specific advantages.

• Scalability. It is more scalable and efficient than methods (like TABDDPM Kotelnikov et al.
(2023) and TABSYN Zhang et al. (2024)) which rely on one-hot encoding and need to train
an expensive diffusion model. These falter on datasets with many categories.

• Preserving Privacy. TABKDE preserves privacy while not requiring extensive training.
In contrast SMOTE Chawla et al. (2002), which also does not have a training step, often
generates data too close to the data it was trained on.

• Coreset for Tabular Data Generation. For the first time, we construct a coreset for
tabular data generation. By mapping data into a space where kernel density estimates are
applicable, we can apply coresets for KDEs which compactly (and sub-linearly in training
size) represents the generative process.

Table 1: Comparison of popular tabular data synthesis methods across key criteria.

Method citation Scalable Accurate Private
SMOTE (Chawla et al., 2002) ✓ ✓ x
GReaT (Borisov et al., 2023) x x x
GOGGLE (Liu et al., 2023) x x x
CoDi (Lee et al., 2023) x x x
STaSy (Kim et al., 2023) x x x
TabDDPM (Kotelnikov et al., 2023) x ✓ ✓
TABSYN (Zhang et al., 2024) x ✓ ✓
CORETABKDE coreset variant ✓ ✓ ✓
TABKDE main contribution ✓ ✓ ✓

Overview of our approach: TABKDE. We follow the general three step paradigm of Rombach
et al. (2022), applied to tabular data. (1) Encoding converts the input into a standardized continuous
representation. After this step each of categorical, ordinal, and numerical features are then represented
in the same continuous format. (2) Embedding into a Distance-Aware Latent Space uses a
continuous mapping into another continuous space where now Euclidean distance between objects is
representative of how similar they are. (3) Generative Modeling maps the discrete distribution of
training data in the latent space to a continuous distribution from which we can sample from. The

2

108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161

Under review as a conference paper at ICLR 2026

(0,0,0)

(0,1,0)

(1,0,0)

(0,0,1)

(1,1,1)

!!

!"

(0,0,0)

(0,1,0)

(1,0,0)

(1,1,1)

!
!̅

!
#

Copula TransformEncoding

Decoding Inverse Copula

Fits Tabular Rules

T 𝐸 𝑍Euclidean Representation

Calibrated

sa
m
pl
e

SalaryEducationAge
> 50kHigh school50

<= 50kCollege23
………

Numerical CategoricalOrdinal

SalaryEducationAge
> 50kBachelor35
> 50k10th53

………

Numerical CategoricalOrdinal

Age Education Salary
!! (50, 12, -0.3)
!" (23, 10, 1.9)
!# (…, …, …)

Age Education Salary
!! (35, 13, -0.3)
!" (53, 6, -0.3)
!# (…, …, …)

Figure 1: An overview of the proposed TABKDE.

samples are then made in the latent space, inverted to the encoded format, and decoded to be in the
format of the input table.

Figure 1 illustrates how we implement the general framework; notably we avoid one-hot encoding
(which can blow up memory requirements), VAEs and diffusion (which can be slow to train), to
achieve a scalable method which can still achieve high accuracy and retain privacy.

Our method TABKDE first converts all features—numerical, ordinal, and categorical—into a unified
numerical format; importantly, it does so in a careful way, so each column in the table is represented
as a single numerical value. This is followed by a copula-based transformation that maps the data
into a unit hypercube for easier (marginal) density estimation. Here its covariance is also calibrated.
Then the generative process uses Kernel Density Estimation (KDE) modeling to represent and sample
from a distribution. The only training is in learning the shape of the kernel to match the distance to
closest record. Note that sampling from a KDE is simple, in that it needs only to choose a data point,
a (covariance scaled) direction, and an offset distance. Then generated samples are mapped back
by inverting the copula transform, and decoded. One key additional step is performed to ensure all
samples are within the margins identified by the copula, otherwise partial resampling is performed.

2 TABKDE ALGORITHM

We consider a tabular dataset T = {X1, X2, . . . , Xm}, where each row Xi represents an independent
and identically distributed (i.i.d.) sample from an unknown joint distribution P (X). Each row
Xi = (x1, x2, . . . , xd) is a d-dimensional vector where each feature xj belongs to one of three
categories: Numerical (Num), Ordinal (Ord), and Categorical (Cat). Each numerical is in R, but
both categorical and ordinal features come from a discrete domain; the difference being that ordinal
features have a specified ordering (e.g., grades A > B > C).

The key innovation of TABKDE is in the careful combination of copula mapping to latent space and
the KDE-based generative modeling approach.

Copula Latent Space Mapping: It uses a copula-based transformation of the tabular dataset T into
a latent representation Z that lies within the continuous [0, 1]d, allowing precise control over the
domain of the marginal distributions. This dimension and margin preservation critically leverages
principal vector guided encoding of categorical features. Then the covariance Σ of data in this space
allows for modeling the directional variation of the data within these bounds.

KDE Generative Modeling: Here we use a KDE model to allow for a non-parametric complex
distributional model. We simply sample by choosing a training data point in the latent space
z ∼ Unif(Z), and then choose a random direction u proportional to the covariance Σ. Then generate:

z′ ← z + ur

where r is a scalar controlling the amount of deviation from the training data. In particular, we select
r at randomly from a learned distribution from the training data estimating the distance to the closest
point. One more idea is needed, we disallow points outside [0, 1]d to respect the original column
marginals. To handle this, we keep coordinates within [0, 1]d, and regenerate the others iteratively.

3

162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215

Under review as a conference paper at ICLR 2026

2.1 ENCODING OF TABULAR FEATURES: T → E

For tabular data T = {X1, . . . , Xn} with d coordinates, we first encode each row Xi into a space
E ⊂ Rd. Importantly the space E has one dimension for each column in T . Numerical values are left
as they are, and categorical values are assigned values 1, 2, 3, . . . for the rank of the ordinal category.

For categorical data we avoid one-hot encoding, and instead apply PRINCIPALGUIDEDENCODING.
It first computes a vector u ∈ Rd′

, the top principal vector of the d′ ≤ d numerical features;
this captures the largest mode of variation among the numerical data. Then for each categorical
dimension Cj (for j ∈ [d]) it uses u to numerically encode each category. That is, for each category
c ∈ Cj it considers all rows Xi with c in coordinate j; call this set Tj=c. Then for numerical parts
xnum
i ∈ Rd′

of each Xi ∈ Tj=c, it finds their average numerical value along direction u; that is
vj=c =

1
|Tj=c|

∑
Xi∈Tj=c

⟨u, xnum
i ⟩. The discrete category c is replaced with that average value vj=c

in the space E. These categorical dimension can be detokenized by randomly rounding to one of the
two nearest values proportional to how close it is.

2.2 MAP TO NUMERICAL LATENT SPACE: E → Z

Next we map to a latent space Z where the distances measure closeness between objects. Our
representation will have two aspects. First we will ensure Z = [0, 1]d, so each coordinate is
continuous value between 0 and 1. We do this with a copula transform (Patki et al., 2016) where
among the encoded training data Ei ∈ E, each coordinate Ei,j is assigned its value in the empirical
CDF. So Zi,j is the fraction of Ei′,j ≤ Ei,j . We store the sorted order of the values Ei,j so we can
invert this.

Second, after have built Z via a copula map in each coordinate, we then compute sample covariance
Σ of Z. This induces a Mahalanobis distance, and Σ will be important for generative sampling.

2.3 LEARNING DISTANCE TO CLOSEST RECORD (DCR)

In generative sampling, one often computes the distance to closest record (DCR) (Mateo-Sanz et al.,
2004; Steier et al., 2025) to evaluate how similar a synthetic record s is to a real one from a set Z.

DCR(s, Z) = min
z∈Z
∥s− z∥

A DCR of 0 may indicate an identical match, posing a significant privacy risk. We can comparing DCR
values from synthetic data to both training ZT and holdout ZH datasets. Ideally, for synthetic data S,
DCR distributions {DCR(s, ZT)}s∈S and {DCR(s, ZH)}s∈S should heavily overlap, showing that
synthetic data reflects general patterns rather than replicating specific records.

As part of our generative process, we learn this distribution {DCR(s, Z)}s∈S where Z is the training
data in the copula space. Then we can generate synthetic data to mirror this scale of variation. We
repeatedly randomly split the training data, and computes the DCR distribution between the two
splits. Then we fit a simple mixture of k Gaussians to this distribution; choosing k (from 1, . . . , 10)
using Bayesian Information Criterion.

2.4 TABULAR KERNEL DENSITY ESTIMATION: Z → SAMPLE

A kernel density estimation (KDE) is a continuous estimate of a probability density function built by
smoothing finite data samples with a kernel function K (often Gaussian) and bandwidth h. For n
data points X = {x1, . . . , xn} ∼ P , if we appropriately adjust h as n grows, then the KDE defined
KDEX(x) = 1

n

∑n
i=1 K((x− xi)/h) will converge to P (Silverman, 1986; Scott, 2015). Moreover,

we can generate synthetic data (in a manner that approaches the unknown distribution P) by drawing
a random point xi and then adding an offset defined by K and h.

Sampling from KDE with DCR kernel. In our TABKDE method we adapt this sampling from
a KDE of the data in a few subtle ways. First, instead of a Gaussian, we use a kernel with offset
radius r matching a learned DCR distribution. Second, instead of selecting the offset direction u
uniformly, we draw it proportional to the learned covariance Σ. These two modifications are sketched
in Algorithm 1 with a single sample in latent space generated via Algorithm 2.

4

216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269

Under review as a conference paper at ICLR 2026

Algorithm 1 SIMPLEKDE(T)

1: Z ∈ [0, 1]n×d ⇐ Copula-Transform(T)
2: Σ← Covariance(Z)
3: Estimate empirical DCR distribution f
4: for i = 1, . . . ,m:
5: z′i = SAMPLEKDE(Z, f,Σ)
6: yj ← INVERSECOPULA(z′j)
7: return Y = {y1, . . . , ym}

Algorithm 2 SAMPLEKDE(Z, f,Σ)

1: Uniformly sample zi ∈ Z
2: Sample radius r > 0 from f
3: Sample v ∼ N (0,Σ), set u = v

∥v∥
4: return z′ ← zi + r · u

However, the SIMPLEKDE algorithm does not explicitly control the support of the marginals, which
is critical for tabular data generation. The copula-transformed representation, however, embeds the
data within the unit hypercube, which allows us to control how far a perturbed sampled point x can
deviate without violating marginal support. We now introduce a more refined rejection-sampling
heuristic (Alg. 3: TABKDE) that effectively enforces these boundary constraints.

Algorithm 3 TABKDE(T)

1: Z ∈ [0, 1]n×d ⇐ Copula-Transform(T)
2: Σ← Covariance(Z)
3: Estimate empirical DCR distribution f
4: for i = 1, . . . ,m:
5: z′i = SAMPLEKDE-ITERATIVE(Z, f,Σ)
6: yj ← INVERSECOPULA(z′j
7: return Y = {y1, . . . , ym}

Algorithm 4 SAMPLEKDE-ITERATIVE(Z, f,Σ)

1: Uniformly sample zi ∈ Z
2: Sample radius r > 0 from f
3: Sample v ∼ N (0,Σ), set u = v

∥v∥
4: z′ ← zi + r · u
5: While {j : z′j /∈ [0, 1]} ≠ ∅:
6: J ← {j : z′j /∈ [0, 1]}
7: Sample v′ ∼ N (0,Σ), set w = v′

∥v′∥

8: s← ∥(uk)k∈J∥
∥(wk)k∈J∥

9: uj ← s · wj for each j ∈ J
10: z′ ← zi + r · u
11: return z′

TABKDE differs from SIMPLEKDE only in line 5, where it uses the boundary-aware SAMPLEKDE-
ITERATIVE (Alg 4) instead of the simpler SAMPLEKDE. This modified sampler checks for violations
of the unit hypercube boundaries and regenerates out-of-bound coordinates. If a valid point cannot
be obtained after a fixed number of attempts, the sample is discarded, and the process restarts. This
mechanism guarantees that all accepted samples lie within the latent space [0, 1]d.

2.5 CORESETS FOR GENERATIVE TABULAR DATA MODELING

A coreset (Phillips, 2016) is a compact, weighted set of points that provides a close approximation to
the full dataset for a specific downstream task. In the context of KDEs, a coreset serves to approximate
the full KDE using significantly fewer, strategically chosen, representative points.

Our proposed TABKDE framework employs the full KDEZ to generate samples from the Copula
latent representation Z ⊂ [0, 1]n×d of the tabular data T . To approximate KDEZ(·) using a coreset,
we define ˜KDEΘ(·) with Θ comprised of a small set of learnable coreset points Q = {q1, . . . , qm} and
their corresponding non-negative weights W = {ω1, . . . , ωm}, constrained such that

∑m
i=1 ωi = 1.

The approximated density function is ˜KDEΘ(z) =

m∑
i=1

ωiK

(
z − qi
h

)
. It is known (Phillips and Tai,

2020) that a sample Q ∼ Z of m = O((1/ε2) log(1/δ)) points, and uniform weights already ensures
a strong L∞ coreset approximation that ∥KDEZ − KDEQ∥∞ ≤ ε with probability at least 1− δ. For
the Gaussian kernel (used here) and a fixed bandwidth h, this bound is independent of dimension d.

Moreover, this can be used as a starting point for an optimized coreset, over the locations Q and their
weights W to minimize the empirical L2 via SGD as Ez∼Unif([0,1]d)

[
(˜KDEΘ(z)− KDEZ(z))

2
]
.

This optimized version can potentially better preserve key distributional features, such as modes,
spread, and overall shape. Moreover, because we are not replicating the training data, it can reduce
the risk of overfitting to the data or leaking its private attributes. We call this method CORETABKDE;
and RANDCORETABKDE only samples but does not optimize. We use coresets of size m = 5000.

5

270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323

Under review as a conference paper at ICLR 2026

Table 2: Runtime comparison of Tabsyn, TabKDE, and SMOTE models across individual datasets on
laptop. The IBM dataset is excluded from the average row.

Dataset TABSYN SMOTE TABKDE

VAE Train Diff. Train Total Train Sample Train+Sample Train Sample

Adult 6h 35m 43s 2h 6m 31s 8h 43m 19s 1m 5s 4s 44s 20s
Default 6h 32m 3s 2h 2m 16s 8h 34m 59s 40s 2s 59s 17s
Shoppers 3h 57m 42s 0h 55m 32s 4h 53m 32s 18s 3s 17s 5s
Magic 3h 51m 7s 1h 21m 27s 5h 13m 0s 26s 5s 19s 7s
Beijing 5h 31m 57s 1h 57m 44s 7h 30m 35s 54s 2s 35s 16s
News 14h 34m 15s 2h 8m 59s 16h 44m 11s 57s 4s 6m 2s 54s

Average 6h 50m 27s 1h 45m 24s 8h 36m 36s 43s 3s 1m 29s 19s

IBM OOM OOM OOM OOM OOM 10m 21s 6m 4s

3 EXPERIMENTAL RESULTS

Our experiments are conducted on the six tabular datasets from UCI Machine Learning Repository1

(Adult, Default, Shoppers, Magic, Beijing, News) with between 12K and 49K rows and a mixture of
11 and 48 dimensions, a mixture of mostly numerical and categorical. We also use an IBM dataset2
which is significantly larger; it has about 176K rows and 14 dimensions, with 5 ordinal ones, and a
total of over 37K total categories. See Appendix B.1 for more detail.

Baselines. We compare our proposed TABKDE method with several popular baselines, including
SMOTE (Chawla et al., 2002), GReaT (Borisov et al., 2023), CoDi (Lee et al., 2023), TabD-
DPM (Kotelnikov et al., 2023), TABSYN (Zhang et al., 2024), and TABDIFF (Shi et al., 2025); some
comparisons and other methods are deferred to Appendix B.2 for space. We also consider several
hybrid models that mix elements of TABKDE with the encoding choices. Noteably, in COPULADIFF
we first use our COPULAMAPPING to embed data into a latent space, train a diffusion model there.
Broader comparisons with other copula-based methods are in Appendix H.

3.1 SCALABILITY AND EFFICIENCY
Table 3: Average GPU timing

Method Train (s) Sample (s)
GReaT 17112.4 251.2
CoDi 18487.6 11.8
TabDDPM 2771.4 70.8
TABSYN 1297.8 8.4
TABKDE 39.2 39.0

We measure the scalability and efficiency on both the train-
ing time, as well as the sample generation time; sample
generation measures time for the full synthetic set – the
same size as training set.

We first compare against TABSYN and SMOTE on a laptop using only CPU (2021 Apple 14"
MacBook Pro; M1 Pro chip). Table 2 shows that the simple SMOTE algorithm is faster than TABKDE,
but the training time of TABKDE is orders of magnitude faster than TABSYN (about 90 seconds
to about 8.5 hours). Appendix C shows other baselines have run times in the ballpark of TABSYN.
Moreover, both TABSYN and SMOTE run out of memory on the IBM data set since they try to
one-hot encode 37K categories, while TABKDE still completes in under 20 minutes.

We compare GPU runtime (NVIDIA RTX A5000; 24GB memory; max power 230W) in Table 3 over
the average training and sampling time on Adult, Default, Shoppers, and Magic datasets. TABKDE
is still orders of magnitude faster in training, and while other methods can improve upon TABKDE
(our code not optimized for GPU) in sampling, this cost is dominated by the training time.

3.2 ACCURACY

In this section, we evaluate the quality of the generated synthetic data using three criteria: (1) marginal
distribution alignment, (2) pairwise correlation matching, and (3) finally global alignment between
synthetic and hold-out distributions is compared by how well a classifier can separate the distributions.

1https://archive.ics.uci.edu/datasets
2https://www.kaggle.com/code/yichenzhang1226/ibm-credit-card-fraud-detection-eda-random-forest

6

https://archive.ics.uci.edu/datasets
https://www.kaggle.com/code/yichenzhang1226/ibm-credit-card-fraud-detection-eda-random-forest/input?select=credit_card_transactions-ibm_v2.csv

324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377

Under review as a conference paper at ICLR 2026

Marginal distribution alignment. When evaluating synthetic tabular data, the marginal distribution
alignment score assesses how closely each individual column matches its real-data distribution
represented by train data. Following what was done in the TABSYN paper, we calculate the
Kolmogorov–Smirnov (KS) distance for numerical attributes in Num and the Total Variation distance
for categorical and ordinal attributes in Cat and Ord. Table 4 presents, for each dataset, the average
marginal alignment errors across all features for each method.

Table 4: Marginal distribution alignment error; lower is better. In parentheses denotes ratio relative to
the smallest value. Baseline values taken from Zhang et al. (2024)

Method Adult Default Shoppers Magic Beijing News Average

SMOTE 1.63 (2.55) 1.70 (1.49) 2.66 (2.16) 1.37 (1.93) 2.10 (1.62) 5.47 (3.18) 2.49 (1.75)
GReaT 12.12 (18.94) 19.94 (17.49) 14.51 (11.80) 16.16 (22.76) 8.25 (6.35) – 14.20 (10.00)
CoDi 21.38 (33.41) 15.77 (13.82) 31.84 (25.89) 11.56 (16.28) 16.94 (13.03) 32.27 (18.78) 21.63 (15.23)
TabDDPM 1.75 (2.73) 1.57 (1.38) 2.72 (2.21) 1.01 (1.42) 1.30 (1.00) 78.75 (45.83) 14.52 (10.23)
TabSYN (Our reproduced) 0.64 (1.00) 1.14 (1.00) 1.23 (1.00) 0.98 (1.38) 2.79 (2.15) 1.72 (1.00) 1.42 (1.00)
COPULADIFF 2.01 (3.14) 1.47 (1.29) 2.47 (2.01) 0.94 (1.32) 2.13 (1.64) 2.44 (1.42) 1.91 (1.35)
RANDCORETABKDE 1.61 (2.52) 1.76 (1.54) 2.54 (2.07) 1.01 (1.42) 1.70 (1.31) 2.59 (1.51) 1.87 (3.48)
CORETABKDE 3.63 (5.67) 3.29 (2.89) 3.23 (2.63) 1.08 (1.52) 3.20 (2.46) 2.87 (1.67) 2.88 (2.03)
TABKDE 1.56 (2.44) 1.55 (1.36) 2.44 (1.98) 0.78 (1.1) 1.37 (1.05) 2.52 (1.47) 1.70 (1.2)

Figure 2 provides a visual comparison between some representative selected real marginal dis-
tributions and those generated by TABSYN (orange) and TABKDE (green) against the real data
distributions (blue). We observe that TABKDE and TABSYN visually match the distributions well,
both are about the same. In particular, on numerical data TABKDE seems to do better on more
uniform distributions whereas TABSYN does better on spiky ones.

Figure 2: Marginals comparison between real data (blue), TABKDE (green), and TABSYN (orange).
Representative numerical and categorical data from News dataset.

Pairwise correlation alignment. We next measure pairwise correlation between columns. For
numerical-numerical pairs, we can use standard Pearson correlations. For pairs that involve categorical
or ordinal feature (as in Zhang et al. (2024)) we use contingency-table total variation distances. In
both metrics, smaller error values indicate that the synthetic table is more faithful to the original data.
Table 5 presents, for each dataset, the average pairwise correlation alignment errors across all features
for each method. A heatmap visualization of the divergence between the pairwise correlations in the
real and synthetic data is presented in Figure 3; see more in Appendix D.2. We observe that TABKDE
has better pairwise correlation alignment than all methods except TABSYN, and is comparable to
SMOTE; both TABKDE and SMOTE have about 2× the correlation discrepancy as TABSYN.

Table 5: Pairwise correlation alignment error; Lower values is better. In parentheses is the ratio
relative to the smallest value. Baselines values taken from Zhang et al. (2024).

Method Adult Default Shoppers Magic Beijing News Average

SMOTE(our reproduction) 4.3 (2.67) 11.54 (5.11) 3.68 (1.47) 1.88 (2.29) 3.3 (1.22) 1.67 (1.25) 4.39 (1.99)
GReaT 17.59 (10.93) 70.02 (30.98) 45.16 (18.06) 10.23 (12.48) 59.6 (21.99) – 40.52 (18.33)
CoDi 22.49 (13.98) 68.41 (30.27) 17.78 (7.11) 6.53 (7.97) 7.07 (2.61) 11.1 (8.28) 22.23 (10.06)
TabDDPM 3.01 (1.87) 4.89 (2.16) 6.61 (2.64) 1.7 (2.07) 2.71 (1.00) 13.16 (9.82) 5.34 (2.42)
TABSYN (our reproduction) 1.61 (1.00) 2.26 (1.00) 2.5 (1.00) 0.82 (1.00) 4.7 (1.73) 1.34 (1.00) 2.21 (1.00)
COPULADIFF 4.61 (2.86) 3.29 (1.46) 5.3 (2.12) 1.72 (2.10) 4.5 (1.66) 2.1 (1.57) 3.59 (1.62)
RANDCORETABKDE 3.93 (2.44) 13.66 (6.04) 4.27 (1.71) 4.76 (5.80) 4.05 (1.49) 2.61 (1.95) 5.46 (2.47)
CORETABKDE 6.3 (3.91) 9.91 (4.39) 5.77 (2.31) 2.18 (2.66) 5.86 (2.16) 2.82 (2.10) 5.47 (2.48)
TABKDE 4.51 (2.80) 9.93 (4.40) 4.31 (1.72) 2.72 (3.32) 3.74 (1.38) 2.83 (2.11) 4.67 (2.11)

Table 6: Accuracy on IBM.
Method Marginal Pairwise Reduced

TABSYN 16.99 40.42 no
COPULADIFF 6.81 29.42 no
COPULADIFF 3.59 22.59 yes
CORETABKDE 5.25 23.93 yes
TABKDE 3.58 25.29 yes

We also compare against some variants on the larger
IBM dataset in Figure 6. Recall that on our laptop

7

378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431

Under review as a conference paper at ICLR 2026

Figure 3: Representative Pairwise correlation divergence heatmaps for Magic and Beijing datasets.

CPU, neither TABSYN or SMOTE can run on this
data set – they both run out of memory. For TABKDE
we apply a data reduction modeling by first reducing
out 3 strongly correlated categories (i.e., state and city
depend on zipcode), then inferring them in the decoding
step; details in Appendix B.1.

Recall also that TABKDE (about 10 minutes training time on CPU; 40 seconds on GPU) was much
faster than either of COPULADIFF (about 15 hours on CPU), or TABSYN (OOM on CPU, about 20
minutes on GPU). The average pairwise correlation alignment error for TABSYN (no reduction) is
40.42%, while for TABKDE and COPULADIFF (with reduction) is 25.29% and 22.59%.

Global Distribution Alignment. Synthetic data should be able to take the place of real data, letting
us train models on it for downstream prediction tasks and have indistinguishable performance. We
assess by building a classifier to attempt to distinguish between the synthetic data and a split of
data held out from the training process. We use logistic regression in Table 7 and random forest
in Appendix D. We quantify this as a classifier two-sample test (C2ST) as provided by SDMetrics;
larger values closer to 1 are better.

We observe that TABKDE is roughly the same as SMOTE with 0.93 and only bested by TABSYN
which has about 0.97. Other baselines achieve 0.79 (TabDDPM) or below 0.66.

Table 7: C2ST Scores; larger is better. Baselines taken from Zhang et al. (2024)

Method Adult Default Shoppers Magic Beijing News Average

Smote 0.9212 0.9332 0.9107 0.9803 0.9972 0.8633 0.9334
GReaT 0.5376 0.4710 0.4285 0.4326 0.6893 — 0.5118
CoDi 0.2077 0.4595 0.2784 0.7206 0.7177 0.0201 0.4007
TabDDPM 0.9755 0.9712 0.8349 0.9998 0.9513 0.0002 0.7888
TABSYN(Our reproduction) 0.9949 0.9804 0.9699 0.9893 0.9268 0.9584 0.9699
COPULADIFF 0.8557 0.9798 0.8665 0.9914 0.9576 0.9793 0.9384
RANDCORETABKDE 0.9215 0.9570 0.8757 0.9921 0.9503 0.8901 0.9311
CORETABKDE 0.8254 0.873 0.8462 0.9864 0.8924 0.8643 0.8813
TABKDE 0.9219 0.9579 0.9161 1.0000 0.9514 0.8819 0.9382

3.3 PRIVACY

Finally, we evaluate how well we can preserve the privacy of the training set in synthetic data
generation through DCR. For each synthetic data point generated, we compute the distance to training
and held-out data. Ideally these distributions should be indistinguishable.

First in Table 8 we calculate the DCR score, which is the percentage of synthetic data closer to
training data than held-out; we would like this to be close to 50%. This was proposed for TABDIFF
(Shi et al., 2025), and we show their results in the top half of the table, and also show SMOTE,
TABSYN, and our methods following their code below the line. We see most diffusion methods
(including our COPULADIFF) can consistently achieve below 52%. Our main method TABKDE

8

432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485

Under review as a conference paper at ICLR 2026

obtains an average DCR score of about 58%, which is servicable. SMOTE has an average DCR score
of 95% indicating that it reveals significant information (if not replicating) the training data.

Table 8: The DCR score for synthetic data sample comparing training to held out data. A value nearer
to 50% is considered ideal. Baseline values taken from (Shi et al., 2025).

Method Adult Default Shoppers Beijing News Average

Smote (Our reproduction) 91.18 (1.82) 91.46 (1.82) 96.76 (1.92) 100.00 (1.99) 99.00 (1.96) 95.68 (1.89)

CoDi 49.92 (1.00) 51.82 (1.03) 51.06 (1.02) 50.87 (1.01) 50.79 (1.00) 50.89 (1.01)

TabDDPM 51.14 (1.02) 52.15 (1.04) 63.23 (1.26) 80.11 (1.59) 79.31 (1.57) 65.19 (1.29)

TABDIFF 50.10 (1.00) 51.11 (1.02) 50.24 (1.00) 50.50 (1.00) 51.04 (1.01) 50.60 (1.00)

TABSYN(Our reproduction) 51.33 (1.02) 51.61 (1.02) 51.99 (1.06) 53.20 (1.00) 50.76 (1.01) 51.65 (1.02)

COPULADIFF 50.34 (1.01) 50.96 (1.01) 50.72 (1.01) 50.29 (1.00) 53.00 (1.05) 51.06 (1.01)

RANDCORETABKDE 62.30 (1.24) 63.09 (1.26) 58.91 (1.17) 63.50 (1.26) 55.59 (1.10) 60.68(1.20)

CORETABKDE 52.59 (1.05) 54.11 (1.08) 55.04 (1.1) 51.17 (1.03) 52.00 (1.02) 52.98 (1.05)

TABKDE 62.23 (1.24) 63.46 (1.26) 58.80 (1.17) 54.24 (1.11) 54.54 (1.08) 58.55 (1.16)

The DCR score is an imperfect measure of privacy, since there may be heldout data nearly as close
as the training data to a synthetic point. Indeed TABKDE is inspired by differential privacy, and
the accepted comparison is the ratio of likelihoods, not the count of which one is maximum. So
another, albeit less quantitative, evaluation considers the DCR distribution of synthetic data measured
to training versus heldout data. Figure 4 shows distribution to training (blue) versus to heldout (red)
for representative data on Beijing and News; more in Appendix E. We observe that for TABKDE,
TABSYN, and CORETABKDE these distributions are multi-modal, but still match almost perfectly.
On the other hand SMOTE has a very different distribution, and the synthetic to train (blue) is always
much smaller (typically very close to 0), indicating it may often reproduce the training data.

SMOTE TABSYN CORETABKDE TABKDE

Figure 4: Privacy comparison based on DCR distributions for synthetic to training data (blue) and
synthetic to held-out data (red). First row Beijing and second row News.

Coreset methods. The coreset methods CORETABKDE and RANDCORETABKDE work nearly
as well as TABKDE in terms of accuracy, and use a fraction of the space. Surprisingly, RAND-
CORETABKDE often has better accuracy than CORETABKDE and is of course faster since it does
not require the optimization step. However, notably, CORETABKDE has a much improved DCR
score for privacy (of about 53%), so provides a way to address that measure within the TABKDE
framework. See Appendix F for a longer discussion.

3.4 CONCLUSION AND LIMITATIONS

We introduce a new approach for tabular data generation, built with a careful combination of only
classic techniques like copula transforms and KDEs. It is the first to demonstrate high scalability,
accuracy, and privacy. While its DCR privacy score is not quite as strong as other methods, this can
be improved with slight accuracy trade-offs through coresets. It handles, but also requires, a mix of
numerical and categorical features as is common in tabular data.

9

486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539

Under review as a conference paper at ICLR 2026

LLM Disclosure. In this paper, the use of LLMs is restricted to enhancing grammar and making
partial rewording adjustments.

Reproducibility Statement. We clearly describe the full TabKDE algorithm and the other hybrid
models, including encoding, copula transformation, KDE sampling, and coreset construction (Sec-
tions 2 and Appendix A). Section3 outlines the datasets used, evaluation metrics, and experimental
setups, while Tables 2 and 3 include compute resources and runtime information. Additional imple-
mentation details are provided in AppendicesB–F. Together, these components enable reproduction
of the key results, even independently of the code. Our code is also anonymously available here:
http://github.com/tabkde/tabkde-main

REFERENCES

Martin Arjovsky and Leon Bottou. Towards principled methods for training generative adversarial
networks. In International Conference on Learning Representations, 2017. URL https://
openreview.net/forum?id=Hk4_qw5xe.

Samuel A. Assefa, Danial Dervovic, Mahmoud Mahfouz, Robert E. Tillman, Prashant Reddy, and
Manuela Veloso. Generating synthetic data in finance: opportunities, challenges and pitfalls.
In Proceedings of the First ACM International Conference on AI in Finance, ICAIF ’20, New
York, NY, USA, 2021. Association for Computing Machinery. ISBN 9781450375849. doi:
10.1145/3383455.3422554. URL https://doi.org/10.1145/3383455.3422554.

Randall Balestriero, Jerome Pesenti, and Yann LeCun. Learning in high dimension always amounts
to extrapolation. arXiv preprint arXiv:2110.09485, 2021.

Vadim Borisov, Kathrin Sessler, Tobias Leemann, Martin Pawelczyk, and Gjergji Kasneci. Language
models are realistic tabular data generators. In The Eleventh International Conference on Learning
Representations, 2023. URL https://openreview.net/forum?id=cEygmQNOeI.

Nitesh V. Chawla, Kevin W. Bowyer, Lawrence O. Hall, and W. Philip Kegelmeyer. Smote: synthetic
minority over-sampling technique. J. Artif. Int. Res., 16(1):321–357, June 2002. ISSN 1076-9757.

Bin Dai and David Wipf. Diagnosing and enhancing VAE models. In International Confer-
ence on Learning Representations, 2019. URL https://openreview.net/forum?id=
B1e0X3C9tQ.

Prafulla Dhariwal and Alexander Quinn Nichol. Diffusion models beat GANs on image synthesis.
In A. Beygelzimer, Y. Dauphin, P. Liang, and J. Wortman Vaughan, editors, Advances in Neural
Information Processing Systems, 2021. URL https://openreview.net/forum?id=
AAWuCvzaVt.

Joao Fonseca and Fernando Bacao. Tabular and latent space synthetic data generation: a literature
review. Journal of Big Data, 10(1):115, 2023. doi: 10.1186/s40537-023-00792-7. URL https:
//doi.org/10.1186/s40537-023-00792-7.

Sébastien Gambs, Frédéric Ladouceur, Antoine Laurent, and Alexandre Roy-Gaumond. Growing syn-
thetic data through differentially-private vine copulas. Proceedings on Privacy Enhancing Technolo-
gies, 2021:122 – 141, 2021. URL https://api.semanticscholar.org/CorpusID:
232352028.

Mikel Hernandez, Gorka Epelde, Ane Alberdi, Rodrigo Cilla, and Debbie Rankin. Synthetic data
generation for tabular health records: A systematic review. Neurocomputing, 493:28–45, 2022.

Jonathan Ho, Ajay Jain, and Pieter Abbeel. Denoising diffusion probabilistic models. In H. Larochelle,
M. Ranzato, R. Hadsell, M.F. Balcan, and H. Lin, editors, Advances in Neural Information
Processing Systems, volume 33, pages 6840–6851. Curran Associates, Inc., 2020.

Jayoung Kim, Chaejeong Lee, and Noseong Park. STasy: Score-based tabular data synthesis.
In The Eleventh International Conference on Learning Representations, 2023. URL https:
//openreview.net/forum?id=1mNssCWt_v.

10

http://github.com/tabkde/tabkde-main
https://openreview.net/forum?id=Hk4_qw5xe
https://openreview.net/forum?id=Hk4_qw5xe
https://doi.org/10.1145/3383455.3422554
https://openreview.net/forum?id=cEygmQNOeI
https://openreview.net/forum?id=B1e0X3C9tQ
https://openreview.net/forum?id=B1e0X3C9tQ
https://openreview.net/forum?id=AAWuCvzaVt
https://openreview.net/forum?id=AAWuCvzaVt
https://doi.org/10.1186/s40537-023-00792-7
https://doi.org/10.1186/s40537-023-00792-7
https://api.semanticscholar.org/CorpusID:232352028
https://api.semanticscholar.org/CorpusID:232352028
https://openreview.net/forum?id=1mNssCWt_v
https://openreview.net/forum?id=1mNssCWt_v

540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593

Under review as a conference paper at ICLR 2026

Akim Kotelnikov, Dmitry Baranchuk, Ivan Rubachev, and Artem Babenko. Tabddpm: modelling
tabular data with diffusion models. In Proceedings of the 40th International Conference on
Machine Learning, ICML’23. JMLR.org, 2023.

Chaejeong Lee, Jayoung Kim, and Noseong Park. Codi: co-evolving contrastive diffusion models for
mixed-type tabular synthesis. In Proceedings of the 40th International Conference on Machine
Learning, ICML’23. JMLR.org, 2023.

Tennison Liu, Zhaozhi Qian, Jeroen Berrevoets, and Mihaela van der Schaar. GOGGLE: Generative
modelling for tabular data by learning relational structure. In The Eleventh International Confer-
ence on Learning Representations, 2023. URL https://openreview.net/forum?id=
fPVRcJqspu.

Yanchen Luo, Junfeng Fang, Sihang Li, Zhiyuan Liu, Jiancan Wu, An Zhang, Wenjie Du, and Xiang
Wang. Text-guided small molecule generation via diffusion model. iScience, 27(11):110992, 2024.

Aref Majdara and Saeid Nooshabadi. Nonparametric density estimation using copula transform,
bayesian sequential partitioning, and diffusion-based kernel estimator. IEEE Transactions on
Knowledge and Data Engineering, 32(4):821–826, 2020. doi: 10.1109/TKDE.2019.2930052.

Josep Maria Mateo-Sanz, Francesc Sebé, and Josep Domingo-Ferrer. Outlier protection in continuous
microdata masking. In Josep Domingo-Ferrer and Vicenç Torra, editors, Privacy in Statistical
Databases, pages 201–215, Berlin, Heidelberg, 2004. Springer Berlin Heidelberg. ISBN 978-3-
540-25955-8.

D. Meyer, T. Nagler, and R. J. Hogan. Copula-based synthetic data augmentation for
machine-learning emulators. Geoscientific Model Development, 14(8):5205–5215, 2021. doi:
10.5194/gmd-14-5205-2021. URL https://gmd.copernicus.org/articles/14/
5205/2021/.

Alex Morehead and Jianlin Cheng. Geometry-complete diffusion for 3d molecule generation and
optimization. Communications Chemistry, 7(1):150, 2024.

Yidong Ouyang, Liyan Xie, Chongxuan Li, and Guang Cheng. Missdiff: Training diffusion models on
tabular data with missing values. In ICML 2023 Workshop on Structured Probabilistic Inference &
Generative Modeling, 2023. URL https://openreview.net/forum?id=S435pkeAdT.

Neha Patki, Roy Wedge, and Kalyan Veeramachaneni. The synthetic data vault. In 2016 IEEE
International Conference on Data Science and Advanced Analytics (DSAA), pages 399–410, 2016.
doi: 10.1109/DSAA.2016.49.

Jeff M. Phillips. Coresets and sketches. In Handbook of Discrete and Computational Geometry,
chapter 49. CRC Press, 2016.

Jeff M. Phillips and Wai Ming Tai. Near-optimal coresets of kernel density estimates. Discrete
& Computational Geometry, 63(4):867–887, 2020. doi: 10.1007/s00454-019-00134-6. URL
https://doi.org/10.1007/s00454-019-00134-6.

Robin Rombach, Andreas Blattmann, Dominik Lorenz, Patrick Esser, and Bjorn Ommer. High-
Resolution Image Synthesis with Latent Diffusion Models . In 2022 IEEE/CVF Conference
on Computer Vision and Pattern Recognition (CVPR), pages 10674–10685, Los Alamitos, CA,
USA, June 2022. IEEE Computer Society. doi: 10.1109/CVPR52688.2022.01042. URL https:
//doi.ieeecomputersociety.org/10.1109/CVPR52688.2022.01042.

D. W. Scott. Multivariate Density Estimation: Theory, Practice, and Visualization. 2015.

Juntong Shi, Minkai Xu, Harper Hua, Hengrui Zhang, Stefano Ermon, and Jure Leskovec. Tabdiff: a
mixed-type diffusion model for tabular data generation. In The Thirteenth International Confer-
ence on Learning Representations, 2025. URL https://openreview.net/forum?id=
swvURjrt8z.

B. W. Silverman. Density Estimation for Statistics and Data Analysis. Chapman & Hall, London,
1986.

11

https://openreview.net/forum?id=fPVRcJqspu
https://openreview.net/forum?id=fPVRcJqspu
https://gmd.copernicus.org/articles/14/5205/2021/
https://gmd.copernicus.org/articles/14/5205/2021/
https://openreview.net/forum?id=S435pkeAdT
https://doi.org/10.1007/s00454-019-00134-6
https://doi.ieeecomputersociety.org/10.1109/CVPR52688.2022.01042
https://doi.ieeecomputersociety.org/10.1109/CVPR52688.2022.01042
https://openreview.net/forum?id=swvURjrt8z
https://openreview.net/forum?id=swvURjrt8z

594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647

Under review as a conference paper at ICLR 2026

Amy Steier, Lipika Ramaswamy, Andre Manoel, and Alexa Haushalter. Synthetic data privacy
metrics, 2025. URL https://arxiv.org/abs/2501.03941.

Lei Xu, Maria Skoularidou, Alfredo Cuesta-Infante, and Kalyan Veeramachaneni. Modeling tabular
data using conditional GAN. Curran Associates Inc., Red Hook, NY, USA, 2019.

Hengrui Zhang, Jiani Zhang, Zhengyuan Shen, Balasubramaniam Srinivasan, Xiao Qin, Chris-
tos Faloutsos, Huzefa Rangwala, and George Karypis. Mixed-type tabular data synthesis with
score-based diffusion in latent space. In The Twelfth International Conference on Learning
Representations, 2024. URL https://openreview.net/forum?id=4Ay23yeuz0.

12

https://arxiv.org/abs/2501.03941
https://openreview.net/forum?id=4Ay23yeuz0

648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701

Under review as a conference paper at ICLR 2026

A TABKDE ALGORITHM

The TABKDE algorithm is a simple, scalable, and privacy-aware method for generating high-fidelity
synthetic tabular data. It implements the general framework (see Section 1) for tabular generation;
the key innovation is in the mapping to latent space and generative modeling sets. These steps are
simple and efficient while satisfying our desiderata. We overview them here:

TabKDE Latent Space Mapping: This is accomplished in two parts. The first step is a copula-based
transformation of the tabular dataset T into a latent representation Z that lies within the continuous
space [0, 1]d, allowing precise control over the domain of the marginal distributions. Second is
estimating the covariance Σ of data in this space, implicitly defining a Mahalanobis distance which
captures the similarity within this latent domain.

TabKDE Generative Modeling: Here we use a KDE model to allow for a non-parametric complex
distributional model. We simply sample by choosing a training data point in the latent space
z ∼ Unif(Z), and then chose a random direction u scaled by the covariance Σ. Then we generate a
new point

z′ ← z + ur

where r is a scalar amount controlling the amount of deviation from the training data. In particular,
we select r at randomly from a learned distribution from the training data estimating the distance to
the closest point. One more idea is needed, we want to disallow points outside [0, 1]d to respect the
original column marginals. To handle this, we keep coordinates in [0, 1]d, and regenerate the others
iteratively.

We next describe all aspects in more detail.

A.1 ENCODING OF TABULAR FEATURES: T → E

Let T = {X1, . . . , Xn} be a real data set. Before transforming tabular data into a latent space, it is
essential to convert all feature types into a unified numerical format T 7→ E ∈ Rn×d, suitable for
further processing. Note that the new representation E has n rows (one for each row of the table
T), and more importantly d columns (one for each column of the table T). This means, do not use
one-hot-encoding, and this will be essential for our representation and sampling from the latent space
to ensure marginal properties of each data column.

In this section, we describe how we handle numerical, ordinal, and categorical features through
encoding strategies designed to preserve basic structural relationships and facilitate meaningful
downstream transformations.

Numerical and Ordinal Mapping. We keep the numerical features unchanged, ensuring that
their original values are retained without any transformation. Ordinal features are simply converted
to consecutive integers 1, 2, . . . , that preserve their inherent order. This ensures that the ordinal
relationships between categories are preserved while converting them into numerical representations.

Categorical Mapping. For categorical features, we use a data-driven approach to map each unique
category to a continuous space based on the statistical properties of the numerical features in the data.

Recall that Cat = {d2 + 1, . . . , d} denotes the set of indices corresponding to categorical features.
Additionally, assume that for each j ∈ Cat, the number of unique categories in the j-th feature is given
by |Cj | = kj . Define Z ∈ Rn×d1 as the matrix obtained by selecting only the numerical features from
the dataset, and let u represent its principal direction obtained using Principal Component Analysis
(PCA). Let j ∈ Cat be an arbitrary categorical feature with unique category set Cj = {c1, . . . , ckj

}.
For each category c ∈ Cj , we identify the corresponding row indices in D, defined as

Ij,c = {i ∈ [n] | (Xi)j = c}.

We then assign each category c the value

vj,c =
1

|Ij,c|
∑
i∈Ij,c

ui,

13

702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755

Under review as a conference paper at ICLR 2026

This value represents the average of the principal direction components ui for all instances where the
j-th categorical feature takes the value c. This process is summarized in the following algorithm.

Algorithm 5 PRINCIPALGUIDEDENCODING(T ,Cat,Num)

1: Compute u as the principal direction of XNum; which contains only numerical features in T .
2: for each category c ∈ Cj , in each categorical feature j ∈ Cat:

vj,c ←
1

|Ij,c|
∑
i∈Ij,c

ui, where Ic = {i ∈ [n] | (Xi)j = c}

3: for each data (Xi)j = c ∈ Cj , for each categorical feature j ∈ Cat: (Ei)j ← vj,c

A.2 MAP TO NUMERICAL LATENT SPACE: E → Z

Notably, after the initial encoding step (Subsection A.1), all features in the dataset are converted
into numerical values, resulting in a representation that lies in a subset of Rd. Our goal is to further
transform this representation into a continuous latent space within the unit hypercube [0, 1]d, where
the dependencies between features are preserved, and the data is appropriately normalized to ensure
that all numerical features contribute equally, making it well-suited for downstream tasks such as
sampling and density estimation.

The algorithm outlined below–MAPTOLATENTSPACE–provides a high-level overview of this trans-
formation process. It combines ordinal encoding, a structure-aware encoding of categorical features,
and a copula-based normalization of all features. While this procedure is presented here in full, each
of its core components will be introduced and discussed in detail in the subsequent sections.

Algorithm 6 MAPTOLATENTSPACE(T ,Num,Cat,Ord)

1: Mapped each ordinal feature to integers reflecting its natural order.
2: Encoded categorical features by PRINCIPALGUIDEDENCODING(T ,Cat,Num)
3: Concatenate numerical and the transformed ordinal and encoded categorical features to obtain E
4: Convert the encoded data E into Z = COPULAMAPPING(E) ∈ [0, 1]n×d.
5: return Z

Before exploring the details of this mapping, we first introduce foundational concepts from the
copula method—a well-established statistical technique that separates marginal distributions from
the dependency structure in multivariate data.

Introduction to Copula Transformation. In many real-world datasets, variables exhibit complex
dependencies, making it challenging to model their joint distribution directly. Copula method provides
a powerful statistical tool to decouple the dependency structure from the marginal distributions,
allowing for more flexible data transformations. The copula method invertibly transforms a dataset
E ∈ Rn×d, consisting of d-dimensional features, into a new representation Z ∈ [0, 1]n×d and as a
result, each individual record in Z lies in [0, 1]d, and the marginal distributions of Z are uniform
over the interval [0, 1]. We next examine the underlying mechanism by which this transformation is
achieved.

1. Copula Forward Transformation (Mapping E to Z): For each dimension j (where
j = 1, . . . , d), we compute the empirical cumulative distribution function (ECDF) of the
j-th feature:

F̂j(x) = Pr(value of j-th coordinate ≤ x)

=
1

n

n∑
i=1

I(xij ≤ x)

where I(xij ≤ x) is an indicator function that equals 1 if xij ≤ x, and 0 otherwise.
In summary, F̂j(x) represents the proportion of observations in the dataset whose j-th

14

756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809

Under review as a conference paper at ICLR 2026

coordinates are less than or equal to x. Each coordinate value xij is then transformed into a
uniform representation:

zij = F̂j(xij) (1)

This ensures that each feature is uniformly mapped into the interval [0, 1], producing a
dataset Z that follows a uniform distribution for each of its marginals while maintaining the
dependency structure of X .

Algorithm 7 COPULAMAPPING(E)

1: For each feature j, compute empirical CDF value F̂j(xi,j) for Dj = {x1j , . . . , xnj}.
2: Set zi = (zi,1, . . . , zi,d), where zi,j = F̂j(xi,j)
3: return Z = {z1, . . . , zn}

Using the Copula transformation, we effectively standardize the data set into a unit hyper-
cube, making it more suitable for density estimation, sampling, and synthetic data generation.
Furthermore, this method allows for dependency-preserving transformations, ensuring that
the statistical relationships between variables are retained even when synthetic data is
produced.

2. Copula Inverse Transformation (Mapping Z back to E): It is key that we store the
ECDF F̂ , because we need to be able to invert it. Its inverse cumulative distribution function
(quantile function) F̂−1 is defined as

F̂−1(q) = inf{x | F̂ (x) ≥ q} for any value q ∈ [0, 1].

Given z = (z1, . . . , zd) ∈ [0, 1]d, each feature j can mapped back to its initial numerical
representation using the inverse cumulative distribution function F̂−1

j (·).

Decoding. We can also decode the output E to the structure in the table. For an ordinal
or categorical feature j, we apply probabilistic rounding to the two nearest categories (in
the initial numerical embedding), with the probabilities proportional to their distance to pj .
Also, for numerical features, the value is reconstructed (up to the appropriate precision)
by interpolating between the two closest values (in the original distribution) to pj , with
the interpolation weights determined by their distance from pj . This step ensures that the
generated samples maintain the same marginal distributions as the original dataset.

Algorithm 8 INVERSEECDF(z = (p1, . . . , pd), {F̂i : i ∈ [d])}

1: for each j ∈ [d]:
2: if min({zij}ni=1) ≥ pj or max({zij}ni=1) ≤ pj then
3: Return min({xij}ni=1) or max({xij}ni=1) respectively
4: Let zi1 < zi2 be consecutively ordered points so that p ∈ [zi1 , zi2]
5: if j ∈ Ord or j ∈ Cat, then
6: Return xj = xi1 with probability |pj−zi1 |

|zi1−zi2 |
and otherwise xi2 .

7: elseif j ∈ Num, then
8: Return

x = xi2 +
|pj − zi2 |
|zi1 − zi2 |

(xi1 − xi2) (2)

A.3 LEARNING DISTANCE TO CLOSEST RECORD (DCR)

A central use of synthetic data is as a proxy for private personal data. So it is paramount to ensure that
the synthetic data process is not leaking too much information about the original data. A common
measurement of this is Distance to Closest Record (DCR) (Mateo-Sanz et al., 2004; Steier et al.,
2025) which evaluates how similar a synthetic record xs is to a real one from a set D. It is formally
defined for an appropriate distance metric d as:

15

810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863

Under review as a conference paper at ICLR 2026

DCR(xs, D) = min
xr∈D

d(xs, xr) (3)

A DCR of 0 indicates an identical match, posing a significant privacy risk. Comparing DCR values
between synthetic data and both training DT and holdout DH datasets helps assess privacy. If syn-
thetic records are much closer to the training data, it suggests the model may be memorizing real data.
Ideally, for synthetic data S, DCR distributions {DCR(xs, DT)}xs∈S and {DCR(xs, DH)}xs∈S

should heavily overlap, showing that synthetic data reflects general patterns rather than replicating
specific records.

As part of our generative process, we learn this distribution in the copula latent embedding Z using
Euclidean distance. Then we can generate synthetic data to mirror this scale of variation. We
repeatedly randomly split the training data Z, and computes the DCR distribution between the two
splits (see EMPIRICALDCR; Alg. 9). Then it fits a simple mixture of Gaussians model to this
distribution; using Bayesian Information Criterion (BIC)3, we select the best model for k = 1, . . . , 10
as the number of components.

Algorithm 9 EMPIRICALDCR(Z): Estimating the Empirical DCR Distribution

1: Initialize L = []
2: for i = 1, . . . , T do
3: Partition Z into two random equal-sized subsets Z1 and Z2.
4: for each z2 ∈ Z2 do
5: Compute the minimum distance between z2 and the records in Z1.
6: Add this distance to L.
7: Fit a mixture of k Gaussian components to L.

A.4 TABULAR KERNEL DENSITY ESTIMATION: Z → SAMPLE

KDE (Kernel Density Estimation) is a non-parametric method used to estimate the probability density
function (PDF) of a continuous random variable by smoothing finite data points with a kernel function
(typically Gaussian). Its accuracy depends on bandwidth selection and data availability (Silverman,
1986; Scott, 2015). It can also be used to generate synthetic data by fitting a KDE model to the
existing dataset and drawing samples from it. We now formally define KDE.

Assuming that X = {x1, x2, . . . , xn} is a dataset in Rd, the Kernel Density Estimation (KDE) is
given by:

f̂(x) ∝ 1

n

n∑
i=1

K

(
x− xi

h

)
where:

- f̂(x) is the estimated likelihood at point x,

- K(·) is a centrally-symmetric kernel function (e.g., Gaussian kernel),

- h > 0 is the bandwidth parameter controlling smoothness.

Sampling from KDE. To sample from a KDEX , we simply sample a point x ∈ X , and then sample
a point nearby proportional to the kernel likelihood. For example, with a isotropic Gaussian kernel,
using this approach, a synthetic data point is generated as x ∼ N (xi,

h
2 I); xi ∼ X . However, we do

not use a Gaussian kernel, as this is not adaptive to the DCR distribution – which may be multi-modal.
So we use our EMPIRICALDCR(Z) estimate to define out kernel. Still, this approach may raise a
couple of concerns:

3https://scikit-learn.org/stable/modules/generated/sklearn.mixture.
GaussianMixture.html#sklearn.mixture.GaussianMixture.bic

16

https://scikit-learn.org/stable/modules/generated/sklearn.mixture.GaussianMixture.html##sklearn.mixture.GaussianMixture.bic
https://scikit-learn.org/stable/modules/generated/sklearn.mixture.GaussianMixture.html##sklearn.mixture.GaussianMixture.bic

864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917

Under review as a conference paper at ICLR 2026

• At first glance, one may worry that this approach does not guarantee preservation of DCR,
since it might use our kernel K(xi, ·) to generate a point nearby xi that lands too close
to another x′ ∈ X . However, this is not observed to be an issue, as generation in high-
dimensional space makes it highly unlikely to produce points close to other points in the
training data (see Subsection 2.3).

• Second, the sampled point x may fall outside the convex hull of the dataset X , potentially
resulting in unrealistic data generation. We address this by using the sample covariance Σ to
guide the perturbation direction. And Moreover, some form of extrapolation in this sense
is probably necessary and unavoidable (Balestriero et al., 2021), and we beleive desirable.
Yet, violating the marginals associated with individual table columns, we find, can distort
distributions (see Subsection G.1). This issue is addressed by generalizing SIMPLEKDE to
a more advanced method, TABKDE, which controls for this.

To resolve the first issue, we estimate the DCR distribution using Algorithm 9 (EMPIRICALDCR)
and leverage it to strategically perturb the sampled point xi. We summarize this approach by
the following algorithms: Algorithm 10 SIMPLEKDE(T), which iteratively calls Algorithm 11
SAMPLEKDE(Z, f,Σ) using the copula-transformed data Z, its estimated DCR distribution f , and
its estimated covariance Σ.

Algorithm 10 SIMPLEKDE(T)

1: Transform table T into Z ∈ [0, 1]n×d as Z ← COPULATRANSFORM(T ,Num,Cat,Ord)
2: Σ← Covariance(Z)
3: Estimate empirical DCR distribution f = EMPIRICALDCR(Z)
4: for i = 1, . . . ,m:
5: z′i = SAMPLEKDE(Z, f,Σ)
6: yj ← INVERSEECDF(z′j , j-th feature type, Fj)
7: return Y = {y1, . . . , ym}

Algorithm 11 SAMPLEKDE(Z, f,Σ)

1: Uniformly sample zi ∈ Z
2: Sample radius r > 0 from f
3: Sample v ∼ N (0,Σ), set u = v

∥v∥
4: return z′ ← zi + r · u

As discussed in Subsection G.1, the SIMPLEKDE algorithm does not explicitly control the support of
the marginals and, in particular, does not fully address the second challenge outlined earlier. The
copula-transformed representation, however, embeds the data within the unit hypercube, which allows
us to control how far a perturbed sampled point x can deviate without violating marginal support.
We now introduce a more refined rejection-sampling heuristic (Alg. 12: TABKDE) that effectively
enforces these boundary constraints.

Algorithm 12 TABKDE(X)

1: Transform table T into Z ∈ [0, 1]n×d as Z ← COPULATRANSFORM(T ,Num,Cat,Ord)
2: Σ← Covariance(Z)
3: Estimate empirical DCR distribution f = EMPIRICALDCR(Z)
4: for i = 1, . . . ,m:
5: z′i = SAMPLEKDE-ITERATIVE(Z, f,Σ)
6: yi = INVERSECOPULA(z′i)
7: return Y = {y1, . . . , ym}

TABKDE differs from SIMPLEKDE only in the sampling step at line 5, where it uses the boundary-
aware SAMPLEKDE-ITERATIVE instead of the simpler SAMPLEKDE. This modified sampler actively

17

918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971

Under review as a conference paper at ICLR 2026

checks for violations of the unit hypercube boundaries and iteratively adjusts any out-of-bound
coordinates. If a valid point cannot be obtained after a fixed number of attempts, the sample is
discarded, and the process restarts. This mechanism guarantees that all accepted samples lie within
the latent space [0, 1]d.

Algorithm 13 SAMPLEKDE-ITERATIVE(Z)

1: Uniformly sample zi ∈ Z
2: Sample radius r > 0 from f
3: Sample v ∼ N (0,Σ), set u = v

∥v∥
4: z′ ← zi + r · u
5: While {j : z′j /∈ [0, 1]} ≠ ∅:
6: J ← {j : z′j /∈ [0, 1]}
7: Sample v′ ∼ N (0,Σ), set w = v′

∥v′∥

8: s← ∥(uk)k∈J∥
∥(wk)k∈J∥

9: uj ← s · wj for each j ∈ J
10: z′ ← zi + r · u
11: return z′

B EXPERIMENTAL SETUP AND DATA

B.1 DATASETS

Our experiments are conducted on the six tabular datasets from UCI Machine Learning Repository4

(Adult, Default, Shoppers, Magic, Beijing, News) used in TABSYN (Zhang et al., 2024), along with
the IBM dataset5 which is significantly larger. In all they covering a wide range of domains for tabular
data. These datasets include a mix of numerical and categorical features and vary in the number
of points, feature types, and task types (classification or regression), making them well-suited for
evaluating the generalizability of synthetic data generation methods. A few of the categorical features
can be interpreted as ordinal; but outside the IBM dataset, we simply treat them as categorical. We
summarize their traits in Table 9.

Table 9: Dataset statistics. Num denotes the number of numerical columns, Cat the number of
categorical columns, Ord the number of ordinal features, and Sum Cat the total number of unique
categories across all categorical and ordinal columns. Ordinal features can be treated as categorical
features by disregarding their inherent order; note (∗) that we do this for the Adult and Default
datasets. For the IBM dataset, we randomly select two 200k subsamples to serve as the training and
testing sets; we ensured that the test set contains no categorical values unseen in the training set. In
IBM data, we treat “Year”, “Month”, “Day”, “Time”, “Zip” features as ordinal. (†) In TABKDE,
SIMPLE-KDE, COPULADIFF and CORETABKDE, for Beijing dataset, we treat the features “Is”,
“Ir”, and “Iws” as categorical, and for the Shoppers dataset, we apply the same treatment to the
features “SpecialDay”, “ProductRelated”, and “Informational”. For all of these features, the ratio of
unique values in the training set to the total number of data points is very low, with the majority of
occurrences concentrated on a single value.

Dataset Total Train Test Num Cat Ord Sum Cat Task
Adult 48,842 32,561 16,281 6 7 2∗ 120 Classification
Default 30,000 27,000 3,000 14 9 1∗ 79 Classification
Shoppers† 12,330 11,097 1,233 10 8 0 67 Classification
Magic 19,019 17,117 1,902 10 1 0 2 Classification
Beijing† 41,757 37,581 4,176 7 5 0 76 Regression
News 39,644 35,679 3,965 46 2 0 13 Regression
IBM 341,675 176,221 165,454 1 8 5 37,721 Classification

4https://archive.ics.uci.edu/datasets
5https://www.kaggle.com/code/yichenzhang1226/ibm-credit-card-fraud-detection-eda-random-forest

18

https://archive.ics.uci.edu/datasets
https://www.kaggle.com/code/yichenzhang1226/ibm-credit-card-fraud-detection-eda-random-forest/input?select=credit_card_transactions-ibm_v2.csv

972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025

Under review as a conference paper at ICLR 2026

Split of the Data. We consider two ways to split data into test and train set. The numbers in Table 9
reflects the splits done by TABSYN, which we maintain for direct comparison. This split was not
even in size, partially to ensure there were no categories in the Test split which were not present
in the Train split. When we do not directly compare to results in the Zhang et al. (2024), we use a
different random and even split.

Again, following the TABSYN paper (Zhang et al., 2024), the target column is treated as either
numerical or categorical based on the task type: it is considered categorical for classification tasks
and numerical otherwise. For the Machine Learning Efficiency experiments, each dataset is divided
into training, validation, and testing sets. For the Adult dataset, we use its official testing set, while
the original training set is further split into training and validation sets with an 8:1 ratio. All other
datasets are split into training, validation, and testing sets using an 8:1:1 ratio with a fixed random
seed.

To get the IBM dataset to run, we needed to leverage the ordinal representation in variables Year,
Month, Day, Time, and Zip. We also identify that the Merchant State and Merchant City are very
strongly correlated with Zip (the zip code), and since these categories are often quite rare, we applied
another modeling (called reduced modeling) to improve the generation. We put Zip in the generative
model, but not Merchant City or Merchant State. Then once we generate a Zip, we predict the the
Merchant City and Merchant State. We use the same process with the correlated MCC and Merchant
Name; we put MCC in the generative model, and use the outcome to predict Merchant Name.

B.2 BASELINES

We compare our proposed TABKDE method with several popular baselines, including
SMOTE (Chawla et al., 2002), CTGAN(Xu et al., 2019), TVAE (Xu et al., 2019), GReaT (Borisov
et al., 2023), GOGGLE (Liu et al., 2023), CoDi (Lee et al., 2023), STaSy (Kim et al., 2023), Tab-
DDPM (Kotelnikov et al., 2023), TABSYN (Zhang et al., 2024), and TABDIFF (Shi et al., 2025)6.
Through this comparison, we demonstrate that TABKDE provides a simpler, faster, and more scalable
alternative for generating realistic synthetic tabular data, without significantly compromising on
quality or privacy.

By abstracting to the general framework (outlined in Section 1) we are able to also consider several
hybrid models that mix elements of TABKDE with the encoding choices, the VAE method, or the
diffusion-driven generation made popular through TABSYN and others. We specifically consider

• COPULADIFF: We first use our COPULAMAPPING (Alg. 7) to embed data into a latent
space, train a Diffusion model there, and then map the generated samples back to the original
space.

• VAETABKDE: This model trains a VAE to embed data into numerical space (as in TAB-
SYN), then applies the Copula and KDE methods to generate samples, which are then
mapped back to the original tabular format.

• VAESIMPLEKDE: VAESIMPLEKDE differs from VAETABKDE only in the sampling
step, analogous to how TABKDE differs from SIMPLE-KDE.

• PGE-TABSYN: In the method we replace one-hot encoding with the encoding outlined in
Subsection A.1 (see the first three steps in MAPTOLATENTSPACE Alg. 6), which tokenizes
the tabular data into the space E before applying VAE and Diffusion models.

B.3 EVALUATION

To evaluate our synthetic data generation method, we focus on three main objectives including 1)
Scalability, 2) Accuracy, and 3) Privacy. In terms of Efficiency, we measure and compare the
training and sampling time required by each model across various datasets. For Accuracy, we assess
how well the synthetic data captures (1) the ground truth marginals for each column individually, (2)

6We have not yet been able to reproduce all results for TABDIFF, but they report (Shi et al., 2025) very similar
performance to TABSYN in terms of accuracy, efficiency, and privacy – although with small, but noticeable
improvement on categorical data. This follows since they build directly on most of the framework of TABSYN
except for using a discrete diffusion on the categorical parts. For the comparison to TABKDE and its relatives,
TABSYN’s performance should serve as a good empirical representative.

19

1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079

Under review as a conference paper at ICLR 2026

correlations for pairs of columns, (3) the entire distribution using machine learning efficiency, and (4)
the balance between fidelity and coverage using α-Precision and β-Recall. For Privacy, we use the
Distance to Closest Records (DCR) metric to assess privacy protection by measuring how similar the
synthetic data is to the training/test data sets.

C SCALABILITY AND EFFICIENCY

We measure the scalability and efficiency on both the training time, as well as the sample generation
time; this second part is the generation of a sample the same size as the training set. As shown in
Tables 10 and 11, we see in most existing methods the time is almost entirely dominated by the
training aspect. However, TABKDE the training and sampling are more comparable because the
training time is so much lower.

All our experiments, unless otherwise specified, were conducted using only the CPU of a 2021 Apple
MacBook Pro (14-inch), equipped with an Apple M1 Pro chip. This device features an 8-core CPU
(comprising 6 performance cores and 2 efficiency cores) and 16 GB of unified memory. Table 10
presents a comparison of the training times between TABSYN and SMOTE against our proposed
TABKDE, demonstrating that our method is highly computationally efficient and can be effectively
executed on a standard consumer-grade laptop. TABSYN and SMOTE both run out of memory on
the IBM data set, this is primarily because it has a huge number of categories, and these methods
rely on one-hot encoding, which blows up the dimensionality into a 37,733-dimensional space.
The memory inefficient one-hot encoding is standard in many modern models. SMOTE requires
this dimensionality to identify the k nearest neighbors, which becomes highly inefficient in such a
high-dimensional space (see Table 9 for dataset details).

In contrast, our proposed tokenization method, PRINCIPALGUIDEDENCODING (Algorithm 5), trans-
forms tabular data into a numerical format with a fixed dimensionality equal to the original number
of features (14 in this case, compared to 37722 with one-hot encoding), providing a far more efficient
representation.

Table 10: Runtime comparison of Tabsyn, TabKDE, and SMOTE models across individual datasets
on laptop. The IBM dataset is excluded from the average row.

Dataset TABSYN SMOTE TABKDE

VAE Train Diff. Train Total Train Sample Train+Sample Train Sample

Adult 6h 35m 43s 2h 6m 31s 8h 43m 19s 1m 5s 4s 44s 20s
Default 6h 32m 3s 2h 2m 16s 8h 34m 59s 40s 2s 59s 17s
Shoppers 3h 57m 42s 0h 55m 32s 4h 53m 32s 18s 3s 17s 5s
Magic 3h 51m 7s 1h 21m 27s 5h 13m 0s 26s 5s 19s 7s
Beijing 5h 31m 57s 1h 57m 44s 7h 30m 35s 54s 2s 35s 16s
News 14h 34m 15s 2h 8m 59s 16h 44m 11s 57s 4s 6m 2s 54s

Average 6h 50m 27s 1h 45m 24s 8h 36m 36s 43s 3s 1m 29s 19s

IBM OOM OOM OOM OOM OOM 10m 21s 6m 4s

The baseline methods in the TABSYN (Zhang et al., 2024) paper were evaluated on the Adult dataset
using an NVIDIA RTX 4090 GPU with 24 GB of memory, as shown in Table 11. In contrast, our
experiments—including those for TABSYN and the proposed TABKDE—were conducted entirely on
significantly less powerful hardware. Despite this substantial difference in computational resources,
TABKDE demonstrates superior efficiency. As shown in Table 10, it achieves an average training
time of only 1 minute and 29 seconds, and a sampling time of just 19 seconds across six benchmark
datasets. This is considerably faster than the TABSYN model, which requires more than 8.5 hours of
training on average. These results highlight that TABKDE not only nearly matches the performance
of more complex models (see Section D) but also does so at a fraction of the computational cost,
making it highly suitable for deployment on standard consumer-grade machines without the need for
specialized accelerators.

As previously noted, running TABSYN on the IBM dataset is infeasible given our standard com-
putational resources. This limitation arises mainly due to using one-hot encoding—results in a

20

1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133

Under review as a conference paper at ICLR 2026

Table 11: Training and sampling times for baseline methods on the Adult dataset, evaluated using an
NVIDIA RTX 4090 GPU with 24 GB of memory (adapted from the TABSYN Zhang et al. (2024)
paper).

Method Training Time Sampling Time

CTGAN 17 min 10 s 0.86 s
TVAE 5 min 53 s 0.51 s
GOGGLE 1 h 34 min 5.34 s
GReaT 2 h 27 min 2 min 19 s
STaSy 38 min 3 s 8.94 s
CoDi 2 h 56 min 4.62 s
TabDDPM 17 min 11 s 28.92 s
TABSYN 40 min 22 s 1.78 s

37,733-dimensional feature space. However, we can alternatively use encoding scheme introduced in
the preprocessing steps of TABKDE. Accordingly, we apply both COPULADIFF and PGE-TABSYN
to the IBM dataset. Training COPULADIFF requires 15 hours and 7 minutes, while PGE-TABSYN
demands over 40 hours in total—25 hours and 56 minutes for the VAE and 14 hours and 39 minutes
for the diffusion stage. As shown in Table 10, TABKDE only takes about 10 minutes of training time.
This comparison further highlights TABKDE ’s advantage in scalability over more resource-intensive
methods.

For a direct comparison, we evaluate TABKDE alongside the baselines TABSYN, TabDDPM, CoDi,
and GReat on the Adult, Default, Shoppers, and Magic datasets, using an NVIDIA RTX A5000 GPU
with 24GB of memory and a maximum power draw of 230W, under the same experimental settings
as TABSYN. See Tables 12 and 13 and Figure 5 for details. TABKDE is orders of magnitude faster
in training, but on par with others in sampling time – we generate samples sequentially, and did not
optimize for the GPU.

(a) Training time (b) Sampling time

Figure 5: Average training and sampling time over Adult, Default, Shoppers, and Magic for different
methods.

Table 12: Average training and sampling time for each method.

Method Train Time (s) Sample Time (s)
Great 17112.4 251.2
Codi 18487.6 11.8
TabDDPM 2771.4 70.8
TABSYN 1297.8 8.4
TABKDE 39.2 39.0

21

1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187

Under review as a conference paper at ICLR 2026

Table 13: Average training and sampling times (in seconds)± standard deviation for each dataset
using the TABKDE model. Values are reported as mean and standard deviation over 10 repeated runs.

Dataset Train Time (s) Sample Time (s)

Adult 51.50±1.08 50.30±0.67

Default 45.00±0.67 55.10±0.99

Shoppers 21.50±0.53 18.20±0.42

Magic 33.00±0.67 21.00±0.67

Beijing 63.00±0.47 51.80±0.79

News 64.30±1.16 166.80±1.32

Average 46.38±0.29 60.53±0.42

D ACCURACY EVALUATION

In this section, we evaluate the quality of the generated synthetic data using three criteria: (1) marginal
distribution alignment, (2) pairwise correlation matching, and (3) finally global alignment between
synthetic and hold-out distributions is compared by how well a classifier can separate the distributions.

D.1 MARGINAL DISTRIBUTION ALIGNMENT

When evaluating synthetic tabular data, marginal distribution alignment score assesses how closely
each individual column matches its real-data distribution represented by train data. Following what
was done in the TABSYN paper, we calculate the Kolmogorov–Smirnov (KS) distance for numerical
attributes in Num and the Total Variation Distance for categorical and ordinal attributes in Cat and
Ord. Table 14 presents, for each dataset, the average marginal alignment errors across all features
for each method. Table 15 presents the performance of the TABKDE model in aligning marginal
distributions, averaged over 10 runs.

Table 14: Performance comparison on marginal distribution alignment (Error rate %). Lower values
indicate better performance. The values in parentheses denote the ratio relative to the smallest value.
Baselines taken from Zhang et al. (2024)

Method Adult Default Shoppers Magic Beijing News Average

SMOTE (our reproduction) 1.63 (2.55) 1.70 (1.49) 2.66 (2.16) 1.37 (1.93) 2.10 (1.62) 5.47 (3.18) 2.49 (1.75)
CTGAN 16.84 (26.31) 16.83 (14.76) 21.15 (17.20) 9.81 (13.82) 21.39 (16.45) 16.09 (9.35) 17.02 (11.99)
TVAE 14.22 (22.22) 10.17 (8.92) 24.51 (19.93) 8.25 (11.62) 19.16 (14.74) 16.62 (9.66) 15.49 (10.91)
GOGGLE 16.97 (26.52) 17.02 (14.93) 22.33 (18.15) 1.90 (2.68) 16.93 (13.02) 25.32 (14.72) 16.74 (11.79)
GReaT 12.12 (18.94) 19.94 (17.49) 14.51 (11.80) 16.16 (22.76) 8.25 (6.35) – 14.20 (10.00)
STaSy 11.29 (17.64) 5.77 (5.06) 9.37 (7.62) 6.29 (8.86) 6.71 (5.16) 6.89 (4.01) 7.72 (5.44)
CoDi 21.38 (33.41) 15.77 (13.82) 31.84 (25.89) 11.56 (16.28) 16.94 (13.03) 32.27 (18.78) 21.63 (15.23)
TabDDPM 1.75 (2.73) 1.57 (1.38) 2.72 (2.21) 1.01 (1.42) 1.30 (1.00) 78.75 (45.83) 14.52 (10.23)
TabSYN (Our reproduction) 0.64 (1.00) 1.14 (1.00) 1.23 (1.00) 0.98 (1.38) 2.79 (2.15) 1.72 (1.00) 1.42 (1.00)
COPULADIFF 2.01 (3.14) 1.47 (1.29) 2.47 (2.01) 0.94 (1.32) 2.13 (1.64) 2.44 (1.42) 1.91 (1.35)
VAESIMPLEKDE 3.23 (5.05) 7.72 (6.77) 6.78 (5.51) 3.12 (4.39) 7.12 (5.48) 10.03 (5.83) 6.33 (4.46)
VAETABKDE 3.80 (5.94) 5.84 (5.12) 6.31 (5.13) 0.71 (1.0) 4.94 (3.80) 4.45 (2.59) 4.34 (3.06)
SIMPLE-KDE 1.92 (3.00) 3.33 (2.92) 3.12 (2.54) 3.59 (5.06) 10.32 (7.94) 7.36 (4.28) 4.94 (3.48)
RANDCORETABKDE 1.61 (2.52) 1.76 (1.54) 2.54 (2.07) 1.01 (1.42) 1.70 (1.31) 2.59 (1.51) 1.87 (3.48)
CORETABKDE 3.63 (5.67) 3.29 (2.89) 3.23 (2.63) 1.08 (1.52) 3.20 (2.46) 2.87 (1.67) 2.88 (2.03)
TABKDE 1.56 (2.44) 1.55 (1.36) 2.44 (1.98) 0.78 (1.1) 1.37 (1.05) 2.52 (1.47) 1.70 (1.2)

Table 15: Performance comparison on marginal distribution alignment (Error rate %) for each dataset
using TABKDE model. Values are reported as mean and standard deviation over 10 repeated runs.

Metric Adult Default Shoppers Magic Beijing News Average

Marginal alignment error 1.54± 0.03 1.53± 0.05 2.46± 0.09 0.80± 0.08 1.40± 0.04 2.53± 0.04 1.71± 0.05

Figure 6 provides a visual comparison between some representative selected real marginal dis-
tributions and those generated by TABSYN (orange) and TABKDE (green) against the real data
distributions (blue). Each row shows 4 columns from a data set. For IBM data set (bottom row)

22

1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241

Under review as a conference paper at ICLR 2026

we use COPULADIFF (orange) instead of TABSYN since it cannot scale to this large data set. It is
apparent that TABKDE usually does as well and better than TABSYN. In particular, on numerical
data (where continuous distributions are shown), TABKDE appears to match the real data much
closer, but on categorical data, and when there are spikes in numerical data, TABKDE can have a bit
more error. Since the KS distance is a worst case, it is very unforgiving for such errors on discrete
data, and explains why TABKDE and TABSYN appear comparable in these marginal plots, but
TABSYN has consistently smaller scores in Table 14. An average error measure on on numerical
data should show an advantage for TABKDE.

Figure 6: Marginals comparison between real data (blue), TABKDE (green), and TABSYN (orange).
Each row is a data set, and sample column marginals are shown for each; some categorical and some
numerical. For IBM data set (last row), TABSYN is replaced with PGE-TABSYN since TABSYN
runs out of memory.

23

1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295

Under review as a conference paper at ICLR 2026

D.2 PAIRWISE CORRELATION ALIGNMENT

We next measure pairwise correlation between columns. For numerical-numerical pairs, we can use
standard Pearson correlations. However for pairs that involve categorical (and to align with measures
in the TABSYN paper, we treat ordinal as categorical), we use contingency-table Total Variation
Distances. In both metrics, smaller error values indicate that the synthetic table is more faithful to
the original data. Table 16 presents, for each dataset, the average pairwise correlation alignment
errors, computed as (1− score), across all features for each method. A heatmap visualization of the
divergence between the pairwise correlations in the real and synthetic data is presented in Figure 7.
Table 17 presents the performance of the TABKDE model in Pairwise correlation alignment error
(Error rate %), averaged over 10 runs.

We observe that TABKDE has better pairwise correlation alignment than all methods except TAB-
SYN, and is comparable to SMOTE; both TABKDE and SMOTE have about 2.5 the correlation
discrepancy as TABSYN. The main poor correlation for TABKDE appears in Default data set,
and with ‘BILL_AMT3’ and ‘BILL_AMT4’ variables which have similar but less challenges for
TABSYN, as well as GreaT and CoDi.

Table 16: Performance comparison of tabular data synthesis methods based on Pairwise correlation
alignment error (Error rate %). Lower values indicate better performance. The values in parentheses
denote the ratio relative to the smallest value. Baselines taken from Zhang et al. (2024)

Method Adult Default Shoppers Magic Beijing News Average

SMOTE (Our reproduction) 4.3 (2.67) 11.54 (5.11) 3.68 (1.47) 1.88 (2.29) 3.3 (1.22) 1.67 (1.25) 4.39 (1.99)
CTGAN 20.23 (12.57) 26.95 (11.92) 13.08 (5.23) 7.0 (8.54) 22.95 (8.47) 5.37 (4.01) 15.93 (7.21)
TVAE 14.15 (8.79) 19.5 (8.63) 18.67 (7.47) 5.82 (7.10) 18.01 (6.65) 6.17 (4.60) 13.72 (6.21)
GOGGLE 45.29 (28.13) 21.94 (9.71) 23.9 (9.56) 9.47 (11.55) 45.94 (16.95) 23.19 (17.31) 28.29 (12.8)
GReaT 17.59 (10.93) 70.02 (30.98) 45.16 (18.06) 10.23 (12.48) 59.6 (21.99) – 40.52 (18.33)
STaSy 14.51 (9.01) 5.96 (2.64) 8.49 (3.39) 6.61 (8.05) 8.0 (2.96) 3.07 (2.29) 7.77 (3.52)
CoDi 22.49 (13.98) 68.41 (30.27) 17.78 (7.11) 6.53 (7.97) 7.07 (2.61) 11.1 (8.28) 22.23 (10.06)
TabDDPM 3.01 (1.87) 4.89 (2.16) 6.61 (2.64) 1.7 (2.07) 2.71 (1.00) 13.16 (9.82) 5.34 (2.42)
TABSYN(Our reproduction) 1.61 (1.00) 2.26 (1.00) 2.5 (1.00) 0.82 (1.00) 4.7 (1.73) 1.34 (1.00) 2.21 (1.00)
COPULADIFF 4.61 (2.86) 3.29 (1.46) 5.3 (2.12) 1.72 (2.10) 4.5 (1.66) 2.1 (1.57) 3.59 (1.62)
VAESIMPLEKDE 9.86 (6.12) 12.88 (5.70) 9.51 (3.80) 3.12 (3.80) 11.51 (4.25) 4.05 (3.02) 8.49 (3.84)
VAETABKDE 7.23 (4.49) 12.71 (5.62) 9.68 (3.87) 3.95 (4.82) 9.87 (3.64) 3.67 (2.74) 7.85 (3.55)
SIMPLE-KDE 4.64 (2.88) 5.16 (2.28) 5.26 (2.10) 3.3 (4.02) 4.72 (1.74) 2.96 (2.21) 4.34 (1.96)
RANDCORETABKDE 3.93 (2.44) 13.66 (6.04) 4.27 (1.71) 4.76 (5.80) 4.05 (1.49) 2.61 (1.95) 5.46 (2.47)
CORETABKDE 6.3 (3.91) 9.91 (4.39) 5.77 (2.31) 2.18 (2.66) 5.86 (2.16) 2.82 (2.10) 5.47 (2.48)
TABKDE 4.51 (2.80) 9.93 (4.40) 4.31 (1.72) 2.72 (3.32) 3.74 (1.38) 2.83 (2.11) 4.67 (2.11)

Table 17: Performance comparison on pairwise correlation alignment (Error rate %) for each dataset
using TABKDE model. Values are reported as mean and standard deviation over 10 repeated runs.

Metric Adult Default Shoppers Magic Beijing News Average

Pairwise Corr. Align. Error 4.05± 0.27 11.33± 1.49 4.39± 0.16 2.80± 0.68 3.80± 0.22 2.95± 0.17 4.89± 0.47

We also compare against some variants on the larger IBM dataset. Recall that on our laptop CPU,
neither TABSYN or SMOTE can run on this data set – they both run out of memory. Instead we
compare TABKDE against our baselines including COPULADIFF and PGE-TABSYN. Also, note that
we apply a modeling trick with Zip / Merchant State / Merchant City and with MCC / Merchant Name
with TABKDE but not PGE-TABSYN and TABSYN (on GPU). Recall also that TABKDE (about 10
minutes training time on CPU; 40 seconds on GPU) was much faster than either of COPULADIFF
(about 15 hours on CPU), PGE-TABSYN (over 40 hours on CPU) or TABSYN TABSYN (OOM on
CPU, about 20 minutes on GPU). The average pairwise correlation alignment error for TABSYN and
PGE-TABSYN (without modeling trick) are %40.42 and %30.53, respectively, while for TABKDE
and COPULADIFF (with modeling trick), are is %25.29 and %22.59; see Table 18. Indeed as shown
in Figure 8 of pairwise correlation plots, the methods work largely similar except on the highly
correlated pairs where we employ the modeling trick.

24

1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349

Under review as a conference paper at ICLR 2026

Figure 7: Pairwise correlation Divergence plots for each dataset and methods.

Figure 8: Pairwise correlation Divergence plots for IBM dataset and methods: TABSYN, PGE-
TABSYN, COPULADIFF (with and without modeling trick), CORETABKDE, TABKDE. For
CORETABKDE, the size of coreset and the bandwidth are 5,000 and .15, respectively.

25

1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403

Under review as a conference paper at ICLR 2026

Table 18: Marginal and Pairwise accuracy on IBM dataset. See the last paragraph of Subsection B.1
for reduced modeling explanation.

Method Marginal Alignment Pairwise Correlation Reduced Modeling
TABSYN 16.99 40.42 no
PGE-TABSYN 9.29 30.53 no
COPULADIFF 6.81 29.42 no
COPULADIFF 3.59 22.59 yes
CORETABKDE 5.25 23.93 yes
TABKDE 3.58 25.29 yes

D.3 GLOBAL DISTRIBUTION ALIGNMENT

High-quality synthetic data should be able to take the place of real data, letting us train models on it
for downstream tasks like classification or regression and have indistinguishable performance (and
without revealing private information). We assess by building a classifier to attempt to distinguish
between the synthetic data and a split of data holdout from the training process. We consider two
standard classifiers: XGBoost and logistic regression.

First, following standard practice, we use XGBoost to build a classifier on the synthetic data, and
measure the AUC for classification tasks, and RMSE for regression tasks. This is referred to as
machine learning efficiency. The results in Table 19 on baselines from the TABSYN paper, as well as
SMOTE, and other baselines in our model. Note that TABSYN appears twice in this table (as well as
in Tables 21 and 24), to include the value recorded in Zhang et al. (2024) and then our reproduction
of the result. The Real row in Table 19 shows the ideal performance, using true training data to
train the classifier or regression models. The Average Gap column indicates the percentage drop in
performance when synthetic data is used to train the classifier or regression models. Table 20 presents
the mean and standard deviation of machine learning efficiency (MLE) over 10 runs, indicating that
the TABKDE model demonstrates strong robustness with respect to this metric.

Again TABSYN provides the best error, and TABKDE is nearly as good – almost within the natural
variation in TABSYN’s performance. Perhaps surprisingly, the simple method SMOTE also performs
on par with TABSYN and TABKDE.

Table 19: Machine learning efficiency performance comparison across datasets. The results of
baselines above the first line are taken from Zhang et al. (2024). To compute the Average Gap, we
take the average across all datasets of the relative difference between the performance of a model
trained on synthetic data (si) and the performance of the same model trained on real data (ri);
Average Gap = 1

N

∑N
i=1

(
|si−ri|

ri

)
× 100.

Methods Adult Default Shoppers Magic Beijing News Average Gap
(AUC↑) (AUC↑) (AUC↑) (AUC↑) (RMSE↓) (RMSE↓) (%)

Real 0.927 0.770 0.926 0.946 0.423 0.842 0%
SMOTE 0.899 0.741 0.911 0.934 0.593 0.897 9.39%
CTGAN 0.886 0.696 0.875 0.855 0.902 0.880 24.5%
TVAE 0.878 0.724 0.871 0.887 .770 1.01 20.9%
GOGGLE 0.778 0.584 0.658 0.654 1.09 0.877 43.6%
GReaT 0.913 0.755 0.902 0.888 0.653 OOM 13.3%
STaSy 0.906 0.752 0.914 0.934 0.656 0.871 10.9%
CoDi 0.871 0.525 0.865 0.932 0.818 1.21 30.5%
TabDDPM 0.907 0.758 0.918 0.935 0.592 4.86 9.14%

TABSYN(Our reproduction) 0.911 0.760 0.913 0.942 0.663 0.820 10.70%

COPULADIFF 0.901 0.763 0.912 0.939 0.667 0.921 12.18%
VAESIMPLEKDE 0.896 0.733 0.874 0.912 0.777 1.037 20.70%
VAETABKDE 0.890 0.747 0.871 0.913 0.649 0.860 11.20%
SIMPLE-KDE 0.901 0.730 0.913 0.931 0.756 1.167 21.39%
RANDCORETABKDE 0.883 0.730 0.911 0.929 0.713 0.881 14.42%
CORETABKDE 0.881 0.712 0.919 0.928 0.744 0.877 15.86%
TABKDE 0.906 0.745 0.917 0.934 0.675 0.869 11.76%

Second, we use a logistic regression classifier. Follow standard practice we now use this to try
to separate the synthetic data from the heldout data. We quantify this as a classifier two-sample
test (C2ST) as provided by SDMetrics; larger values closer to 1 are better. Table 21 shows both a

26

1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457

Under review as a conference paper at ICLR 2026

Table 20: Machine learning efficiency comparison across datasets for the TABKDE model, reporting
accuracy as mean ± standard deviation over 10 runs.

Adult Default Shoppers Magic Beijing News
MLE 0.904± 0.003 0.744± 0.012 0.916± 0.006 0.931± 0.004 0.678± 0.010 0.852± 0.021

comparison drawn directly from the TABSYN paper against a variety of recent baselines; below
the line we reproduce results on TABSYN, show results for SMOTE, and variants of our method
TABKDE.

As before, TABKDE is roughly the same as SMOTE with 0.93 and only bested by TABSYN which
has about 0.97. Other baselines achieve 0.79 (TabDDPM) or below 0.66.

Table 21: C2ST Scores of generative models on tabular datasets. The results of baselines above the
first line are taken from Zhang et al. (2024)

Method Adult Default Shoppers Magic Beijing News Average
CTGAN 0.5949 0.4875 0.7488 0.6728 0.7531 0.6947 0.6586
TVAE 0.6315 0.6547 0.2962 0.7706 0.8659 0.4076 0.6044
GOGGLE 0.1114 0.5163 0.1418 0.3262 0.4779 0.0745 0.2747
GReaT 0.5376 0.4710 0.4285 0.4326 0.6893 — 0.5118
STaSy 0.4054 0.6814 0.5482 0.6939 0.7922 0.5287 0.6083
CoDi 0.2077 0.4595 0.2784 0.7206 0.7177 0.0201 0.4007
TabDDPM 0.9755 0.9712 0.8349 0.9998 0.9513 0.0002 0.7888

SMOTE 0.9212 0.9332 0.9107 0.9803 0.9972 0.8633 0.9334
TABSYN(Our reproduction) 0.9949 0.9804 0.9699 0.9893 0.9268 0.9584 0.9699

COPULADIFF 0.8557 0.9798 0.8665 0.9914 0.9576 0.9793 0.9384
VAESIMPLEKDE 0.7199 0.4082 0.6736 0.9665 0.7392 0.3782 0.6476
VAETABKDE 0.7483 0.4828 0.7242 0.9984 0.8022 0.8075 0.7606
SIMPLE-KDE 0.9196 0.8716 0.8110 0.9711 0.9497 0.4975 0.8368
RANDCORETABKDE 0.9215 0.9570 0.8757 0.9921 0.9503 0.8901 0.9311
CORETABKDE 0.8254 0.873 0.8462 0.9864 0.8924 0.8643 0.8813
TABKDE 0.9219 0.9579 0.9161 1.0000 0.9514 0.8819 0.9382

D.4 PRECISION AND RECALL

α-Precision and β-Recall are two complementary metrics used to assess the quality of synthetic
tabular data, as used in the TABSYN paper (Zhang et al., 2024). α-Precision measures the fidelity of
the synthetic data to the real data, indicating how well the synthetic samples preserve fine-grained
details and local structures. A higher α-Precision score reflects greater similarity to the original data.
In contrast, β-Recall evaluates the extent to which the synthetic data covers the real data distribution,
with higher scores indicating broader and more diverse coverage of the feature space. An ideal
generative model should balance both metrics—achieving high α-Precision while also maintaining
strong β-Recall—thus producing synthetic data that is both accurate and representative of the true
distribution. Tables 22 and 23 summarize α-Precision and β-Recall scores.

TABSYN does the best on α-precision, but SMOTE does better on β-recall. On α-precision TABKDE
(95%) nearly matches TABSYN (98.7%), and is better than any other method (including SMOTE),
except our variant COPULADIFF which reaches (96%). On β-precision, TABKDE (42%) almost
matches TABSYN (48%) as is almost as good as any other method with GReaT and STaSy slightly
better (43%); other than SMOTE (78%). But as we discuss next, this likely because SMOTE generates
data mirroring some of the training data.

27

1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1490
1491
1492
1493
1494
1495
1496
1497
1498
1499
1500
1501
1502
1503
1504
1505
1506
1507
1508
1509
1510
1511

Under review as a conference paper at ICLR 2026

Table 22: α-Precision scores for various methods on the 6 standard data sets. The last column shows
the average score and rank. Scores above the line are reproduced from Zhang et al. (2024) with their
data split; below the line are with equal-sized split.

Method Adult Default Shoppers Magic Beijing News Average Ranking

CTGAN 77.74 62.08 76.97 86.90 96.27 96.96 82.82 12
TVAE 98.17 85.57 58.19 86.19 97.20 86.41 85.29 10
GOGGLE 50.68 68.89 86.95 90.88 88.81 86.41 78.77 15
GReaT 55.79 85.90 78.88 85.46 98.32 - 80.87 13
STaSy 82.87 90.48 89.65 86.56 89.16 94.76 88.91 8
CoDi 77.58 82.38 94.95 85.01 98.13 87.15 87.03 9
TabDDPM 96.36 97.59 88.55 98.59 97.93 0.00 79.83 14
TABSYN 99.52 99.26 99.16 99.38 98.47 96.80 98.67 1

smote 92.83 98.40 92.60 96.76 98.64 87.93 94.52 6
COPULADIFF 98.09 98.99 95.43 98.43 97.33 93.98 97.04 2
VAESIMPLEKDE 88.21 80.90 82.46 7.03 75.56 19.29 72.24 16
VAETABKDE 98.39 91.71 97.36 98.50 93.29 84.86 94.02 7
SIMPLE-KDE 98.10 93.88 98.84 90.13 96.41 29.25 84.44 11
RANDCORETABKDE 95.67 4.62 91.64 98.68 98.11 96.68 95.90 3
CORETABKDE 98.01 89.44 90.27 99.12 95.70 94.96 94.58 5
TABKDE 94.46 94.45 92.18 98.98 97.47 97.48 95.83 4

Table 23: β-Recall scores for various methods on the 6 standard data sets. The last column shows the
average score and rank. Scores above the line are reproduced from Zhang et al. (2024) with their data
split; below the line are with equal-sized split.

Method Adult Default Shoppers Magic Beijing News Average Ranking

CTGAN 30.80 18.22 31.80 11.75 34.80 24.97 25.39 16
TVAE 38.87 23.13 19.78 32.44 28.45 29.66 28.72 15
GOGGLE 8.80 14.38 9.79 9.88 19.87 2.03 10.79 17
GReaT 49.12 42.04 44.90 34.91 43.34 OOM 42.86 6
STaSy 29.21 39.31 37.24 53.97 54.79 39.42 42.99 5
CoDi 9.20 19.94 20.82 50.56 52.19 34.40 31.19 13
TabDDPM 47.05 47.83 47.79 48.46 56.92 0.00 41.34 7
TABSYN 47.56 48.00 48.95 48.03 55.48 45.04 48.84 2

SMOTE 76.88 76.00 77.09 82.45 79.22 80.00 78.60 1
COPULADIFF 41,29 46.21 43.21 46.38 51.65 43.86 45.43 3
VAESIMPLEKDE 38.78 20.71 38.01 40.13 45.62 2.00 30.87 14
VAETABKDE 43.68 27.32 48.81 45.56 51.12 12.64 38.18 9
SIMPLE-KDE 45.90 36.60 43.12 44.78 52.68 3.90 37.83 11
RANDCORETABKDE 37.67 35.81 44.77 44.82 51.56 17.54 38.69 8
CORETABKDE 27.46 20.86 39.40 40.35 48.30 13.01 31.56 12
TABKDE 48.54 43.05 47.22 48.80 54.39 17.82 43.30 4

28

1512
1513
1514
1515
1516
1517
1518
1519
1520
1521
1522
1523
1524
1525
1526
1527
1528
1529
1530
1531
1532
1533
1534
1535
1536
1537
1538
1539
1540
1541
1542
1543
1544
1545
1546
1547
1548
1549
1550
1551
1552
1553
1554
1555
1556
1557
1558
1559
1560
1561
1562
1563
1564
1565

Under review as a conference paper at ICLR 2026

E PRIVACY PRESERVATION

Finally, we evaluate how well we can preserve the privacy of the training data in the synthetic data
generation process. We use the distance to closest record (DCR) function in the latent space to
evaluate this. That is for each synthetic data point generated, we both look at the distribution of
distances to training or held-out data, and also whether the closest record was from the held-out or
training set. An ideal synthetic distribution would match the distance distribution of the training data
to the heldout data, and would be roughly equally likely to be close to the heldout and training data.

First Table 24 we calculate the "DCR score" which is the percentage of synthetic data closer to
training data than held-out; ideally we would like this to be close to 50%. This was proposed by the
recent TABDIFF paper (Shi et al., 2025), and we reproduce their results in the top half of the table,
and show our methods (and SMOTE and TABSYN) below the line on an equal split. We see most
diffusion methods (including our COPULADIFF) can consistently achieve below 52%. Our main
method TABKDE obtains an average DCR score of about 58%, which is servicable.

On the other hand, SMOTE has an average DCR score of 95%. This indicates that it often nearly
replicates the training data. Its method chooses a training record, finds the k nearest neighbor, and
selects a new point in the convex combination of these points, then de-tokenizes back to the tabular
format. Because it works with a one-hot encoding, probably most records map back to the same
discrete values as the first record, and it often failures to generate substantially new data, hence
leaking the training data.

Table 24: The DCR score indicates the likelihood that a generated data sample resembles the training
set more than the test set. A value nearer to 50% is considered ideal. Values above the line reproduced
from Shi et al. (2025) with their train-held-out split.

Method Adult Default Shoppers Beijing News Average

STaSy 50.33 (1.01) 50.23 (1.00) 51.53 (1.03) 50.59 (1.01) 50.59 (1.00) 50.65 (1.00)

CoDi 49.92 (1.00) 51.82 (1.03) 51.06 (1.02) 50.87 (1.01) 50.79 (1.00) 50.89 (1.01)

TabDDPM 51.14 (1.02) 52.15 (1.04) 63.23 (1.26) 80.11 (1.59) 79.31 (1.57) 65.19 (1.29)

TABSYN 50.94 (1.02) 51.20 (1.02) 52.90 (1.06) 50.37 (1.00) 50.85 (1.01) 51.65 (1.02)

TABDIFF 50.10 (1.00) 51.11 (1.02) 50.24 (1.00) 50.50 (1.00) 51.04 (1.01) 50.60 (1.00)

COPULADIFF 50.34 (1.01) 50.96 (1.01) 50.72 (1.01) 50.29 (1.00) 53.00 (1.05) 51.06 (1.01)

VAESIMPLEKDE 61.33 (1.23) 58.08 (1.16) 58.83 (1.17) 60.73 (1.21) 59.00 (1.17) 59.59 (1.18)

VAETABKDE 61.28 (1.23) 57.87 (1.15) 57.70 (1.15) 60.42 (1.20) 58.00 (1.15) 59.45 (1.17)

smote 91.18 (1.83) 91.46 (1.82) 96.76 (1.92) 100.00 (1.99) 99.00 (1.96) 95.68 (1.89)

SIMPLE-KDE 63.32 (1.27) 63.49 (1.26) 58.18 (1.16) 55.42 (1.10) 56.12 (1.11) 59.71 (1.18)

TABSYN 51.33 (1.03) 51.61 (1.03) 51.99 (1.03) 53.20 (1.06) 51.00 (1.01) 51.83 (1.02)

RANDCORETABKDE 62.30 (1.24) 63.09 (1.26) 58.91 (1.17) 63.50 (1.26) 55.59 (1.10) 60.68(1.20)

CORETABKDE 52.59 (1.05) 54.11 (1.08) 55.04 (1.1) 51.17 (1.03) 52.00 (1.03) 52.98 (1.05)

TABKDE 62.23 (1.25) 63.46 (1.26) 58.80 (1.17) 54.24 (1.11) 54.54 (1.08) 58.55 (1.16)

If the closest record is from the training or heldout data is an imperfect measure of privacy, since
there may be heldout data nearly as close. One way to evaluate this is to consider the distribution
of how close the synthetic data to the heldout (red) matches the distribution of the synthetic data to
the train (blue). We show this in Figure 9 for TABKDE, TABSYN, and SMOTE for the 6 standard
datasets. We observe that for TABKDE and TABSYN these distributions are multi-modal, but still
match almost perfectly for each data set. On the other hand SMOTE has a very different distribution,
and the synthetic to train (blue) is always much smaller (almost always close to 0 for Adult, Default,
Shopping, and Beijing), indicating it is too closely just reproducing the training data.

F CORESETS FOR GENERATIVE TABULAR DATA MODELING

A coreset (Phillips, 2016) is a compact, weighted set of points that provides a close approximation to
the full dataset for a specific downstream task. In the context of Kernel Density Estimation (KDE),
a coreset serves to approximate the full KDE using significantly fewer, yet strategically chosen,
representative points. A weak coreset is a coreset that the set is not necessarily a subset of the original
point set. In this setting, the “weak” aspect will turn out to be strategically advantageous.

29

1566
1567
1568
1569
1570
1571
1572
1573
1574
1575
1576
1577
1578
1579
1580
1581
1582
1583
1584
1585
1586
1587
1588
1589
1590
1591
1592
1593
1594
1595
1596
1597
1598
1599
1600
1601
1602
1603
1604
1605
1606
1607
1608
1609
1610
1611
1612
1613
1614
1615
1616
1617
1618
1619

Under review as a conference paper at ICLR 2026

Smote TABSYN CORETABKDE TABKDE

Figure 9: Privacy comparison based on DCR distributions for synthetic to training data (blue) and
synthetic to held-out data (red). Each row is a data set, the columns show results for SMOTE, TABSYN,
CORETABKDE, and TABKDE.

30

1620
1621
1622
1623
1624
1625
1626
1627
1628
1629
1630
1631
1632
1633
1634
1635
1636
1637
1638
1639
1640
1641
1642
1643
1644
1645
1646
1647
1648
1649
1650
1651
1652
1653
1654
1655
1656
1657
1658
1659
1660
1661
1662
1663
1664
1665
1666
1667
1668
1669
1670
1671
1672
1673

Under review as a conference paper at ICLR 2026

Our proposed TABKDE framework employs the full KDE to generate samples from the Copula latent
representation Z ⊂ [0, 1]n×d of the tabular data T . The full KDE over Z is given by:

fZ(z) =
1

|Z|
∑
zi∈Z

K

(
z − zi
h

)
,

which we here consider it as the ground-truth likelihood function over z ∈ [0, 1]d. To approximate
fZ(·) using a weak coreset, we define a parameterized KDE f̃Θ(·) based on a small set of learnable
coreset (support) points Q = {q1, . . . , qm} and their corresponding non-negative weights W =
{ω1, . . . , ωm}, constrained such that

∑m
i=1 ωi = 1, where Θ = {Q,W}. The approximated density

function is:

f̃Θ(z) =

m∑
i=1

ωiK

(
z − qi
h

)
,

with m≪ n. It is known (Phillips and Tai, 2020) that a sample Q ∼ Z of m = O((1/ε2) log(1/δ))
points already ensures a strong L∞ coresets approximation that ∥fZ − fQ∥∞ ≤ ε with probability at
least 1− δ. Note that for a fixed kernel K, this bound is independent of the dimension d. While we
use this as a starting point, we seek to improve it with a weak coreset.

In particular, the parameters Θ are optimized by minimizing the expected squared L2 deviation
between the full KDE and its coreset approximation, evaluated over samples drawn from the uniform
distribution on [0, 1]d:

Ez∼Unif([0,1]d)

[(
f̃Θ(z)− fZ(z)

)2
]
.

By optimizing the positions and weights of the coreset points to minimize the discrepancy between
the coreset-based KDE and the full KDE, the method preserves key distributional features, such as
modes, spread, and overall shape. Moreover, because we use a weak coreset, we are not replicating
the training data, and this minimizes the risk of overfitting to the data or leaking its private attributes.

This objective can be optimized via stochastic gradient descent (SGD) with TRAINCORESETKDE
(Algorithm 14).

Algorithm 14 TRAINCORESETKDE(Z, T)

1: Define fZ(z) =
1
|Z|

∑
zi∈Z K

(
z−zi
h

)
2: Initialize randomly the coreset points Q = {q1, . . . , qm} ⊂ Z
3: Initialize the weights W = {ω1, . . . , ωm} with ωi = 1/m

4: Define f̃Θ(z) =
∑m

i=1 ωiK
(
z−qi
h

)
5: For t = 1 to T :
6: Sample z ∼ Unif([0, 1]d)

7: Compute loss L(z) =
(
f̃Θ(z)− f(z)

)2

8: Update Θ via gradient descent to minimize L(z)
9: return Θ = {Q,W}

We employ the Gaussian kernel as K(v) = exp(−v2) in our formulation. Once trained, the learned
weak coreset {(qi, ωi)}mi=1 replaces the full KDE sampling step in Algorithm 11. This modification
constitutes the only difference between TABKDE and CORESETTABKDE, and is detailed in the
sampling procedure below.

31

1674
1675
1676
1677
1678
1679
1680
1681
1682
1683
1684
1685
1686
1687
1688
1689
1690
1691
1692
1693
1694
1695
1696
1697
1698
1699
1700
1701
1702
1703
1704
1705
1706
1707
1708
1709
1710
1711
1712
1713
1714
1715
1716
1717
1718
1719
1720
1721
1722
1723
1724
1725
1726
1727

Under review as a conference paper at ICLR 2026

Algorithm 15 SAMPLECORESETKDE-ITERATIVE(Q,W)

1: Q,W = TRAINCORESETKDE(Z, T)
2: Sample qi ∈ Q with probability ωi ∈W
3: Sample radius r > 0 from f
4: Sample v ∼ N (0,Σ), set u = v

∥v∥
5: z′ ← zi + r · u
6: While {j : z′j /∈ [0, 1]} ≠ ∅:
7: J ← {j : z′j /∈ [0, 1]}
8: Sample v′ ∼ N (0,Σ), set w = v′

∥v′∥

9: s← ∥(uk)k∈J∥
∥(wk)k∈J∥

10: uj ← s · wj for each j ∈ J
11: z′ ← zi + r · u
12: return z′

We may also define a RANDOMCORESETTABKDE variant, in which the optimization step in Alg. 14
(Step 1) is omitted. Instead, a subset Q ⊂ Z of size m is sampled uniformly at random; then we
simply invoke SAMPLEKDE-ITERATIVE(Q) (Alg 11) with Q instead of Z. As noted above, this
simple approach of taking a random sample Q ∼ Z has strong L∞ approximation guarantees on how
well it approximates the KDE of Z; and this does not depend on either the dimension d or the size n
of Z – it only depends on the size |Q| = m of the sample.

F.1 EMPIRICAL EVALUATION OF CORESET METHODS

In this section, we empirically examine the advantages and limitations of the coreset approaches
CORETABKDE and RANDCORETABKDE introduced in Subsection F. Across all the data sets,
we set m = 5,000; as shown in Figure 10, the marginal and pairwise correlation alignment scores
look to plateau around that value. By ablation study, we set h = 0.2 for data sets Adult, Default,
Shoppers, Magic, Beijing, and News, we set h = 0.2, 0.4, 0.2, 0.2, 0.2, 0.5, respectively. We con-
sider bandwidths h ∈ {0.1, 0.2, . . . , 1.0} at 0.1 intervals, and examine the loss function of the
TRAINCORESETKDE procedure run for T = 30 epochs. We select the bandwidth h where the
corresponding loss has the steepest descent towards zero. High values of h result in negligible loss
updates, while overly small values lead to premature convergence at suboptimal loss values. If
multiple consecutive bandwidths yield similar behavior, we take the smaller as the chosen value.

While the bandwidth selection is chosen based only on the loss function in the training data, we also
validate our selection on the test data. As shown on the Adult data set with m = 5000 in Figure
11, the alignment error (both marginal and pairwise correlation; higher better) is fairly stable across
choices of h in 0.1 to 1.0, but has a local peak around h = 0.2. Moreover, the DCR score has a more
noticeable drop for h ≤ 0.6; hence h = 0.2 is confirmed as a good choice. While this KDE is build in
[0, 1]d copula space for all data sets, the dimension changes from 6 (for Adult) to 46 (for News), and
the higher dimensional setting has more room to spread points out, and prefers a larger bandwidth.

The accuracy scores are reported in the numerous tables above, and one can observe this method
achieves accuracy nearly as good as TABKDE, but often a bit worse; see for instance Tables 14
and 16. The scalability of RANDCORETABKDE is also about the same on the data sets we consider
as TABKDE (which is already very efficient). However, now we require much less space to store the
model; and the based on KDE-coreset results (Phillips and Tai, 2020), the accuracy for a fixed size
coreset should not decrease as the training data grows. However, the CORETABKDE requires some
optimization training time: approximately 55 minutes (on the laptop CPU) average across the five
datasets: Adult, Default, Shoppers, Magic, and Beijing.

What is more interesting is the effect on privacy in using CORETABKDE. As shown in Table 24,
CORETABKDE offers a notable improvement in privacy (under the unstable DCR score), with an
average DCR score of about 53%. This is because the coreset no longer precisely stores the training
data; rather it is storing a distribution of data points Q which have a similar KDE as does the training
data Z. Hence, when it generates synthetic data, it is not using some training data point z ∈ Z as a
starting point.

32

1728
1729
1730
1731
1732
1733
1734
1735
1736
1737
1738
1739
1740
1741
1742
1743
1744
1745
1746
1747
1748
1749
1750
1751
1752
1753
1754
1755
1756
1757
1758
1759
1760
1761
1762
1763
1764
1765
1766
1767
1768
1769
1770
1771
1772
1773
1774
1775
1776
1777
1778
1779
1780
1781

Under review as a conference paper at ICLR 2026

Figure 10: Left: Marginal distribution alignment error (%) and pairwise correlation alignment error
(%) as coreset size increases. Right: DCR score as coreset size increases.

Figure 11: Left: Marginal distribution alignment error (%) and pairwise correlation alignment error
(%) as bandwidth increases. Right: DCR score as bandwidth increases.

G ABLATION STUDY ON VARIANTS OF TABKDE

In this section we do a small ablation study to investigate the differences among variants of TABKDE.
Most data is presented in earlier tables in the main paper. The main take-a-ways are as follows.

The methods that use Diffusion or VAE are significantly slower, and less scalable. As discussed above
some of this can be ameliorated by avoiding one-hot encoding, but still the difference in runtime
is very large on the IBM data set. Second, none of the methods that take elements from TABSYN
directly match it in terms of accuracy, although COPULADIFF sometimes does nearly as well, and
on average, they all also do not outperform TABKDE. Third, on privacy, COPULADIFF achieves an
average DCR score of 51%, so it does quite well, improving upon TABKDE and CORETABKDE.

We next provide analysis comparing to SimpleKDE. It should already have been aparent from the
accuracy evaluation where it performs a bit worse than TABKDE that it is not the preferred method.
But next we provide a more in depth discussion on the marginals, where the issue becomes even more
clear why the iterative element is required.

G.1 MOTIVATION FOR TABKDE: BOUNDARY CONTROL CHALLENGES IN SIMPLEKDE

In our initial exploration, we employed SimpleKDE to generate synthetic samples by perturbing
numerical latent representation of the data points using a Kernel Density Estimation (KDE) model.
While this approach is intuitive and straightforward, it presents a critical limitation—lack of boundary
control (see Figure 12). The perturbed samples, generated by adding Gaussian noise to real points,
often fall outside the convex hull of the original dataset. This results in synthetic records that do not
reflect the valid range or domain constraints of the original data, leading to unrealistic samples that
may violate the natural boundaries of the feature space.

To address this issue, we developed TABKDE to better leverage the copula-transformed latent space,
where all features reside. We ensure effective boundary control during sampling, maintaining the
generated samples within valid limits. By resolving the boundary control problem, TabKDE produces

33

1782
1783
1784
1785
1786
1787
1788
1789
1790
1791
1792
1793
1794
1795
1796
1797
1798
1799
1800
1801
1802
1803
1804
1805
1806
1807
1808
1809
1810
1811
1812
1813
1814
1815
1816
1817
1818
1819
1820
1821
1822
1823
1824
1825
1826
1827
1828
1829
1830
1831
1832
1833
1834
1835

Under review as a conference paper at ICLR 2026

Figure 12: Marginals comparison: Simple KDE vs TABKDE

34

1836
1837
1838
1839
1840
1841
1842
1843
1844
1845
1846
1847
1848
1849
1850
1851
1852
1853
1854
1855
1856
1857
1858
1859
1860
1861
1862
1863
1864
1865
1866
1867
1868
1869
1870
1871
1872
1873
1874
1875
1876
1877
1878
1879
1880
1881
1882
1883
1884
1885
1886
1887
1888
1889

Under review as a conference paper at ICLR 2026

synthetic data that more accurately preserves the statistical structure and integrity of the original
dataset (see Figure 12).

H COMPARISON WITH COPULA/KDE BASED GENERATOR MODELS

Copula-based models represent one of the earliest and most widely used approaches for synthetic
tabular data generation. These methods typically rely on two steps: (i) learning marginal distributions
for each feature, and (ii) coupling them via a copula function to capture dependencies across
variables. Classic examples include the GaussianCopulaSynthesizer Patki et al. (2016), which
estimates univariate marginals and applies a Gaussian copula to model correlations, and its variants
such as CopulaGAN and vine-copula GANs, which map the copula-transformed data into a latent
space before adversarial training Xu et al. (2019). While conceptually elegant, these methods
often struggle with mixed-type tabular data. Categorical variables are usually handled by simplistic
encodings (e.g., one-hot encoding or UniformEncoder), which can distort dependencies, and the
Gaussian copula assumption may fail to capture higher-order interactions.

Recent research has extended this line of work. For example, Meyer et al. (2021) applied vine and
Gaussian copulas to continuous weather data, while Majdara and Nooshabadi (2020) integrated copula
transforms with diffusion-based KDE for continuous density estimation. However, these methods are
limited to continuous domains and do not address challenges of mixed categorical-numerical data
or scalability. Other work, such as differentially private copula models (e.g., Gambs et al. (2021)),
explicitly aims to strengthen privacy at the expense of accuracy and efficiency.

Against this backdrop, TABKDE can be viewed as both building on and diverging from the copula
tradition. Like classical copula generators, TabKDE maps data into a copula space (not the same
as the classical copula method), standardizing marginals into the unit hypercube. However, rather
than imposing parametric assumptions (e.g., Gaussian copula) or adversarial training, it employs a
d-dimensional kernel density estimator directly in copula space. This design introduces several key
innovations absent from prior copula models:

• Principal-Guided Encoding (PGE) for categorical features, enabling faithful one-
dimensional embeddings without using one-hot encodings, which does not increase the
dimension and avoids sparsity.

• Covariance-aware geometry and boundary-respecting kernels, which allow KDE sam-
pling to preserve higher-order correlations and respect marginal supports.

• DCR-calibrated kernels, which explicitly align synthetic samples to the empirical distance-
to-closest-record distribution, thereby privacy protection.

• Coreset compression, which produces compact, scalable generative models, in contrast to
copula baselines that typically scale linearly with dataset size.

Empirical comparisons reinforce these differences. Across UCI benchmarks (Adult, Default, Magic,)
and a large IBM fraud dataset, TabKDE consistently achieves lower marginal and pairwise correlation
errors and substantially higher C2ST fidelity than GaussianCopulaSynthesizer, while also surpassing
CopulaGAN in distributional accuracy. GaussianCopulaSynthesizer maintains slightly stronger
privacy under the DCR metric (hovering near the ideal 50%), but this advantage stems largely from
its poorer fidelity. In practice, TabKDE achieves a more balanced tradeoff: reasonable privacy
coupled with diffusion-level accuracy, while retaining orders-of-magnitude efficiency gains, training
in minutes compared to hours for deep copula-hybrids like CopulaGAN.

To further contextualize our approach, we compare TabKDE against both the classical GaussianCop-
ulaSynthesizer and CopulaGANSynthesizer, in addition to our COPULADIFF variant. Table 25 reports
averages across Adult, Default, Shoppers, Beijing, and News, while Tables 26 provide per-dataset
breakdowns for Adult, Default, Magic, and Beijing.

Accuracy. TabKDE achieves 7–10× lower distribution-alignment errors and quadruples C2ST
fidelity compared to the GaussianCopulaSynthesizer. This indicates that our encoding of the copula
transform together with the KDE estimator drives the observed accuracy gains.

35

1890
1891
1892
1893
1894
1895
1896
1897
1898
1899
1900
1901
1902
1903
1904
1905
1906
1907
1908
1909
1910
1911
1912
1913
1914
1915
1916
1917
1918
1919
1920
1921
1922
1923
1924
1925
1926
1927
1928
1929
1930
1931
1932
1933
1934
1935
1936
1937
1938
1939
1940
1941
1942
1943

Under review as a conference paper at ICLR 2026

Metric (↓ better except C2ST ↑) TabKDE CopulaDiff GaussianCopula
Average Marginal error (%) 1.70 1.91 14.9
Average Pairwise-corr error (%) 4.67 3.59 13.3
Average C2ST (↑) 0.94 0.94 0.22
DCR (ideal ≈ 50%) 58.6 51.06 49.8
Train / Sample time (s, CPU) 39.2 / 39.0 – 0.9 / 6.8

Table 25: Comparison of TABKDE and COPULADIFF against the GaussianCopulaSynthesizer.
Averages are computed over Adult, Default, Shoppers, Beijing, and News datasets.

Speed. GaussianCopulaSynthesizer is milliseconds-fast on CPU, effectively functioning as a re-
stricted subset of TabKDE. Nonetheless, TabKDE remains far more efficient than deep generative
models.

Privacy. GaussianCopulaSynthesizer yields DCR scores near the ideal 50%, reflecting strong
privacy but poor fidelity. TabKDE (58%) attains a more balanced trade-off, offering reasonable
privacy while maintaining high fidelity. Note that DCR is an imperfect metric: it only evaluates
nearest-neighbor distances, and broader distributional comparisons are more favorable for TabKDE.

Overall, TabKDE consistently outperforms both complex copula-based generators (e.g., CopulaGAN)
and the simpler GaussianCopula model in terms of fidelity, while remaining efficient and maintaining
reasonable privacy.

H.1 EXTENDED COPULA+KDE BASELINES

We additionally benchmark TabKDE against several methods at the intersection of copulas and
kernel density estimation (KDE). These include existing implementations in SDV and baselines we
constructed, along with a differentially private Gaussian Copula model.

Copula+KDE Baselines. The comparison space includes a variety of copula-based and KDE-based
extensions. Tables 26 present results on the Adult, Default, Magic, and Beijing datasets.

CopulaGAN applies an empirical copula transform followed by GAN-based genera-
tion, while GaussianCopula also relies on the copula transform but pairs it with
Gaussian marginals. The GaussianKDECopulaSynthesizer, implemented in SDV with
default_distribution=“gaussian_kde”, fits Gaussian KDEs on marginals but is ex-
tremely slow in practice, requiring about 2.5 hours compared to roughly one minute for TabKDE.
We also construct a CopulaKDE baseline, which uses an empirical copula transform followed by a
d-dimensional Gaussian KDE in latent space [0, 1]d with the bandwidth σ set to the median pairwise
distance.

Below the lines in Tables 26 are our variants. CopulaDiff represents our diffusion-based variant
applied after a copula transform. SimpleKDE is a variant of TabKDE that incorporates a DCR-
calibrated kernel and covariance-aware directions, but omits boundary-aware sampling. Finally,
TABKDE is our proposed method.

Three central observations arise from the experiments. In terms of accuracy, TabKDE consistently
achieves the best or near-best fidelity. While some competitors such as CopulaDiff, SimpleKDE, or
GaussianKDECopula perform strongly on C2ST, they typically fall short in marginal or pairwise
errors. Regarding privacy, the SDV copula models and the DP Gaussian Copula reach DCR values
close to the ideal 50%, but they incur substantially higher errors. As expected, stronger privacy
guarantees correlate with reduced fidelity. TabKDE offers a balanced tradeoff, maintaining high
fidelity while still achieving moderate privacy with DCR around 58%. Finally, in terms of scalability,
GaussianKDECopulaSynthesizer is prohibitively slow, taking several hours compared to TabKDE’s
single-minute runtime. TabKDE thus emerges as both more efficient and more accurate.

36

1944
1945
1946
1947
1948
1949
1950
1951
1952
1953
1954
1955
1956
1957
1958
1959
1960
1961
1962
1963
1964
1965
1966
1967
1968
1969
1970
1971
1972
1973
1974
1975
1976
1977
1978
1979
1980
1981
1982
1983
1984
1985
1986
1987
1988
1989
1990
1991
1992
1993
1994
1995
1996
1997

Under review as a conference paper at ICLR 2026

Adult Marginal Err. (↓) Pairwise Corr. (↓) DCR (→ 50) C2ST (↑)
CopulaGAN 8.53% 16.75% 49.58% 0.60
GaussianCopula 12.41% 19.24% 50.23% 0.18
CopulaKDE 7.39% 14.14% 53.00% 0.76
GaussianKDECopula (8,461s) 8.30% 8.84% 49.28% 0.89
CopulaDiff 2.10% 4.61% 50.34% 0.86
SimpleKDE 1.98% 4.64% 62.89% 0.90
TabKDE 1.56% 4.51% 62.23% 0.92

Default Marginal Err. (↓) Pairwise Corr. (↓) DCR (→ 50) C2ST (↑)
CopulaGAN 11.50% 21.13% 52.98% 0.74
GaussianCopula 12.33% 21.90% 49.59% 0.41
CopulaKDE 8.99% 12.48% 56.36% 0.58
GaussianKDECopula (9,239s) 7.02% 7.58% 50.41% 0.95
CopulaDiff 1.47% 3.29% 50.96% 0.98
SimpleKDE 3.33% 5.16% 66.05% 0.87
TabKDE 1.55% 9.93% 63.46% 0.96

Magic Marginal Err. (↓) Pairwise Corr. (↓) DCR (→ 50) C2ST (↑)
CopulaGAN 10.21% 9.03% 51.23% 0.66
GaussianCopula 11.19% 6.34% 50.10% 0.51
CopulaKDE 11.42% 7.20% 55.40% 0.73
GaussianKDECopula (1,477s) 2.30% 5.00% 50.22% 0.99
CopulaDiff 0.94% 1.72% 52.03% 0.94
SimpleKDE 3.12% 3.30% 62.62% 0.97
TabKDE 0.78% 2.72% 63.02% 0.94

Beijing Marginal Err. (↓) Pairwise Corr. (↓) DCR (→ 50) C2ST (↑)
CopulaGAN 7.79% 12.11% 50.89% 0.78
GaussianCopula 10.01% 6.00% 50.05% 0.11
CopulaKDE 12.04% 17.07% 53.94% 0.74
GaussianKDECopula (9,288s) 2.69% 6.56% 50.66% 0.99
CopulaDiff 2.13% 4.50% 50.29% 0.96
SimpleKDE 2.06% 4.68% 55.45% 0.94
TabKDE 1.37% 3.74% 54.24% 0.95

Table 26: TABKDE vs Copula+KDE Baselines.

H.2 DIFFERENTIALLY PRIVATE GAUSSIAN COPULA

In addition to the above, we benchmark a differentially private (DP) Gaussian Copula model with a
specified privacy budget ϵ. Table 27 reports the results.

Note that while this achieves strong DCR score (as do similar copula methods without DP guarantees),
there is not a clear advantage as the ϵ parameter is decreased. However, the resulting Marginal Error
(about 17%) and Pairwise Correlation (about 28%) scores are significantly higher than most other
baselines; TABKDE achieves 1.56% and 4.51%. Also C2ST (about 0.35) is worse that most baselines;
TABKDE achieves 0.92, where higher is better.

So while this method does provide a DP guarantee, it appears to perform significantly worse in all
accuracy measures, even for very large ϵ values.

37

1998
1999
2000
2001
2002
2003
2004
2005
2006
2007
2008
2009
2010
2011
2012
2013
2014
2015
2016
2017
2018
2019
2020
2021
2022
2023
2024
2025
2026
2027
2028
2029
2030
2031
2032
2033
2034
2035
2036
2037
2038
2039
2040
2041
2042
2043
2044
2045
2046
2047
2048
2049
2050
2051

Under review as a conference paper at ICLR 2026

DP Gaussian Copula (Adult) Marginal Err. (↓) Pairwise Corr. (↓) DCR (→ 50) C2ST (↑)
ϵ = 0.1 18.44% 32.56% 49.88% 0.37
ϵ = 1 16.72% 29.04% 50.12% 0.36
ϵ = 5 16.27% 28.69% 49.97% 0.37
ϵ = 10 16.92% 27.76% 49.75% 0.33
ϵ = 100 17.46% 29.80% 49.80% 0.29

Table 27: DP Gaussian Copula on Adult with different privacy budget ϵ (smaller implies stronger
privacy).

38

	Introduction
	Our Contribution

	TabKDE Algorithm
	Encoding of Tabular Features: TE
	Map to Numerical Latent Space: E Z
	Learning Distance to Closest Record (DCR)
	Tabular Kernel Density Estimation: Z Sample
	Coresets for Generative Tabular Data Modeling

	Experimental Results
	Scalability and Efficiency
	Accuracy
	Privacy
	Conclusion and Limitations

	TabKDE Algorithm
	Encoding of Tabular Features: TE
	Map to Numerical Latent Space: E Z
	Learning Distance to Closest Record (DCR)
	Tabular Kernel Density Estimation: Z Sample

	Experimental Setup and Data
	Datasets
	Baselines
	Evaluation

	Scalability and Efficiency
	Accuracy Evaluation
	Marginal distribution alignment
	Pairwise correlation alignment
	Global Distribution Alignment
	Precision and Recall

	Privacy Preservation
	Coresets for Generative Tabular Data Modeling
	Empirical Evaluation of Coreset Methods

	Ablation Study on Variants of TabKDE
	Motivation for TabKDE: Boundary Control Challenges in SimpleKDE

	Comparison with Copula/KDE Based generator Models
	Extended Copula+KDE Baselines
	Differentially Private Gaussian Copula

