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Abstract
Causal effect estimation from data typically
requires assumptions about the cause-effect
relations either explicitly in the form of a causal
graph structure within the Pearlian framework, or
implicitly in terms of (conditional) independence
statements between counterfactual variables
within the potential outcomes framework. When
the treatment variable and the outcome variable
are confounded, front-door adjustment is an
important special case where, given the graph,
causal effect of the treatment on the target
can be estimated using post-treatment variables.
However, the exact formula for front-door
adjustment depends on the structure of the graph,
which is difficult to learn in practice. In this work,
we provide testable conditional independence
statements to compute the causal effect using
front-door-like adjustment without knowing the
graph under limited structural side information.
We show that our method is applicable in
scenarios where knowing the Markov equivalence
class is not sufficient for causal effect estimation.
We demonstrate the effectiveness of our method
on a class of random graphs as well as real causal
fairness benchmarks.

1. Introduction
Causal effect estimation is at the center of numerous
scientific, societal, and medical questions (Nabi et al., 2019;
Castro et al., 2020). The do(·) operator of Pearl represents
the effect of an experiment on a causal system. For example,
the probability distribution of a target variable y after setting
a treatment t to t is represented by P(y |do(t = t)) and
is known as an interventional distribution. Learning this
distribution for any realization t = t1 is what causal
effect estimation entails. This distribution is different from
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Figure 1. Representative graphs for back-door adjustment (left)
and front-door adjustment (right).

the conditional distribution P(y |t = t) as there may be
unobserved confounders between treatment and outcome
that cannot be controlled for.

A causal graph, often depicted as a directed acyclic
graph, captures the cause-and-effect relationships between
variables and explains the causal system under consideration.
A semi-Markovian causal model represents a causal model
that includes unobserved variables influencing multiple
observed variables (Verma & Pearl, 1990; Acharya et al.,
2018). In a semi-Markovian graph, directed edges between
observed variables represent causal relationships, while
bi-directed edges between observed variables represent
unobserved common confounding (see Figure 1). Given any
semi-Markovian graph, complete identification algorithms
for causal effect estimation are known. For example, if
P(y |do(t = t)) is uniquely determined by the observational
distribution and the causal graph, the algorithm by Shpitser
& Pearl (2006) utilizes the graph to derive an estimand, i.e.,
the functional form mapping the observational distribution
to the interventional distribution.

Certain special cases of estimands have found widespread
use across several domains. One such special case is the
back-door adjustment (Pearl, 1993) shown in Figure 1(left).
The back-door adjustment utilizes the pre-treatment variable
z (that blocks back-door paths) to control for unobserved
confounder as follows:

P(y |do(t = t)) =
∑
z

P(y |t = t, z = z)P(z = z), (1)

where the do-calculus rules of Pearl (1995) are used
to convert interventional distributions into observational
distributions by leveraging the graph structure. However,
the back-door adjustment is often inapplicable, e.g., in the
presence of an unobserved confounder between t and y .

on the target variable y , e.g., E[y |do(t = 1)] − E[y |do(t = 0)].
This quantity is computable if we can identify P(y |do(t = t)) for
t = {0, 1}.
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Surprisingly, in such scenarios, it is sometimes possible to
find the causal effect using the front-door adjustment (Pearl,
1995) shown in Figure 1(right). Utilizing the front-door
variable z, the front-door adjustment estimates the causal
effect from observational distributions using the following
formula (which is also obtained through the do-calculus
rules and the graph structure):

P(y |do(t = t))=
∑
z

(∑
t′

P(y |t′, z)P(t′)
)
P(z|t) (2)

Recently, front-door adjustment has gained popularity
in analyzing real-world data (Glynn & Kashin, 2017;
Bellemare et al., 2019; Hünermund & Bareinboim, 2019)
due to its ability to utilize post-treatment variables to
estimate effects even in the presence of confounding
between t and y . However, in general, front-door
adjustment also relies on knowing the causal graph, which
may not always be feasible, especially in domains with
many variables.

An alternative approach uses observational data to infer a
Markov equivalence class, which is a collection of causal
graphs that encode the same conditional independence
relations (Spirtes et al., 2000). A line of work (Perkovic
et al., 2018; Jaber et al., 2019) provide identification
algorithms for causal effect estimation from partial ancestral
graphs (PAGs) (Zhang, 2008), a prominent representation of
the Markov equivalence class, whenever every causal graph
in the collection shares the same causal effect estimand.
However, learning PAGs from data is challenging in practice
due to the sequential nature of their learning algorithms,
which can propagate errors between tests (Strobl et al.,
2019a). Further, to the best of our knowledge, there is
no existing algorithm that can incorporate side information,
such as known post-treatment variables, into PAG structure
learning.

In this work, we ask the following question: Can the causal
effect be estimated with a testable criteria on observational
data by utilizing some structural side information without
knowing the graph?

Recent research has developed such testable criteria to
enable back-door adjustment without knowing the full
causal graph (Entner et al., 2013; Cheng et al., 2020;
Gultchin et al., 2020; Shah et al., 2022). These approaches
leverage structural side information, such as a known and
observed parent of the treatment variable t. However, no
such results have been established for enabling front-door
adjustment. We address this gap by focusing on the
case of unobserved confounding between t and y , where
back-door adjustment is inapplicable. Traditionally, this
scenario has been addressed by leveraging the presence of
an instrumental variable (Mogstad & Torgovitsky, 2018)
or performing sensitivity analysis (Veitch & Zaveri, 2020),

both of which provide only bounds in the non-parametric
case. In contrast, we achieve identifiability by utilizing
structural side information.

Contributions. We propose a method for estimating causal
effects without requiring the knowledge of causal graph in
the presence of unobserved confounding between treatment
and outcome. Our approach utilizes front-door-like
adjustments based on post-treatment variables and relies
on conditional independence statements that can be directly
tested from observational data. We require one structural
side information which can be obtained from an expert and
is less demanding than specifying the entire causal graph.
We illustrate that our framework provides identifiability
in random ensembles where existing PAG-based methods
are not applicable. Further, we illustrate the practical
application of our approach to causal fairness analysis by
estimating the total effect of a sensitive attribute on an
outcome variable using the German credit data with fewer
structural assumptions.

2. Problem Formulation
Notations. For a sequence of realizations r1, · · · , rn, we
define r ≜ {r1, · · · , rn}. For a sequence of random
variables r1, · · · , rn, we define r ≜ {r1, · · · , rn}. Let 1
denote the indicator function.

Semi-Markovian Model and Effect Estimation. We
consider a causal effect estimation task where x represents
the set of observed features, t represents the observed
treatment variable, and y represents the observed outcome
variable. We denote the set of all observed variables jointly
by V ≜ {x, t, y}. Let U denote the set of unobserved
features that could be correlated with the observed variables.

We assumeW ≜ V ∪ U follows a semi-Markovian causal
model (Tian & Pearl, 2002) as below.
Definition 1. A semi-Markovian causal model (SMCM)M
is specified as follows:

1. G is a directed acyclic graph (DAG) over the set of
verticesW such that each element of the set U has no
parents.

2. ∀v ∈ V , let π(o)(v) ⊆ V and π(u)(v) ⊆ U denote the
set of parent of v in V and U , respectively.

3. P(u) is the unobserved joint distribution over the
unobserved features.

4. The observational distribution is given by P(v) =

Eu

[ ∏
v∈V

P(v |π(o)(v), π(u)(v))
]
.

5. The interventional distribution when the variables r ⊂ V
are set to a fixed value r is given by

P(v|do(r = r))=1r=r Eu

[ ∏
v∈V\r

P(v |π(o)(v), π(u)(v))
]
.

(3)
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6. For any v1, v2 ∈ V , if π(u)(v1) ∩ π(u)(v2) ̸= ∅, then v1
and v2 have a bi-directed edge in G.

In this work, we are interested in the causal effect of t
on y , i.e., P(y |do(t = t)). We define this formally by
marginalizing all variables except y in the interventional
distribution in (3).

Definition 2. The causal effect of t (when forced to a value
t) on y is given by:

P(y |do(t = t))=
∑
v\{y}

P
(
v \ {y}, y |do(t = t)

)
. (4)

Next, we define the notion of average treatment effect for a
binary treatment t.

Definition 3. The average treatment effect (ATE) of a binary
treatment t on outcome y is given by ATE = E[y |do(t =
1)]− E[y |do(t = 0)].

Next, we define when the causal effect (Definition 2) is said
to be identifiable from the observational distribution and the
causal graph.

Definition 4. (Causal effect identifiability) Given an
observational distribution P(v) and a causal graph G, the
causal effect P(y |do(t = t)) is identifiable if it is identical
for every semi-Markovian Causal model with (a) same
graph G and (b) same observational distribution P(v).

In a causal graph G, a path is an ordered sequence of distinct
nodes where each node is connected to the next in the
sequence by an edge. A path starting at node w1 and ending
at node w2 in G is blocked by a set w ⊂ W \ {w1,w2} if
there exists w ∈ w such that (a) w is not a collider or (b)
w is a collider and neither w nor any of it’s descendant is
in w. Further, w1 and w2 are said to be d-separated by w
in G if w blocks every path between w1 and w2 in G. Let
w1 ⊥⊥d w2|w denote that w1 and w2 are d-separated by w
in G. Similarly, let w1 ⊥p w2|w denote that w1 and w2

are conditionally independent given w. We assume causal
faithfulness, i.e., any conditional independence w1 ⊥p w2|w
implies a d-separation relation w1 ⊥⊥d w2|w in the causal
graph G.

2.1. Adjustment using pre-treatment variables

It is common in causal effect estimation to consider
pre-treatment variables, i.e., variables that occur before
the treatment in the causal ordering, and identify sets of
variables that are valid adjustments. Specifically, a set z ⊂
V forms a valid adjustment if the causal effect can be written
as P(y |do(t = t)) =

∑
z P(y |t = t, z = z)P(z = z). In

other words, a valid adjustment z averages an estimate of y
regressed on t and z with respect to the marginal distribution
of z. A popular criterion to find valid adjustments is to find

a set z ⊂ V that satisfies the back-door criterion (Pearl,
2009). Formally, a set z satisfies the back-door criterion if
(a) it blocks all back-door paths, i.e., paths between t and y
that have an arrow pointing at t and (b) no element of z is a
descendant of t. While, in general, back-door sets can be
found with the knowledge of the causal graph, recent works
(see the survey Cheng et al. (2022)) have proposed testable
criteria for identifying back-door sets with some causal side
information, without requiring the entire graph.

2.2. Adjustment using post-treatment variables

While back-door adjustment is widely used, there are
scenarios where no back-door set exists, e.g., when there is
an unobserved confounder between t and y . If no back-door
set can be found from the pre-treatment variables, Pearlian
theory can be used to identify post-treatment variables, i.e.,
the variables that occur after the treatment in the causal
ordering, to obtain a front-door adjustment.

Definition 5 (Front-door criterion). A set z ⊂ V satisfies
the front-door criterion with respect to t and y if (a) z
intercepts all directed paths from t to y (b) all back-door
paths between t and z are blocked, and (c) all back-door
paths between z and y are blocked by t.

If a set z satisfies the front-door criterion, then the causal
effect can be written as in (2). Intuitively, front-door
adjustment estimates the causal effect of t on y as a
composition of two effects: (a) the effect of t on z and (b)
the effect of z on y . However, one still needs the knowledge
of the causal graph G to find a set satisfying the front-door
criterion.

Inspired by the progress in finding back-door sets without
knowing the entire causal graph, we ask: Can testable
conditions be derived to identify front-door-like sets using
only partial structural information about post-treatment
variables? To that end, we consider the following side
information.

Assumption 1. The outcome y is a descendant of the
treatment t.

Assumption 2. There is an unobserved confounder between
the outcome y and the treatment t.

Assumption 3. b, the set of all children of the treatment t,
is observed and known.

Assumption 1 is a fundamental assumption in most causal
inference works, as it forms the basis for estimating
non-trivial causal effects. Without it, the causal effect would
be zero. Assumption 2 rules out the existence of sets that
satisfy the back-door criteria, necessitating a different way
of estimating the causal effect. Assumption 3 captures our
side information by requiring every children of the treatment
to be known and observed. To contrast, the side information
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Figure 2. The graph Gtoy satisfying Assumptions 1 to 3 where ui
are unobserved.

in data-driven works on back-door adjustment requires a
parent of the treatment to be known and observed (Shah
et al., 2022).

Our assumptions imply that b intercepts all the directed
paths from t to y . Given this, it is natural to ask whether b
satisfies the front-door criterion (Definition 5). We note that,
in general, this is not true. We illustrate this via Figure
2 where we provide a causal graph Gtoy satisfying our
assumptions. However, b is not a valid front-door set in
Gtoy as the back-door path between b and y via z(i) is not
blocked by t. Therefore, estimating the causal effect by
assuming b is a front-door set might not always give an
unbiased estimate. In the next section, we leverage the
given side information and provide testable conditions to
identify front-door-like sets.

3. Front-door Adjustment Beyond Markov
Equivalence

Our main results use observational criteria for causal effect
estimation under Assumptions 1 to 3 using post treatment
variables. First, we state a conditional independence
statement implying causal identifiability. Then, we provide
additional conditional independence statements resulting in
a unique formula for effect estimation.

Causal identifiability (Definition 4) implies that the causal
effect is uniquely determined given an observational
distribution P(V) and the corresponding causal graph
G. We now show that satisfying a conditional
independence statement (which can be tested solely
from observational data, without requiring the graph G)
guarantees identifiability. We provide a proof in Appendix
F.

Theorem 3.1 (Causal Identifiability). Suppose
Assumptions 1 to 3 hold. If there exists a set z ⊆ V\{t,b, y}
such that b ⊥⊥d y |t, z, then the causal effect of t on y is
identifiable from observational data without the knowledge
of the underlying causal graph G.

While the above result leads to identifiability, it does not
provide a formula to compute the causal effect. In fact, the
conditional independence b ⊥⊥d y |t, z alone is insufficient
to establish a unique formula, and different causal graphs
lead to different formula. To illustrate this, we provide
two SMCMs in Appendix F where Assumptions 1 to 3 and
b ⊥⊥d y |t, z hold, i.e., causal effect is identifiable from
observational data via Theorem 3.1, but the formula is
different.

Next, we provide two additional conditional independence
statements that imply a unique formula for causal effect
estimation. Our result is a generalized front-door with a
formula identical to (2) as if z were a traditional front-door
set. We also offer an alternative formula by utilizing
a specific partition of z obtained from the conditional
independence statements. We provide a proof in Appendix
G.
Theorem 3.2 (A generalized front-door condition).
Suppose Assumptions 1 to 3 hold. Let z ⊆ V \ {t,b, y} be
a set satisfying

b ⊥⊥d y |t, z, (5)

such that z can be decomposed into z(o) ⊆ z and z(i) =
z \ z(o) with

(i) z(i) ⊥⊥d t and (ii) z(o) ⊥⊥d t|b, z(i). (6)

Then, z and s ≜ (b, z(i)) are generalized front-doors, and
the causal effect of t on y can be obtained using any of the
following equivalent formulae:

P(y |do(t = t)) =
∑
z

(∑
t′

P(y |z, t′)P(t′)
)
P(z|t). (7)

P(y |do(t = t)) =
∑
s

(∑
t′

P(y |s, t′)P(t′)
)
P(s|t). (8)

In Appendix B, we provide an algorithm for ATE estimation
using Theorem 3.2. Further, in Appendix C, we discuss
the relationship of our approach to PAG-based methods.
Additionally, in Appendix D, we evaluate our approach
empirically in 3 ways: (i) we demonstrate the applicability
of our method on a class of random graphs where existing
PAG-based methods are inapplicable, (ii) we assess the
effectiveness of our method in estimating the ATE using
finite samples, and (iii) we showcase the potential of our
method for causal fairness analysis.

4. Conclusion
We proposed a sufficient condition for causal effect
estimation through a generalized front-door adjustment
given structural side information. We showed our approach
can identify causal effect in graphs where known Markov
equivalence classes do not allow identification.
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A. Related Work
Effect estimation from causal graphs/Markov equivalence Class: The problem of estimating interventional distributions
with the knowledge of the semi-Markovian model has been studied extensively in the literature, with important contributions
such as Tian & Pearl (2002) and Shpitser & Pearl (2006). Perkovic et al. (2018) presented a complete and sound algorithm
for identifying valid adjustments from PAGs. Going beyond valid adjustments, Jaber et al. (2019) proposed a complete and
sound algorithm for identifying causal effect from PAGs. However, our method can recover the causal effect in scenarios
where these algorithms are inapplicable.

Effect estimation via front-door adjustment with causal graph: Several recent works have contributed to a better
understanding of the statistical properties of front-door estimation (Kuroki, 2000; Kuroki & Cai, 2012; Glynn & Kashin,
2018; Gupta et al., 2021), proposed robust generalizations (Hünermund & Bareinboim, 2019; Fulcher et al., 2020), and
developed procedures to enumerate all possible front-door adjustment sets (Jeong et al., 2022; Wienöbst et al., 2022).
However, all of these require knowing the underlying causal graph. In contrast, Bhattacharya & Nabi (2022) verified the
front-door criterion without knowing the causal graph using Verma constraint-based methodology. However, this approach
is only applicable to a small set of graphs. Our proposed approach relies on conditional independence and is applicable to a
broad class of graphs.

B. Algorithm for ATE estimation
The ATE can be computed by taking the first moment version of (7) or (8). In Algorithm 1, we provide a systematic way
to estimate the ATE using Theorem 3.2 by searching for a set z ∈ Z ≜ V \ {t,b, y} such that (a) p-value of conditional
independence in (5) passes a threshold pv and (b) there exists a decomposition z = (z(i), z(o)) such that p-values of
conditional independencies in (6) pass the threshold pv . Then, for every such z, the algorithm computes the ATE using the
first moment version of (7), and averages. The algorithm produces another estimate by using (8) instead of (7).

C. Relation to PAG-based algorithms
Now, we exhibit how our approach can recover the causal effect in certain scenarios where PAG-based methods are not
suitable. PAGs depict ancestral relationships (not necessarily direct) with directed edges and ambiguity in orientations (if
they exist across members of the equivalence class) by circle marks. Figure 3(c) shows the PAG consistent with SMCM in
Figure 3(a). While we formally define PAGs in Appendix E.1, we refer interested readers to Triantafillou & Tsamardinos
(2015). The IDP algorithm of Jaber et al. (2019) is sound and complete for identifying causal effect from PAGs.

Consider SMCM in Figure 3(a) where our approach recovers the causal effect as (i) Assumptions 1 to (3), (ii) (5), and (iii)
(6) hold (where (ii) and (iii) can be tested from observational data). However, the IDP algorithm fails to recover the effect
from the PAG. To see this, consider SMCM in Figure 3(b) which is Markov equivalent to SMCM in Figure 3(a), i.e., the
PAG in Figure 3(c) is also consistent with SMCM in Figure 3(b). Intuitively, when the strength of the edge between t and b
is very small but the strength of the edge between t and y is very high for both Figure 3(a) and Figure 3(b), causal effect in
Figure 3(b) remains high while the causal effect in Figure 3(a) goes to zero.

We note that Assumptions 1 and 3, and (5) do not hold for the SMCM in Figure 3(b).

yz(o)

z(i)

bt yz(o)

z(i)

bt yz(o)

z(i)

bt

Figure 3. (a) An SMCM satisfying (5) and (6). (b) An SMCM obtained from (a) by modifying the edges between t and b and between t
and y . (c) The PAG corresponding to SMCM in (a) and (b).

Remark 1. Obtaining a PAG typically requires a large number of conditional independence tests (Claassen et al., 2013)
and erroneous tests can potentially alter the structure of the PAG non-locally. Moreover, incorporating arbitrary side
information into a PAG in a systematic way is still an open problem. In contrast, our approach does not rely on constructing
a graphical object such as a PAG.
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Algorithm 1 ATE estimation using subset search.
Input: nr, t, y ,b,Z, pv
Output: ATEz,ATEs

Initialization: ATEz = 0,ATEs = 0, c1 = 0
for r = 1 to nr do

ATEr
z = 0

ATEr
s = 0

c2 = 0
for z ∈ Z do

if CI(b ⊥p y |z, t) > pv then
for z(o) ⊆ z do

z(i) = z \ z(o)
if min{CI(z(i)⊥p t), CI(z(o)⊥pt|b, z(i))} > pv) then
c2 = c2 + 1
s = (b, z(i))

ATEr
z=ATEr

z+

∑
j:tj=1

∑
t′=0 E[y |z,t′]P(t′)

|{j:tj=1}| −
∑

j:tj=0

∑
t′=0 E[y |z,t′]P(t′)

|{j:tj=0}|

ATEr
s = ATEr

s+

∑
j:tj=1

∑
t′=0 E[y |s,t′]P(t′)

|{j:tj=1}| −
∑

j:tj=0

∑
t′=0 E[y |s,t′]P(t′)

|{j:tj=0}|
end if

end for
end if

end for
if c2 > 0 then

ATEz=ATEz+ATEr
z/c2

ATEs=ATEs+ATEr
s/c2

c1=c1+1
end if

end for
if c1 > 0 then

ATEz = ATEz/c1
ATEs = ATEs/c1

else
Failed to find z = (z(i), z(o)) satisfying (5) and (6).

end if

D. Empirical Evaluation
D.1. Applicability to a class of random graphs

In this experiment, we create a class of random SMCMs, sample 100 SMCMs from this class, and check if (5) and (6) hold
by checking for corresponding d-separations in the SMCMs.

Creation of random SMCMs. Let p ≜ |V| denote the dimension of observed variables including x, t, and y . Let v1, · · · , vp
denote a causal ordering of these variables. Our random ensemble depends on two parameters: (i) d ≤ p/2 which is
the expected in-degree of variables v2d, · · · , vp and (ii) q ≤ p which controls the number of unobserved features. For
1 ≤ i < j ≤ p, we add vi −→ vj with probability 0.5 if j ≤ 2d and with probability d/(j − 1) if j > 2d. We note that this
procedure is such that the expected in-degree for v2d, · · · , vp is d as desired. Next, for 1 ≤ i < j ≤ p, we add vi L9999K vj
with probability q/p. Then, we choose vp as y , any variable that is ancestor of y but not its parent or grandparent as t, and
all children of t as b. Finally, we add t L9999K y if missing.

Results. We compare the success rate of two approaches: (i) exhaustive search for z satisfying (5) and (6) which is
exponential in p and (ii) search for a z of size at-most 5 satisfying (5) and (6) which is polynomial in p. We provide the
number of successes of these approaches as a tuple in Table 1 for various p, d, and q. We see that the two approaches have
comparable performances. We also compare with the IDP algorithm by providing it the true PAG. However, it gives 0
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Table 1. Number of successes out of 100 random graphs for our methods shown as a tuple. The first method searches a z exhaustively and
the second method searches a z with size at-most 5.

p = 10 p = 15
d = 2 d = 3 d = 4 d = 2 d = 3 d = 4

q = 0.0 (43, 43) (20, 20) (21, 21) (27, 26) (9, 9) (4, 2)
q = 0.5 (23, 23) (16, 16) (7, 7) (18, 17) (4, 3) (0, 0)
q = 1.0 (6, 6) (4, 4) (5, 5) (9, 9) (10, 9) (0, 0)

successes across various p, d, and q. We provide results for another random ensemble in Appendix I.

D.2. Estimating the ATE

In this experiment, we generate synthetic data using the 6 random SMCMs in Appendix D.1 for p = 10, d = 2, and q = 1.0
where our approach was successful indicating existence of z = (z(i), z(o)) such that the conditional independence statements
in Theorem 3.2 hold. Then, we use Algorithm 1 to compute the error in estimating ATE and compare against a Baseline
which uses the front-door adjustment in (2) with z = b given the side information in Assumption 3. We provide the results
for the same experiment for specific choices of SMCMs including the one in Figure 2 in Appendix I. We also provide the 6
random SMCMs in Appendix I. We use RCoT hypothesis test (Strobl et al., 2019b) for conditional independence testing
from finite data.

Data generation. We use the following procedure to generate data from every SMCM. We generate unobserved variables
independently from Unif[1, 2] which denotes the uniform distribution over [1, 2]. For every observed variable v ∈ V , let
π(v) ≜ (π(o)(v), π(u)(v)) ∈ Rdv×1 denote the set of observed and unobserved parents of v stacked as a column vector.
Then, we generate v ∈ V as

v = a⊤v π(v) + 0.1 N (0, 1) for v ∈ V \ {t} and t = Bernoulli(Sigmoid(a⊤t π(t))) (9)

102 103 104

Number of samples

0.00
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0.16

0.24
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Exhaustivez

Exhaustives

Figure 4. Average ATE for Algorithm 1 and Baseline vs. number
of samples.

where the coefficients av ∈ Rdv×1 with every entry
sampled independently from Unif[1, 2]. Also, to generate
the true ATE, we intervene on the generation model in (9)
by setting t = 0 and t = 1.

Results. For every SMCM, we generate n samples of
every observed variable in every run of the experiment.
We average the ATE error over 10 such runs where
the coefficients in (9) vary across runs. We report the
average of these averages over the 6 SMCMs in Figure
4 for various n. While the error rates of Baseline
and Algorithm 1 are of the similar order for n = 100,
Algorithm 1 gives much lower errors for n = 1000 and
n = 10000 showing the efficacy of our method.

D.3. Experiments with real-world fairness benchmarks

Next, we describe how our results enable finding front-door-like adjustment sets in fairness problems. In a typical fairness
problem, the goal is to ensure that the outcome variable y does not unfairly depend on the sensitive/protected attribute, e.g.,
race or gender (which we define to be treatment variable t), which would reflect undesirable biases. Often, the outcome is a
descendant of the sensitive attribute (as per Assumption 1), and both outcome and sensitive attribute are confounded by
unobserved variables (as per Assumption 2). Furthermore, there are be a multitude of measured post-sensitive-attribute
variables that can affect the outcome. This stands in contrast to the usual settings for causal effect estimation, where
pre-treatment variables are primarily utilized.

Fairness problems are typically evaluated using various fairness metrics, such as causal fairness metrics or observational
metrics. Causal metrics require knowing the underlying causal graph, which can be a challenge in practice. Observational
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criteria can be decomposed into three types of effects (Zhang & Bareinboim, 2018; Plecko & Bareinboim, 2022): spurious
effects, direct effects, and indirect effects (through descendants of sensitive attribute). In some scenarios, capturing the sum
of direct and indirect effects is of interest, but even this requires knowing the causal graph.

Now, we demonstrate the application of our adjustment formulae in Theorem 3.2 to compute the sum of direct and indirect
effects of the sensitive attribute on the outcome, while separating it from spurious effects. The sum of these effects is
indeed the causal effect of sensitive attribute on the outcome. In other words, we consider the following fairness metric:
E[y |do(t = 1)]− E[y |do(t = 0)]. We assume that all the children of the sensitive attribute are known, which may be easier
to justify compared to the typical assumption in causal fairness literature of knowing the entire causal graph.

German Credit Dataset. The German Credit dataset (Hofmann, 1994) is used for credit risk analysis where the goal is
to predict whether a loan applicant is a good or bad credit risk based on applicant’s 20 demographic and socio-economic
attributes. The binary credit risk is the outcome y and the applicant’s age (binarized by thresholding at 25 (Kamiran &
Calders, 2009)) is the sensitive attribute t. Further, the categorical attributes are one-hot encoded.

We apply Algorithm 1 with nr = 100 and pv = 0.1 where we search for a set z = (z(o), z(i)) of size at most 3 under the
following two distinct assumptions on the set of all children b of t:
1. When considering b = {# of people financially dependent on the applicant, applicant’s savings, applicant’s job},

Algorithm 1 results in z(i)={purpose for which the credit was needed, indicator of whether the applicant was a foreign
worker}, z(o)={installment plans from providers other than the credit-giving bank}, ATEz = 0.0125 ± 0.0011, and
ATEs = 0.0105± 0.0018.

2. When considering b={# of people financially dependent on the applicant, applicant’s savings}, Algorithm 1 results in
z(i)={purpose for which the credit was needed, applicant’s checking account status with the bank}, z(o)={installment
plans from providers other than the credit-giving bank}, ATEz = 0.0084± 0.0008, and ATEs = −0.0046± 0.0021.

Under the first assumption above, the causal effect using the adjustment formulae in (7) and (8) have same sign and are close
in magnitude. However, under the second assumption, the effect flips sign. The results suggest that the second hypothesis
regarding b is incorrect, implying that applicant’s job may indeed be a direct child of applicant’s age, which aligns with
intuition.

The dataset has only 1000 samples, which increases the possibility of detecting independencies in our criterion by chance,
even with the size of z constrained. To address this issue, we use 100 random bootstraps with a sample size equal to half of
the training data and evaluate the p-value of our conditional independence criteria for all subsets returned by our algorithm.
We select the subset z with the highest median p-value (computed over the bootstraps) and use it in our adjustment formulae
on a held out test set. To assess the conditional independencies associated with the selected z, we plot a histogram of the
corresponding p-values for all these bootstraps. If the conditional independencies hold, we expect the p-values to be spread
out, which we observe in the histograms in Figure 5 for the first choice of b. We report similar results for the second choice
of b in Appendix I.

0.00 0.25 0.50 0.75 1.00
p-value

0

20

co
un

t

b ⊥ p y|t, z

0.00 0.25 0.50 0.75 1.00
p-value

z(i) ⊥ pt

0.00 0.25 0.50 0.75 1.00
p-value

z(o) ⊥ pt|z(i)

Figure 5. Histograms of p-values of the conditional independencies in (7) and (8) over 100 bootstrap runs for b={# of people financially
dependent on the applicant, applicant’s savings, applicant’s job}.

Adult Dataset: We perform a similar analysis on the Adult dataset (Kohavi & Becker, 1996). With suitable choices of b,
Algorithm 1 was unable to find a suitable z satisfying b ⊥p y |z, t. This suggests that in this dataset, there may not be any
non-child descendants of the sensitive attribute, which is required for our criterion to hold. More details can be found in
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Appendix I.

E. Background
E.1. Preliminaries about ancestral graphs

In this section, we provide the definition of partial ancestral graphs (PAGs). PAGs are defined using maximal ancestral
graphs (MAGs). Below, we define MAGs and PAGs based on their construction from directed acyclic graphs (DAGs).

A MAG can be obtained from a DAG as follows: if two observed nodes x1 and x2 cannot be d-separated conditioned on any
subset of observed variables, then (i) x1 −→ x2 is added in the MAG if x1 is an ancestor of x2 in the DAG, (ii) x2 −→ x1
is added in the MAG if x2 is an ancestor of x1 in the DAG, and (iii) x1 L9999K x2 is added in the MAG if x1 and x2 are not
ancestrally related in the DAG. (iv) After the above three operations, if both x1 L9999K x2 and x1 −→ x2 are present, we retain
only the directed edge. In general, a MAG represents a collection of DAGs that share the same set of observed variables and
exhibit the same independence and ancestral relations among these observed variables. It is possible for different MAGs to
be Markov equivalent, meaning they represent the exact same independence model.

A PAG shares the same adjacencies as any MAG in the observational equivalence class of MAGs. An end of an edge in the
PAG is marked with an arrow (> or <) if the edge appears with the same arrow in all MAGs in the equivalence class. An
end of an edge in the PAG is marked with a circle (o) if the edge appears as an arrow (> or <) and a tail (−) in two different
MAGs in the equivalence class.

E.2. Rules of do-calculus

In this section, we provide the do-calculus rules of Pearl (1995) that are used to prove our main results in the following
sections. We build upon the definition of semi-Markovian causal model from Section 2.

For any v ∈ W , let Gv be the graph obtained by removing the edges going into v in G, and let Gv be the graph obtained by
removing the edges going out of v in G.

Theorem E.1 (Rules of do-calculus, Pearl (1995)). For any disjoint subsets v1, v2, v3, v4 ⊆ W , we have the following rules.

Rule 1: P(v1|do(v2), v3, v4) = P(v1|do(v2), v3) if v1 ⊥⊥d v4|v2, v3 in Gv2 .

Rule 2: P(v1|do(v2), v3, do(v4)) = P(v1|do(v2), v3, v4) if v1 ⊥⊥d v4|v2, v3 in Gv2,v4 .

Rule 3: P(v1|do(v2), v3, do(v4)) = P(v1|do(v2), v3) if v1 ⊥⊥d v4|v2, v3 in Gv2,v4(v3),

where v4(v3) is the set of nodes in v4 that are not ancestors of any node in v3 in Gv2 . Pearl (1995) also gave an alternative
criterion for Rule 3.

Rule 3a: P(v1|do(v2), v3, do(v4)) = P(v1|do(v2), v3) if v1 ⊥⊥d Fv4 |v2, v3 in Gv4v2 ,

where Gv4 is the graph obtained from G after adding (a) a node Fv4 and (b) edges from Fv4 to every node in v4.

Also, throughout our proofs, we use the following fact.

Fact 1. Consider any G′ obtained by removing any edge(s) from G. For any sets of variables v1, v2, v3 ⊆ W , if v1 and v2
are d-separated by v3 in G than v1 and v2 are d-separated by v3 in G′.

F. Causal Identifiability
In this section, we provide two SMCMs where Assumptions 1 to 3 and b ⊥⊥d y |t, z hold but the formula is different as
mentioned in Section 3 as well as prove Theorem 3.1.
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F.1. Non-unique causal formulae from Theorem 3.1

Consider the SMCM in Figure 6(top) with z = (z1, z2) where causal effect is given by following formula (derived in
Appendix F):

P(y |do(t = t)) =
∑

z1,z2,b

(∑
t′

P(y |z1, z2, t′)P(t′|z1)
)
× P(z2|b)P(b|t, z1)P(z1). (10)

yz2

z1

bt

yz2bt

Figure 6. SMCMs on (top) & (bottom) satisfy
b ⊥⊥d y |t, z but have different causal effect
estimation formulae.

Next, consider the SMCM in Figure 6(bottom) with z = z2 where the
causal effect is given by the front-door adjustment formula in (2) as z
satisfies the front-door criterion. It remains to explicitly show that the
formula in (10) is different from (2). To this end, we create a synthetic
structural equation model (SEM) respecting the graph in Figure 6(top)
and show that the formula in (2) gives a non-zero ATE error. In our
SEM, the unobserved variable has a uniform distribution over [1, 2].
Each observed variable except t is a sum of (i) a linear combination
of its parents with coefficients drawn from uniform distribution over
[1, 2] and (ii) a zero-mean Gaussian noise. The treatment variable is
binarized by applying a standard logistic model to a linear combination
of its parents with coefficients drawn as before. The ATE error averaged
over 50 runs with 50000 samples in each run is 0.3842± 0.0207. See
more experimental details in Appendix I.

F.1.1. PROOF OF (10)

First, using the law of total probability, we have

P(y |do(t = t)) =
∑
z1,z2

P(y |do(t = t), z1=z1, z2=z2)P(z1=z1, z2=z2|do(t = t)). (11)

Now, we show that the two terms in RHS of (11) can be simplified as follows

P(y |do(t = t), z1=z1, z2=z2) =
∑
t′

P(y |z1=z1, z2=z2, t = t′)P(t = t′|z1=z1). (12)

P(z1=z1, z2=z2|do(t = t)) =
∑
b

P(z2=z2|b = b)P(b = b|t = t, z1=z1)P(z1=z1), (13)

Combining (11) to (13) results in (10).

Proof of (12): We have

P(y |do(t = t), z1=z1, z2=z2) (14)
(a)
= P(y = y|do(t = t), z1=z1, z2=z2,b = b) (15)
(b)
= P(y = y|do(t = t), z1=z1, z2=z2, do(b = b)) (16)
(c)
= P(y = y|z1=z1, z2=z2, do(b = b)) (17)
(d)
=

∑
t′

P(y = y|z1=z1, z2=z2, do(b = b), t = t′)P(t = t′|z1=z1, z2=z2, do(b = b)) (18)

(e)
=

∑
t′

P(y = y|z1=z1, z2=z2, t = t′)P(t = t′|z1=z1, z2=z2, do(b = b)) (19)

(f)
=

∑
t′

P(y = y|z1=z1, z2=z2, t = t′)P(t = t′|z1=z1, do(b = b)) (20)

(g)
=

∑
t′

P(y = y|z1=z1, z2=z2, t = t′)P(t = t′|z1=z1), (21)
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where (a) and (f) follow from Rule 1, (b) follows from Rule 2, (c), (e), and (g) follow from Rule 3a, and (d) follows from
the law of total probability.

Proof of (13): From the law of total probability, we have

P(z1=z1, z2=z2|do(t = t)) (22)

=
∑
b

P(z1=z1, z2=z2|do(t = t),b = b)P(b = b|do(t = t)) (23)

(a)
=

∑
b

P(z2=z2|do(t = t),b = b)P(z1=z1|do(t = t),b = b, z2=z2)P(b = b|do(t = t)) (24)

(b)
=

∑
b

P(z2=z2|b = b)P(z1=z1|do(t = t),b = b, z2=z2)P(b = b|do(t = t)) (25)

(c)
=

∑
b

P(z2=z2|b = b)P(z1=z1|do(t = t),b = b)P(b = b|do(t = t)) (26)

(d)
=

∑
b

P(z2=z2|b = b)P(z1=z1,b = b|do(t = t)) (27)

(e)
=

∑
b

P(z2=z2|b = b)P(z1=z1|do(t = t))P(b = b|do(t = t), z1=z1) (28)

(f)
=

∑
b

P(z2=z2|b = b)P(z1=z1)P(b = b|do(t = t), z1=z1) (29)

(g)
=

∑
b

P(z2=z2|b = b)P(z1=z1)P(b = b|t = t, z1=z1) (30)

where (a), (d), and (e) follow from the definition of conditional probability, (b) and (f) follows from Rule 3a, (c) follows
from Rule 1, and (g) follows from Rule 2.

F.2. Proof of Theorem 3.1

Let An(y) denote the union of y and the set of ancestors of y , and let GAn(y) denote the subgraph of G composed only of
nodes in An(y). First, we show that if b ⊥⊥d y |t, z holds for some z, then there is no bi-directed path between t to b in
GAn(y).

Lemma 1. Suppose Assumptions 1 to 3 hold. Suppose there exists a set z ⊆ V \ {t,b, y} such that b ⊥⊥d y |t, z. Then,
there is no bi-directed path between t and b in GAn(y).

Given this claim, Theorem 3.1 follows from Tian & Pearl (2002, Theorem 4). It remains to prove Lemma 1.

Proof of Lemma 1. We prove this result by contradiction. First, from Assumptions 1 and 3, t ∈ An(y) and b0 ∈ An(y)
for some b0 ⊂ b. Assume there exists a bi-directed path between t and some b ∈ b0 in GAn(y). Let P(t, b) denote the
shortest of these paths. This path is of the form t L9999K v1 L9999K · · · L9999K vr L9999K b for some r ≥ 0 where vq ∈ GAn(y) for
every q ∈ [r]. We have the following two cases depending on the value of r.

(i) r = 0: In this case, consider the path P(y , b) ⊃ P(t, b) in G of the form: y L9999K t L9999K b in G (such a path exists
because of Assumption 2). The path P(y , b) is unblocked when t and z are conditioned on contradicting b ⊥⊥d y |t, z.

(ii) r ≥ 1: In this case, consider the path P(y , b) ⊃ P(t, b) in G of the form: y L9999K t L9999K v1 L9999K · · · L9999K vr L9999K b
(such a path exists because of Assumption 2). We have the following two scenarios depending on whether the path
P(y , b) is unblocked or blocked when t and z are conditioned on. Suppose we condition on t and z.

(a) The path P(y , b) is unblocked: In this case, by assumption, b ⊥⊥d y |t, z is contradicted.
(b) The path P(y , b) is blocked: We create a set w such that for any w ∈ w the following are true: (a) w = vq for

some q ∈ [r], (b) w /∈ z, (b) there is no descendant path P(w , z) between w and some z ∈ z, and (c) there is no
descendant path P(w , t) between w and t.
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In this scenario, w ̸= ∅ because P(y , b) is blocked. Let wc ∈ w be that node which is closest to b in the path
P(y , b). By the choice of wc, the path P(wc, b) ⊂ P(y , b) is unblocked (when t and z are conditioned on).
Furthermore, by the definition of w, (a) wc ∈ GAn(y) (because wc = vq for some q ∈ [r]) and (b) there exists
a descendant path P(wc, y) between wc and y such that t /∈ P(wc, y) as well as z /∈ P(wc, y) for every z ∈ z.
Therefore, the path P(wc, y) is unblocked (when t and z are conditioned on).
Consider the path P ′(y , b) obtained after concatenating P(wc, y) and P(wc, b) at wc. This path is unblocked
(when t and z are conditioned on) because: (a) P(wc, b) is unblocked, (b) P(wc, y) is unblocked, and (c) there is
no collider at wc in this path (because P(wc, y) is a descendant path to y ). However, this contradicts b ⊥⊥d y |t, z.

G. A generalized front-door condition
In this section, we prove Theorem 3.2. We begin by stating a few d-separation statements used in this proof. See Appendix H
for a proof.

Lemma 2. Suppose Assumptions 1 to 3 and d-separation criteria in Theorem 3.2, i.e., (5) and (6), hold. Then,

(a) y ⊥⊥d Ft |z,b in Gt
b

and y ⊥⊥d Ft |z(i),b in Gt
b
,

(b) t ⊥⊥d b in Gt ,
(c) t ⊥⊥d z(i)|b in Gt ,
(d) t ⊥⊥d Fb|z(i) in Gb, and

(e) y ⊥⊥d b|t, z(i) in Gb.

Now, we proceed with the proof in two parts. In the first part, we prove (7), and in the second part, we prove (8).

G.1. Proof of (7)

First, using the law of total probability, we have

P(y = y|do(t = t)) =
∑
z

P(y = y|do(t = t), z = z)P(z = z|do(t = t)). (31)

Now, we show that the two terms in RHS of (31) can be simplified as follows

P(y = y|do(t = t), z = z) =
∑
t′

P(y = y|z = z, t = t′)P(t = t′). (32)

P(z = z|do(t = t)) = P(z = z|t = t), (33)

Combining (32) and (33) completes the proof of (7).

Proof of (32): We have

P(y = y|do(t = t), z = z)
(a)
= P(y = y|do(t = t), z = z,b = b) (34)
(b)
= P(y = y|do(t = t), z = z, do(b = b)) (35)
(c)
= P(y = y|z = z, do(b = b)) (36)
(d)
=

∑
t′

P(y = y|z = z, do(b = b), t = t′)P(t = t′|z = z, do(b = b)), (37)

where (a) follows from Rule 1, (5), and Fact 1, (b) follows from Rule 2, (5), and Fact 1, and (c) follows from Rule 3a and
Lemma 2(a), and (d) follows from the law of total probability.

Now, we simplify the first term in (37) as follows:

P(y = y|z = z, do(b = b), t = t′)
(a)
= P(y = y|z = z,b = b, t = t′)

(5)
= P(y = y|z = z, t = t′), (38)
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where (a) follows from Rule 2, (5), and Fact 1. Likewise, we simplify the second term in (37) as follows:

P(t = t′|do(b = b), z = z)
(a)
= P(t = t′|do(b = b), z(i) = z(i))

(b)
= P(t = t′|z(i) = z(i))

(c)
= P(t = t′), (39)

where (a) follows from Rule 1, (6), and Fact 1, (b) follows from Rule 3a and Lemma 2(d), and (c) follows (6).

Putting together (37) to (39) results in (32).

Proof of (33): From the law of total probability, we have

P(z = z|do(t = t)) =
∑
b

P(z = z|do(t = t),b = b)P(b = b|do(t = t)). (40)

Now, we simplify the first term in (40) as follows:

P(z = z|do(t = t),b = b)
(a)
= P(z(i) = z(i)|do(t = t),b = b) · P(z(o) = z(o)|do(t = t),b = b, z(i) = z(i)) (41)
(b)
= P(z(i) = z(i)|do(t = t),b = b) · P(z(o) = z(o)|t = t,b = b, z(i) = z(i)) (42)
(c)
= P(z(i) = z(i)|t = t,b = b) · P(z(o) = z(o)|t = t,b = b, z(i) = z(i)) (43)
(d)
= P(z = z|t = t,b = b), (44)

where (a) and (d) follow from the definition of conditional probability, (b) follows from Rule 2, (6), and Fact 1, and (c)
follows from Rule 2 and Lemma 2(c). Likewise, we simplify the second term in (40) as follows:

P(b = b|do(t = t))
(a)
= P(b = b|t = t), (45)

where (a) follows from Rule 2 and Lemma 2(b).

Putting together (40), (44), and (45), results in (33) as follows:

P(z = z|do(t = t)) =
∑
b

P(z = z|t = t,b = b)P(b = b|t = t)
(a)
= P(z = z|t = t), (46)

where (a) follows from the law of total probability.

G.2. Proof of (8)

First, using the law of total probability, we have

P(y = y|do(t = t)) =
∑
b

P(y = y|do(t = t),b = b)P(b = b|do(t = t)). (47)

Now, we show that the first term in RHS of (47) can be simplified as follows

P(y = y|do(t = t),b = b) =
∑
z(i)

(∑
t′

P(y = y|s = s, t = t′)P(t = t′)
)
P(z(i) = z(i)|b = b, t = t). (48)

where s ≜ (b, z(i)). Using (45) and (48) in (47), completes the proof of (8) as follows:

P(y = y|do(t = t)) =
∑
s

(∑
t′

P(y = y|s = s, t = t′)P(t = t′)
)
P(z(i) = z(i)|b = b, t = t)P(b = b|t = t) (49)

(a)
=

∑
s

(∑
t′

P(y = y|s = s, t = t′)P(t = t′)
)
P(s = s|t = t), (50)

where (a) follows from the definition of conditional probability.
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Proof of (48): From the law of total probability, we have

P(y = y|do(t = t),b = b)=
∑
z(i)

P(y = y|b = b, z(i)=z(i), do(t = t))P(z(i)=z(i)|b = b, do(t = t)). (51)

Now, we simplify the first term in (51) as follows:

P(y = y|b = b, z(i) = z(i), do(t = t)) (52)
(a)
= P(y = y|do(b = b), z(i) = z(i), do(t = t)) (53)
(b)
= P(y = y|do(b = b), z(i) = z(i)) (54)
(c)
=

∑
t′

P(y = y|do(b = b), z(i) = z(i), t = t′)P(t = t′|do(b = b), z(i) = z(i)), (55)

where (a) follows from Rule 2, Lemma 2(e), and Fact 1, (b) follows from Rule 3a and Lemma 2(a), and (c) follows from
the law of total probability. We further simplify the first term in (55) as follows:

P(y = y|do(b = b), z(i) = z(i), t = t′)
(a)
= P(y = y|b = b, z(i) = z(i), t = t′), (56)

where (a) follows from Rule 2 and Lemma 2(e). Using (56) and (39) in (55), we have

P(y = y|b = b, z(i) = z(i), do(t = t)) =
∑
t′

P(y = y|b = b, z(i) = z(i), t = t′)P(t = t′). (57)

Now, we simplify the second term in (51) as follows:

P(z(i) = z(i)|b = b, do(t = t))
(a)
= P(z(i) = z(i)|b = b, t = t), (58)

where (a) follows from Rule 2 and Lemma 2(c).

Putting together (51), (57), and (58) results in (48).

G.3. Necessity of Assumption 2

In this section, we provide an example to signify the importance of Assumption 2 to Theorem 3.2. Consider the
semi-Markovian causal model in Figure 7 where Assumptions 1 and 3 hold but Assumption 2 does not hold.

yz(o)

a

bt

Figure 7. An SMCM signifying the importance of Assumption 2

While z = (z(i), z(o)) satisfies (5) and (6) where z(i) = ∅, the causal effect is not equal to the formulae in (7) or (8). To see
this, we note that the set {a} is a back-door set in Figure 7 implying

P(y |do(t = t)) =
∑
a

P(y |a, t)P(a). (59)

Now, we simplify the right hand side of (59) to show explicitly that it is not equivalent to (7). From the law of total
probability, we have

P(y |a, t) =
∑
z

P(y |z, a, t)P(z|a, t) (60)
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(a)
=

∑
z

(∑
t′

P(y |z, a, t)P(t′)
)
P(z|a, t) (b)

=
∑
z

(∑
t′

P(y |z, t ′)P(t′)
)
P(z|a, t), (61)

where (a) follows because
∑

t′ P(t′) = 1 and (b) follows y is independent of every other variable conditioned on z.
Plugging (61) in (59), we have

P(y |do(t = t)) =
∑
z

(∑
t′

P(y |z, t ′)P(t′)
)(∑

a

P(z|a, t)P(a)
)
. (62)

Lastly, using the law of total probability, (7) can be rewritten as

P(y |do(t = t)) =
∑
z

(∑
t′

P(y |z, t ′)P(t′)
)(∑

a

P(z|a, t)P(a|t)
)
. (63)

Therefore, the variables a and t could be such that (62) is different from (63). We note that similar steps can be used to show
that (59) is not equivalent to (8). In conclusion, Assumption 2 is crucial for the formulae in (7) and (8) to hold.

H. Proof of Lemma 2
First, we state the following d-separation criterion used to prove Lemma 2(b) and Lemma 2(d). See Appendix H.1 for a
proof.

Lemma 3. Suppose Assumptions 1 to 3 hold. Then, t ⊥⊥d b|z(i) in Gt .

Now, we prove each part of Lemma 2 one-by-one.

Proof of Lemma 2(a) In Gt
b
, all edges going into b are removed. Under Assumption 3, this implies that all edges going

out of t are removed. Now, consider any path P(Ft , y) between Ft and y in Gt
b
. This path takes one of the following two

forms: (a) Ft −→ t ←− · · · y or (b) Ft −→ t L9999K · · · y . In either case, there is a collider at t in P(Ft , y). This collider
is blocked when z and b are conditioned on because t /∈ z, t /∈ b, and t does not have any descendants in Gt

b
. Therefore,

y ⊥⊥d Ft |z,b in Gt
b
. Similarly, the collider is blocked when z(i) and b are conditioned on because t /∈ z(i), t /∈ b, and t

does not have any descendants in Gt
b
. Therefore, y ⊥⊥d Ft |z(i),b in Gt

b
.

Proof of Lemma 2(b) We prove this by contradiction. Assume there exists at least one unblocked path between t and
some b ∈ b in Gt . Let P(t, b) denote any such unblocked path.

Suppose we condition on z(i). From Lemma 3, P(t, b) is blocked in Gt when z(i) is conditioned on. Let v be any node at
which P(t, b) is blocked in Gt when z(i) is conditioned on. We must have that v ∈ P(t, b) \ {t, b} and v ∈ z(i). Then, the
path P(t, v) ⊂ P(t, b) is unblocked in Gt when z(i) is unconditioned on. However, this contradicts t ⊥⊥d z(i) in Gt (which
follows from (6)(i) and Fact 1).

Proof of Lemma 2(c) We prove this by contradiction. Assume there exists at least one unblocked path between t and
some z(i) ∈ z(i) in Gt when b is conditioned on. Let P(t, z(i)) denote any such unblocked path.

Suppose, we uncondition on b. From (6)(i) and Fact 1, we have t ⊥⊥d z(i) in Gt . Therefore, P(t, z(i)) is blocked in Gt
when b is unconditioned on. Now, we create a set v consisting of all the nodes at which P(t, z(i)) is blocked in Gt when
b is unconditioned on. Define the set v such that for any v ∈ v, the following are true: (a) v ∈ P(t, z(i)) \ {t, z(i)}, (b)
P(t, z(i)) contains a collider at v in Gt , and (c) there exists an unblocked descendant path from v to some b ∈ b in Gt .
Now, we must have v ̸= ∅, since P(t, z(i)) is blocked in Gt when b is unconditioned on. Let vc ∈ v be that node which is
closest to t in the path P(t, z(i)), and let P(vc, b) be an unblocked descendant path from v to some b ∈ b in Gt (there must
be one from the definition of the set v). Consider the path P(t, b) obtained after concatenating P(t, vc) ⊂ P(t, z(i)) and
P(vc, b). By the definition of v and the choice of vc, P(t, b) is unblocked in Gt since (a) P(t, vc) is unblocked in Gt , (b)
P(vc, b) is unblocked in Gt , and (c) there is no collider at vc in P(t, b). However, this contradicts t ⊥⊥d b in Gt (which
follows from Lemma 2(b)).
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Proof of Lemma 2(d) We prove this by contradiction. Assume there exists at least one unblocked path between t and Fb

in Gb when z(i) is conditioned on. Let P(t, Fb) denote the shortest of these unblocked path. By definition of Gb, this path
has to be of the form: t · · · , b ←− Fb for some b ∈ b. Now, we have the following three cases:

(i) P(t, Fb) contains t −→ b: In this case, because a path is a sequence of distinct nodes, P(t, Fb) has to be t −→ b ←− Fb.
By assumption, P(t, Fb) is unblocked when z(i) is conditioned on. Since there is a collider at b in P(t, Fb), there
exists at least one unblocked descendant path from b to z(i) when z(i) is conditioned on. Let P(b, z(i)) denote the
shortest of these paths from b to some z(i) ∈ z(i) in Gb. We note that this path also exists in G and is of the form
b −→ · · · −→ z(i)

Suppose we uncondition on z(i). Consider the path P(t, z(i)) ⊃ P(b, z(i)) between t and z(i) of the form t −→ b −→
· · · −→ z(i) in G. This path remains unblocked even when z(i) is unconditioned on as it does not have any colliders.
This contradicts z(i) ⊥⊥d t (which follows from (6)).

(ii) P(t, Fb) contains t −→ b1 for some b1 ∈ b such that b1 ̸= b: In this case, the path P(t, Fb) has to be of the form
t −→ b1 · · · b ←− Fb. Therefore, there exists at least one collider on the path P(t, Fb). Let v ∈ P(t, Fb) \ {t, Fb} be
the collider on the path P(t, Fb) that is closest to b1. Consider the path P(t, v) ⊂ P(t, Fb). We note that this path
also exists in G and is of the form t −→ b1 −→ · · · −→ v .

By assumption, P(t, Fb) is unblocked when z(i) is conditioned on. Since there is a collider at v in P(t, Fb), there
exists at least one unblocked descendant path from v to z(i) when z(i) is conditioned on. Let P(v , z(i)) denote the
shortest of these paths from v to some z(i) ∈ z(i) in Gb. We note that this path also exists in G and is of the form
v −→ · · · −→ z(i).

Suppose we uncondition on z(i). Consider the path P(t, z(i)) between t and z(i) in G obtained after concatenating
P(t, v) ⊂ P(t, Fb) and P(v , z(i)). This path, of the form t −→ b1 −→ · · · −→ v −→ · · · −→ z(i), remains unblocked
even when z(i) is unconditioned on as it does not have any colliders. This contradicts z(i) ⊥⊥d t (which follows from
(6)).

(ii) P(t, Fb) does not contain t −→ b1 for every b1 ∈ b: By assumption, P(t, Fb) is unblocked in Gb when z(i) is
conditioned on. Therefore, if P(t, Fb) does not contain the edge t −→ b1 for any b1 ∈ b, there exists a path P(t, b)
between t to b in G that is unblocked when z(i) is conditioned on, and takes one of the following two forms: (a)
t ←− · · · b or (b) t L9999K · · · b. Then, it is easy to see that the path P(t, b) also remains unblocked in Gt while z(i) is
conditioned on. However, this contradicts t ⊥⊥d b|z(i) in Gt (which follows from Lemma 3).

Proof of Lemma 2(e) We prove this by contradiction. Assume there exists at least one unblocked path between y and
some b ∈ b in Gb when t and z(i) are conditioned on. Let P(b, y) denote the shortest of these unblocked path. Therefore,
no b1 ∈ b, such that b1 ̸= b, is on the path P(b, y), i.e., b1 /∈ P(b, y). Further, P(b, y) takes one of the following two
forms because all the edges going out of b are removed in Gb: (a) b ←− · · · y or (b) b L9999K · · · y .

Suppose we condition on z(o) (while t and z(i) are still conditioned on). From (5) and Fact 1, we have y ⊥⊥d b|t, z in Gb.
Therefore, the path P(b, y) is blocked in Gb when z(o) is conditioned on (while t and z(i) are still conditioned on). Let v be
any node at which P(b, y) is blocked in Gb when z(o) is conditioned on (while t and z(i) are still conditioned on). We must
have that v ∈ P(b, y) \ {y , b} and v ∈ z(o). Suppose we uncondition on z(o) (while t and z(i) are still conditioned on).
Then, the path P(b, v) ⊂ P(b, y) is unblocked in Gb.

We consider the following two scenarios depending on whether or not P(b, v) contains t. In both scenarios, we show that
there is an unblocked path between t and v in Gb when we condition on b (while t and z(i) are still conditioned on).

(i) P(b, v) contains t: Consider the path P(t, v) ⊂ P(b, v) which is unblocked in Gb when t and z(i) are conditioned
on. Further, by the choice of P(b, y), no b1 ∈ b is on the path P(t, v). Therefore, the path P(t, v) in Gb remains
unblocked when we condition on b (while t and z(i) are still conditioned on).

(ii) P(b, v) does not contain t: Consider the path P(t, v) ⊃ P(b, v) (by including the extra edge t → b) which takes
one of the following two forms: (a) t −→ b ←− · · · v or (b) t −→ b L9999K · · · v . Further, by the choice of P(b, y), no
b1 ∈ b (b1 ̸= b) is on the path P(t, v). Suppose we condition on b (while t and z(i) are still conditioned on). Then,
the path P(t, v) in Gb is unblocked because (a) the collider at b is unblocked when b is conditioned on and (b) the
path P(b, v) in Gb remains unblocked when b is conditioned on (while t and z(i) are still conditioned on).
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Now, suppose we uncondition on t (while b and z(i) are still conditioned on). We have the following two scenarios
depending on whether or not P(t, v) in Gb remains unblocked. In both scenarios, we show that there is an unblocked path
between t and v in Gb when we uncondition on t (while b and z(i) are still conditioned on).

1. If P(t, v) remains unblocked: In this case, P(t, v) in Gb is an unblocked path between t and v when z(i) and b are
conditioned on, as desired.

2. If P(t, v) does not remain unblocked: In this case, it is the unconditioning on t (while b and z(i) are still conditioned
on) that blocks P(t, v). Now, we create a set w consisting of all the nodes at which P(t, v) is blocked in Gb when t is
unconditioned on (while b and z(i) are still conditioned on). Define the set w such that for any w ∈ w, the following are
true: (a) w ∈ P(t, v) \ {t, v}, (b) P(t, v) contains a collider at w in Gb, and (c) there exists an unblocked descendant
path from w to t in Gb.

Now, we must have w ̸= ∅, since P(t, v) is blocked in Gb when t is unconditioned on (while b and z(i) are still
conditioned on). Let wc ∈ w be that node which is closest to v in the path P(t, v), and let P(wc, t) be an unblocked
descendant path from wc to t in Gb (there must be one from the definition of the set w). Consider the path P ′(v , t)
obtained after concatenating P(v ,wc) ⊂ P(t, v) and P(wc, t). By the definition of w and the choice of wc, P ′(v , t) is
unblocked in Gb when t is unconditioned on (while b and z(i) are still conditioned on) since (a) P(v ,wc) is unblocked,
(b) P(wc, t) is unblocked, and (c) there is no collider at wc in P ′(v , t). Therefore, we have an unblocked path between
t and v in Gb when z(i) and b are conditioned on, as desired.

To conclude the proof, we note that the existence of an unblocked path between t and v ∈ z(o) in Gb when z(i) and b are
conditioned on contradicts z(o) ⊥⊥d t|b, z(i) in Gb (which follows from (6) and Fact 1).

H.1. Proof of Lemma 3

First, we claim t ⊥⊥d b|z in Gt . We assume this claim and proceed to prove the statement in the Lemma by contradiction.
Assume there exists at least one unblocked path between t and some b ∈ b in Gt when z(i) is conditioned on. Let P(t, b)
denote the shortest of these unblocked path. Therefore, no b1 ∈ b such that b1 ̸= b is not on the path P(t, b), i.e.,
b1 /∈ P(t, b).
Suppose we condition on z(o) (while z(i) is still conditioned on). From the claim, P(t, b) is blocked in Gt when z(o)

is conditioned on (while z(i) is still conditioned on). Let v be any node at which P(t, b) is blocked in Gt when z(o) is
conditioned on (while z(i) is still conditioned on). We must have that v ∈ P(t, b) \ {t, b} and v ∈ z(o). Then, the path
P(t, v) ⊂ P(t, b) is unblocked in Gt when z(o) is unconditioned on (while z(i) is still conditioned on). Further, no b ∈ b is
on the path P(t, v). As a result, the path P(t, v) remains unblocked when b is conditioned on (while z(i) is still conditioned
on). However, this contradicts t ⊥⊥d z(o)|b, z(i) in Gt (which follows from (6)(ii) and Fact 1).

Proof of Claim - t ⊥⊥d b|z in Gt: It remains to prove the claim t ⊥⊥d b|z in Gt . We prove this by contradiction. Assume
there exists at least one unblocked path between t and some b ∈ b in Gt when z is conditioned on. Let P(t, b) denote any
such unblocked path. This path takes one of the following two forms: (a) t ←− · · · b or (b) t L9999K · · · b because all edges
going out of t are removed in Gt .
Suppose we condition on t (while z is still conditioned on). The path P(t, b) remains unblocked because t /∈ P(t, b)
(a path is a sequence of distinct nodes). Then, the path P(y , b) ⊃ P(t, b) of the form (a) y L9999K t ←− · · · b or (b)
y L9999K t L9999K · · · b is unblocked because the additional conditioning on t (while z is still conditioned on) unblocks the
collider at t. However, this contradicts b ⊥⊥d y |t, z in Gt (which follows from (5) and Fact 1).

I. Experimental Results
In this section, we provide additional experimental results. First, we provide more details regarding the numerical example
in Appendix F.1. Next, we demonstrate the applicability of our method on a class of graphs slightly different from the one in
Appendix D.1. Then, we provide the 6 random graphs from Appendix D.2 as well as ATE estimation results on specific
choices of SMCMs including the one in Figure 2. Finally, we provide histograms analogous to Figure 5 for the second
choice of b on German credit dataset as well as details about our analysis with Adult dataset.
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I.1. Numerical example in Appendix F.1

The observed variables for this example also follow the structural equation model in (9). Also, to generate the true ATE, we
intervene on the generation model in (9) by setting t = 0 and t = 1.

I.2. Applicability to a class of random graphs

As in Appendix D.1, we create a class of random SMCMs, sample 100 SMCMs from this class, and check if (5) and (6)
hold by checking for corresponding d-separations in the SMCMs. The class of random graphs considered here is analogous
to the class of random graphs considered in Appendix D.1 expect for the choice of t. Here, we choose any variable that is
ancestor of y but not its parent as t. This is in contrast to Appendix D.1 where we choose any variable that is ancestor of y
but not its parent or grandparent as t. We compare the success rate of the same two approaches: (i) exhaustive search for z
satisfying (5) and (6) and (ii) search for a z of size at-most 5 satisfying (5) and (6). We provide the number of successes of
these approaches as a tuple in Table 2 for various p, d, and q. As before, we see that the two approaches have comparable
performances and the IDP algorithm gives 0 successes across various p, d, and q even though it is supplied with the true PAG.
Also, as expected the number of successes for this class of graphs is much lower than the class considered in Appendix D.1.

Table 2. Number of successes out of 100 random graphs for our methods shown as a tuple. The first method searches a z exhaustively and
the second method searches a z with size at-most 5.

p = 10 p = 15
d = 2 d = 3 d = 4 d = 2 d = 3 d = 4

q = 0.0 (6, 6) (3, 3) (1, 1) (11, 11) (2, 2) (1, 1)
q = 0.5 (3, 3) (0, 0) (0, 0) (5, 5) (2, 2) (1, 1)
q = 1.0 (1, 1) (0, 0) (0, 0) (1, 1) (0, 0) (0, 0)

I.3. ATE estimation

We also conduct ATE estimation experiments on four specific SMCMs. The first SMCM is the graph Gtoy in Figure 2.
The remaining graphs, named Gtoyi , i ∈ {1, 2, 3}, are shown in Figure 8, and are obtained by adding additional edges and
modifying Gtoy. These SMCMs are designed in a way such that there exists z = (z(i), z(o)) satisfying the conditional
independence statements in Theorem 3.2.

x1 x2

yz(o)

z(i)

bt

x1 x2

yz(o)

z(i)

bt

x1 x2

yz(o)

z(i)

bt

Figure 8. The causal graphs used to further validate our theoretical results. These are obtained by adding additional edges (shown in red)
to Gtoy in Figure 2. We denote these graphs (from left to right) by Gtoy

1 , Gtoy
2 , and Gtoy

3 , respectively.

We follow a data generation procedure similar to the one in Appendix D.2. In contrast, we show the performance of our
approach for a fixed n but different thresholds of p-value pv . We average the ATE error over 50 runs where in each run we
set n = 50000. As we see in Figure 9, both the ATE estimates returned by Algorithm 1 are far superior compared to the
naive front-door adjustment using b.

In Figure 11, we provide the 6 random SMCMs used in Appendix D.2. As mentioned in Appendix D.1, we choose the last
variable in the causal ordering as y and a variable that is ancestor of y but not its parent or grandparent as t. We also show
the corresponding z = (z(i), z(o)) satisfying (5) and (6).
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Figure 9. Performance of Algorithm 1 for different p-value thresholds pv on Gtoy in Figure 2 on top left, on Gtoy
1 from Figure 8 on top

right, on Gtoy
2 in Figure 8 on bottom left, and on Gtoy

3 from Figure 8 on bottom right

I.4. German Credit dataset

As in Appendix D.3, we assess the conditional independence associated with the selected z for the choice of b={# of people
financially dependent on the applicant, applicant’s savings}, Algorithm 1 results in z(i)={purpose for which the credit was
needed, applicant’s checking account status with the bank} via 100 random bootstraps. We show the corresponding p-values
for these bootstraps in a histogram in Figure 10 below. As expected, we observe the p-values to be spread out.
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Figure 10. Histograms of p-values of the conditional independencies in (7) and (8) over 100 bootstrap runs for b={# of people financially
dependent on the applicant, applicant’s savings}, Algorithm 1 results in z(i)={purpose for which the credit was needed, applicant’s
checking account status with the bank}.
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I.5. Adult dataset

The Adult dataset (Kohavi & Becker, 1996) is used for income analysis where the goal is to predict whether an individual’s
income is more than $50,000 using 14 demographic and socio-economic features. The sensitive attribute t is the individual’s
sex, either male or female. Further, the categorical attributes are one-hot encoded. As with German Credit dataset, we apply
Algorithm 1 with nr = 100 and pv = 0.1 where we search for a set z = (z(o), z(i)) of size at most 3 under the following
two assumptions on the set of all children b of t: (1) b = {# individual’s relationship status (which includes wife/husband)}
and (2) b = {# individual’s relationship status (which includes wife/husband), individual’s occupation}. In either case,
Algorithm 1 was unable to find a suitable z satisfying b ⊥p y |z, t. This suggests that in this dataset, there may not be any
non-child descendants of the sensitive attribute, which is required for our criterion to hold.

I.6. Licenses

In this work, we used a workstation with an AMD Ryzen Threadripper 3990X 64-Core Processor (128 threads in total) with
256 GB RAM and 2x Nvidia RTX 3090 GPUs. However, our simulations only used the CPU resources of the workstation.

We mainly relied on the following Python repositories — (a) networkx (https://networkx.org), (b)
causal-learn (https://causal-learn.readthedocs.io/en/latest/), (c) RCoT (Strobl et al., 2019b)
and (d) ridgeCV, (https://github.com/scikit-learn/scikit-learn/tree/15a949460/sklearn/
linear_model/_ridge.py). We did not modify any of the code under licenses; we only installed these repositories as
packages.

In addition to these, we used two public datasets (a) German Credit dataset (https://archive.ics.uci.edu/ml/
datasets/statlog+(german+credit+data)) and (b) Adult dataset (https://archive.ics.uci.edu/
ml/datasets/adult). These datasets are commonly used benchmark datasets for causal fairness, which is why we
chose them for our comparisons.

https://networkx.org
https://causal-learn.readthedocs.io/en/latest/
https://github.com/scikit-learn/scikit-learn/tree/15a949460/sklearn/linear_model/_ridge.py
https://github.com/scikit-learn/scikit-learn/tree/15a949460/sklearn/linear_model/_ridge.py
https://archive.ics.uci.edu/ml/datasets/statlog+(german+credit+data)
https://archive.ics.uci.edu/ml/datasets/statlog+(german+credit+data)
https://archive.ics.uci.edu/ml/datasets/adult
https://archive.ics.uci.edu/ml/datasets/adult
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Figure 11. The SMCMs used in Appendix D.2 to compare Algorithm 1 with the Baseline that uses b for front-door adjustment. These
are the 6 out of the 100 random graphs in Appendix D.1 for p = 10, d = 2, and q = 1.0 where our approach was successful indicating
existence of z = (z(i), z(o)) such that the conditional independence statements in Theorem 3.2 hold.


