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Abstract

Extending large language models (LLMs) to001
process longer inputs is crucial for numerous002
applications. However, the considerable com-003
putational cost of transformers, coupled with004
limited generalization of positional encoding,005
restricts the size of their context window. We in-006
troduce Cross-Attention to Parallel Encodings007
(CAPE), a framework that can be applied to008
any existing decoder-only LLMs for context009
expansion. CAPE leverages a small encoder010
to process a long input chunk by chunk and011
enables the frozen decoder to cross-attend to012
the additional contexts. CAPE is efficient, gen-013
eralizable, and versatile: trained with 8K-token014
documents, CAPE extends the context win-015
dow of LLAMA-2 to 128K tokens, offering016
10× of the throughput with only 1/6 of the017
memory. CAPE yields strong performance018
on language modeling and in-context learning.019
CAPE also excels in retrieval-augmented appli-020
cations, while existing long-context models de-021
generate with retrieved contexts. We further in-022
troduce a CAPE variant that can extend the con-023
text window of instruction-tuned models with024
only unlabeled data, and showcase its effective-025
ness on LLAMA-2-CHAT, leading to a strong026
instruction-following model that can leverage027
very long context on downstream tasks.028

1 Introduction029

Long and extensible context is crucial for large lan-030

guage models (LLMs) to effectively perform com-031

plex tasks, such as summarizing a book or answer-032

ing questions with hundreds of retrieved webpages.033

However, there are several challenges that limit034

the ability of LLMs to leverage long context: (1)035

LLMs and popular positional encodings (Su et al.,036

2021; Peng et al., 2023) can not generalize to se-037

quence lengths longer than the lengths seen during038

training (Press et al., 2022), even after additional039

fine-tuning (Computer, 2023; Chen et al., 2023a,b;040
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Figure 1: A comparison between CAPE and other tech-
niques of extending LLMs’ context window, including
YARN (Peng et al., 2023), STREAMINGLLM (Xiao
et al., 2023), and REPLUG (Shi et al., 2023b). CAPE
trained on 8K tokens can generalize to 128K tokens
with minimal extra computational and memory costs.

Peng et al., 2023, inter alia). (2) Transformers— 041

the predominant architecture of LLMs—incur a 042

quadratic computational cost and a linear mem- 043

ory cost with respect to the input length, making 044

it prohibitive to use for long sequences. (3) High 045

quality long-context data, such as long instruction- 046

following data, are scarce and difficult to obtain 047

(Wang et al., 2023; Xiong et al., 2023). 048

A series of inference-time modification meth- 049

ods have been proposed recently to scale up the 050

effective context window, either by modifying the 051

attention mechanism (Bertsch et al., 2023; Xiao 052

et al., 2023; Ivgi et al., 2023) or encoding chunks 053

of context in separate forward passes (Shi et al., 054

2023b; Ratner et al., 2023; Lin et al., 2023). While 055

these methods generalize to longer sequences, the 056

model often fails to effectively leverage the extra 057

tokens and can result in greater inference costs. 058

In this work, we propose an efficient and 059

lightweight solution to extending the context win- 060

dow of LLMs, called Cross-Attention to Parallel 061
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Figure 2: CAPE architecture. The encoder model encodes the additional 3 chunks (k = 3) of context C in
parallel, and the final hidden representations from the encoder model are concatenated and used as inputs to the
cross-attention layers in the decoder model. The cross-attention layers attend to the encoder representations between
the self-attention and feed-forward layers in the decoder model.

Encodings (CAPE). CAPE is applicable to any062

pre-trained decoder-only LM by adding two com-063

ponents: a small encoder that encodes the long064

context in chunks, and cross attention modules in-065

serted in each layer of the decoder to attend to the066

encoder representations (Figure 2). By careful se-067

lection of unlabeled training data, CAPE can be068

trained to leverage long-context documents effec-069

tively, and multiple retrieved contexts flexibly for070

downstream use.071

CAPE offers several benefits: (1) Length gen-072

eralization. CAPE is not limited by positional073

encoding constraints as the long context is encoded074

in segments, each with its own positional encoding.075

(2) Efficiency. Using a small encoder and process-076

ing context in parallel reduce computational cost.077

Since cross attention only attends to the last layer’s078

representations from the encoder, CAPE requires079

much less memory compared to decoder-only LMs,080

which cache the key-value pairs of every token in081

every layer. (3) Reduced training cost. Unlike full082

fine-tuning approaches, we only tune the encoder083

and the cross attention while keeping the large de-084

coder LM frozen; augmenting a 7B decoder with085

a 400M encoder and cross-attention layers can be086

done with a single A100 80 GB GPU.087

We apply CAPE to LLAMA-2 and train it on a088

filtered version of RedPajama (Together, 2023) for089

20B tokens. We first show that CAPE-LLAMA-2,090

trained with 8K input length, continues to decrease091

in perplexity on longer input up to 128K tokens.092

Then, we apply CAPE to a retrieval-augmented093

setting, as our larger context window allows in-094

corporating more retrieved documents. Compared095

to existing methods, CAPE achieves better per-096

formance on both retrieval-augmented language097

modeling and open-domain question answering. 098

Additionally, we also demonstrate that CAPE can 099

effectively leverage more demonstrations for in- 100

context learning (Brown et al., 2020). All the above 101

is achieved with a much lower memory and com- 102

putational cost than previous solutions. 103

Finally, we propose CAPE-DISTILLED 104

(CAPED), which extends the context window 105

of instruction-tuned models, using only unla- 106

beled data. CAPED distills the behavior of 107

the original instruction-tuned model to the new 108

architecture through an auxiliary KL divergence 109

loss, which eliminates the need to curate expensive 110

long-context instruction-following data. We 111

apply CAPED to LLAMA-2-CHAT (Touvron 112

et al., 2023b) models and show that while 113

preserving their instruction understanding ability, 114

CAPED-LLAMA-2-CHAT can incorporate more 115

context and improve performance on long-text 116

understanding tasks (Shaham et al., 2023). 117

To conclude, CAPE is a lightweight framework 118

that can extend context windows of any pre-trained 119

and instruction-tuned LMs. We hope CAPE can 120

empower future LLM research with cheap and ef- 121

fective long-context abilities. 122

2 Our Method: CAPE 123

We design CAPE to efficiently adapt pre-trained 124

LLMs to perform long-context language modeling 125

on sequences with many tokens (e.g., books). In 126

the retrieval-augmented setting, these long contexts 127

can contain a set of retrieved passages and a in- 128

struction or question. We first describe how CAPE 129

modifies the architecture of LLMs to attend to rep- 130

resentations encoded by a small encoder. Then, 131

we describe how the added parameters are trained. 132
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Finally, we extend CAPE to formulate CAPED,133

which can modify instruction-tuned models to at-134

tend to additional context with only unlabeled data.135

2.1 Architecture136

CAPE augments off-the-shelf decoder-only lan-137

guage models by (1) adding a small encoder model138

and (2) inserting cross-attention layers between139

the self-attention and feed-forward layers in every140

transformer block of the decoder model.141

Notation. Given an input context with T to-142

kens x1, ..., xT , we consider the first m tokens143

x1, ..., xm as the additional context C and the last n144

tokens xm+1, ..., xT as the main input X . The ad-145

ditional context is split into chunks C = C1, ..., Ck,146

which can contain either segments of long doc-147

uments or a set of retrieved passages. We use148

Mencoder to denote the small encoder model with149

hidden dimension d and Mdecoder to denote the150

decoder-only LLM with hidden dimension D.151

Encoding chunks. We use the frozen decoder to152

process X and encode C1, ..., Ck chunk by chunk153

using the small, trainable encoder Mencoder:154

ϕi = Mencoder(Ci) Φ = concat({ϕi}ki=1)155

where ϕi ∈ R|Ci|×d is the token-wise last layer hid-156

den representation from Mencoder and Φ ∈ Rm×d.157

Cross-attention modules. In every decoder layer158

of the transformer (Vaswani et al., 2017), we insert159

a cross-attention module between the self-attention160

and feed-forward layers (see Figure 2). To con-161

struct the cross-attention module, we provide Φ as162

keys and values, and the hidden representation of163

X as the queries to the attention layer. Note that in164

order for Mdecoder to attend to Φ, the key and value165

projection matrices in the cross attention module166

also serve as an up-projection that transforms the167

d-dimensional Φ into a D-dimensional embedding.168

Figure 2 illustrates the architecture of CAPE.169

Efficiency. Mencoder is much smaller and encodes170

contexts in parallel to avoid the quadratic complex-171

ity of full attention. This enables CAPE to ex-172

hibit a substantially higher training and inference173

speed than if we were to use Mdecoder to process174

the entire T -length context. Moreover, CAPE dras-175

tically reduces memory consumption by avoiding176

caching TL key-value pairs (L is the number of177

layers of Mdecoder) and instead caching only Φ. In178

particular, using a standard decoder-only model re-179

quires O(TLD) memory whereas CAPE requires180

O(md+nLD). In our setting, m ≫ n and D ≫ d, 181

so in practice, we observe a substantial gap: CAPE 182

requires 1/256 the memory required for each addi- 183

tional token given to Mdecoder. 184

Comparison with retrieval-augmented LMs. 185

CAPE takes the inspiration for attending to par- 186

allel encodings of additional contexts from works 187

in retrieval-augmented architectures, such as FiD 188

(Izacard and Grave, 2021) and Atlas (Izacard et al., 189

2022b). In contrast to fully fine-tuning the entire 190

model on task specific data (e.g., open-domain QA 191

data), we freeze the pre-trained decoder model and 192

train on unlabeled data from a pre-training corpus. 193

As a result, CAPE is performant on a diversity of 194

tasks beyond retrieval-augmented applications. 195

2.2 Data 196

We use RedPajama (RP; Together, 2023) as our 197

training corpus, which is an open-source reproduc- 198

tion of the LLAMA-1 (Touvron et al., 2023a) train- 199

ing data. It contains about 1 trillion tokens from 200

seven domains: ArXiv, Books, C4-RP, CC, Github, 201

StackExchange, and Wiki. We first separate the 202

corpus into three splits: training, retrieval, and test. 203

The training split is preprocessed into two subsets, 204

each of which is a collection of 8192-token se- 205

quences: (1) In RPtrain-cat, we concatenate adjacent 206

documents together to form training sequences; (2) 207

In RPtrain-filter, we keep documents from the Arxiv 208

and the Books domains that have at least 8192 to- 209

kens and sample the training sequences such that 210

all tokens are from the same document. 211

Our qualitative analysis found that data from the 212

ArXiv and Books domains naturally contain long 213

documents that are especially useful when training 214

long-context models. It is also important to use a 215

mixture of data from all domains to ensure better 216

generalization. Thus, we use a mixture ratio of 2:1 217

between RPtrain-filter and RPtrain-cat for training. Our 218

ablation studies support this strategy (§D.1). 219

2.3 Training 220

We use LLAMA-2-7B (Touvron et al., 2023b) 221

as Mdecoder (originally trained on 4K length). 222

Mencoder and the new cross attention layers de- 223

scribed in Section 2.1 add 1.8B parameters. 224

Encoder. We first train a bi-directional masked- 225

language model (MLM) on the RedPajama dataset. 226

Mencoder follows the configuration of RoBERTa- 227

large (Liu et al., 2019b) but has the vocabulary of 228

LLAMA-2, thereby amounting to 435M param- 229
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eters. We train the model for 100K steps with a230

batch size of 2048 and a sequence length of 512231

tokens. For more details, please refer to §A.1.232

Cross-Attention. We freeze the original weights233

of the decoder model and only train the added234

cross-attention layers as well as Mencoder using235

the cross-entropy loss. We adopt a warmup train-236

ing stage where Mencoder and Mdecoder process the237

same inputs, thereby teaching Mdecoder to copy238

from Mencoder through the added cross-attention239

modules1. The warmup stage uses 131M tokens240

randomly sampled from the training set.241

After the warmup stage, we move to standard242

training, where each sequence has T = 8192 to-243

kens. We use the last n = 4096 tokens as the244

decoder input X , and chunk the first 4096 tokens245

into k = 16 contexts of |Ci| = 256 tokens each246

as the encoder input C. Freezing the decoder al-247

lows CAPE to be trained on a single A100 GPU,248

which is a significant reduction in computational249

cost compared to training Mdecoder with sequence250

length T . In practice, we use eight A100 GPUs to251

train the model for 20B tokens. For more training252

details and hyperparameters, please refer to §A.2.253

2.4 CAPE for Instruction-Tuned Models254

In this section, we extend our method to CAPE-255

DISTILLED (CAPED) to augment instruction-256

tuned models with longer context. Instruction-257

tuned models (Ouyang et al., 2022; Taori et al.,258

2023; Touvron et al., 2023b) excel in many down-259

stream applications, but their limited context win-260

dow restricts their performance in tasks that require261

long documents (Shaham et al., 2023) or a large262

number of retrieved passages (Gao et al., 2023).263

It is challenging to extend these models to longer264

context windows directly through fine-tuning due265

to the scarcity of high-quality instruction data.266

To this end, we propose CAPED, which uses267

an auxiliary distillation loss to encourage Mencoder268

and the cross-attention layers to learn the capabili-269

ties of the already fine-tuned Mdecoder. This can be270

especially useful for settings where the fine-tuning271

data are not open-sourced, which is the case for272

LLAMA-2-CHAT (Touvron et al., 2023b).273

Distillation Loss. We design a distillation ob-274

jective, where the original Mdecoder acts as the275

“teacher” and the CAPED model acts as the “stu-276

dent”. In order for Mdecoder to act as a teacher, we277

1Preliminary experiments suggest this stage can stabilize
training; ablations can be found in §D.1

need to use input contexts that can fit in LLAMA- 278

2-CHAT, our choice of Mdecoder, which has a max- 279

imum context length of T = 4096. First, we feed 280

the input context into Mdecoder and record the log- 281

its. Then, we split that context equally into C and 282

X (i.e., m = n = 2048) and use that as input 283

for CAPED. We train CAPED to minimize the 284

KL divergence between the output logits of X and 285

the teacher logits as well as the cross-entropy loss 286

following previous distillation works (Bai et al., 287

2022). We train the model for 10B tokens from the 288

filtered RP. For more details, see §A.3 289

3 Long-context Language Modeling 290

In this section, we evaluate CAPE and baselines 291

with perplexity on long documents. It reflects the 292

basic long-context modeling ability of different ap- 293

proaches and provides us a reliable and quantifiable 294

metric for comparison. 295

Datasets. We evaluate on ArXiv and Books from 296

our RedPajama test split, as well as three long- 297

context datasets: PG19 (Rae et al., 2020), Proof- 298

Pile (Azerbayev et al., 2023), and CodeParrot (Wolf 299

et al., 2023). We filter all documents to have at 300

least 32,768 tokens, and sample 5,000 sequences 301

for each dataset. We calculate the perplexity on 302

the last 256 tokens of each sequence. Following 303

Peng et al. (2023), for the experiments with 128K 304

tokens, we filter documents to have at least 131,072 305

tokens, and only evaluate on 10 sequences2 due to 306

computational costs. 307

Models. Our baseline includes LLAMA-2-7B and 308

its long-sequence fine-tuned versions, LLAMA-2- 309

32K-7B (Computer, 2023), YARN-64K-7B, and 310

YARN-128K-7B (Peng et al., 2023). We also 311

evaluate on training-free long-context methods: 312

STREAMINGLLM (Xiao et al., 2023) and RE- 313

PLUG (Shi et al., 2023a) with LLAMA-2-7B. Note 314

that REPLUG was originally evaluated in retrieval- 315

augmented settings only, but we found that it also 316

helps with long-context modeling, when viewing 317

the long context as retrieved context. Please see §B 318

for more details on the implementations. 319

For CAPE, we put 2K tokens in the decoder 320

when total tokens is 4K, and 4K tokens in the de- 321

coder in other settings. Additional tokens are split 322

into chunks of 256 tokens and fed into the encoder. 323

Results. We show the results in Table 1. Com- 324

pared to the two fully fine-tuned models, LLAMA- 325

2All 10 sequences are from different documents.

4



ArXiv Book PG19 ProofPile CodeParrot Throughput Mem. (GB)

Total Tokens = 4, 096

LLAMA-2 2.597 6.282 7.614 2.409 1.735 1.00 19.2
LLAMA-2-32K 2.601 6.621 7.945 2.414 1.785 1.00 19.2
YARN-64K 2.651 6.337 7.326 2.457 1.764 1.04 19.2
REPLUG 2.660 6.343 7.661 2.465 1.758 0.12 16.3
CAPE 2.579 6.292 7.536 2.396 1.763 1.31 19.8

Total Tokens = 8, 192

LLAMA-2 > 103 > 103 > 103 > 103 > 103 - -
LLAMA-2-32K 2.505 6.339 7.744 2.221 1.729 1.00 24.9
YARN-64K 2.561 6.077 7.146 2.267 1.714 2.52 24.8
REPLUG 2.589 6.149 7.554 2.307 1.728 0.17 18.8
STREAMINGLLM 2.740 6.327 7.783 2.437 1.806 1.94 20.0
CAPE 2.496 6.049 7.372 2.219 1.715 3.48 22.6

Total Tokens = 32, 768

LLAMA-2 > 103 > 103 > 103 > 103 > 103 - -
LLAMA-2-32K 2.322 6.178 7.420 2.158 1.664 1.00 59.1
YARN-64K 2.359 5.884 6.809 2.193 1.640 1.03 58.9
STREAMINGLLM 2.752 6.358 7.627 2.503 1.853 1.16 20.0
CAPE 2.421 6.015 7.204 2.218 1.702 3.72 25.6

Total Tokens = 131, 072

LLAMA-2-32K > 103 > 103 > 103 > 103 > 103 - -
YARN-64K > 103 > 103 > 103 > 103 > 103 - -
YARN-128K 2.359 5.270 6.306 2.242 1.264 1.00 235.6
STREAMINGLLM 2.371 5.058 6.681 2.270 1.280 2.56 20.0
CAPE 2.217 4.869 6.305 2.099 1.266 9.90 38.6

Table 1: Long-context language modeling text perplexity on ArXiv and Book from RedPajama, PG19, ProofPile, and
CodeParrot. Throughput compares the speed (number of sequences/second) of each model with that of LLAMA-2
with the same number of total tokens. All experiments are done on 1 A100 80GB GPU, except for LLAMA-2-32K
and YARN with 128K tokens, which requires model parallelism, and is conducted on 4 A100 GPUs.

2-32K and YARN-64K, CAPE achieves either326

lower or comparable perplexity across all datasets327

with lower memory usage and higher throughput.328

Furthermore, CAPE continues to improve on per-329

plexity while maintaining low memory use at 128K330

tokens, well beyond its training lengths (8K); on331

the other hand, LLAMA-2-32K and YARN-64K332

cannot generalize beyond its training length and333

the memory cost increases significantly.334

We also outperform REPLUG across all domains335

while achieving much higher throughput – we omit336

REPLUG at 32K tokens due to its slow speed.337

STREAMINGLLM maintains a low memory us-338

age and a reasonable throughput, but the perplexity339

does not always decrease as the sequence length340

increases. Compared to STREAMINGLLM, CAPE341

achieves better perplexity with better throughput.342

4 Retrieval-Augmented Applications343

Retrieval-augmented settings naturally benefit from344

long-context LMs, as models can leverage the ad-345

ditional context to include more retrieval results.346

4.1 Retrieval-augmented Language Modeling 347

Datasets. We use the test and retrieval split of Red- 348

Pajama described in §2.2 for retrieval-augmented 349

LM evaluation. Each sequence contains 2048 to- 350

kens, and the first 256 tokens are used as the query 351

to retrieve passages from the retrieval split. The 352

retrieval corpus contains 200M documents of 256 353

tokens each, and we use Contriever (Izacard et al., 354

2022a) to retrieve k passages for each sequence. 355

Models. We evaluate full-context baselines, 356

LLAMA-2, LLAMA-2-32K, and YARN-64K, 357

by simply prepending the retrieved passages to the 358

input sequence. We also evaluate REPLUG, which 359

runs one forward pass for each retrieved passage 360

and aggregates the results. CAPE uses 2048 to- 361

kens in the decoder and retrieved passages are fed 362

through the encoder in parallel. 363

Results. The results are shown in Table 2. CAPE 364

can effectively improve perplexity by using the re- 365

trieved contexts, outperforming REPLUG. Notably, 366

CAPE extrapolates well to higher k and continues 367
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ArXiv Book C4-RP CC Github StackEx Wiki Avg.

k = 0 (T = 2, 048)

LLAMA-2 3.541 6.524 6.916 5.564 1.865 4.043 4.816 4.753
LLAMA-2-32K 3.561 6.892 7.798 5.931 1.932 4.262 4.958 5.048
YARN-64K 3.633 6.631 7.164 5.701 1.930 4.164 4.837 4.866

k = 8 (T = 4, 096)

LLAMA-2 3.602 6.581 6.963 5.348 1.829 4.044 4.815 4.740
LLAMA-2-32K 3.642 6.985 7.767 5.645 1.893 4.270 4.988 5.027
YARN-64K 3.752 6.718 7.218 5.466 1.894 4.178 4.847 4.868
REPLUG 3.535 6.494 6.895 5.395 1.833 4.029 4.798 4.711
CAPE 3.486 6.481 6.884 5.319 1.793 3.709 4.302 4.568

k = 20 (T = 7, 168)

REPLUG 3.531 6.490 6.894 5.386 1.830 4.028 4.795 4.708
CAPE 3.475 6.463 6.875 5.266 1.782 3.703 4.296 4.551

k = 50 (T = 14, 848)

REPLUG 3.530 6.491 6.899 5.392 1.830 4.028 4.794 4.709
CAPE 3.467 6.457 6.881 5.273 1.777 3.701 4.292 4.550

Table 2: Retrieval-augmented language modeling. We report test perplexity on RedPajama across all domains. We
calculate perplexity on the last 1792 tokens of the decoder input (to exclude the query tokens). k is the number of
retrieved contexts used, and T is the total number of tokens. For LLAMA-2, YARN-64K, and LLAMA-2-32K,
we concatenate the contexts and prepend to the input. Avg. is the macro average across all domains.
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Figure 3: Open-domain QA results. LLaMA-2 is limited to 20 passages, and REPLUG is limited to 30 passages due
to memory constraints. For the complete results, refer to Table 6.

to improve perplexity even with k = 50 (trained368

with k = 16). CAPE transfers well to the retrieval-369

augmented setting whereas the full-context decoder370

models degrade in performance.371

4.2 Open-domain Question Answering372

Given a question and a large corpus of documents,373

open-domain question answering (QA) requires the374

model to retrieve relevant passages and generate the375

answer. A model that can leverage a large number376

of retrieved passages without being distracted by377

irrelevant ones is desirable for this task.378

Datasets. We adopt three open-domain QA379

datasets: Natural Questions (NQ; Kwiatkowski380

et al., 2019; Lee et al., 2019a), TriviaQA (Joshi381

et al., 2017), and PopQA (Mallen et al., 2023). For382

each question, we use Contriever to retrieve k pas-383

sages from Wikipedia3. 384

Models. We compare CAPE with LLAMA-2, 385

LLAMA-2-32K, and REPLUG. For each model, 386

we use two in-context demonstrations. For CAPE, 387

we use 10 passages in the decoder and all other 388

passages are encoded separately by the encoder. 389

Refer to §C.1 for more details. 390

Results. The results are shown in Figure 3. 391

CAPE consistently outperforms all models across 392

all datasets and k. Notably, CAPE outperforms 393

LLAMA-2-32K on NQ and TriviaQA by over 3 394

and 4 points in exact match, respectively. Further- 395

more, CAPE does not degrade in performance as 396

the number of retrieved passages increases, while 397

other models often performs worse at larger k, as 398

3Snapshot from 2018-12-20, and each passage is 100
words (Karpukhin et al., 2020).
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k SST2 MR AGNews SST5 TREC TREC-F DBPedia NLU-S NLU-I BANKING CLINIC

LLAMA-2 2 89.1 96.7 72.7 3.9 48.0 16.7 94.0 42.3 22.3 38.4 59.1

+ CAPE 2 + 18 90.7 98.4 71.9 46.7 47.1 22.8 94.0 48.9 30.4 42.5 62.4
2 + 38 92.9 98.0 73.2 45.5 47.5 25.1 93.3 48.8 31.6 46.0 62.8

LLAMA-2† 40 94.3 98.7 74.7 52.3 87.7 54.8 95.1 76.7 62.1 50.4 72.0

Table 3: ICL results averaged across 3 seeds. k is the number of demonstrations. All models uses 2 demonstrations
in the decoder, and we add +m demonstrations to the encoder for CAPE. † denotes the oracle setting with k = 40
demonstration in the decoder.

Question Answering Summarization

Total tokens NQA Qspr QALT GvRp SSFD QMSum

LLAMA-2-CHAT 2K 17.1 14.6 28.6 16.0 16.4 19.3

+ CAPED
2K + 2K 19.5 20.5 30.2 16.5 16.4 19.6
2K + 30K 21.6 19.9 29.6 15.8 16.7 19.5
2K + All 21.9 19.9 29.6 15.9 16.7 19.5

LLAMA-2-32K INSTRUCT 32K 12.2 18.1 41.6 19.9 10.0 10.3

Table 4: ZeroSCROLLS validation results. The total number of tokens includes both the input and generated tokens.
For NarrativeQA (NQA) and Qspr (QASPER), we report the F1 scores. For QALT (QuALITY), we report accuracy.
For GovReport (GvRp), SummScreenFD (SSFD), and QMSum, we report the ROUGE-L scores. CAPED uses 2K
tokens in the decoder, and additional tokens are inputted through the encoder.

they are sensitive to the large amount of redundant399

or irrelevant passages.400

5 In-Context Learning401

In-context learning (ICL; Brown et al., 2020) is one402

of the most important emerging qualities of LLMs.403

In this experiment, we examine whether CAPE404

can effectively utilize the demonstrations from the405

encoder context and improve the performance.406

Specifically, we use a range of classification407

tasks that contains a large number (up to 150) of408

categories, where the model can benefit from ad-409

ditional demonstrations. Following previous work410

(Ratner et al., 2023), we use a test set size of 250411

examples for each dataset.412

Models. Our baseline is LLAMA-2 with 2 demon-413

strations. For CAPE, we add additional demon-414

strations in the encoder. We also compare with an415

“oracle”, where the LLAMA-2 decoder takes 40416

demonstrations. Note that the oracle is significantly417

more expensive. More details are in §C.2.418

Results. The results are shown in Table 3. We419

first observe that compared to the decoder-only420

baseline, CAPE can effectively use the additional421

demonstrations from the encoder context; the per-422

formance further increases or remains consistent423

with more demonstrations in the encoder. However,424

there is still a large gap to the 40-demonstration425

oracle. Our hypothesis is that in-context learning 426

requires both query-demonstration interactions and 427

demonstration-demonstration interactions, which 428

CAPE cannot provide. Regardless, CAPE can be 429

always applied on top of the decoder-only model 430

to add additional demonstrations, with little extra 431

computational and memory cost. 432

6 Instruction-tuned Models for Long Text 433

Understanding 434

Dataset. ZeroSCROLLS (Shaham et al., 2023) is a 435

collection of zero-shot long-context understanding 436

tasks that require instruction-following abilities. 437

Specifically, we test on NarrativeQA, QASPER, 438

QuALITY, GovReport, SummScreenFD, and QM- 439

Sum, which all have large validation sets made 440

available. We follow the formats and instructions 441

of Shaham et al. (2023) for each dataset, except the 442

long text is placed before the instructions. 443

Models. For CAPED, we use 2048 tokens in 444

the decoder and put the remaining tokens to the 445

encoder as chunks of 256 tokens. We compare 446

with LLAMA-2-CHAT and LLAMA-2-32K IN- 447

STRUCT4, which was fine-tuned on multi-round 448

conversational data as well as long-context sum- 449

marization and QA data. We allow the model to 450

4https://huggingface.co/togethercomputer/
Llama-2-7B-32K-Instruct
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generate 1024 tokens for the summarization tasks451

and 50 tokens for the question answering tasks.452

Results. Table 4 shows that CAPED improves453

upon LLAMA-2-CHAT with 2K tokens across all454

tasks. The performance of CAPED improves or455

remains consistent as we scale up the number of456

tokens in the context window. Notably, CAPED457

improves upon LLAMA-2-CHAT by 3 points in458

F1 scores on NQA, which has the longest average459

number of words among all ZeroSCROLLS tasks.460

Furthermore, CAPED outperforms LLAMA-2-461

32K INSTRUCT on 4 out of the 6 tasks, despite462

being trained on unlabeled data. We provide quali-463

tative examples and more analysis in §C.3.464

7 Ablation Studies465

We conduct comprehensive ablations to show the466

effectiveness of our training data mixture, pre-467

training and fine-tuning the encoder, and the468

warmup training stage. We also ablate to verify the469

effectiveness of the KL divergence loss in CAPED.470

All the ablations can be found in §D.471

8 Related Work472

Long-context language models. Many recent473

works on long-context language models aim to474

solve the problem of positional embedding extrapo-475

lation in transformers (Peng et al., 2023; Chen et al.,476

2023a). Others simply fine-tune LMs on longer se-477

quences (Xiong et al., 2023; Chen et al., 2023b).478

Distinctively, several recent papers propose to ex-479

tend the context window of LMs by modifying the480

attention mechanism: Xiao et al. (2023) discover481

the use of “sink tokens” in sliding windows and482

Bertsch et al. (2023) retrieve relevant tokens from a483

cache instead of attending to all tokens This results484

in memory-efficient long-context LMs, but they485

can degrade with longer contexts, as the same posi-486

tional embedding may be seen multiple times. The487

key advantage of CAPE is that it does not degrade488

for inputs longer than the training sequence, while489

achieving greater memory efficiency than full fine-490

tuning approaches. Novel architectures and pre-491

training techniques, such as S4 (Gu et al., 2022),492

RPT (Rubin and Berant, 2023), and Mamba (Gu493

and Dao, 2023), also extend the context window of494

LMs at greater efficiency. However, pre-training is495

extremely expensive at scale and, thus, these meth-496

ods cannot leverage existing powerful pre-trained497

LLMs. It is also unclear if state-space models can498

replace transformers (Jelassi et al., 2024). 499

Retrieval-augmented language models. Aug- 500

menting language models with retrieval has been 501

useful in a number of applications. It’s often ap- 502

plied to question answering tasks, where retrieval 503

can enrich LMs with external knowledge (Lee et al., 504

2019b; Karpukhin et al., 2020). Recently, combin- 505

ing LMs with retrieval systems for more gener- 506

alized purposes, such as language modeling, has 507

been explored: Guu et al. (2020); Borgeaud et al. 508

(2022); Izacard et al. (2022b); Min et al. (2023) pre- 509

train LMs with retrieval, and Shi et al. (2023b); Lin 510

et al. (2023) use logits interpolation from separate 511

forward passes to incorporate retrieval information. 512

Our architecture is similar to Atlas (Izacard et al., 513

2022b) and RETRO (Borgeaud et al., 2022), which 514

encode retrieved passages independently and uses 515

cross-attention to incorporate them into the decoder. 516

However, they are both models trained from scratch 517

on retrieval-augmented data, which are expensive 518

to acquire at the pre-training scale. CAPE only 519

requires fine-tuning on long document data, which 520

are much more efficient to obtain; CAPE is also ap- 521

plicable to any decoder-only LM, allowing us to ex- 522

tend context windows for pre-existing strong mod- 523

els. RETRO-Fitting (Borgeaud et al., 2022) sim- 524

ilarly fine-tunes a pre-trained model but requires 525

retrieval-augmented data. 526

9 Conclusion 527

We propose CAPE as a way to extend the context 528

window of existing language models. The key idea 529

behind CAPE is to leverage a small encoder and 530

cross-attention to process long inputs and achieve 531

low memory and computational complexity. Com- 532

pared to existing methods, CAPE extrapolates to 533

input lengths well beyond the training length, while 534

remaining efficient and effective. Consequently, 535

CAPE augments pre-trained models to be perfor- 536

mant on both long-context and retrieval-augmented 537

applications. We also show that CAPED can be 538

applied to off-the-shelf models with additional con- 539

texts using an auxillary loss with only unlabeled 540

data. We believe that there is still much room for 541

improvements in terms of curating better data for 542

training flexible and robust models. Ultimately, we 543

hope our work can be a useful, efficient, and acces- 544

sible tool for the community to study long-context 545

models in diverse settings. 546
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Limitations547

One limitation of our work include the focus on548

LLAMA-2-7B. Due to computational resource549

constraints and the cost of training, we only ap-550

plied CAPE to LLAMA-2-7B. We hope that future551

work can investigate the applicability of our frame-552

work to a wider variety of LLMs of different sizes.553

Similarly, we only applied CAPED to LLAMA-2-554

CHAT-7B, but we look forward to members in the555

community to apply it to other instruction-tuned or556

other fine-tuned models.557

We also acknowledge that certain hyperparame-558

ters are not studied in depth due to training costs –559

such as the ratio between RPtrain-filter and RPtrain-cat,560

learning rate, and the size of the small encoder561

model. We also fixed Contriever (Izacard et al.,562

2022a) to be the retriever of choice in this work,563

but it would be useful to study a greater range of564

retrievers.565

Ethics Statement566

LLMs are known to potentially output harmful567

and/or offensive languages, and the LLAMA-2-568

based models we use in this work are no exceptions.569

Since these models are trained on internet-size cor-570

pora (e.g., RedPajama), it can be difficult and ex-571

pensive to filter out such offensive languages.572

Our models are also trained on RP, which could573

be misused in certain contexts. Although address-574

ing this issue in large-scale pre-training corpus is575

out of the scope for this work, we hope that future576

work will carefully resolve possible misuse issues577

in these models.578
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A Training Details988

A.1 Pre-training Encoder989

The encoder follows the configuration of RoBERTa-990

large (Liu et al., 2019b) – it has 24 layers, a hidden991

size of 1024, and 16 attention heads. However, we992

use the architecture of LLAMA-2, which means993

that the vocabulary size is different and the atten-994

tion module contains an additional output projec-995

tion. We refer to Liu et al. (2019b) and Touvron996

et al. (2023a) for more details.997

We pre-trained the encoder for 100K steps on998

RP using the masked language modeling objective999

(Devlin et al., 2019). We used a batch size of 20481000

sequences, where each sequence consisted of 5121001

tokens. The learning rate was set to 10−3 with a1002

warm-up of the first 4% of the steps. We used eight1003

A6000 GPUs with gradient accumulation of 16.1004

Furthermore, we employed a masking rate of 30%1005

and disabled the next sentence prediction objective.1006

We always replace token with the [MASK] token if1007

it is masked instead of replacing it with a random1008

token or the original token. Finally, we used the1009

AdamW optimizer (Loshchilov and Hutter, 2019)1010

with β1 = 0.9, β2 = 0.999, and ϵ = 10−8, as1011

implemented by the HuggingFace Transformers1012

library (Wolf et al., 2020).1013

A.2 Training CAPE1014

The attention module in LLAMA-2 is consisted of1015

four projection matrices: key, value, query, and out-1016

put. In contrast to original transformers (Vaswani1017

et al., 2017), the output projection matrix is used1018

as an additional attention output projection. When1019

we first insert the cross-attention layers into the1020

decoder, we initialize the weights of the key, value,1021

and query projection matrices with the respective1022

weights from the decoder’s self-attention layer in1023

the same transformer block. Furthermore, since the1024

hidden dimension of the encoder is smaller than the1025

hidden dimension of the decoder, d < D, we use1026

only copy the first d rows of the key and value pro-1027

jection matrices from the self-attention module to1028

the cross-attention module. Lastly, the output pro-1029

jection matrix is initialized with all zeros. While we1030

did not investigate this initialization in detail, the1031

intuition is that we want the model should use the1032

tokens from the encoder using a similar mechanism1033

as the decoder uses for its own tokens. However,1034

we want the model to learn the output projection1035

from scratch, as it may be too disruptive to have1036

doubled the number of attention modules.1037

Then, we employ a warmup initialization 1038

method that simply trains the model to copy the in- 1039

put tokens from the encoder to the decoder. Specif- 1040

ically, we use the same inputs X = C for both 1041

the encoder and the decoder, and X consists of 1042

n = 256 tokens. However, for the encoder, we 1043

chunk X into k = 4 sequences of 64 tokens to 1044

construct C. This step was trained for 4K steps 1045

with a batch size of 128 and peak learning rate of 1046

5 × 10−4, which totals to 131M tokens. We no- 1047

ticed that the model quickly learned to copy the 1048

input tokens from the encoder to the decoder, and 1049

the loss was close to zero after just 1K steps. The 1050

intuition behind this initialization strategy was to 1051

instill strong inductive bias between the encoder 1052

input and decoder outputs. From our early exper- 1053

iments, we found that this initialization strategy 1054

helped stabilize the later training. 1055

Finally, we train CAPE for 20K steps with a 1056

batch size of 128. We use eight A100 80 GB GPUs 1057

with a per-device batch size of 2 and gradient accu- 1058

mulation of 8, which took approximately 750 GPU 1059

hours. We also use a peak learning rate of 3×10−4 1060

with a warm-up of 4% of the steps, and a cosine 1061

learning rate schedule. We use the AdamW opti- 1062

mizer with β1 = 0.9, β2 = 0.999, and ϵ = 10−8. 1063

A.3 Training CAPED 1064

We leverage an additional distillation loss for 1065

CAPED. For encoder input C and decoder input 1066

X , we first calculate the logits θ(concat(C,X)) by 1067

running forward passes with the original model pa- 1068

rameterized by θ. Due to storage constraints, we 1069

only store the top 50 likelihoods and their indices 1070

in the vocabulary for each token in X , following 1071

(Askell et al., 2021; Bai et al., 2022). 1072

Then, during training, we define the distillation 1073

loss as the KL Divergence between the teacher 1074

model’s probability distribution and the student 1075

model’s probabilities distribution for the previously 1076

stored top 50 tokens. Concretely, our distillation 1077

loss is defined as follows: 1078

LKL = DKL(Mdecoder(S)||MCAPE(C, X)) 1079

where S = concat(C, X), Mdecoder(S) is the prob- 1080

ability distribution of the top 50 tokens for X , and 1081

MCAPE(C, X) takes C as the encoder input and 1082

X as the decoder input and outputs the probability 1083

distribution of the same 50 tokens on X . 1084

Although Bai et al. (2022) also use an additional 1085

category that represents the sum of all other tokens’ 1086

13



probabilities, we found that this may cause the KL1087

Divergence to be undefined for when the sum of1088

other probabilities is 0. For our main model, we1089

use a coefficient of 2 in front of LKL when adding1090

to the cross-entropy loss to calculate the total loss.1091

We experiment with this coefficient in §D.1.1092

B Baseline Implementations1093

REPLUG. Although REPLUG (Shi et al., 2023b)1094

was introduced as a method to augment language1095

models with retrieval, we found that the technique1096

of interpolating logits from separate forward passes1097

can also transfer well to the long context setting.1098

Among the methods that we compare to, REPLUG1099

uniquely improves performance upon the base1100

model in both the long-context and the retrieval-1101

augmented LM settings. This gives us an additional1102

point of comparison across the two settings.1103

Following the original authors, we use Con-1104

triever (Izacard et al., 2022a) to calculate the scores1105

for each previous context by using the first 2561106

tokens following the previous context as the query1107

in the long-context setting. We did not include1108

the additional memory and inference time costs of1109

calculating the Contriever scores in our evaluation.1110

STREAMINGLLM. We follow the implementation1111

of STREAMINGLLM from the original authors51112

(Xiao et al., 2023). Specifically, we use their best1113

settings, where we enable the positional shifts and1114

cache 4 sink tokens and 2044 recent tokens.1115

The original code evaluates the model using a1116

stride of 1 token at a time, where the cache is up-1117

dated after every token, but this is not feasible for1118

our large-scale evaluation. Therefore, we use a1119

stride of 2048 tokens, and we update the cache1120

after each stride. We show the difference in perfor-1121

mance between the two settings in Table 5, and we1122

found that STREAMINGLLM benefits from using1123

a larger stride. We leave future exploration in this1124

direction to future work.1125

C Evaluation Settings1126

C.1 Open-domain Question Answering1127

The full results for the open-domain question an-1128

swering experiments are shown in Table 6. RE-1129

PLUG only uses up to k = 30 passages due to1130

memory constraints, and LLAMA-2 has a window1131

5https://github.com/mit-han-lab/
streaming-llm

size of 4096, which limits k to 20. While LLAMA- 1132

2-32K can use more than k = 60 passages with a 1133

context size of 32K, we only use up to 60 passages 1134

due to cost of generation. For each demonstration, 1135

we only show the the top 1 retrieved passages in- 1136

stead of the top k passages. 1137

C.2 In-context Learning 1138

For our in-context learning experiments, we use 1139

the datasets commonly used in previous works 1140

(Zhao et al., 2021; Lu et al., 2022; Han et al., 2023; 1141

Ratner et al., 2023): SST-2 (Socher et al., 2013), 1142

MovieReview (MR Pang and Lee, 2005), AGNews 1143

(Zhang et al., 2015), SST-5 (Socher et al., 2013), 1144

TREC (Voorhees and Tice, 2000), DBPedia (Zhang 1145

et al., 2015), NLU (Liu et al., 2019a), BANKING77 1146

(Casanueva et al., 2020), CLINIC150 (Larson et al., 1147

2019). We follow the prompts used in Ratner et al. 1148

(2023) for all datasets. During evaluation, we first 1149

calculate the log-likelihood of each option and se- 1150

lect the option with the highest likelihood. We sam- 1151

ple the in-context learning demonstrations from the 1152

training set such that each label has equal number 1153

of demonstrations (except for possible reminders). 1154

Furthermore, we first calculate the accuracy for 1155

each dataset using four different metrics: likeli- 1156

hood, likelihood normalized for length, calibrated 1157

likelihood, and calibrated likelihood normalized 1158

for length. We calibrate using Domain Conditional 1159

PMI (Holtzman et al., 2021), but use the empty 1160

string as the domain string for all dataset for sim- 1161

plicity. We then choose the metrics that yields the 1162

highest score for the LLAMA-2 model in the two- 1163

shot, and apply the same metrics to all other models. 1164

The metrics used for each dataset are shown in Ta- 1165

ble 7. In this work, we did not investigate how 1166

to best calibrate CAPE in ICL settings. We leave 1167

these explorations for future work. 1168

C.3 ZeroSCROLLS 1169

We use a subset of the ZeroSCROLLS (Shaham 1170

et al., 2023) with large validation sets: NarrativeQA 1171

(Kočiský et al., 2018), Qasper (Dasigi et al., 2021), 1172

QuALITY (Pang et al., 2022), GovReport (Huang 1173

et al., 2021), SummScreenFD (Chen et al., 2022), 1174

and QMSum (Zhong et al., 2021). Specifically, 1175

we use the validation sets of these datasets made 1176

available by SCROLLS (Shaham et al., 2022). 1177

However, we follow the same evaluation set up 1178

as ZeroSCROLLS, where models are evaluated in 1179

the zero-shot setting. We also use the same eval- 1180

uation metrics as ZeroSCROLLS for each dataset. 1181
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Stride ArXiv Book PG19 ProofPile CodeParrot

Total Tokens = 8192

STREAMINGLLM 1 2.823 6.381 7.817 2.522 1.848
2048 2.740 6.327 7.783 2.437 1.806

Table 5: Performance of STREAMINGLLM with different stride lengths.

k NQ TQA PopQA

LLAMA-2

1 28.37 56.44 27.17
5 31.91 61.08 33.83

10 32.27 62.09 34.67
15 31.19 61.35 33.67
20 30.39 60.31 31.35

LLAMA-2-32K

10 30.64 56.00 32.38
15 31.27 56.98 33.48
20 31.97 57.28 33.75
30 30.66 57.57 33.90
60 30.58 57.03 34.61

REPLUG

5 31.27 61.21 32.40
10 31.52 61.35 32.31
15 30.80 60.89 31.62
20 30.30 60.41 31.11
30 29.78 59.99 30.27

CAPE

10 32.27 62.09 34.67
15 33.30 62.30 34.67
20 33.85 62.26 34.83
30 33.91 62.33 34.85
60 34.07 62.26 34.98

Table 6: Open-domain QA results. We report exact
match scores for the Natural Questions(NQ) test set,
TriviaQA(TQA) validation set, and PopQA test set. All
models use two-shot in-context learning. k is the num-
ber of retrieved passages, and CAPE uses the top 10
passages in the decoder and all passages in the encoder.

For the question answering datasets (NarrativeQA,1182

Qasper, and QuALITY), we allow the model to1183

generate up to 50 tokens, and we use greedy decod-1184

ing.1185

For the summarization datasets (GovReport,1186

SummScreenFD, and QMSum), we allow the1187

model to generate up to 1024 tokens, following1188

the original authors. For SummScreenFD and QM-1189

Sum, we use greedy decoding, and for GovReport1190

we use nucleus sampling (Holtzman et al., 2020)1191

with a temperature of 1.0 and top-p of 0.95 and a1192

minimum generation length of 10 tokens.1193

This is because GovReport has a much longer1194

gold summary than the other datasets, and sam-1195

pling methods are typically used in long generation1196

Normalized Calibrated

SST2 No Yes
MR No No
AGNews No No
SST5 No Yes
TREC No No
TREC-F No No
DBPedia Yes Yes
NLU-S Yes Yes
NLU-I No No
BANKING No No
CLINIC No No

Table 7: Metrics used for each dataset. For normaliza-
tion, we divide the log-likelihood by the length of the
prompt. For calibration, we use Domain Conditional
PMI (Holtzman et al., 2021) with the empty string as
the domain string for all datasets for simplicity.

settings, and that greedy decoding may degenerate. 1197

The minimum generation length helps prevent triv- 1198

ial outputs, such as empty string. To account for the 1199

randomness in the sampling method, we average 1200

GovReport performance over 3 seeded runs, and 1201

we found that the standard deviation is less than 1202

0.20 ROUGE-L scores in all settings. 1203

We also show some generation examples in Ta- 1204

ble 8 and 9. We find that CAPED can especially 1205

benefit from the additional contexts in the encoder 1206

in the QA datasets, where the answer may be local- 1207

ized to just one small part of the entire input. On 1208

the other hand, summarization tasks do not catas- 1209

trophically fail when the model only has access to 1210

only part of the input, as the model can still gener- 1211

ate a coherent summary for the provided context, 1212

achieving reasonable ROUGE-L scores. 1213

D Ablations 1214

D.1 Training Settings 1215

Training with retrieved documents. Even 1216

though CAPE was trained with long documents, 1217

it also achieves strong performance on retrieval- 1218

augmented applications. In this subsection, we 1219

study a different data strategy: training CAPE with 1220

retrieved documents. Specifically, we pair the train- 1221

ing sequences described in §2.2 with retrieved pas- 1222
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sages from the retrieval split of RP using Contriever.1223

Following our setup for retrieval-augmented LM1224

evaluation, we use the first 256 tokens of the de-1225

coder input X as the query, and retrieve k = 161226

passages to form the additional contexts C. Then,1227

we train CAPE with retrieved passages (RetDoc)1228

using the same training settings as in §2.3.1229

As shown in Table 10, we find that training on1230

RetDoc results in slightly stronger performance1231

in the retrieval-augmentation setting, but the re-1232

sults on long documents are worse. Augment-1233

ing a pre-training corpus with retrieval contexts1234

can be extremely computationally and storage ex-1235

pensive, as well as a large implementation over-1236

head; CAPE’s simple long-document data strategy1237

achieves a good balance between efficient training1238

and strong performance on both long-context and1239

retrieval-augmented applications.1240

Choices of unlabeled data. In Table 10, we show1241

the results of training CAPE with only the fil-1242

tered documents from the ArXiv and Books do-1243

mains (RPtrain-filter), and only the concatenated1244

RP documents (RPtrain-cat). We find that train-1245

ing on RPtrain-filter is more beneficial for the long-1246

document setting and training on RPtrain-cat is better1247

for the retrieval setting, but using a mixture of both1248

leads to a more balanced and generalizable model.1249

Encoder training. Finally, we investigate how to1250

best train the encoder. To this end, we train CAPE1251

with (1) freezing the encoder after pre-training and1252

the warmup stage, (2) training with a randomly1253

initialized encoder, and (3) using the pre-trained1254

model without the warmup stage. As shown in1255

Table 10, we find that the copying warmup training1256

and fine-tuning the encoder during training are both1257

crucial for strong performance.1258

D.2 KL Divergence1259

The key component of CAPED is the KL Di-1260

vergence loss. To understand the importance of1261

this auxillary loss, we explore the performance of1262

CAPED when train without the KL Divergence1263

loss as well as with difference coefficients for each1264

loss. Let LCE ,LKL be the cross entropy loss and1265

the KL Divergence loss, respectively. Then, the1266

total loss is L = cCELCE + cKLLKL.1267

The results are shown in Table 13. We find that1268

the KL Divergence loss is crucial for the perfor-1269

mance of CAPED on summarization tasks as well1270

as QALT, where the performance may decrease1271

compared to LLAMA-2-CHAT with 2K tokens.1272

We show the full results for the ablation studies 1273

in Table 11, 12, and 13. 1274
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Encoder Input C1:

We propose a novel pre-training method called BRLM, which can effectively alleviates the
distance between different source language spaces. Our proposed approach significantly improves
zero-shot translation performance, consistently surpassing pivoting and multilingual approaches.
Meanwhile, the performance on supervised translation direction remains the same level or even
better when using our method. Related Work In recent years, zero-shot translation in NMT has
attracted widespread attention in academic research. Existing methods are mainly divided into
four categories: pivot-based method, transfer learning, multilingual NMT, and unsupervised NMT.
Pivot-based Method is a common strategy to obtain a source→target model by introducing a pivot
language. This approach is further divided into pivoting and pivot-synthetic. While the former
firstly translates a source language into the pivot language which is later translated to the
target language BIBREF4, BIBREF5, BIBREF12, the latter trains a source→target model with pseudo

Encoder Input C2:
, NMT heavily relies on large-scale parallel data, resulting in poor performance on low-resource
or zero-resource language pairs BIBREF3. Translation between these low-resource languages (e.g.,
Arabic→Spanish) is usually accomplished with pivoting through a rich-resource language (such as
English), i.e., Arabic (source) sentence is translated to English (pivot) first which is later
translated to Spanish (target) BIBREF4, BIBREF5. However, the pivot-based method requires
doubled decoding time and suffers from the propagation of translation errors. One common
alternative to avoid pivoting in NMT is transfer learning BIBREF6, BIBREF7, BIBREF8, BIBREF9
which leverages a high-resource pivot→target model (parent) to initialize a low-resource
source→target model (child) that is further optimized with a small amount of available parallel
data. Although this approach has achieved success in some low-resource language pairs, it still
performs very poorly in extremely low-resource or zero-resource translation scenario.
Specifically, BIBREF8 reports that without any child model training data,

Encoder Inputs [C3, . . . , C17] Omitted...

Decoder Input X:
tokens are selected to be masked. Among the selected tokens, 80% of them are replaced with
[MASK] token, 10% are replaced with a random BPE token, and 10% unchanged. The prediction
accuracy of masked words is used as a stopping criterion in the pre-training stage. Besides, we
use fastalign tool BIBREF34 to extract word alignments for BRLM-HA. Experiments ::: Main Results
Table TABREF19 and TABREF26 report zero-shot results on Europarl and Multi-UN evaluation sets,
respectively. We compare our approaches with related approaches of pivoting, multilingual NMT
(MNMT) BIBREF19, and cross-lingual transfer without pretraining BIBREF16. The results show that
our approaches consistently outperform other approaches across languages and datasets,
especially surpass pivoting, which is a strong baseline in the zero-shot scenario that
multilingual NMT systems often fail to beat BIBREF19, BIBREF20, BIBREF23. Pivoting translates
source to pivot then to target in two steps, causing inefficient translation process. Our
approaches use one encoder-decoder model to translate between any zero-shot directions, which is
more efficient than pivoting. Regarding the comparison between transfer approaches, our
cross-lingual pretraining based transfer outperforms transfer method that does not use
pretraining by a large margin. Experiments ::: Main Results ::: Results on Europarl Dataset.
Regarding comparison between the baselines in table TABREF19, we find that pivoting is the
strongest baseline that has significant advantage over other two baselines. Cross-lingual
transfer for languages without shared vocabularies BIBREF16 manifests the worst performance
because of not using source↔pivot parallel data, which is utilized as beneficial supervised
signal for the other two baselines. Additional Decoder Input Omitted...
You are given a scientific article and a question. Answer the question as concisely as you can,
using a single phrase or sentence if possible. If the question cannot be answered based on the
information in the article, write "unanswerable". If the question is a yes/no question, answer
"yes", "no", or "unanswerable".
Question:
what are the pivot-based baselines?
Answer:

Model Outputs:
LLAMA-2-CHAT output: unanswerable.
CAPE output with encoder contexts: pivot-based baselines include pivoting and pivot-synthetic.
Gold answers: pivoting, pivotingm

Table 8: ZeroSCROLLS generation example on the Qasper dataset. CAPE sees the entire article through the decoder
and the encoder, whereas LLAMA-2-CHAT only sees a 2K token window. For brevity, we omit part of the decoder
input and only show 2 out of k = 17 encoder inputs for CAPE.

17



Encoder Input C1:

Phoebe: Almost sunrise. Do you think you’re ready to try the window again? Prue: Yeah, yeah, but
Abraxas will be ready for us here. We have to take him by surprise, go where we’re most powerful,
where we’re most connected. [Cut to the park. Prue, Piper and Phoebe have joined hands around a
stone.] Prue, Piper and Phoebe: "Hear now the words of the witches, the secrets we hid in the
night, the oldest of Gods are invoked here, the great work of magic is sought." [Cut to Abraxas
undoing the spell that gave them their powers.] [Cut back to the girls.] Prue, Piper, Phoebe:
"In this night, and in this hour we call upon the ancient power." [Cut back to Abraxas. The pages
of the Book of Shadows turn over. He turns back to the spell and continues to read it backwards.]
[Cut back to the girls.] Prue, Piper, Phoebe: "Hear

Encoder Input C2:
hoebe: Honey, we’ve done a lot of good as witches too. You know that. But that doesn’t mean that
bad things still aren’t gonna happen. But just because we can’t help that, doesn’t mean that is
our fault. Piper: Or yours. Phoebe: Come here. (They all hug.) Grams’ Voice: The Power of Three.
(They look around.) Phoebe: Okay, did you guys hear that? Piper: Mm-hmm. Prue: Grams? Grams’
Voice: The Power of Three. Prue: How is that possible? Phoebe: I don’t know but it’s gotta to be
a good thing if we’re all hearing it. Piper: Maybe it means we’re connected. Phoebe: To be as
one. Maybe that’s what the Book meant by the Power of One. Piper: The three of us working as one.
Prue: Which is what the triquetra represents. (Phoebe looks at her watch)

Encoder Inputs [C3, . . . , C44] Omitted...

Decoder Input X:
the secrets we hid in the night, the oldest of Gods are invoked here, the great work of magic is
sought." [Cut back to Abraxas. The Book disappears.] [Cut back to the girls. The Book drops out
from the sky and lands on the rock.] Phoebe: Prue, Piper... Prue: Keep chanting. Prue, Piper,
Phoebe: Hear now the words of the witches, the secrets we hid in the night..." (Abraxas appears
above them) Abraxas: What are you doing? How’d you bring me here? Prue, Piper, Phoebe: "The
oldest of Gods are invoked here, the great work of magic is sought. In this night, and in this
hour we call upon the ancient power. In this night, and in this hour we call upon the ancient
power. In this night, and in this hour we call upon the ancient power." (Abraxas is vanquished.
Phoebe grabs the Book.) Additional Decoder Input Omitted...

You are given a script of a TV episode. Summarize the episode in a paragraph.

Summary:

Model Outputs:
LLAMA-2-CHAT output (ROUGE-L = 19.1): Prue, Piper, and Phoebe find an old Book of Shadows in
the attic of their home, which they believe to be the original Book of Shadows. They start to
read it, but Abraxas, the demon who wrote the book, appears to them, warning them to stop reading
the book because he has returned to Earth and is seeking the power in the book to take over. The
three sisters are able to defeat Abraxas and close the book, but the experience causes them to
reflect on their lives as witches and their bond as sisters..
CAPE output with encoder contexts (ROUGE-L = 19.3): In this episode of Charmed, Prue is worried
about the future because Andy is not coming back and they don’t know what their new life will be
like. Prue and Piper have a hard time coming to terms with the fact that their powers are no
longer needed and they are losing their sense of purpose and identity. At the same time, they are
struggling to cope with their feelings for each other and their relationship. Phoebe, meanwhile,
has found a new source of power and is learning to control her abilities in a new way. As the
three sisters work together to defeat an evil spirit that is threatening their home, they are
able to come to terms with their powers and their relationship and find a new sense of purpose
and identity.
Gold answers: The sisters face a demon named Abraxas , who steals the Book of Shadows and undoes
some of the spells they’ve cast (in reverse order), releasing old vanquished enemies of the
Charmed Ones and forcing them to remember the vanquishing spells from memory alone. The sisters
have one chance to recapture the Book of Shadows or they will lose their powers forever. The
sisters also meet their new neighbors, Jenny and her uncle Dan Gordon . Phoebe and Piper learn
through the Wiccan community that because their anniversary of activating their inherent powers
falls on an equinox , a wiccan holy day , each of their powers will be more developed and greatly
magnified but only temporarily.

Table 9: ZeroSCROLLS generation example on the SummScreenFD dataset. CAPE sees the entire TV script through
the decoder and the encoder, whereas LLAMA-2-CHAT only sees a 2K token window. For brevity, we omit part of
the decoder input and only show 2 out of k = 44 encoder inputs for CAPE.
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Long-context Retrieval-
(Total Tokens) augmented (k)

8K 32K 8 50

CAPE 3.97 3.91 4.57 4.55

w/ RetDoc 4.01 3.99 4.53 4.50
w/ RPtrain-cat only 4.01 3.96 4.56 4.54
w/ RPtrain-filter only 3.96 3.89 4.75 4.72

w/ Frozen Encoder 4.01 3.99 4.62 4.61
w/ Random Encoder 4.03 4.02 4.60 4.60
w/ No Warmup 4.03 4.02 4.61 4.61

Table 10: Test perplexity in long-context and retrieval-
augmented language modeling, averaged over all
datasets. Full results are in Table 11 and Table 12.
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Total Tokens = 4096

CAPE 2.579 6.292 7.536 2.396 1.763
w/ RetDoc 2.649 6.340 7.586 2.465 1.775
w/ RP Only 2.633 6.335 7.604 2.446 1.766
w/ AB Only 2.569 6.287 7.525 2.386 1.772
w/ Frozen Encoder 2.631 6.353 7.603 2.446 1.785
w/ Random Encoder 2.680 6.374 7.617 2.488 1.797
w/ No Copy Init 2.678 6.372 7.613 2.487 1.796

Total Tokens = 8192

CAPE 2.496 6.049 7.372 2.219 1.715
w/ RetDoc 2.553 6.089 7.417 2.278 1.724
w/ RP Only 2.543 6.085 7.434 2.262 1.718
w/ AB Only 2.485 6.040 7.357 2.208 1.720
w/ Frozen Encoder 2.541 6.099 7.430 2.261 1.734
w/ Random Encoder 2.571 6.108 7.439 2.291 1.739
w/ No Copy Init 2.572 6.113 7.439 2.292 1.739

Total Tokens = 32768

CAPE 2.421 6.015 7.204 2.218 1.702
w/ RetDoc 2.546 6.088 7.280 2.332 1.726
w/ RP Only 2.497 6.059 7.271 2.288 1.709
w/ AB Only 2.396 5.995 7.178 2.195 1.702
w/ Frozen Encoder 2.520 6.091 7.282 2.297 1.739
w/ Random Encoder 2.571 6.108 7.303 2.346 1.752
w/ No Copy Init 2.571 6.110 7.301 2.346 1.752

Table 11: Test perplexity for all ablation settings in the long-context language modeling evaluation setting.

ArXiv Book C4-RP CC Github StackEx Wiki Avg.

Total Tokens = 2048 (k = 0)

CAPE 3.486 6.481 6.884 5.319 1.793 3.709 4.302 4.568
w/ RetDoc 3.413 6.399 6.854 5.263 1.788 3.694 4.287 4.528
w/ RP Only 3.485 6.479 6.901 5.313 1.777 3.700 4.281 4.562
w/ AB Only 3.505 6.504 7.185 5.444 1.859 4.018 4.763 4.754
w/ Frozen Encoder 3.501 6.495 6.933 5.505 1.821 3.734 4.323 4.616
w/ Random Encoder 3.426 6.442 6.904 5.541 1.838 3.728 4.338 4.602
w/ No Copy Init 3.452 6.459 6.914 5.546 1.842 3.732 4.344 4.613

Total Tokens = 7168 (k = 20)

CAPE 3.475 6.463 6.875 5.266 1.782 3.703 4.296 4.551
w/ RetDoc 3.413 6.393 6.839 5.169 1.779 3.693 4.286 4.510
w/ RP Only 3.479 6.467 6.894 5.249 1.767 3.696 4.276 4.547
w/ AB Only 3.491 6.481 7.140 5.401 1.846 4.004 4.738 4.729
w/ Frozen Encoder 3.485 6.482 6.930 5.500 1.815 3.727 4.318 4.608
w/ Random Encoder 3.426 6.442 6.904 5.540 1.837 3.727 4.337 4.602
w/ No Copy Init 3.447 6.457 6.913 5.545 1.841 3.721 4.332 4.608

Total Tokens = 14848 (k = 50)

CAPE 3.467 6.457 6.881 5.273 1.777 3.701 4.292 4.550
w/ RetDoc 3.413 6.392 6.835 5.098 1.776 3.692 4.287 4.499
w/ RP Only 3.472 6.465 6.900 5.243 1.762 3.693 4.274 4.544
w/ AB Only 3.480 6.471 7.114 5.412 1.838 3.994 4.719 4.718
w/ Frozen Encoder 3.474 6.474 6.930 5.509 1.814 3.723 4.316 4.606
w/ Random Encoder 3.426 6.442 6.904 5.540 1.837 3.726 4.337 4.602
w/ No Copy Init 3.445 6.456 6.913 5.545 1.841 3.716 4.329 4.606

Table 12: Test perplexity on RedPajama across all domains in the retrieval-augmented setting for all ablation
experiments. k is the number of additional contexts used. Avg. is the macro average across all domains.
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Question Answering Summarization

cKL NQA Qspr QALT GvRp SSFD QMSum

Total Tokens = 4K

2 19.5 20.5 30.2 16.5 16.4 19.6
1 21.6 20.7 27.2 16.3 5.3 4.7
0 21.3 21.0 27.4 14.6 14.9 15.6

Total Tokens = 16K

2 20.6 19.9 29.6 15.9 16.8 19.4
1 21.8 20.6 26.8 16.0 15.2 16.1
0 22.9 20.6 26.4 14.8 5.2 4.7

Total Tokens = 32K

2 21.6 19.9 29.6 15.8 16.7 19.5
1 22.7 20.6 26.8 16.0 15.2 15.8
0 22.3 20.6 26.4 14.6 5.2 4.7

All Tokens

2 21.9 19.9 29.6 15.9 16.7 19.5
1 22.6 20.6 26.8 15.9 15.2 15.8
0 23.0 20.6 26.4 14.6 5.2 4.7

Table 13: ZeroSCROLLS results using different losses
during training, where cKL is the coefficient of the KL
Divergence loss.
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