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ABSTRACT

Grouping is ubiquitous in natural systems and is essential for promoting efficiency1

in team coordination. This paper introduces the concept of grouping into multi-2

agent reinforcement learning (MARL) and provides a novel formulation of Group-3

oriented MARL (GoMARL). In contrast to existing approaches that attempt to4

directly learn the complex relationship between the joint action-values and indi-5

vidual values, we empower groups as a bridge to model the connection between a6

small set of agents and encourage cooperation among them, thereby improving the7

efficiency of the whole team. In particular, we factorize the joint action-values as8

a combination of group-wise values, which guide agents to improve their policies9

in a fine-grained fashion. We propose a flexible grouping mechanism inspired by10

variable selection and sparse regularization to generate dynamic groups and group11

action-values. We further propose a hierarchical control for policy learning that12

drives the agents in the same group to specialize in similar policies and possess13

diverse strategies for various groups. Extensive experiments on a challenging set14

of StarCraft II micromanagement tasks and Google Research Football scenarios15

verify our method’s effectiveness and learning efficiency. Detailed component16

studies show how grouping works and enhances performance.17

1 INTRODUCTION18

Cooperative multi-agent reinforcement learning (MARL) aims to coordinate multiple agents’ ac-19

tions through shared team rewards and has become a helpful tool for solving multi-agent decision-20

making problems, such as network routing (Ye et al., 2015), robot swarm control (Hüttenrauch et al.,21

2017), crewless aerial vehicles (Xu et al., 2018), etc. Learning centralized policies is a natural way22

to address the cooperative MARL problem. It treats the team as a single actor with a joint action23

space. Although single-agent RL algorithms can be trivially transplanted to this setting, the global24

information to train the model is usually unavailable during execution due to partial observability25

or communication constraints, and the joint action space grows exponentially with the agent num-26

ber (Gupta et al., 2017; OroojlooyJadid & Hajinezhad, 2019; Gronauer & Diepold, 2021). An alter-27

native paradigm is to learn decentralized policies (Tan, 1993; Witt et al., 2020; Yu et al., 2021) by28

independently training agents based on their local observations. However, simultaneous exploration29

brings non-stationarity that causes unstable learning and convergence difficulties (Hernandez-Leal30

et al., 2019; Zhang et al., 2021). The centralized training with decentralized execution (CTDE)31

paradigm inherits the advantages of the above two paradigms and allows learning decentralized32

policies in a centralized fashion (Oliehoek et al., 2008; Kraemer & Banerjee, 2016).33

Although the CTDE paradigm solves many multi-agent problems and opens up the possibility for34

agents to share information during training, it still faces two challenges. On the one hand, learning35

efficient team cooperation by directly estimating the joint action-values from individual utilities is36

exceptionally difficult, especially when the agent number is enormous. Most value function factor-37

ization approaches have been only evaluated in domains with a handful of agents. The flat factoriza-38

tion scheme is proven to lead to performance bottleneck (Phan et al., 2021), where it gets difficult to39

provide sufficiently informative training signals for each agent. Although the state information pro-40

vides the complete knowledge needed for learning, it is burdensome for agents to extract effective41

guidance that facilitates cooperation. On the other hand, the guideline of sharing parameters is still42

an open question. The full parameter-sharing mechanism limits the diversity of agents’ behavior43

strategies (Li et al., 2021), leading agents’ policies to be similar or the same.44
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Both nature (Jeanson et al., 2005; Wittemyer & Getz, 2007) and MARL (Phan et al., 2021) have45

validated grouping as a means to promote efficient cooperation and break performance bottlenecks.46

MARL method VAST (Phan et al., 2021) approximates a factorization for agent sub-teams to over-47

come the performance bottleneck caused by the flat value factorization which directly assigns a cen-48

tralized value function to each agent. Although grouping provides new possibilities for MARL, how49

to formulate a general grouping criterion for complex and diverse environments without any domain50

knowledge is still an open question and a matter of great interest. Most previous grouping works are51

proposed for well-structured tasks, e.g., software engineering (Pavón & Gómez-Sanz, 2003; Bres-52

ciani et al., 2004), and typically predefine specific responsibilities or forms of task decomposition.53

VAST, on the other hand, artificially sets the team amount to half or a quarter of the number of54

agents. These methods all require apriori knowledge or settings that are potentially unavailable or55

unreasonable in practice and may discourage methods’ transferring to diverse environments.56

To address the above challenges faced by the CTDE paradigm and group learning, we propose a57

novel formulation of Group-oriented MARL (GoMARL), a method for learning dynamic grouping58

without any domain knowledge or a priori setting. Instead of formulating a concrete grouping crite-59

rion, GoMARL implicitly learns dynamic groups with a novel sparsity-driven scheme. Concretely,60

it learns a dual hierarchy of value function factorization, where the learning weights of the decom-61

position from the group value to local utilities determine whether an agent is suitable for the current62

group. A sparsity regularization drives this end-to-end automatic group learning with the Least63

Absolute Shrinkage and Selection Operator (LASSO) (Tibshirani, 1996). Furthermore, GoMARL64

relies on well-designed architecture to transform the individual, group-related, and global informa-65

tion into the weights of corresponding networks in a manner reminiscent of hypernetworks (Ha et al.,66

2017), which flexibly adapts to the changes in group number and group size.67

To alleviate the first problem faced by the CTDE paradigm, GoMARL adopts the dual-hierarchy68

value factorization to learn on a more focused and compact input representation. Different from69

VAST and other methods that learn value factorization with no information (learn blindly) or only70

with the state information (complete but hard to extract efficient guidance), we propose a fine-71

grained learning scheme to integrate information from the group perspective into the policy gradi-72

ent by hypernetworks. It promotes intra-group coordination with group information and facilitates73

inter-group cooperation with the global state to further break the performance bottleneck. As for74

the second problem, parameter sharing prevents efficient cooperation due to policy similarity. How-75

ever, our dynamic grouping naturally serves as an intermediary to encourage diversity while sharing76

parameters. We introduce a latent space to describe group information for hierarchical control to77

establish the connection between group and policy. Agents condition their behaviors on their group78

information embedded by a shared encoder, which is learned following specialization guidance, i.e.,79

imposing similarity within a group and diversity between groups. In this way, GoMARL synergizes80

groups with specialized policies, providing a fully-sharing mechanism for learning diverse policies.81

We summarize our main contributions in this paper as follows:82

1. We introduce an end-to-end adaptive group learning MARL solution with no domain knowledge83

or a priori setting, partitioning agents into dynamic groups to promote efficient cooperation.84

2. Structurally, we present an architecture to estimate global and group-wise joint action-values with85

varying group numbers and agent numbers per group, realizing a dynamic end-to-end training.86

3. Functionally, we propose agents that condition their behavior on latent group information to87

achieve group specialization and diversity while sharing all their parameters.88

We test our method on a challenging set of StarCraft II micromanagement tasks (Samvelyan et al.,89

2019) and Google Research Football (Kurach et al., 2020) scenarios. GoMARL achieves superior90

performance with higher efficiency compared with notable baseline methods. We also provide de-91

tailed ablation studies to give insights into how grouping works and enhances learning performance.92

2 BACKGROUND AND PRELIMINARIES93

Dec-POMDP. This paper focuses on cooperative tasks with n agents A = {a1, ..., an} as a Dec-94

POMDP (Oliehoek & Amato, 2016) defined by a tuple G = 〈S,U, P, r, Z,O, n, γ〉. The environ-95

ment has a true state s ∈ S. Each agent a chooses an action uat from its action space Ua at timestep96

t and forms a joint action ut ∈ (U1× ...×Un) ≡ Un that induces a transition in the environment ac-97

cording to the state transition function P (st+1|st,ut) : S×Un×S → [0, 1]. r(s,u) : S×Un → R98
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is the reward function yielding a global reward, and γ ∈ [0, 1) is the discount factor. We consider99

partially observable scenarios in which agent a acquires its local observation za ∈ Z drawn from100

O(st, a) : S × A → Z. Each agent has an action-observation history τa ∈ T ≡ (U × Z)∗, on101

which it conditions a policy πa(ua|τa) : T × U → [0, 1]. We denote joint quantities over agents in102

bold and joint quantities over agents other than a given agent a with the superscript −a.103

Value Function Factorization. We consider cooperative MARL with centralized training and de-104

centralized execution paradigm, which has been a major focus in recent efforts (Foerster et al., 2018;105

Sunehag et al., 2018; Rashid et al., 2018; Iqbal & Sha, 2019; Mahajan et al., 2019). Some methods106

achieve CTDE through value function factorization, i.e., factoring action-value functions into com-107

binations of per-agent utilities. The individual utility only depends on the local history of actions108

and observations, allowing agents to maximize their local utility functions independently. Among109

these attempts, the representative deep MARL approach QMIX (Rashid et al., 2018) improves the110

simple summation of individual utilities (Sunehag et al., 2018) by introducing a more expressive fac-111

torization: Qtot = f(Q1(τ1, u1; θQ), · · · , Qn(τn, un; θQ); θf ), where θf denotes the parameters of112

the monotonic mixing function generated by a hypernetwork (Ha et al., 2017).113

Variable Selection in Regression. Finding critical explanatory variables (factors) in predicting the114

response variable is vital when solving regression problems. Each explanatory factor may be rep-115

resented by a group of derived input variables. Consider the general regression problem with M116

factors: Y =
∑M
m=1Xmβm + ε, where Y is an n × 1 response vector, Xm is an n × pm matrix117

corresponding to the m-th factor, βm is a coefficient vector of size pm, and ε is a perturbation that118

follows a Gaussian distribution. The most considered model selection problem is a particular case119

when p1 = · · · = pm = 1. Model selection methods have been widely introduced (George &120

McCulloch, 1993; Shen & Ye, 2002; Efron et al., 2004). Among them, the Least Absolute Shrink-121

age and Selection Operator (LASSO) (Tibshirani, 1996) is the renowned and classic one, which is122

defined as β̂LASSO (λ) = arg minβ
(
‖Y −Xβ‖2 + λ‖β‖l1

)
. ‖ · ‖l1 stands for the vector l1-norm123

penalty inducing sparsity in the solution, and λ is a tuning parameter.124

3 GROUP-ORIENTED LEARNING FRAMEWORK125

Figure 1: Overview of GoMARL.

This section introduces the Group-oriented Multi-agent Rein-126

forcement Learning (GoMARL) framework that integrates the127

group notion with MARL in a principled manner. Following128

the value function factorization approaches that represent the129

global action-value as an aggregation of individual utilities,130

GoMARL decomposes the joint action-value into group-wise131

values and trains agents by groups in a fine-grained scheme.132

Figure 1 illustrates the overview of the group-oriented learn-133

ing framework. It consists of an automatic grouping module,134

specialized agent networks generating local utilitiesQi
(
τ i, ·

)
,135

and a mixing network among groups. In Section 3.1, we intro-136

duce the automatic grouping module. It progressively divides137

the team into dynamic groups as training proceeds. Based on138

the grouping, we propose specialized agent networks that achieve similarity within each group and139

diversity among groups to generate the local Qi in Section 3.2. Section 3.3 further presents the140

mixing ofQi to estimate the group-wise and global action-values and the overall training procedure.141

3.1 AUTOMATIC GROUPING142

Definition 1 (Individual and Group). Given a cooperative task with n agents A = {a1, ..., an},143

we have a set of groups G = {g1, ..., gm}, 1 ≤ m ≤ n. Each group gi contains ni (1 ≤ ni ≤ n)144

different agents gi = {ai1, ..., aini} ⊆ A, where gi ∩ gj = ∅, i 6= j, ∪igi = A, and i, j ∈ [1,m]. In145

this paper, we denote all variables with a superscript to describe the variable owner, e.g., ei and sgj146

are variables of agent ai and group gj , respectively.147

The automatic grouping module aims to learn a mapping relationship fg : A 7→ G. Predefined148

explicit formulations and apriori knowledge are not necessities, as they are unavailable in complex149

environments. Our key idea is to divide the system into dynamic groups in an end-to-end fashion150
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Figure 2: Schematic diagram of automatic grouping. The right side shows how grouping G changes
during training. In particular, we select the agents whoseQi have little contribution toQgjgroup to move
out of the current group gj . Based on the grouping G, the group selection operator concatenates the
weightswi1 of agents in the same group to form the group-wise weights wg

1 for mixing local utilities.

by maximizing the expected global return QtotG (st,ut) = Est+1:∞,ut+1:∞

[∑∞
k=0 γ

krt+k|st,ut;G
]
.151

Value function factorization approaches represent the joint action-value as an aggregation of the152

individual values, i.e., a weighted sum of Qi and biases. If the learned weights are restricted to be153

non-negative, as in the monotonic mixing (Rashid et al., 2018), each weight reflects the contribution154

of Qi to Qtot. We follow this setting and represent the group-wise Qggroup as an aggregation of the155

individual values. Intuitively, if the learned weight of Qi is small enough, agent ai contributes a156

little to its current group. In other words, when an agent ai takes action ui = arg maxuQ
i(τ i, u)157

but does not contribute to its group value, it indicates that agent ai does not belong to its current158

group. The right side of Figure 2 illustrates the schematic diagram of the grouping mechanism. In159

the beginning, all agents belong to the same group, and the grouping G is gradually adjusted as the160

training proceeds. It is worth noting that the proposed dynamic grouping guideline does not require161

a predefined group number like VAST or any other domain knowledge.162

GoMARL flexibly utilizes hypernetworks to accommodate the changeable group size (agent number163

per group). We construct individual w1 generators f iw
(
·; θiw1

)
: τ i → wi1 that map each agent ai’s164

hidden state hi with history information τ i to a k-dimensional weight vector. All agents’ w1 are sent165

to a group adjustment operator Og and decide on a new grouping based on the proposed grouping166

guideline. According to the learned grouping G,Og concatenates the wi1 of agents in the same group167

to form a set of group-wise wg
1 , i.e., Og : {w1

1, · · · ,wn1}
G−→ {wg1

1 , · · · ,w
gm
1 }. This fixed network168

architecture can adapt to the grouping dynamics since each wi1 is tied to agent ai with hypernetwork169

f iw. No matter which group gj agent ai belongs to, Qi engages in the mixing of Qgjgroup through wi1.170

We achieve automatic group learning by proposing a sparsity-driven scheme. Specifically, GoMARL171

selects agents whose utilities contribute a little to their current group-values and adjusts their group-172

ing; thus, a regularization for sparsity on the w1 generators f iw
(
·; θiw1

)
is necessary. Applicable173

regularizers are various, and we provide a straightforward but effective attempt. We choose LASSO174

from among many feasible sparse regularizers due to its simplicity and not introducing additional175

learnable parameters. The w1 generators are then trained by minimizing the following loss function:176

177

Lg (θw1
) = E(z,u,r,z′)∼B

∑
i

(
‖f iw

(
τ i(zi, ui); θiw1

)
‖l1
)
, (1)

where B is a replay buffer, and ‖ · ‖l1 stands for LASSO’s l1-norm penalty. In practice, the weights’178

shrinkage to zero is infeasible. It is also challenging to determine a fixed threshold for groups179

of various sizes in diverse environments. We empirically utilize seventy percent of each group’s180

average contribution (weights) to assess whether an agent is suitable for its current group. The181

experiments in Section 4 show that this setting is generic to different scenarios and testbeds. The182

grouping shifts every c timesteps, and each selected agent is assigned to the next group until it183

properly contributes to where it belongs. Appendix A shows insight into this grouping shift.184
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3.2 SPECIALIZED AGENT NETWORKS SHARING ALL THE PARAMETERS185

Policy decentralization with shared parameters is widely utilized to improve scalability and learning186

efficiency. However, agents tend to behave similarly when sharing parameters, preventing effective187

exploration and complex cooperative policies. In addition, it is also undesirable to entirely forgo188

shared parameters in pursuit of diverse strategies since proper sharing accelerates learning. To make189

full use of the grouping, we introduce a hierarchical control for policy learning that drives the agents190

in the same group to specialize in similar policies and possess diverse strategies across groups.191

Figure 3: Architecture of the agent networks.

As shown in Figure 3, we construct an agent192

info encoder fe (·; θe) to embed agents’ hid-193

den states. The acquired agent info summarizes194

agent’s history from the group perspective. To195

achieve this group-related view, we train the en-196

coder network to be an extractor by a group spe-197

cialization regularizer , where the agent info of198

agents from the same group is similar. To avoid199

all agents’ info collapsing in a similar manner,200

the regularizer also encourages info diversity between agents from different groups. Formally, we201

have the following Similarity-Diversity objective to train the info encoder:202

minimize LSD (θe) = EB
(∑
i 6=j

I(i, j) · cosine
(
fe(h

i; θe), fe(h
j ; θe)

) )
,

where I(i, j) =

{
−1, ai, aj ∈ gk.
1, ai ∈ gk, aj ∈ gl, k 6= l.

(2)

The SD-loss trains the encoder to extract agent info ei that is recognizable to agents’ group. This203

identifiable agent info is then fed into a decoder network fd (·; θd) to generate the parameters of204

the agent network’s upper MLP. This decoder hypernetwork is trained by the TD-loss introduced in205

Section 3.3. In this way, the value-based agents condition their behavior on their agent info with206

group-related information embedded, achieving specialized policies through hierarchical control.207

The proposed agent network has two merits. First, different from promising approaches like CDS (Li208

et al., 2021) that promote diversity by sharing only a fraction of the network, GoMARL enables209

diversified policies while sharing all the parameters, hybridizing the efficient learning of parameter210

sharing and diversity for complex cooperation. Second, we utilize hypernetworks fd to integrate211

the informative extracted agent info eai into the gradients to provide group-related information.212

Unlike all previous methods that either learn with no information (learn blindly) or only with state213

s (complete but hard to extract effective guidance), GoMARL achieves fine-grained learning with214

agent info from the group perspective in the gradient for efficient policy learning. Concretely, the215

partial derivative ∂Qtot

∂θπ
for updating the policy parameters θπ of the GRU and the bottom MLP is:216

∂Qtot

∂θπ
=
∂Qtot

∂Qa
∂Qa

∂θπ
=
∂Qtot

∂Qa
∂Qa

∂va
∂va

∂θπ
= fd(e

i) · ∂Q
tot

∂Qa
∂va

∂θπ
, (3)

where v is the representation after the GRU. Eqn.(3) shows that ei is deeply involved in agent ai’s217

policy updating, facilitating group-related guidance on policy learning for better cooperation.218

3.3 OVERALL LEARNING FRAMEWORK219

We next introduce the estimation of the group-wise Qggroup and global joint action-value function220

Qtot. Section 3.1 presents the generation of each agent’s wi1 that determines the grouping G. Al-221

though wgi
1 enables a weighted mixing of local utilities of agents in group gi to generate the group222

action-value Qgigroup, the naive mixture of
∑
aj∈gi w

j
1Q

j + b lacks the guidance of group-related in-223

formation to reflect the action-value in a specific group-wise state. Therefore, we build a two-layer224

mixing structure that embeds the group state into the weights wg
2 of the second layer to generate225

Qggroup. In particular, group gi’s state sgi is a fusion of the agent info ej presented in Section 3.2 for226

all aj ∈ gi. To cohesively summarize the group state based on the agent info of all agents in this227

group, we apply the max pooling operation (Ranzato et al., 2007) over each dimension of the agent228

info egi to generate the group state sgi describing the current group status. The pooling operation229

also ensures adaptability to the changeable agent number per group. We further build a group-wise230

w2 generator to map the group state into the weights of the second mixing layer. Equipped with this231
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w2 generator hypernetwork, sg is integrated into the gradients to provide group-related information232

for mixing Qggroup (similar to Eqn.(3)) and facilitates efficient intra-group coordination.233

Figure 4: Overall learning framework.

The overall learning framework of GoMARL is234

shown in Figure 4, and the bottom part illus-235

trates the generation of sg and w2. The two-236

layer mixing estimates the group-wise value by237

both w1 that decides the grouping and w2 that238

carries group state information. Just as our239

fixed network can dynamically adapt to vari-240

ous group sizes, the hypernetwork w2 gener-241

ator ties each group gj to its w
gj
2 and enables242

our architecture to flexibly adapt to the group243

number changes as well. We estimate the joint244

value Qtot by mixing all the Qggroup in a similar fashion. Concretely, the two layers of the total mix-245

ing network are generated by two hypernetworks, respectively taking group states sgi and the global246

state s as inputs. Similar to Eqn.(3), the group and global state are deeply involved in the value gra-247

dient and guide the inter-group cooperation. Each layer’s biases are produced in the same manner as248

the corresponding weights. The architecture of the total mixing network is akin to the group mixing249

network and is omitted in Figure 4. The formulation gives the TD-loss of the estimated Qtot:250

LTD(θ) = EB
[(
r + γmax

u′
Q̄tot (s′,u′)−Qtot (s,u)

)2]
, (4)

where Q̄tot is a target network with periodic updates. The overall learning objective is:251

L(θ) = LTD(θ) + λgLg(θw1
) + λSDLSD(θe), (5)

where θ = (θπ, θe, θd, θw), θw denotes the parameters of hypernetworks producing all mixing252

weights and biases, λg and λSD are two scaling factors.253

Although containing two mixing networks to respectively estimateQggroup andQtot, GoMARL’s total254

mixing-net size is quite close to or even smaller than the size of QMIX’s single mixing network, as255

verified in experiments. This is mainly attributed to the input dimension reduction of the weights256

generator hypernetworks. The commonly used QMIX’s mixing network takes the global state s as257

the input of all the hypernetworks. In contrast, we take specific information of the grouping (i.e.,258

agents’ hidden states h, group state sg , and the global state s is only used in the top hypernetwork)259

as inputs. This parameter reduction offsets the increase of an extra mixing network. Compared260

with QMIX’s mixing only with the state information, our dual-mixing structure allows fine-grained261

mixing of Qi or Qggroup to be guided by more detailed information (i.e., local history, group state,262

and global state) embedded in the gradients, facilitating intra- and inter-group coordination. We263

further prove that GoMARL’s dual-hierarchy factorization maintains decentralizability by satisfying264

the IGM (Individual-Global-Max) for Qtot and Qi for arbitrary grouping G in Appendix B.265

4 EXPERIMENTS266

Baselines. We compare GoMARL with prominent baselines to verify its effectiveness and effi-267

ciency. Hu et al. (2021) fairly compared existing MARL methods without code-level optimizations268

and reported that QMIX (Rashid et al., 2018) and QPLEX (Wang et al., 2021a) are the top two269

value function factorization methods. The authors also finetuned QMIX (denoted as Ft-QMIX in270

our paper), which attains higher win rates than the vanilla QMIX. Therefore, we compare GoMARL271

with Ft-QMIX, and QPLEX to show its performance as a value factorization method (QMIX is272

also shown ). Besides, the baselines also include role-based methods (ROMA (Wang et al., 2020),273

RODE (Wang et al., 2021b)) and the representative credit assignment method RIIT (Hu et al., 2021).274

The latter combines effective modules of noticeable methods and has recently gotten much attention.275

Experimental setup. All methods are trained with 8 parallel runners for 10M steps. We evaluate276

them every 10K steps with 32 episodes and report the 1st, median, and 3rd quartile win rates across277

5 random seeds. The detailed settings, including fair comparison, are introduced in Appendix C.1.278

4.1 PERFORMANCE ON STARCRAFT II MICROMANAGEMENT TASKS279

All methods are evaluated on a set of challenging SMAC maps that vary in difficulty by Hard280

(3s vs 5z, 5m vs 6m, 8m vs 9m) and Super Hard (corridor, MMM2, 3s5z vs 3s6z). Easy281
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Figure 5: Performance comparison of GoMARL with baseline methods on SMAC. (Update VAST)

scenarios are not chosen as they can be easily solved, and the performances of all methods are close.282

The chosen tasks involve homogeneous and heterogeneous teams with asymmetric battles, allowing283

a holistic study of all methods. Appendix C.3 introduces the traits of these scenarios.284

Parameter size for value mixing. GoMARL maintains two mixing networks to respectively es-285

timate Qggroup and Qtot. If GoMARL has more parameters for value mixing is a natural question.286

Appendix C.2 gives the parameter sizes for value mixing of all compared methods. When the agent287

amount exceeds 5, our dual-hierarchy architecture has the least parameters among all the baselines.288

Overall Performance. The comparison of GoMARL against baseline algorithms on the SMAC289

tasks is shown in Figure 5. As the results show, each baseline method only achieves satisfactory290

performance on some of the challenging benchmarks with specific properties they specialize in,291

e.g., RIIT performs well on MMM2 but converges much slower in other tasks, QPLEX’s leaning is not292

efficient in 8m vs 9m and corridor. RODE attains better overall performance than ROMA, but293

its hyperparameters are sensitive to scenarios; thus, its learning is not stable as QPLEX. Finetuned294

QMIX significantly over-performs the vanilla QMIX and has more efficient learning than other295

baselines. Our method has a similar win rate as Ft-QMIX in 8m vs 9m and corridor. However,296

its superiority in both efficiency and effectiveness can be clearly validated in all the other challenging297

tasks. Next, we conduct detailed ablation studies and component analyses on GoMARL’s modules298

to illustrate how our method improves learning efficiency and enhances performance.299

Ablation study and component analysis. GoMARL contains two key components: (1) an auto-300

matic grouping mechanism that progressively divides the team into proper groups as training pro-301

ceeds; and (2) specialized agent networks that generate diversified policies according to the group-302

ing while sharing all the parameters. We conduct ablation studies on the three Super Hard tasks303

(corridor and MMM2, and 3s5z vs 3s6z) to show how each module influences performance.304

(1) Ablation of the proposed grouping mechanism. We validate our grouping mechanism by com-305

paring GoMARL’s dynamic grouping with other intuitive groupings in the top row of Figure 6. All306

compared methods utilized the same architecture as GoMARL to reflect how grouping itself influ-307

ences performance. Setting all agents as a group in corridor converges faster but has significant308

variances, as the shadow illustrates. This may be due to the hard exploration of efficient coopera-309

tion without grouping guidance. Another two intuitive groupings, each agent a group and an equal310

division into two groups {{a1, a2, a3}, {a4, a5, a6}}, have minor variance. However, their learning311

efficiency is affected since inappropriate groupings fail to promote cooperative behaviors. MMM2312

contains heterogeneous agents; thus, a natural grouping is to keep the agents of the same type in a313

group. As the results show, this natural grouping over-performs setting each agent in a group and314

all agents in a group. On the other hand, our mechanism dynamically adjusts the grouping and con-315

verges faster. Setting all agents as a group in 3s5z vs 3s6z also has a great variance. It is difficult316

for agents to learn complex cooperation if each is set to be a group, as the bad performance in both317

win rate and efficiency shows. 3s5z vs 3s6z is another scenario with heterogeneous agents, and318

the natural grouping of homogeneous agents as a group is studied. It performs nearly the same as319

our approach because our dynamic grouping mechanism learns the grouping exactly according to320

the agents’ type in this scenario. We also analyze this map with a grouping containing three groups321

{{a1, a4, a5}, {a2, a6, a7}, {a3, a8}} (1s2z, 1s2z, 1s1z); however, this balanced grouping fails to322
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Figure 6: Ablations of the grouping mechanism (top) and specialized agent networks (bottom).

Figure 7: The final learned policies that fit the grouping {{a1, a2}, {a3, a4, a5, a6}} on corridor.

form effective cooperation. We can see from these results that multi-agent systems with the same323

learning framework perform diversely with various grouping. Appropriate grouping facilitates ef-324

ficient cooperation and accelerates learning. The proposed grouping mechanism can automatically325

learn adaptive grouping in different tasks and assist GoMARL with superior and stable performance.326

(2) Learned grouping analysis. To better demonstrate whether the learned grouping makes sense,327

we further visualize the final trained strategy in one corridor battle, as illustrated in Figure 7.328

Six allied Zealots fight twenty-four Zerglings on this super-hard map. The massive disparity in329

unit numbers between the two sides implies that the whole team cannot launch an attack together.330

The only winning strategy is to sacrifice a small number of agents who leave the team and attract the331

attention of most enemies. Taking this opportunity, our large force eliminates the rest of the enemies.332

The surviving agents then use the same tactic to attract several enemies to the team every time and333

kill them together. In our visualization, Agent 1 and Agent 2 sacrifice themselves to attract most334

enemies and bring enough time for the team to eliminate the remaining enemies. Other agents fight335

as a small group and successfully kill all the surviving enemies. Our dynamic grouping mechanism336

learns a two-group setting in this battle, where Agent 1 and Agent 2 are in the same group while the337

others are set in another group. This grouping is explicable in light of the combat situation, and this338

reasonable grouping guidance contributes to the superior performance of our approach.339

(3) Ablation of the specialized agent networks. As shown in the bottom row of Figure 6, our spe-340

cialized agent networks greatly improve the learning efficiency. Although GoMARL’s agents also341

share all the parameters like vanilla parameter-sharing agents, our proposed info encoder embeds342

group-related information into the agent info with similarity and diversity regularizer. The agent343

info decoder further produces each agent’s upper MLP to generate diversified policies. Compared to344

the vanilla paramete-sharing mechanism that limits diversity, our agents have various styles of be-345

haviors related to their group, which encourages extensive exploration and accelerates learning. In346

addition, our agents share all the parameters (GRU, bottom MLP, agent info encoder, and decoder)347

to obtain their policies, preserving the advantages in scalability of the vanilla parameter-sharing348

mechanism. Detailed studies on the inner component of λSD and the performance improvement of349

baseline methods with our agents are shown in Appendix D to further demonstrate the effectiveness.350

4.2 PERFORMANCE ON GOOGLE RESEARCH FOOTBALL351

We also test GoMARL on two challenging Google Research Football Academy offensive scenarios,352

3 vs 1 with keeper and counterattack easy. Agents in this environment need to coor-353

dinate timing and positions for organizing offense to seize fleeting opportunities, and only scoring354

leads to rewards. The tasks in GRF are far more difficult than those in SMAC, making many meth-355

ods that work well in SMAC invalid. Therefore, a secondary test on GRF is better proof of our356

approach’s effectiveness. Appendix C.4 details the basic information about the GRF environment.357
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Figure 8: Comparison on GRF tasks (Update VAST) and a visualization of 3 vs 1 with keeper.

Performance. The left side of Figure 8 shows the performance comparison of all methods. Only358

Ft-QMIX and GoMARL achieve more than 30% of the score reward in both scenarios. QPLEX359

and ROMA only score with a small probability, while other methods fail to give a single goal.360

GoMARL maintains its superior overall performance with outstanding learning efficiency. The361

excellent performance in the second testbed further demonstrates the transferability of our method.362

Visualizations. The trained strategies are visualized to check if the learned grouping makes sense.363

Figure 8 (right) visualizes the 3 vs 1 with keeper, and the visualization of counterattack364

is illustrated in Appendix E. The cooperation of two players is enough to score a goal in365

3 vs 1 with keeper. As illustrated, Agent 1 passes the ball to Agent 2 (shown in yellow arrow)366

when the opponent player rushing (blue arrow) to tackle. GoMARL agents master the cooperative367

timing and position, and Agent 2 smoothly receives the ball and shoots at the best timing (red arrow).368

Our method learns the grouping of {{a1, a2}, {a3}} that is explicable to the game.369

5 RELATED WORK370

This paper focuses on cooperative MARL problems with the CTDE paradigm (Oliehoek & Amato,371

2016). GoMARL utilizes value function factorization, an approach aiming to address the multi-372

agent credit assignment problem. Early attempts at value function factorization (Schneider et al.,373

1999; Russell & Zimdars, 2003) require apriori knowledge to predefine specific responsibilities374

or design suitable team reward decompositions. Deep MARL methods learn value factorization375

with no domain knowledge by treating agents as independent factors. VDN (Sunehag et al., 2018)376

learns a linear decomposition into a sum of local utility functions used for greedy action selection.377

QMIX (Rashid et al., 2018) enlarges the functions that can be represented by the mixing network378

but still faces the monotonicity limitation. QTRAN (Son et al., 2019) further improves the ex-379

pressivity by using constraints between individual utilities and the global action-value; however,380

the constraints are computationally intractable, and the relaxations often lead to unsatisfied perfor-381

mances. MAVEN (Mahajan et al., 2019) learns latent embeddings to integrate a diverse ensemble of382

monotonic approximations. LICA (Zhou et al., 2020) learns end-to-end differentiable policy opti-383

mization to remove the expressivity constraint. VMIX (Su et al., 2021) combines A2C with QMIX384

to extend the monotonicity constraint to value networks. QPLEX (Wang et al., 2021a) decomposes385

Q values with a dueling structure, transferring the monotonicity condition to advantage values.386

Focus on group development enables agents to maintain diversified policies and promote efficient387

collaborations. Early works are proposed only for tasks with a clear structure and train agents388

with similar traits to specialize in specific sub-tasks (DeLoach & Garcia-Ojeda, 2010; Bonjean389

et al., 2014). Recent works attempt to learn individual connections implicitly. VAST (Phan et al.,390

2021) learns value factorization for sub-teams based on a priori setting on group number. Wang391

et al. (2019) considers pairwise mutual influence to encourage interdependence between agents.392

ROMA (Wang et al., 2020) learns dynamic roles that depend on the context each agent observes.393

Iqbal et al. (2021) randomly groups agents into related and unrelated groups, allowing agents to394

explore only specific entities. RODE (Wang et al., 2021b) decomposes the joint action spaces and395

integrates the action effects into the role policies to boost learning. CDS (Li et al., 2021) incorporates396

agent-specific modules to promote sharing among agents while keeping necessary diversity.397

6 CONCLUSION398

Grouping like natural systems is essential to promote efficient cooperation of multi-agent systems.399

Instead of predefining grouping utilizing apriori knowledge, this paper proposes an automatic group-400

ing mechanism that gradually learns reasonable grouping as training proceeds. Based on the dy-401

namic grouping, we further encourage specialization in policies to promote individual similarity402

and group diversity, achieving efficient intra- and inter-group cooperation. With these novelties, our403

method, GoMARL, achieves impressive performance on both SMAC and GRF benchmarks.404
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A THE INSIGHT OF GROUP SHIFTING405

The proposed automatic grouping mechanism dynamically adjusts the team division as the training406

proceeds. In the beginning, all agents belong to the same group. As introduced in Section 3.1, we407

examine each wi1(i ∈ [1, n]) every c timesteps to check if the grouping needs adjustment. If there408

are agents who take actions but contribute little to their group, it indicates that these agents do not409

belong to their current group. All these selected agents are assigned to the next group (a new one410

for agents in the last group) until they appropriately contribute to where they belong.411

We utilize the example in Figure 2 (also Figure A1 for your reading convenience) to illustrate the412

insight of this grouping shift, i.e., this shifting scheme guarantees that agents belonging to the same413

group will not be misclassified into different groups during the dynamic adjustments.414

Figure A1: Schematic diagram of automatic grouping. Right box shows how grouping G changes
during training. In particular, we select the agents whoseQi have little contribution toQgjgroup to move
out of the current group gj . Based on the grouping G, the group selection operator concatenates the
weightswi1 of agents in the same group to form the group-wise weights wg

1 for mixing local utilities.

In this example, agent ai is first selected after α1 · c timesteps’ training, and the initial grouping415

G = {a1, a2, · · · , an} shifts to G′ = {{a1, · · · , ai−1, ai+1, · · · , an}, {ai}}. Subsequently, after416

another training period, at timestep α2 · c, two agents aj and ak in the first group were selected417

simultaneously to be moved out of the first group because of their small contribution. At this point,418

they were automatically placed in the second group, i.e., the group where agent ai is located. G′′ =419

{{A−i,j,k}, {ai, aj , ak}}. Instead of placing aj and ak in a brand new group, our shifting ensures420

that aj and ak have the opportunity to train with ai together as a group, determining if ai, aj , and421

ak (or two of them) are supposed to be in a group. Later on, agent al in the first group and agent422

ai, ak in the second group are chosen at timestep α3 · c. The selection of ai and ak indicates that423

agent aj cannot cooperate well with them. Therefore, ai and ak are set in a new group (they should424

not go back to the first group since they have been proved inappropriate for the first group), while425

aj stays alone in the second group. Agent al from the first group is assigned automatically to the426

second group (i.e., {aj}) in this example. A natural question is why this agent is not sent to the427

third group {ai, ak}. There is no need to worry about this under our shifting. If al is supposed428

to be with ai and ak, it will be selected afterward since aj fails to form efficient cooperation with429

{ai, ak}. Therefore, aj also cannot cooperate well with al, and al will be selected later on and set430

in group {ai, ak}. Equipped with the shifting that assigns selected agents to its following group,431

our proposed automatic grouping mechanism ensures that each grouping is tested by a fixed period432

of cooperative attempts. Therefore, each agent can be grouped with appropriate agents that can433

efficiently cooperate.434
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B DUAL-HIERARCHY FACTORIZATION SATISFYING IGM435

The IGM (Individual-Global-Max) principle proposed by QTRAN (Son et al., 2019) is defined on436

the correspondence between individual greedy actions and joint greedy actions. Formally, if there437

exist individual action-value functions
[
Qi
]n
i=1

that satisfy:438

arg max
u

Qtot(τ ,u) =

 arg maxu1 Q1
(
τ1, u1

)
...

arg maxun Q
n (τn, un)

 , (A1)

whereQtot(τ ,u) is the joint action-value function with joint action observation histories τ and joint439

action u, we say that
[
Qi
]n
i=1

satisfies IGM for Qtot.440

VDN (Sunehag et al., 2018) and QMIX (Rashid et al., 2018) are renowned methods that attempt to441

factorizeQtot assuming additivity and monotonicity respectively that satisfies the IGM. VAST (Phan442

et al., 2021) combines the value factorization operators of VDN and QTRAN to heritage the IGM443

property. Here, we formulate the following Proposition 1 to show that GoMARL also maintains444

decentralizability by satisfying the IGM principle for Qtot and Qi.445

Proposition 1. Given a multi-agent system M = 〈A, S, U, P, r, Z,O;G〉, where each agent ai ∈ A446

with local utility Qi belongs to only one group gj ∈ G for GoMARL’s dual-hierarchy factorization.447

IGM is satisfied for Qtot and
[
Qi
]

for each agent ai ∈ gj , gj ∈ G.448

Proof. The dynamic grouping mechanism in Section 3.1 regards the mixing weights of the individ-449

ual utilities as the contribution of Qi to the group value. Therefore, it restricts the learned weights to450

be non-negative, as in the monotonic mixing that satisfies IGM. Thus, the maximization of
[
Qi
]n
i=1

451

maximizes Qgjgroup such that ugj =
[
ui
]
i∈gj

, where ugj = arg maxugj∈[U ]ai∈gj
Q
gj
group (τ gj ,ugj )452

and ui = arg maxui Q
i
(
τ1, u1

)
. As introduced in Section 3.3, GoMARL’s factorization of Qtot453

into Q
gj
group adopts a similar fashion with the factorization of Qgjgroup into Qtot. Therefore, the454

factorization of Qtot into Qgjgroup also satisfies the IGM such that:455

u = [ugj ]gj∈G =
[[
ui
]
i∈gj

]
gj∈G

=
[
ui
]
i∈A . (A2)

Therefore, GoMARL ensures that the greedy local action set of all agents A = {a1, ..., an} maxi-456

mizes Qtot for time-varying grouping G according to the IGM principle in Eqn.(A1).457

C EXPERIMENT DETAILS458

C.1 DETAILED EXPERIMENTAL SETUP FOR FAIR COMPARISON459

We compare all methods in six StarCraft II micromanagement tasks (SMAC) (Samvelyan et al.,460

2019) and two challenging Google Research Football (GRF) (Kurach et al., 2020) scenarios. Meth-461

ods are trained with 8 parallel runners for 10M steps in both testbeds. We evaluate each method every462

10K steps with 32 episodes and report the 1st, median, and 3rd quartile win rates across 5 random463

seeds. The detailed setting of GoMARL’s hyperparameters is introduced in our source code.464

Many algorithms introduce implementation tricks when they are implemented. These code-level465

optimizations were studied in depth in Witt et al. (2020); Yu et al. (2021); Hu et al. (2021) and were466

shown to have a significant impact on algorithm performance. Considering that different baseline467

algorithms may use some of these code-level optimizations and thus cause unfair experimental com-468

parisons, this paper conducts experiments under strict control on tricky code-level implementations469

(e.g., reward clipping/scaling/normalization, gradient clipping, observation normalization, learning470

rate annealing, death agent masking, etc.), ensuring the comparisons are as fair as possible. Besides,471

specific parameter tuning in diverse scenarios is unfair to compare methods, so our experiments use472

fixed parameters for all methods in all environments.473
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To further ensure fair comparisons, our experiments are based on the PyMARL2 framework pro-474

posed for the purpose of fairly comparing algorithms, which is the fairest open-sourced framework475

we could find. Although RODE and ROMA are not included in this framework, we utilized the476

same PyMARL2 settings for them to ensure fairness. The performance of RODE and ROMA in477

this paper is one of the best among public papers, better than their performances in papers from the478

same authors or research team (Wu et al., 2021; Zheng et al., 2021) and other research (Jiang & Lu,479

2021; Jeon et al., 2022), and even better than their original papers in some environments, with abso-480

lutely no unfair comparisons. Please refer to PyMARL2’s open-source implementation1 for further481

training details and fair comparison settings.482

C.2 PARAMETER SIZE FOR VALUE MIXING483

GoMARL maintains two mixing networks to estimate Qggroup and Qtot respectively. Whether Go-484

MARL has more parameters for value mixing is a natural question. We analyze that our input485

dimension reduction of the hypernetworks offsets the increase of an extra mixing network in Sec-486

tion 3.3. Here, we give the detailed mixing network size (GoMARL’s two mixing networks are487

counted) of all the methods in Table A1. The results of GoMARL is the average size of the 5 runs488

since each run may learn a slightly different grouping with diverse group amounts. Our two-mixing489

architecture has fewer parameters than the baseline QMIX when there are a large number of agents.490

Table A1: The size of parameters for value mixing

Maps (Ft-)QMIX QPLEX RODE ROMA RIIT GoMARL
3s vs 5z 21.601K 72.482K 43.202K 13.281K 37.986K 26.530K

5m vs 6m 31.521K 107.574K 63.042K 25.377K 51.362K 31.554K
8m vs 9m 53.313K 197.460K 106.626K 63.393K 93.986K 51.427K
corridor 68.929K 303.808K 137.858K 81.537K 122.882K 53.859K
MMM2 84.929K 342.248K 169.858K 134.401K 177.282K 74.244K

3s5z vs 3s6z 63.105K 243.156K 126.21K 81.345K 118.466K 61.028K

C.3 DETAILED INFORMATION ABOUT SMAC AND ITS SCENARIOS491

A group of units controlled by decentralized agents cooperates to defeat the enemy agent system con-492

trolled by handcrafted heuristics in each SMAC micromanagement problem. Each agent’s partial493

observation comprises the attributes (such as health, location, unit type) of all units shown494

up in its view range. The global state information includes all agents’ positions and health, and al-495

lied units’ last actions and cooldown, which is only available to agents during centralized training.496

The agents’ discrete action space consists of attack[enemy id], move[direction], stop,497

and no-op for the dead agents only. Particular unit Medivac has no action attack[enemy id]498

but has heal[enemy id]. Agents can only attack enemies within their shooting range. Proper499

micromanagement requires agents to maximize the damage to the enemies and take as little damage500

as possible in combat, so they need to cooperate with each other or even sacrifice themselves. We501

follow the default setup of SMAC in our experiments, and more settings, including rewards and de-502

tailed observation/state information, can be acquired from the original paper Samvelyan et al. (2019)503

or implementation2.504

Based on baseline algorithms’ performances, the scenarios in SMAC are broadly grouped into three505

categories: Easy, Hard, and Super Hard. The key to winning some Hard or Super Hard battles is506

mastering specific micro techniques, such as focus fire, kiting, avoid overkill, et cetera. The battles507

can be symmetric or asymmetric, and the group of agents can be homogeneous or heterogeneous.508

Here we provide some characteristics of each Super Hard scenario to help gain insights into the509

good or poor performance of the methods:510

• corridor is a Super Hard map that need extensive exploration. Six allied Zealots fight511

twenty-four Zerglings on this super hard map. The massive disparity in unit numbers be-512

1https://github.com/hijkzzz/pymarl2
2https://github.com/oxwhirl/smac
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tween the two sides implies that the whole team cannot launch an attack together. The only513

winning strategy is to sacrifice a small number of agents who leave the team and attract the514

attention of most enemies. Taking this opportunity, our large force eliminates the rest of515

the enemies. The surviving agents then use the same tactic to attract several enemies to the516

team every time and kill them together.517

• MMM2 is a representative Super Hard asymmetric battle between two heterogeneous teams518

with three kinds of units. One Medivac, two Marauders, and seven Marines have to battle519

against a team with one more Marine. Marauder has greater attack damage and health than520

Marine but with a longer attack cooldown. Medivac has no damage but can heal any521

other agent in the team. This map with three kinds of units and many agents requires more522

cooperation between agents, so we picked this map for our ablation studies.523

• 3s5z vs 3s6z is another Super Hard map that requires breaking the bottleneck of explo-524

ration, where three Stalkers and five Zealots battle against three Stalkers and six Zealots.525

C.4 DETAILED INFORMATION ABOUT GRF AND ITS SCENARIOS526

Google Research Football (GRF) includes several scenarios which can be commonly found in foot-527

ball games. Agents need to coordinate timing and positions for organizing offense to seize fleeting528

opportunities, and only scoring leads to rewards. Each agent’s partial observation contains the ab-529

solute positions and moving direction of the ego-agent, relative positions and moving directions of530

other agents, and the ball. The global state information includes all agents’ and ball’s absolute po-531

sitions/directions. Agents have a discrete action space of 19, including moving in eight directions,532

sliding, shooting, and passing. Proper cooperation requires agents to pass and shoot effectively.533

Other details can be acquired from the original paper (Kurach et al., 2020) or its implementation3.534

Here we provide an introduction of the two scenarios we utilized to compare methods to help gain535

insights into the good or poor performance of the methods:536

• 3 vs 1 with keeper contains three of our agents and two opponents players (a de-537

fender and a keeper). Our agents try to score from the edge of the penalty area. One of538

them stands in the middle, while the others are located on both sides of the area. Initially,539

the agent at the center keeps the ball and directly faces the defender.540

• academy counterattack easy contains four of our agents and two opponent players541

(a defender and a keeper). Agents are initialized far from the penalty area and stand evenly542

in an arc centered on the goal. The second agent from the top initially keeps the ball and543

has to pass it to a teammate at the appropriate time to avoid interception.544

D EXTRA COMPONENT STUDIES ON THE SPECIALIZED AGENT NETWORK545

In Section 4.1, we conducted ablation experiments on the proposed specialized agent networks. As546

shown in the bottom row of Figure 6, our specialized agent networks significantly improve learning547

efficiency. Compared to agent networks utilizing the vanilla parameter-sharing mechanism that548

limits policy diversity, our agents have various styles of behaviors related to their group, which549

encourages extensive exploration and accelerates learning.550

Besides, we study the inner component of the specialized agent networks to provide deeper in-551

sight. Policy specialization in GoMARL is driven by a specialization regularizer, i.e., the similarity-552

diversity objective to train the info encoder in Eqn.(2). The influence of the scaling factor λSD on553

the performance is shown in Figure A2. According to these component studies, we set λSD = 0.03554

in GoMARL for all the other experiments.555

Furthermore, the proposed specialized agent network is highly transferable. To further validate556

its effectiveness, we perform the specialized agents on other baseline methods (Ft-QMIX, QPLEX,557

RODE, RIIT) to see if they can perform better. ROMA is not included since ROMA’s agent networks558

are produced by its learned roles, and the replacement will destroy the main idea of the method. As559

shown in Figure A3, The performance of all methods is further improved when equipped with our560

specialized agent network. Specifically, the learning efficiency of Ft-QMIX is boosted. The variance561

3https://github.com/google-research/football
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Figure A2: The influence of the scaling factors λSD on the performance.

Figure A3: Improvement of baselines with our specialized agents to further prove its effectiveness.

of RIIT is markedly reduced, and the win rate is increased by about 10%. The improvement of562

RODE is the most obvious, both the learning efficiency and win rate are enhanced, and the variance563

is very clearly reduced. QPLEX’s improvement is not very obvious; however, it obtains a slightly564

higher learning speed and achieves similar performance to GoMARL at the end of training.565

Most importantly, even equipped with our specialized network, all baseline algorithms fail to surpass566

GoMARL in terms of learning efficiency and final performance. GoMARL with vanilla parameter567

sharing looks much inferior to GoMARL with specialized agents, so it is worth questioning whether568

the dynamic grouping module is effective. This experiment fully illustrates that although dynamic569

group learning may reduce the learning efficiency to a certain extent in the early stage of training,570

however, in the middle and late training stages, the learned grouping will have a significant effect571

when equipped with the proposed specialized agent network. Therefore, the two main modules of572

GoMARL, the dynamic grouping module and specialized agents, are both crucial.573

E EXTRA VISUALIZATION OF GOOGLE RESEARCH FOOTBALL MATCH574

In Section 4.2, we visualize a match of 3 vs 1 with keeper to prove the rationality of the group-575

ing GoMARL learned. Here we give another visualization of the counterattack scenario to576

show a more complex strategy and its corresponding learned grouping.577

As shown in Figure A4(a), Agent 2 holds the ball at the beginning and faces an opponent rushing578

toward him. Agent 2 passes the ball to Agent 1 to prevent the ball from being stolen. Subsequently, in579

(b), Agent 1 carries the ball and tries to break through. However, the opponent goalkeeper blocks his580

attacking route, and Agent 1 chooses to continue passing after a short carry. Agent 3 makes a good581

run and catches the ball smoothly but shoots quickly in Figure A4(c) since the opponent is close.582
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Figure A4: A visualization of learned policies on academy counterattack easy. Yellow
arrows show the motion of the ball. The red arrow illustrates the scoring shoot.

The goalkeeper easily saves this hasty attack. Agent 4 in (d), who learned excellent coordination583

with Agent 3, stops the ball and immediately adds another shot to create the goal.584

During this complex goal, GoMARL’s automatic grouping module learned a reasonable group-585

ing {{Agent1,Agent2}, {Agent3,Agent4}}, in which the first group successfully brought the ball586

into the penalty area through smooth coordination, while the second group finally created the goal587

through skillful cooperation of shooting and a second shooting.588
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