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ABSTRACT

For overparameterized linear regression with isotropic Gaussian design and
minimum-ℓp interpolator with p ∈ (1, 2], we give a unified, high-probability
characterization for the scaling of the family of parameter norms {∥ŵp∥r}r∈[1,p]

with sample size. We solve this basic, but unresolved question through a simple
dual-ray analysis, which reveals a competition between a signal spike and a bulk of
null coordinates in X⊤Y , yielding closed-form predictions for (i) a data-dependent
transition n⋆ (the “elbow”), and (ii) a universal threshold r⋆ = 2(p − 1) that
separates ∥ŵp∥r’s which plateau from those that continue to grow with an explicit
exponent. This unified solution resolves the scaling of all ℓr norms within the
family r ∈ [1, p] under ℓp-biased interpolation, and explains in one picture which
norms saturate and which increase as n grows. We then study diagonal linear
networks (DLNs) trained by gradient descent. By calibrating the initialization scale
α to an effective peff(α) via the DLN separable potential, we show empirically
that DLNs inherit the same elbow/threshold laws, providing a predictive bridge
between explicit and implicit bias. Given that many generalization proxies depend
on ∥ŵp∥r, our results suggest that their predictive power will be highly sensitive to
which ℓr norm is used.

1 INTRODUCTION

Many modern generalization measures for machine learning tasks are anchored on the parameter
norm instead of parameter count (Neyshabur et al., 2015c;a; Yoshida & Miyato, 2017; Miyato et al.,
2018; Cisse et al., 2017). Yet, most analyses of overparameterized regression still treat “the norm”
monolithically—typically defaulting to ℓ2. If one is going to use a parameter norm, which ℓr should
be used, and how does that choice interact with the inductive bias that selects the interpolator (e.g.,
minimum-ℓp)? This question has been comparatively less studied. We address this question first in a
simpler but core setting—linear regression—and then connect the picture to diagonal linear networks
(DLNs). Our experiments reveal that sweeping (r, p) produces non-trivial behavior: even for the
same interpolating predictor, some ℓr norms plateau while others keep growing with distinct slopes;
in mixed cases, the elbow’s location shifts with p, and which r’s plateau depends on the setting.

In linear regression it is well understood that the value of p shapes the inductive bias (sparser as
p↓1, denser as p↑2), making the r–p interaction concrete. Beyond explicit ℓp penalties, first-order
optimization can implicitly select a geometry: in overparameterized linear regression, gradient
methods recover the minimum-ℓ2 interpolant; in separable classification, gradient descent converges
to a max-margin solution; and in diagonal/deep linear parameterizations, the separable potentials
governing the dynamics interpolate between sparse- and dense-leaning behaviors depending on
initialization and parameterization (Tibshirani, 1996; Frank & Friedman, 1993; Hoerl & Kennard,
1970; Chen et al., 2001; Zou & Hastie, 2005; Hastie et al., 2015; 2022a; Soudry et al., 2018; Gunasekar
et al., 2018a; Ji & Telgarsky, 2019b; Chizat et al., 2019; Woodworth et al., 2020). This variety of
explicit/implicit pathways for p-like biases motivates our unified treatment of the family {∥ŵ∥r}
and explains why different ℓr proxies can exhibit qualitatively different n-dependence under a fixed
training pipeline.
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Concretely, we study the minimum-ℓp interpolator in high-dimensional linear regression with isotropic
Gaussian design (d > n, p ∈ (1, 2]), and we characterize—in closed form and with high probability—
how the entire family {∥ŵp∥r}r∈[1,p] scales with n. A one-dimensional dual–ray analysis exposes
a competition between a signal spike and a high-dimensional bulk in X⊤Y , yielding: (i) a data-
dependent transition size n⋆ (an elbow in n), and (ii) a universal threshold r⋆ = 2(p − 1) that
separates norms that ultimately plateau (r > r⋆) from those that continue to grow with explicit
exponents (r ≤ r⋆). We also extend the picture to DLNs trained by gradient descent: calibrating the
initialization scale α via the network’s separable potential that gives an effective exponent peff(α),
and with this calibration the observed ℓr–vs–n curves inherit the same elbow/threshold structure as
explicit minimum-ℓp interpolation. When the inductive bias is unknown a priori—e.g., the operative
p of the training pipeline is unclear—our results imply that choosing the “right” r for norm-based
generalization measures can be delicate, since different (r, p) pairs can produce opposite scaling
behaviors (plateau vs. growth) as n increases.

Our contributions:

1. Strong sensitivity of the parameter norm as a function of the pair (r, p) We find a strong
qualitative effect for the scaling of the parameter norm with data: for fixed p, certain ℓr norms
plateau while others grow with different slopes; varying p moves the elbow and reassigns which
r’s plateau.

2. Closed-form scaling laws for parameter norms. We derive the first unified closed-form scaling
laws for this problem. For p ∈ (1, 2] and all r ∈ [1, p], we identify the universal threshold
r⋆ = 2(p−1), give an explicit expression for the transition size n⋆, and provide plateau levels and
growth exponents in both spike- and bulk-dominated regimes via a compact dual–ray argument.

3. Extension of our theory to DLNs. We map the DLN initialization scale to geometry: α 7→ peff(α).
Using this map, we transfer the theory to DLNs and verify the predicted elbow/threshold behavior
of the parameter norm empirically.

Implications for practice. Because many norm-based generalization measures and diagnostics
depend on ∥ŵ∥r, our results imply that practitioners using norm-based bounds or proxies—especially
in more complex models such as DNNs—should be cautious: conclusions can be highly sensitive to
the choice of r, and the sensitivity depends on the underlying ℓp bias that selects the interpolator.

2 RELATED WORK

The focus of this paper is a basic question: for overparameterized linear regression and related
diagonal linear networks (DLNs), how do the parameter norms {∥ŵ∥r}r∈[1,p] scale with sample size
when the interpolator is selected by an ℓp bias? The links to generalization are therefore indirect:
norm quantities often appear as proxies in modern generalization measures (Neyshabur et al., 2015b;
Bartlett et al., 2017; Dziugaite & Roy, 2017), so understanding their n–scaling is informative, but we
do not develop new generalization bounds here. Relatedly, recent analyses derive explicit norm upper
bounds as intermediate steps toward generalization—often via Gaussian min–max techniques—for
interpolators and max-margin procedures (Koehler et al., 2021; Donhauser et al., 2022).

The ℓr family of linear–regression interpolators. A large body of work characterizes how explicit
ℓp penalties shape linear estimators: ridge/Tikhonov (ℓ2) (Hoerl & Kennard, 1970), lasso (ℓ1)
(Tibshirani, 1996; Efron et al., 2004; Knight & Fu, 2000; Zou, 2006), elastic net (mixtures of ℓ1
and ℓ2) (Zou & Hastie, 2005), and the bridge family (ℓp for 0 < p ≤ 2) (Frank & Friedman, 1993);
basis pursuit gives the sparse interpolating extreme under equality constraints (Chen et al., 2001;
Candès & Tao, 2007; Donoho, 2006; Bickel et al., 2009). High–dimensional convex-geometric
analyses explain when these programs select structured solutions and how their solutions move
with the data geometry (Chandrasekaran et al., 2012; Amelunxen et al., 2014; Bühlmann & van de
Geer, 2011; Wainwright, 2019), and recent developments give precise characterizations for ridgeless
(minimum-ℓ2) interpolation and its risk (Hastie et al., 2022a;b). Our contribution complements this
literature by treating the entire norm family {∥ŵp∥r}r∈[1,p] for minimum–ℓp interpolators (with
p ∈ (1, 2]) and deriving closed-form, high-probability scaling laws in n across r. In this sense we
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move from “which p shapes which estimator?” to “given p, how do all ℓr diagnostics behave as data
grow?”

Overparameterization in regression and deep networks. The deep-learning era stimulated a
re-examination of overparameterized regression, revealing phenomena such as double descent (Belkin
et al., 2019; Nakkiran et al., 2021; Zhang et al., 2017; Nakkiran et al., 2020a; Adlam & Pennington,
2020) and benign overfitting for minimum-norm interpolators (Bartlett et al., 2020; Hastie et al.,
2022b; Muthukumar et al., 2021). These results show that linear regression can capture qualitative
behaviors seen in deep learning models and that the selected interpolator’s norm matters for risk.
Our work leverages this bridge as motivation only: by explaining, in closed form, which ℓr norms
plateau and which grow (and at what rates) under an ℓp bias, we clarify what one should expect
from norm-based proxies commonly used in deep-net analyses. Because practical pipelines for deep
models rarely specify the effective p, our finding that ∥ŵp∥r depends sensitively on the pair (r, p)
suggests caution when interpreting norm-based generalization diagnostics.

Explicit/implicit regularization and DLNs. Beyond explicit penalties, optimization can select
solutions with an implicit geometry (Soudry et al., 2018; Lyu & Li, 2020; Gunasekar et al., 2018b;
2017a). In overparameterized linear regression, gradient methods recover the minimum-ℓ2 interpolant;
in factorized or deep-linear parameterizations, the training dynamics induce separable potentials that
interpolate between sparse- and dense-leaning behaviors depending on initialization and parame-
terization (Saxe et al., 2014b; Gunasekar et al., 2018a; Ji & Telgarsky, 2019b; Chizat et al., 2019;
Woodworth et al., 2020). We build on this perspective for DLNs: by calibrating the initialization
scale to an effective peff , we show empirically that DLNs inherit the same elbow/threshold laws for
{∥ŵ∥r} as explicit minimum–ℓp interpolation.

Proof techniques. Our analysis borrows standard high-dimensional tools used throughout the
modern regression literature—Gaussian concentration, blockwise (signal-vs-bulk) decompositions,
and dual certificates in convex programs (Vershynin, 2018; Tropp, 2015)—and combines them with a
one-dimensional “dual–ray” reduction tailored to the ℓp penalty. Two closely related works derive
norm upper bounds as an intermediate step toward generalization, using the Gaussian Min–Max
Theorem (GMT) and its convex analogue (CGMT): Koehler et al. (2021); Donhauser et al. (2022).
Their GMT/CGMT-based proofs are conceptually similar in spirit; by contrast, our argument proceeds
from first principles via a simple dual–ray balance and yields closed-form n-scaling laws without
invoking GMT/CGMT (see also Gordon (1985); Thrampoulidis et al. (2015) for the GMT and CGMT
statements).

3 FAMILY OF NORM MEASURES OF MINIMUM ℓp-NORM INTERPOLATOR IN
LINEAR MODELS

We now formalize the object introduced in the overview: for p ∈ (1, 2] in overparameterized linear
regression, we study the family {∥ŵp∥r}r∈[1,p] where ŵp is the minimum-ℓp interpolator. Our goal
is to characterize how these norms scale with sample size n. Our results identify (i) a data-dependent
elbow n⋆ and (ii) a universal threshold r⋆ = 2(p− 1) that separates plateauing from growing ℓr’s.

Data and settings. We consider overparameterized linear models with X ∈ Rn×d, d > n, rows
i.i.d. N (0, Id), and

Y = Xw⋆ + ξ, ξ ∼ N (0, σ2In).

The minimum-ℓp interpolator is

ŵp ∈ arg min
w∈Rd

∥w∥p s.t. Xw = Y, p ∈ (1, 2].

Let s = ∥w⋆∥0 denote the support size and τ2s := ∥w⋆∥22 + σ2. In contrast to interesting recent
work by Donhauser et al. (2022), our theory is not restricted to the w∗ = e1 limit of extreme sparse
regression.

3



162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215

Under review as a conference paper at ICLR 2026

3.1 MAIN THEOREM

Theorem 3.1 (ℓr scaling of minimum-ℓp interpolators). Fix p ∈ (1, 2], set q = p
p−1 , and take

r ∈ [1, p]. Assume

d

n
→ κ ∈ (1,∞) and lim inf

n→∞

d− s
n

= κbulk > 0.

Let w⋆ have support S with |S| = s, and let

ŵp ∈ arg min
w∈Rd

∥w∥p s.t. Xw = Y.

Write Wq := ∥w⋆∥qq and mt := E|Z|t for Z ∼ N (0, 1). Define the ray scale t⋆ via

t q−1
⋆ ≍ ∥Y ∥22

∥X⊤Y ∥qq
≍ τ2s n

nqWq︸ ︷︷ ︸
spike

+ (d− s)mq τ
q
s n

q/2︸ ︷︷ ︸
bulk

+ O
(
τ qs (s nq/2 + s1+q/2)

)︸ ︷︷ ︸
remainder

w.h.p.. (1)

Then, w.h.p. (see Remark A.1),

∥ŵp∥r ≍ max
{
t q−1
⋆ n q−1 ∥w⋆∥ q−1

(q−1)r, (d− s)
1/r

(
t⋆ τs
√
n
) q−1

,

smax{ 1/r, (q−1)/2 } (t⋆ τs√n) q−1
}
. (2)

Introduce the transition scale

n⋆ ≍
(
κbulk

τ qs
Wq

) 2
q−2

. (3)

In the two extremes, we obtain:

Spike-dominated (n≫ n⋆):

∥ŵp∥r ≍


τ q+1
s

Wq
n

1
r−

1
2(p−1) , r ≤ 2(p− 1),

τ 2
s

Wq
∥w⋆∥ q−1

(q−1)r, r > 2(p− 1).

(4)

Bulk-dominated (n≪ n⋆):

∥ŵp∥r ≍ max
{
κ

1
r−1

bulk τs n
1
r−

1
2 , κ−1

bulk τ
2−q
s ∥w⋆∥ q−1

(q−1)r n
q
2−1,

κ−1
bulk τs s

max{ 1/r, (q−1)/2 } n−1/2
}
. (5)

Since d−s ≍ κbulkn, the last term equals τs
d−s s

max{1/r, (q−1)/2}√n. All≍ hide absolute constants
depending only on (p, κbulk, r).
Remark 3.2 (Dual viewpoint). The constrained problem minw

1
p∥w∥

p
p s.t.Xw = Y has unconstrained

dual maxλ λ
⊤Y − 1

q∥X
⊤λ∥qq, with KKT conditions Xw = Y and X⊤λ = ∇f(w). Restricting to

the ray λ = tY yields t q−1
⋆ = ∥Y ∥22/∥X⊤Y ∥qq . The “spike” vs. “bulk” terminology refers to which

part of ∥X⊤Y ∥q controls t⋆.

Proof sketch. The behavior of the minimum-ℓp interpolator can be read through a simple dual lens:
rather than track the optimizer directly, we examine a dual certificate that both fits the labels and
respects a norm budget after passing through the design; pushing the dual along the label direction
(a one-dimensional “ray”) reveals a single diagnostic scale where the budget tightens, and this
scale is controlled by two competing sources in the correlations X⊤Y : a “spike” part (true signal
coordinates) that coherently accumulates with n, and a “bulk” part (many null coordinates) that
aggregates small, mostly noisy effects. Balancing these two contributions defines a data-dependent
transition sample size n⋆: for n≪ n⋆ the bulk dominates, the solution’s mass is effectively spread
over many coordinates, and the family {∥ŵp∥r} grows with n in the way our bulk formulas predict
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(including the usual cross-r ordering and an n1/2-type trend visible in the plots); for n ≫ n⋆ the
spike dominates, mass concentrates on the support, and a clean threshold—determined by p at
r = 2(p− 1)—splits the outcomes: ℓr plateaus for r above the threshold and grows with a gentler,
explicit slope for r below it. Standard concentration for Gaussian designs justifies the spike/bulk
decomposition and the stability of the ray scale, and the KKT linkage between the dual certificate
and the primal coordinates turns these ingredients into the unified bound, the expression for n⋆, and
the two regime descriptions stated in the theorem. Full details are deferred to Appendix A.

4 COROLLARIES FOR CANONICAL TARGETS

To make the unified laws in Theorem 3.1 concrete, we specialize them to two canonical targets:
(i) a single spike w⋆ = e1, and (ii) a flat s-sparse vector with equal magnitude a on its support.
Substituting the problem-specific scales Wq = ∥w⋆∥qq and τ2s = ∥w⋆∥22 + σ2 into the elbow formula
equation 8 and the spike-/bulk-dominated expressions equation 9–equation 10 yields closed-form,
high-probability predictions for ∥ŵp∥r and the transition size n⋆. We record these specializations
below as Corollaries 4.1 and 4.2, and use them as reference overlays in our experiments.

4.1 SINGLE SPIKE

Corollary 4.1 (Single spike). Under Theorem 3.1 with w⋆ = e1 and τ2 = 1+ σ2, for any r ∈ [1, p]:

Bulk-dominated (n≪ n⋆): ∥ŵp∥r ≍ τ (d− 1)
1
r−1 n1/2,

Spike-dominated (n≫ n⋆): ∥ŵp∥r ≍

{
τ q+1 n

1
r−

1
2(p−1) if r ≤ 2(p− 1),

τ 2 if r > 2(p− 1).

Interpretation. Here Wq=1 and n⋆ ≍
(
κbulkτ

q
)2/(q−2)

from equation 8. For r > 2(p−1) the
ℓr curves plateau at level ≍ τ2 once n ≫ n⋆; for r ≤ 2(p−1) they continue to grow with slope
1
r −

1
2(p−1) .

4.2 FLAT SUPPORT

Corollary 4.2 (Flat support). Under Theorem 3.1 and a flat w⋆ on S with |S| = s and w⋆j = a sj for
j ∈ S (|sj | = 1), for any r ∈ [1, p], w.h.p.:

Spike-dominated (n ≥ Cn⋆): ∥ŵp∥r ≍


(sa2 + σ2)

q+1
2

s|a|q
n

1
r−

1
2(p−1) r ≤ 2(p− 1),

s
1
r−1 sa

2 + σ2

|a|
2(p− 1) < r ≤ p,

Bulk-dominated (n ≤ cn⋆): ∥ŵp∥r ≍ max
{
κ

1
r−1

bulk τs n
1
r−

1
2 , κ−1

bulk τ
2−q
s s1/r|a|q−1 n

q
2−1,

κ−1
bulk τs s

max{1/r, (q−1)/2} n−1/2
}
.

Interpretation. Here Wq=s|a|q and τ2s=sa
2+σ2, so equation 8 gives n⋆ ≍(

κbulkτ
q
s /(s|a|q)

)2/(q−2)
, which grows with s (the elbow shifts to larger n). In the spike-dominated

plateau branch (r > 2(p−1)) the level scales as s
1
r−1 (sa2+σ2)/|a|, which is typically of the same

order as the single-spike plateau for moderate s.

Comparison across targets. The threshold r = 2(p − 1) and the n-exponents in both regimes
are unchanged between Corollaries 4.1 and 4.2. The differences lie in the scales: (i) the tran-
sition size moves from n⋆ ≍ (κbulkτ

q/Wq)
2/(q−2) with Wq=1, τ2=1+σ2 (single spike) to

n⋆ ≍ (κbulkτ
q
s /Wq)

2/(q−2) with Wq=s|a|q, τ2s=sa2+σ2 (flat), which scales roughly linearly in s
(cf. equation 8). Hence the elbow for regime change shifts to larger n when we move from e1 to a
flat w⋆ with s=50. (ii) In the spike-dominated plateau branch (r > 2(p− 1)), the level changes from
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Figure 1: Single spike w⋆ = e1; explicit minimum-ℓp interpolation. Ordering across r and the
presence/absence of elbows follow Corollary 4.1; the bulk panels rise like n1/2 and the spike-side
panels plateau for r > 2(p−1), consistent with equation 9-equation 10.

≍ τ2 (single spike) to ≍ s 1
r−1 (sa2+σ2)/|a| (flat) [cf. equation 9 and Corollary 4.2]; for moderate s

this produces comparable numerical magnitudes, which is why the vertical ranges in our figures are
similar. The regime labels (bulk vs. spike) and their slopes/plateaus therefore provide the informative
contrast.

4.3 LINEAR REGRESSION WITH EXPLICIT MINIMUM-ℓp BIAS

Here the inductive bias is explicit: for a chosen p, the interpolator is the minimum-ℓp element among
all w with Xw = Y . Sweeping p slides the solution from a more sparse-leaning geometry as p ↓ 1
toward a more dense-leaning geometry as p ↑ 2, revealing how the objective itself shapes the family
{∥ŵp∥r}r.

Experimental protocol. We set σ = 0.1, sweep p ∈ {1.1, 1.5, 1.9}, and vary n. Each plot overlays
test MSE (left axis) and representative ℓr curves (right axis). For flat w∗ experiments, we kept ∥w∗∥2
= 1, i.e. a = 1√

s
. Additional noise sweeps are reported in Appendix C.

What the figures show and why. In Fig. 1 (single spike), the left/middle/right panels follow the
corollary’s regime rules. In the left panel, for r > 2(p−1) the curves flatten after the transition, while
for smaller r they retain the predicted growth; thin reference overlays (where present) trace these
slopes. The middle panel exhibits a clear elbow near the predicted n⋆; beyond it, the r > 2(p−1)
curves plateau in line with equation 9, while the others keep their slope. The right panel stays
bulk-dominated across the range, with the ℓr traces growing approximately as n1/2 and ordered
across r as the bulk formula prescribes.

In Fig. 2 (flat w⋆ with s=50), the same slope/plateau rules apply, but the transition scale is larger:
the elbow for p=1.5 appears at a later n (or just off-range), consistent with n⋆ increasing roughly
linearly with s in equation 8. Across panels, the absolute ℓr values are numerically similar to Fig. 1;
this matches the flat-support plateau level in Corollary 4.2, which for moderate s is close to the
single-spike level. The informative distinction is thus where the curves switch from bulk growth to
spike plateaus and the persistence of the n1/2 slope in regimes that remain bulk-dominated.

Experiments with larger sparsity. We repeat the explicit minimum-ℓp runs at larger supports,
s ∈ {500, 5000}, with the same ∥w⋆∥2=1 and noise level (σ = 0.1); see Appendix E, Figs. S13-S14.
The qualitative picture from s=50 reappears but shifts to larger n, consistent with the transition size
n⋆ in equation 8 growing with s. For small p (p=1.1), the prolonged bulk-dominated window makes
the double-descent pattern visible—generalization error first increases and then drops (most clearly at
s=5000)—while the blue ℓ1.1 curve keeps rising along the bulk guide across the plotted range (Belkin
et al., 2019; Nakkiran et al., 2020b; Hastie et al., 2022a). For larger p (p=1.5, 1.9), the curves remain
monotonically decreasing; the minimized ℓp traces drift only mildly upward (no flattening within
the range), reflecting the rounder geometry that avoids early over-reliance on noisy bulk directions.
In all panels, the dashed overlays track the bulk/spike trends and the expected r-ordering of the ℓr
diagnostics, matching the regime structure highlighted in the theory.
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Figure 2: Flat w⋆ (s = 50); explicit minimum-ℓp interpolation. The scaling rules mirror the
flat-support corollary: bulk growth persists until a larger transition scale, while spike-side r values
plateau; absolute levels are comparable to the single-spike case, as predicted by the plateau formulas.

4.4 DIAGONAL LINEAR NETWORK WITH IMPLICIT BIAS

Diagonal linear networks (DLNs) - deep linear models whose weight matrices are diagonal so that
the effective predictor is the coordinatewise product of layer parameters—provide a tractable testbed
for understanding optimization-induced geometry and implicit bias in overparameterized systems.
They connect classical analyses of linear nets and factorized parameterizations (Saxe et al., 2014a; Ji
& Telgarsky, 2019a; Arora et al., 2019; Gunasekar et al., 2017b) with recent perspectives on how
initialization and parameterization interpolate between “rich” and “kernel” behaviors (Chizat et al.,
2019; Woodworth et al., 2020). A particularly useful feature—formalized for DLNs via a separable
gradient-flow potential—is that the scale of the initialization, denoted α, continuously tunes the
implicit bias: small α yields a sparse-leaning geometry (an ℓ1-like penalty up to logarithmic factors),
while large α approaches an ℓ22-type geometry; see the potential Qα and its limits (Theorem 1 in
Woodworth et al. (2020)) and related characterizations in Gunasekar et al. (2017b); Arora et al.
(2019).

Calibrating α via an effective p. To compare DLN runs with our explicit minimum-ℓp experiments,
we convert α into an effective p by a data-free calibration. Following the separable potential view, we
evaluate Qα on k-sparse, unit-ℓ2 probes and fit the log-log slope of its k-dependence; matching that
slope to the exact k 1−p/2 law of ∥ · ∥pp yields a monotone map α 7→ peff(α) with limits peff(α)→1
as α→0 and peff(α)→2 as α→∞. This calibration is independent of (n, σ) and lets us select α
values that span a sparse-to-dense range comparable to p ∈ {1.1, 1.5, 1.9}. A full derivation and a
visualization of α 7→ peff(α) are provided in Appendix B.

Finite learning rate. With a single-spike target (w⋆ = e1, sparsity s=1) and small initialization
(α = 0.00102, so peff ≈ 1.10), we find that the learning rate lr can materially change the ℓr-vs-n
scaling once label noise is present. When σ=0, the ℓ1.1 curve rapidly plateaus and is essentially
insensitive to lr (see Appendix D for more details). In contrast, for σ ∈ {0.1, 0.5} increasing lr
produces a steadily rising ℓ1.1 and shifts the elbow to larger n; at the highest noise the effect is
strongest-lr=10−1 yields monotone growth across our range, whereas lr=10−3 exhibits a transient
rise followed by relaxation toward a plateau, indicating a rightward-moving elbow. We observe
qualitatively similar trends for larger sparsity (s=50). A natural explanation is that finite step size
together with noisy gradients turns (stochastic) gradient descent into a noisy dynamical system with
an effective temperature that scales with lr and the noise level. The resulting diffusion broadens the
stationary distribution and biases the predictor toward rounder (less sparse) geometries-effectively
increasing peff -so mass leaks into bulk coordinates, delaying spike dominance and inflating ℓr before
the eventual plateau (Mandt et al., 2017; Smith et al., 2018; Yaida, 2018; Jastrzebski et al., 2017).

Experimental protocol. We set σ = 0.1, sweep α ∈ {0.00102, 0.0664, 0.229} (which according
to our α to p calibration ≈ p ∈ {1.1, 1.5, 1.9}), and vary n. Each plot overlays test MSE (left axis)
and representative ℓr curves (right axis). For flat w∗ again a = 1√

s
. Additional noise sweeps are

reported in Appendix C.

Because α has been empirically calibrated to peff(α), the DLN panels mirror the scaling behavior seen
with explicit minimum-ℓp: for w⋆ = e1 (Fig. 3), smaller α (smaller peff ) enters the spike-dominated
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Figure 3: Single spike w⋆ = e1; diagonal linear network (DLN). After calibrating α to peff(α), the
regime structure matches the explicit p case: smaller α exhibits earlier spike dominance and plateaus
for r > 2(p−1); larger α remains bulk-dominated with n1/2-like growth.
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Figure 4: Flat w⋆ (s = 50); diagonal linear network (DLN). The same scaling rules hold, but the
elbow appears at larger n—in line with the flat-support transition scale—while absolute ℓr magnitudes
remain comparable to the single-spike case.

regime earlier so that, for r > 2(p−1), the ℓr curves flatten after the transition; larger α remains
bulk-dominated longer and the traces grow with the characteristic n1/2 trend. For the flat target with
s=50 (Fig. 4), the same rules apply but the elbow shifts to larger n, consistent with the s-dependent
transition scale in the flat-support corollary. The absolute magnitudes of ∥ŵ∥r are similar across the
two targets, as predicted by the plateau formulas, so the informative contrast again lies in the location
of the elbow and the presence/absence of plateaus vs. bulk growth. We do not overlay theory on the
DLN plots: our guarantees are stated in terms of the explicit parameter p, and deriving a closed-form
α-indexed analogue (especially under finite learning rates) is outside the scope of this work; the
α 7→ peff calibration serves precisely to make the scaling correspondence visible. In Appendix F we
discuss how can we extend our main theorem to DLNs with explicit α.

5 CONCLUSION AND DISCUSSION

We provided the first unified, closed-form characterization of how the entire family of norms
{∥ŵp∥r}r∈[1,p] scales with sample size in overparameterized linear regression under minimum-
ℓp interpolation (p ∈ (1, 2]). A one-dimensional dual-ray argument exposes a competition between
a signal spike and a bulk of null coordinates in X⊤Y and yields, with high probability: (i) a
data-dependent elbow n⋆ at which bulk and spike balance [Eq. 8], and (ii) a universal threshold

r⋆ = 2(p− 1),

which separates ℓr’s that ultimately plateau (r > r⋆) from those that continue to grow with an explicit
exponent (r ≤ r⋆) in the spike-dominated regime (Theorem 3.1). The formulas give plateau levels
and slopes in both bulk- and spike-dominated regimes, and specialize cleanly for canonical targets
(single spike and flat support). Empirically, diagonal linear networks (DLNs) trained by gradient
descent inherit the same elbow/threshold laws once the initialization scale α is calibrated to an
effective peff(α) via the separable potential. Together, these results show that which ℓr one tracks
matters: for a fixed ℓp bias, different ℓr’s can exhibit qualitatively different n-laws.

Intuition behind the regime transition. The dual-ray lens reduces the interpolation geometry to a
single scale t⋆ controlled by ∥X⊤Y ∥q (q = p/(p− 1)). The bulk contributes ≍ (d− s)mq τ

q
sn

q/2
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while the spike contributes ≍ nqWq , and their balance sets the elbow n⋆. Above the elbow, the KKT
map raises correlations to the (q − 1) power; the sign of 1

r −
1

2(p−1) dictates whether the bulk-type
term decays (plateau) or grows (slope). This is the origin of the sharp threshold r⋆ = 2(p − 1).
Geometrically, smaller p (sparser inductive bias) lowers r⋆, so more ℓr’s plateau once the spike
dominates; as p ↑ 2, r⋆ approaches 2 and spike-side plateaus recede, consistent with the special role
of p = 2 where there is no n-driven transition in the proportional limit.

Implications for generalization proxies. Many diagnostics and bounds in modern learning scale
with a parameter norm (or a reparameterization-aware surrogate). Our results indicate that the
predictive power of such proxies is norm-choice sensitive. For a given ℓp bias, ℓr’s above r⋆ stabilize
(after n⋆) and can serve as geometry-aligned capacity proxies, while ℓr’s below r⋆ continue to reflect
data growth through explicit exponents. In practice, the pair (n⋆, r⋆) acts as a norm-scaling signature.
Reporting only one norm—often ℓ2—risks conflating bulk vs. spike effects and can obscure regime
changes that are visible in the ℓr family.

From explicit to implicit bias. By calibrating DLN initialization via a simple slope-matching map
α 7→ peff(α), the empirical DLN curves line up with the explicit minimum-ℓp predictions under p←
peff(α). This provides a quantitative bridge between explicit and implicit bias: initialization steers the
effective geometry, and the (n⋆, r⋆) structure is inherited. Finite learning rates in the presence of label
noise act like an effective temperature, increasing peff and shifting elbows rightward—consistent
with recent views of SGD as a noisy dynamical system.

Relation to double descent and benign overfitting. The bulk-side growth (∝ n1/2 in prominent
terms) and its eventual handoff to spike control rationalize when increasing n first harms and then
helps: early fits draw from many noisy bulk directions (large norms and higher variance), while
beyond n⋆ the spike dominates and the relevant ℓr’s plateau. Our explicit exponents and thresholds
sharpen this picture and make precise which ℓr will display which trend at a given (p, n).

Scope and limitations. Our guarantees assume isotropic Gaussian design, p ∈ (1, 2], squared loss,
and exact interpolation. At p = 2 the proportional regime admits no n-driven elbow. The DLN
extension uses a data-free calibration to peff(α) rather than a fully rigorous, learning-rate-aware
theory. Finally, classification losses and non-linear features (beyond DLNs) are outside our formal
scope.

Actionable guidance. (i) When using norm-based capacity control, choose the norm with the
geometry: if training is ℓp-biased (explicitly or implicitly), track ℓr with r > 2(p−1) to obtain a
stable, post-elbow proxy; use r ≤ 2(p−1) when one wants a readout that continues to reflect data
growth. (ii) Empirically estimate (n⋆, r⋆) by fitting the predicted slopes to a small ℓr grid; this gives
a compact fingerprint of model-data geometry and a practical meter for bulk vs. spike dominance.

Future directions:

Beyond isotropy and Gaussianity. Extend the dual-ray analysis to anisotropic/sub-Gaussian designs
(via whitening) and to heavy-tailed covariates; characterize how n⋆ and possibly r⋆ deform with the
spectrum and tails of X . From DLNs to nonlinear nets. Replace the power link by depth-dependent
implicit links in deep (nonlinear) architectures (e.g., path-norm or neural tangent/feature-learning
regimes) and test whether an r⋆-type threshold persists. Algorithmic knobs as geometry. Develop
a theory of peff that accounts for step size, batch size, momentum, and label noise (Langevin/SGD
limits), turning these knobs into quantitative geometric parameters with predictions for (n⋆, r⋆).
Classification and margins. Generalize the scaling laws to separable classification with cross-
entropy/hinge losses, relating r⋆ to margin exponents and the growth/saturation of norm families
along max-margin flows. Tighter, r-aware bounds. Build generalization bounds that track the
family {∥ŵ∥r} and explicitly incorporate the elbow/threshold structure, connecting to PAC-Bayes
and margin-based analyses. Practical diagnostics. On modern deep models, measure several ℓr-style
surrogates (e.g., path norms) across data scale to estimate (n⋆, r⋆) and evaluate which norms are
reliable predictors of test error across regimes.

Overall, our results advocate replacing the monolithic notion of “the norm” by a family view. The
elbow n⋆ and the threshold r⋆ provide simple, interpretable invariants that tie together explicit/implicit
bias, data growth, and norm-based generalization measures, and they offer a compact vocabulary for
describing—and ultimately controlling—interpolation in high dimensions.
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A MINIMUM-ℓp INTERPOLATOR WITH s-SPARSE GROUND TRUTH

For completeness, we first introduce again the mathematical settings and restate our main theorem.
We study p ∈ (1, 2], set q = p

p−1 ∈ [2,∞), and let r ∈ [1, p]. Dimensions n, d ∈ N with d ≥ n. All
X ∈ Rn×d have i.i.d. N (0, 1) entries; columns are X:,j . Noise ξ ∼ N (0, σ2In), independent of X .
The signal w⋆ ∈ Rd is s-sparse with support S ⊂ [d], |S| = s; we write w⋆S for its nonzeros. The
response is Y := Xw⋆ + ξ. The min-ℓp interpolator

ŵp ∈ argmin{∥w∥p : Xw = Y } (p > 1 ensures uniqueness)

is our object of interest. Shorthands:

τ2s := ∥w⋆∥22 + σ2, Wq := ∥w⋆∥qq =
∑
j∈S
|w⋆j | q.

Remark A.1 (Standing assumptions and probability shorthand). We work in the proportional regime

d

n
→ κ ∈ (1,∞), κbulk := lim inf

n→∞

d− s
n
∈ (0,∞),

so d − s = Θ(n) and s = O(n) (we do not require s ≤ n). Unless stated otherwise, all hidden
constants depend only on (p, κbulk) (and on r when relevant), and “w.h.p.” means probability at
least 1− Ce−cn − 2d−γ . When we simplify remainders using s ≤ n (e.g.,

√
sn+ s⇝

√
sn), the

corresponding s > n form is always available and does not affect any ≍ conclusions in Theorem A.2.

On proportionality. The assumption d/n → κ is only for cleanliness of exposition and to keep
constants tidy; it is not essential to the argument. All places where it enters (e.g., the bulk ℓt
embedding and the uniform column–norm control) can be run under the weaker—and often more
realistic—conditions

lim inf
n→∞

d− s
n

= κbulk > 0, log d = o(n), s = O(n).

In particular, our proofs and conclusions (same exponents in n, the threshold r⋆ = 2(p− 1), and the
high-probability events) remain valid even in “larger” aspect-ratio regimes (including d/n → ∞)
as long as log d = o(n) and the bulk density is bounded below. Under these weaker assumptions
the hidden constants are uniform in (n, d, s) and depend only on (p, r, κbulk) (and on a fixed upper
bound for s/n if desired), so no changes to the proofs are needed.
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A.1 MAIN THEOREM

Theorem A.2 (Theorem 3.1 restated). Fix p ∈ (1, 2], q = p
p−1 , r ∈ [1, p], and suppose lim inf(d−

s)/n = κbulk > 0 while d/n→ κ ∈ (1,∞). Then, w.h.p.,

∥ŵp∥r ≍ max
{
t q−1
⋆ n q−1 ∥w⋆∥ q−1

(q−1)r︸ ︷︷ ︸
spike main (S)

, (d− s)1/r
(
t⋆ τs
√
n
) q−1︸ ︷︷ ︸

bulk (Sc)

, smax{ 1/r, (q−1)/2 } (t⋆ τs√n) q−1︸ ︷︷ ︸
spike remainder

}
.

(6)

where the ray scale t⋆ satisfies

t q−1
⋆ ≍ ∥Y ∥22

∥X⊤Y ∥qq
≍ τ2s n

nqWq + (d− s)mq τ
q
s nq/2 + O

(
τ qs (s nq/2 + s1+q/2)

) w.h.p. (7)

with mt := E|Z|t and Z ∼ N (0, 1). Define the dual-transition scale

n⋆ ≍
(
κbulk

τ qs
Wq

) 2
q−2

. (8)

Then, w.h.p., the following asymptotic simplifications hold:

Dual spike-dominated n≫ n⋆.

∥ŵp∥r ≍


τ q+1
s

Wq
n

1
r−

1
2(p−1) , r ≤ 2(p− 1),

τ 2
s

Wq
∥w⋆∥ q−1

(q−1)r, r > 2(p− 1).

(9)

Dual bulk-dominated n≪ n⋆.

∥ŵp∥r ≍ max
{
κ

1
r−1

bulk τs n
1
r−

1
2 , κ−1

bulk τ
2−q
s ∥w⋆∥ q−1

(q−1)r n
q
2−1 , κ−1

bulk τs s
max{ 1/r, (q−1)/2 } n−1/2

}
.

(10)
(Equivalently, using d− s ≍ κbulkn, the third term can be written as τs

d−s s
max{1/r, (q−1)/2}√n.)

Remark A.3 (When the third term is absorbed). If r ≤ 2(p − 1) and s ≤ C (d − s) for an
absolute constant C, then the third term in equation 10 is dominated by the first term (their ratio is
≲ (s/(d− s))1/r). In that case, equation 10 reduces to the two-term maximum

∥ŵp∥r ≍ max
{
κ

1
r−1

bulk τs n
1
r−

1
2 , κ−1

bulk τ
2−q
s ∥w⋆∥ q−1

(q−1)r n
q
2−1

}
.

For r > 2(p − 1), no uniform absorption holds in general; the third term can dominate when
∥w⋆∥(q−1)r is small relative to τs.
Remark A.4 (Boundary p = 2). At p = 2 (so q = 2) the exponent in equation 8 diverges. In the
proportional-d regime (d/n→ κ) there is no n-driven transition; the relative sizes of the spike and
bulk are constant-level. In the finite-d regime (below) a concrete n-threshold does exist because
(d− s) does not scale with n.

A.2 KEY LEMMAS AND PROOF OUTLINE

Roadmap. We prove Theorem 3.1 by (i) reducing the min-ℓp interpolator to a dual maximization
and restricting the dual to the one-dimensional ray λ = tY , (ii) decomposing ∥X⊤Y ∥qq into a spike
term (j ∈ S) and a bulk term (j /∈ S), and (iii) converting back to the primal via the KKT map, which
raises correlations to the power (q − 1) and produces the three-term maximum in equation 6. The
elbow at r = 2(p−1) comes from the sign of 1/r − 1/(2(p−1)), i.e., exactly whether the bulk-type
contribution grows or plateaus in the spike-dominated regime. We work on a single high-probability
event E (defined below) on which all concentration facts hold simultaneously.

Global event. Let E be the intersection of the column-norm, spectral, and bulk ℓt events from
Lemmas A.5, A.8, and A.11. Then P(E) ≥ 1− Ce−cn − 2d−γ . All bounds below hold on E .
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A.2.1 DUAL PROBLEM AND KKT

We briefly review Lagrangian duality for convex programs with equality constraints and then apply it
to the minimum-ℓp interpolator.

Primal problem and feasibility. We consider

min
w∈Rd

f(w) subject to Xw = Y, with f(w) :=
1

p
∥w∥pp,

where p ∈ (1, 2]. Since X ∈ Rn×d has full row rank n a.s. (for d ≥ n with i.i.d. N (0, 1) entries),
the affine constraint set {w : Xw = Y } is nonempty for every Y ∈ Rn. The objective f is proper,
closed, and strictly convex for p > 1 (indeed uniformly convex). Therefore, the primal minimizer ŵp
exists and is unique. Introduce a Lagrange multiplier λ ∈ Rn for the equality constraint, and form
the Lagrangian

L(w, λ) := f(w) + ⟨λ, Y −Xw⟩.
The dual function is obtained by minimizing the Lagrangian over w:

g(λ) := inf
w∈Rd

{
f(w)− ⟨X⊤λ, w⟩

}
+ ⟨Y, λ⟩ = − f⋆(X⊤λ) + ⟨Y, λ⟩,

where f⋆ is the convex conjugate of f :

f⋆(z) := sup
w∈Rd

{
⟨z, w⟩ − f(w)

}
.

Since f(w) =
∑d
i=1 |wi|p/p is separable, its conjugate is f⋆(z) =

∑d
i=1 |zi|q/q = (1/q)∥z∥qq,

where q = p/(p− 1) is the Hölder conjugate of p. Indeed, for each coordinate

sup
t∈R
{z t− |t|p/p}

is achieved at t = sgn(z)|z|q−1, with optimal value |z|q/q. Therefore the dual function is

g(λ) = ⟨Y, λ⟩ − 1

q
∥X⊤λ∥qq.

Dual problem and strong duality. The dual problem is maxλ∈Rn g(λ), i.e.

max
λ∈Rn

D(λ), D(λ) := ⟨Y, λ⟩ − 1
q∥X

⊤λ∥qq.

This is a concave maximization problem (a smooth concave objective with no constraints). Strong
duality holds in our setting by standard convex duality: the primal is convex, the constraint is affine,
and feasibility holds (Slater’s condition for equalities reduces to existence of a feasible point). Hence

min
w:Xw=Y

f(w) = max
λ∈Rn

D(λ).

For convex programs with equality constraints, the Karush-Kuhn-Tucker (KKT) conditions are
necessary and sufficient for optimality under strong duality. They read:

(primal feasibility) Xw = Y, (stationarity) 0 ∈ ∂f(w)−X⊤λ.

Because p > 1, f is differentiable on Rd with gradient

∇f(w) = |w|p−2 ⊙ w = sgn(w)⊙ |w|p−1,

so the subdifferential collapses to the singleton {∇f(w)} and stationarity is

∇f(w) = X⊤λ.

At any primal-dual optimum (ŵp, λ
⋆) we therefore have

Xŵp = Y, X⊤λ⋆ = ∇f(ŵp) = |ŵp| p−2 ⊙ ŵp. (11)
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The conjugate f⋆ is differentiable with∇f⋆(z) = |z|q−2 ⊙ z = sgn(z)⊙ |z|q−1, and the gradients
are mutual inverses: ∇f⋆ = (∇f)−1. Applying ∇f⋆ to both sides of X⊤λ⋆ = ∇f(ŵp) gives the
coordinatewise KKT map:

ŵp,i =
(
∇f⋆(X⊤λ⋆)

)
i
= sgn

(
(X⊤λ⋆)i

) ∣∣(X⊤λ⋆)i
∣∣ q−1

. (12)

Equivalently, ŵp = ∇f⋆
(
X⊤λ⋆

)
and X⊤λ⋆ = ∇f(ŵp).

At optimality, Fenchel–Young gives f(ŵp) + f⋆(X⊤λ⋆) = ⟨ŵp, X⊤λ⋆⟩. Using Xŵp = Y and the
expressions for f and f⋆ yields the identities

∥X⊤λ⋆∥qq = ∥ŵp∥pp = ⟨Y, λ⋆⟩. (13)

These will be used repeatedly to pass between the primal and dual scales.

The affine set {w : Xw = Y } is a translate of ker(X), and minimizing ∥w∥p over it finds the
point where a scaled ℓp ball first touches this affine subspace. The outer normal to the ℓp ball at the
touching point is∇f(ŵp) = |ŵp|p−2 ⊙ ŵp, and the KKT condition X⊤λ⋆ = ∇f(ŵp) says that this
normal lies in the row space of X . In coordinates, equation 12 shows that each coefficient of ŵp
is a (q − 1)-power of the correlation between the corresponding feature column X:,i and the dual
multiplier λ⋆.

Specialization at p = 2. When p = q = 2,∇f(w) = w and∇f⋆(z) = z. Then equation 11 reads
X⊤λ⋆ = ŵ2 and Xŵ2 = Y , which implies XX⊤λ⋆ = Y and hence λ⋆ = (XX⊤)−1Y . Therefore

ŵ2 = X⊤(XX⊤)−1Y = X+Y,

the minimum-ℓ2 (Moore–Penrose) interpolator. For p ̸= 2 the same structure persists but the map
z 7→ ∇f⋆(z) = sgn(z)|z|q−1 is nonlinear, which is exactly what introduces the (q− 1)-power in the
subsequent spike/bulk analysis.

Why duality helps here. The dual objective

D(λ) = ⟨Y, λ⟩ − 1
q∥X

⊤λ∥qq

separates the data dependence (linear in Y ) from the feature geometry through ∥X⊤λ∥qq. In our
Gaussian design, the d coordinates of X⊤λ split naturally into the s spikes (indices in S) and the
(d − s) bulk, for which we have precise ℓt concentration (Lemmas A.8 and A.11). Because D is
homogeneous in a simple way along the ray λ = tY ,

D(t) = t∥Y ∥22 − tq

q ∥X
⊤Y ∥qq,

we will use the ray scale t⋆ (the maximizer of D(tY )) as a canonical scale for λ⋆; Lemma A.12
shows ∥λ⋆∥2 ≍ t⋆∥Y ∥2 and provides blockwise controls on X⊤λ⋆. The KKT map equation 12 then
converts ∥X⊤λ⋆∥ q−1

(q−1)r into ∥ŵp∥r, via ∥|u|⊙(q−1)∥r = ∥u∥ q−1
(q−1)r, which is the backbone of the

unified bound equation 6.

A.2.2 CONCENTRATION FOR Y AND X⊤Y .

Let mt := E|Z| t for Z ∼ N (0, 1).
Lemma A.5 (norm of Y ). With Y := Xw⋆ + ξ and τ2s := ∥w⋆∥22 + σ2, we have

∥Y ∥22 = τ2s n (1 + o(1)) w.h.p.

More quantitatively, for every t > 0,

Pr
(∣∣∥Y ∥22 − τ2s n∣∣ ≥ 2τ2s

√
nt+ 2τ2s t

)
≤ e−t.

Proof. For each row i ∈ [n], (Xw⋆)i =
∑d
j=1 w

⋆
jXi,j is N (0, ∥w⋆∥22) since the Xi,j are i.i.d.

N (0, 1) and independent in j; the rows are independent. The noise ξi ∼ N (0, σ2) is independent of
X , hence

Y ∼ N (0, τ2s In),
∥Y ∥22
τ2s

∼ χ2
n.
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The standard Laurent–Massart inequality for χ2
n variables (see e.g. Ann. Statist. 2000) yields, for all

t > 0,

Pr
(
∥Y ∥22 − τ2s n ≥ 2τ2s

√
nt+ 2τ2s t

)
≤ e−t, Pr

(
τ2s n− ∥Y ∥22 ≥ 2τ2s

√
nt
)
≤ e−t.

Taking t = cn gives ∥Y ∥22 = τ2s n(1 + o(1)) with probability at least 1− e−cn.

Lemma A.6 (bulk coordinates of X⊤Y ). Conditional on Y , for each j /∈ S,

⟨X:,j , Y ⟩ ∼ N
(
0, ∥Y ∥22

)
,

and the variables {⟨X:,j , Y ⟩}j /∈S are i.i.d. given Y . Consequently, with mq := E|Z|q for Z ∼
N (0, 1), ∑

j /∈S

∣∣⟨X:,j , Y ⟩
∣∣q = (d− s)mq ∥Y ∥q2

(
1 + o(1)

)
≍ (d− s) τ qs nq/2 w.h.p.

Quantitatively, for any fixed q ≥ 2 and any u ∈ (0, 1),

Pr

∣∣∣∣∣∣ 1

d− s
∑
j /∈S

|⟨X:,j , Y ⟩|q

∥Y ∥q2
−mq

∣∣∣∣∣∣ > u

∣∣∣∣∣∣ Y
 ≤ 2 exp

(
−cq(d− s)min{u2, u}

)
.

Proof. Fix j /∈ S. The vectorX:,j ∼ N (0, In) is independent of (X:,k)k∈S and ξ, hence independent
of Y = Xw⋆ + ξ, which depends only on the columns indexed by S and on ξ. Conditional on Y , by
rotational invariance,

⟨X:,j , Y ⟩
d
= ∥Y ∥2 Zj , Zj ∼ N (0, 1),

and independence across j /∈ S follows from the independence of the columns {X:,j}j /∈S .

Let Wj := |Zj |q − mq. Then Wj are i.i.d. mean-zero and sub-exponential with ∥Wj∥ψ1
≤ Cq

(a standard fact for polynomial functions of a standard Gaussian, see, e.g., Vershynin’s High-
Dimensional Probability). Bernstein’s inequality for sub-exponential variables gives, for any u > 0,

Pr

∣∣∣∣∣∣ 1

d− s
∑
j /∈S

Wj

∣∣∣∣∣∣ > u
∣∣∣ Y

 ≤ 2 exp
(
−cq(d− s)min{u2, u}

)
.

Multiplying back by ∥Y ∥q2 proves the conditional concentration display. Since (d − s) ≍ n by
assumption, taking u→ 0 slowly (e.g. u =

√
(log n)/(d− s)) yields∑

j /∈S

|⟨X:,j , Y ⟩|q = (d− s)mq∥Y ∥q2 (1 + o(1))

with probability at least 1−Ce−c(d−s) ≥ 1−Ce−cn (unconditionally). Finally, Lemma A.5 implies
∥Y ∥q2 ≍ τ qsnq/2 w.h.p., completing the proof.

Lemma A.7 (Signal block with integrated uniform column-norm control). Let X ∈ Rn×d have i.i.d.
N (0, 1) entries, S ⊂ [d] with |S| = s, and Y := Xw⋆ + ξ where ξ ∼ N (0, σ2In) is independent of
X . Write τ2s := ∥w⋆∥22 + σ2 and Wq :=

∑
j∈S |w⋆j |q for q ≥ 2.

(i) Uniform column-norm concentration (over all d columns). There exists a universal c ∈ (0, 1)
such that, for every u > 0,

Pr

(
max
1≤j≤d

∣∣∣∣∥X:,j∥22
n

− 1

∣∣∣∣ > u

)
≤ 2 d exp

(
− c n min{u2, u}

)
. (14)

In particular, for any fixed γ > 0,

un :=

√
(1 + γ) log d

c n
∈ (0, 1] for n large, and Pr

(
max
j≤d

∣∣∣∣∥X:,j∥22
n

− 1

∣∣∣∣ > un

)
≤ 2 d−γ .
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(ii) Spike decomposition, explicit definition of ζj , and q-moment bound. For each j ∈ S, define

ζj :=
〈
X:,j ,

∑
k∈S\{j}

w⋆kX:,k + ξ
〉
. (15)

Then
⟨X:,j , Y ⟩ = w⋆j ∥X:,j∥22 + ζj . (16)

Moreover, for each fixed j ∈ S,

E[ζj |X:,j ] = 0, Var(ζj |X:,j) =
(
τ2s − (w⋆j )

2
)
∥X:,j∥22, (17)

and, conditional on X:,j ,

ζj ∼ N
(
0,

(
τ2s − (w⋆j )

2
)
∥X:,j∥22

)
. (18)

(We do not assume or use independence between the collection {ζj}j∈S ; the proof below controls their
aggregate via operator-norm bounds.) Consequently, with probability at least 1− 2d−γ − Ce−c

√
ns,∑

j∈S

∣∣⟨X:,j , Y ⟩
∣∣q = nqWq (1 + o(1)) + O

(
τ qs

(
s nq/2 + s1+q/2

))
, (19)

where the o(1) (as n→∞) and the hidden constants depend only on q (hence on p). The mixed term
Σj∈S |aj |q−1|bj | is absorbed by Young’s inequality into the nqWq leading term and the Σj∈S |bj |q
remainder, with a harmless change in constants.

Proof. Part (i): For a fixed j, Zj := ∥X:,j∥22
d
= χ2

n. By Laurent–Massart, for all x ≥ 0,

Pr(Zj − n ≥ 2
√
nx+ 2x) ≤ e−x, Pr(n− Zj ≥ 2

√
nx) ≤ e−x.

A standard choice of x (see derivation below) yields the Bernstein-type bound

Pr

(∣∣∣∣Zjn − 1

∣∣∣∣ > u

)
≤ 2 exp

(
− c n min{u2, u}

)
(∀u > 0), (20)

for some universal c ∈ (0, 1). Summing over j = 1, . . . , d gives equation 14. For the explicit choice
un =

√
(1 + γ) log d/(cn) ≤ 1 (for n large),

2d exp(−cnu2n) = 2d exp(−(1 + γ) log d) = 2d−γ .

(Derivation of the Bernstein form): If u ∈ (0, 1], choose x = u2n
8 to get Pr(Zj − n ≥ un) ≤ e−

u2n
8

and x = u2n
4 to get Pr(n − Zj ≥ un) ≤ e−

u2n
4 . If u ≥ 1, choose x = c0un (e.g. c0 = 1/16) so

that 2
√
nx+ 2x ≤ un, hence Pr(Zj − n ≥ un) ≤ e−c0un. Combine and absorb constants into c.

Part (ii): The decomposition equation 16 is immediate from

Y = w⋆jX:,j +
∑

k∈S\{j}

w⋆kX:,k + ξ,

and independence/rotational invariance: conditional on X:,j , ⟨X:,j , X:,k⟩ ∼ N (0, ∥X:,j∥22) for k ̸= j
and ⟨X:,j , ξ⟩ ∼ N (0, σ2∥X:,j∥22), all independent. Let aj := w⋆j ∥X:,j∥22 and bj := ζj so that
⟨X:,j , Y ⟩ = aj + bj . We show:∑

j∈S
|aj |q = nqWq(1 + o(1)) and

∑
j∈S
|bj |q ≲ s τ qs n

q/2,

with the stated probability. Conditioned on the event from (i) with u = un = o(1),

max
1≤j≤d

∣∣∣∣∥X:,j∥22
n

− 1

∣∣∣∣ ≤ un,
and by a mean-value bound, ∥X:,j∥2q2 = nq(1 +O(un)) uniformly in j. Hence∑

j∈S
|aj |q =

∑
j∈S
|w⋆j |q ∥X:,j∥2q2 = nq

∑
j∈S
|w⋆j |q (1 +O(un)) = nqWq (1 + o(1)).
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For any index set T ⊂ [d], we write X:,T ∈ Rn×|T | for the submatrix formed by the columns
{X:,j : j ∈ T}. When convenient we abbreviate X:,T as XT . For a vector w ∈ Rd, wT denotes its
restriction to T , and T c the complement of T in [d]. Let G := X⊤

S XS and D := diag(∥X:,j∥22)j∈S .
Then

b = (bj)j∈S = (G−D)w⋆S +X⊤
S ξ.

We bound ∥b∥2 and then pass to ℓq. Recall b = (G−D)w⋆S +X⊤
S ξ, where G := X⊤

S XS ∈ Rs×s
and D := diag(∥X:,j∥22)j∈S .

Bound on ∥(G−D)w⋆S∥2. We have

∥(G−D)w⋆S∥2 ≤ ∥G−D∥op ∥w⋆∥2 ≤
(
∥G− nIs∥op + ∥D − nIs∥op

)
∥w⋆∥2. (21)

Singular-value bound for G − nIs. Let smax(XS) and smin(XS) denote the largest and smallest
singular values of XS . By the standard Gaussian singular-value concentration (see Vershynin,
High-Dimensional Probability, Thm. 4.6.1), for any t ≥ 0,

P
(
smax(XS) ≤

√
n+
√
s+ t, smin(XS) ≥

√
n−
√
s− t

)
≥ 1− 2e−t

2/2. (22)

Conditioned on this event,

∥G− nIs∥op = max
{
smax(XS)

2 − n, n− smin(XS)
2
}

≤
(√
n+
√
s+ t

)2 − n ∨ n−
(√
n−
√
s− t

)2
≤ s+ 2

√
ns+ 2t(

√
n+
√
s) + t2. (23)

Choosing t =
√
s in equation 22–equation 23 yields, with probability at least 1− 2e−s/2,

∥G− nIs∥op ≤ s+ 2
√
ns+ 2

√
s(
√
n+
√
s) + s ≤ 4

√
ns+ 4s. (24)

Diagonal bound for D − nIs. By the single-column deviation bound equation 20, for any u > 0 and
any j ∈ S,

Pr

(∣∣∣∣∥X:,j∥22
n

− 1

∣∣∣∣ > u

)
≤ 2 exp

(
− c n min{u2, u}

)
.

Union-bounding this over the s indices j ∈ S and taking

uS :=

√
s

n
, (25)

we obtain

P
(
max
j∈S

∣∣∣∥X:,j∥22
n

− 1
∣∣∣ > uS

)
≤

{
C e−c s, s ≤ n,
C e−c

′√ns, s > n.
(26)

hence, on this event,

∥D − nIs∥op = max
j∈S

∣∣∥X:,j∥22 − n
∣∣ ≤ nuS =

√
ns. (27)

Combining equation 21, equation 24, and equation 27, we arrive at

∥(G−D)w⋆S∥2 ≤
(
4
√
ns+ 4s+

√
ns

)
∥w⋆∥2 ≤

(
5
√
ns+ 4s

)
∥w⋆∥2, (28)

with probability at least 1− 2e−s/2 − Ce−c′
√
ns.

Now we bound ∥X⊤
S ξ∥2. Conditionally on XS , the vector X⊤

S ξ is Gaussian with covariance

Σ := Var
(
X⊤
S ξ

∣∣XS

)
= σ2G.

Write the eigenvalues of G as µ1, . . . , µs ≥ 0. Then

∥X⊤
S ξ∥22

d
=

s∑
i=1

λi Z
2
i , λi := σ2µi, Zi

i.i.d.∼ N (0, 1).
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The weighted χ2 tail of Laurent–Massart (2000, Lemma 1) states that for all x ≥ 0,

P

 s∑
i=1

λiZ
2
i ≥

s∑
i=1

λi + 2

√√√√( s∑
i=1

λ2i

)
x + 2

(
max
i
λi
)
x
∣∣∣ XS

 ≤ e−x. (29)

Since
∑
i λi = σ2tr(G),

∑
i λ

2
i = σ4tr(G2) ≤ σ4s ∥G∥2op, and maxi λi = σ2∥G∥op, inserting

these into equation 29 and choosing x = s gives, with conditional probability ≥ 1− e−s,

∥X⊤
S ξ∥22 ≤ σ2

(
tr(G) + 4s ∥G∥op

)
. (30)

We now bound tr(G) and ∥G∥op on the events already used in Step A. First, by equation 25–
equation 26,

tr(G) =
∑
j∈S
∥X:,j∥22 ≤ s n (1 + uS) = s n+ s

√
ns. (31)

Second, from equation 22 with t =
√
s,

∥G∥op = smax(XS)
2 ≤

(√
n+
√
s+
√
s
)2 ≤ n + 4

√
ns + 4s. (32)

Plugging equation 31–equation 32 into equation 30 and taking square roots, we obtain

∥X⊤
S ξ∥2 ≤ σ

√
s n+ s

√
ns + 4s (n+ 4

√
ns+ 4s)

≤ σ
(√

sn +

√
s
√
ns + 2

√
sn + 4s

)
≤ C σ

(√
sn+ s

)
, (33)

where in the last step we used
√
s
√
ns = s3/4n1/4 ≤ 1

2 (
√
sn+ s).

ℓ2 and ℓq bounds for b. Combining equation 28 and equation 33,

∥b∥2 ≤ ∥(G−D)w⋆S∥2 + ∥X⊤
S ξ∥2 ≤ C

(√
ns ∥w⋆∥2 + s ∥w⋆∥2 + σ

√
sn+ σs

)
. (34)

In particular, when s ≤ n the s terms are dominated by
√
ns and

∥b∥2 ≤ C τs
√
sn (since τ2s = ∥w⋆∥22 + σ2). (35)

(Refined q-moment bound via decoupling). Introduce i.i.d. “ghost” columns {X ′
:,j}j∈S independent

of (X, ξ) and set
ζ ′j := ⟨X ′

:,j , uj⟩, uj := X:,S\{j} w
⋆
S\{j} + ξ.

By a standard decoupling inequality for Gaussian chaos of order two (de la Peña and Giné, Decoupling:
From Dependence to Independence, 1999, Thm. 3.5.3), there exists Cq <∞ (depending only on q)
such that for all t > 0,

P
(∑
j∈S
|ζj |q > t

)
≤ Cq P

(∑
j∈S
|ζ ′j |q > t/Cq

)
.

Conditional on {uj}, the variables {ζ ′j}j∈S are independent centered Gaussians with variances
∥uj∥22. On the singular-value and column-norm events used above (cf. equation 22 with t =

√
s and

equation 14), uniformly in j,

∥uj∥22 ≤ ∥X:,S∥2op ∥w⋆∥22 + ∥ξ∥22 ≤ C
(
n+ 4

√
ns+ 4s

)
∥w⋆∥22 + Cσ2n ≤ C τ2s (n+ s).

Hence, conditionally on {uj}, each |ζ ′j |q is sub-exponential with ψ1-norm ≤ C τ qs (n + s)q/2.
Bernstein’s inequality then yields∑

j∈S
|ζ ′j |q ≤ C τ qs

(
s nq/2 + s1+q/2

)
with conditional probability at least 1− Ce−cs.
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Unconditioning and applying decoupling gives, with probability at least 1− 2d−γ − Ce−cs,∑
j∈S
|bj |q =

∑
j∈S
|ζj |q ≤ C τ qs

(
s nq/2 + s1+q/2

)
. (36)

In particular, if s ≤ n this simplifies to
∑
j∈S |bj |q ≤ C s τ qs nq/2.

For the cross term, for q ≥ 2 and any a, b ∈ R we have the elementary inequality∣∣|a+ b|q − |a|q
∣∣ ≤ Cq

(
|a|q−1|b|+ |b|q

)
≤ Cq

(
|a|q−2b2 + |b|q

)
, (37)

for a constant Cq depending only on q. Summing equation 37 over j ∈ S with aj = w⋆j ∥X:,j∥22 and
bj = ζj , and applying Hölder,∑

j∈S

∣∣|aj + bj |q − |aj |q
∣∣ ≤ Cq∑

j∈S
|aj |q−1|bj |+ Cq

∑
j∈S
|bj |q

≤ Cq
(∑
j∈S
|aj |q

) q−1
q
(∑
j∈S
|bj |q

) 1
q

+ Cq
∑
j∈S
|bj |q. (38)

Set
A :=

∑
j∈S
|aj |q, B :=

∑
j∈S
|bj |q.

Apply Young’s inequality with conjugate exponents r = q
q−1 and s = q: for any ε > 0,

A
q−1
q B

1
q ≤ ε

r
A +

ε−(q−1)

s
B =

q − 1

q
εA +

1

q
ε−(q−1)B. (39)

WithA = nqWq(1+O(un)) and the boundB ≤ C τ qs (s nq/2+s1+q/2) from equation 36, choosing
a fixed ε ∈ (0, 1) (e.g. ε = 1

2 ) absorbs the mixed term into the leading A and the B-remainder (with
a harmless change of constants). Consequently,∑

j∈S

∣∣|aj + bj |q − |aj |q
∣∣ = O

(
τ qs

(
s nq/2 + s1+q/2

))
,

which yields equation 19. When s ≤ n the remainder simplifies to O
(
s τ qs n

q/2
)
.

Combining Lemmas A.6–A.7 yields the decomposition

∥X⊤Y ∥qq = nqWq (1+o(1)) + (d−s)mq τ
q
s n

q/2 (1+o(1)) +O
(
τ qs

(
s nq/2+s1+q/2

))
w.h.p.

(40)

A.2.3 BULK ℓq -EMBEDDING AND GAUSSIAN ℓt RELATIONS.

Lemma A.8 (uniform ℓq control on the bulk operator). Let q ∈ [2,∞) and assume κbulk :=

lim infn→∞
d−s
n > 0. There exist constants 0 < cq ≤ Cq <∞, depending only on (q, κbulk), such

that, with probability at least 1− Ce−cn, simultaneously for all λ ∈ Rn,

cq (d− s) ∥λ∥q2 ≤
∑
j /∈S

∣∣⟨X:,j , λ⟩
∣∣q ≤ Cq (d− s) ∥λ∥q2. (41)

(Here we absorb the Gaussian absolute moment mq = E|Z|q into the constants cq, Cq; in equation 42
we keep mt explicit.) Moreover, for every t ∈ [1, q], there exist constants 0 < ct ≤ Ct < ∞,
depending only on (t, κbulk), such that, w.h.p., uniformly in λ ∈ Rn,

c
1/t
t (d− s)1/tm1/t

t ∥λ∥2 ≤
∥∥( |⟨X:,j , λ⟩|

)
j /∈S

∥∥
t
≤ C

1/t
t (d− s)1/tm1/t

t ∥λ∥2, (42)

where mt := E|Z|t for Z ∼ N (0, 1).
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Proof. Fix λ ∈ Rn, and if λ ̸= 0 write u := λ/∥λ∥2 ∈ Sn−1. By homogeneity,∑
j /∈S

| ⟨X:,j , λ⟩ |q = ∥λ∥q2
∑
j /∈S

| ⟨X:,j , u⟩ |q, (43)

and similarly for any t ∈ [1, q],∥∥(| ⟨X:,j , λ⟩ |)j /∈S
∥∥
t
= ∥λ∥2

(∑
j /∈S

| ⟨X:,j , u⟩ |t
)1/t

. (44)

Thus it suffices to prove the bounds for unit u.

Let T := Sc and m := |T | = d− s. Fix u ∈ Sn−1 and t ∈ [1, q]. Define

Y
(t)
j (u) :=

∣∣⟨X:,j , u⟩
∣∣ t, j ∈ T.

Since the columns {X:,j}j∈T are i.i.d. N (0, In) and independent of u, the random variables
{Y (t)

j (u)}j∈T are i.i.d.

Definition A.9 (Orlicz ψν norm and sub-Weibull class). For ν ∈ (0, 2] and a real random variable Z,
the Orlicz norm

∥Z∥ψν
:= inf

{
K > 0 : E exp

( |Z|ν
Kν

)
≤ 2

}
.

If ∥Z∥ψν <∞, we say Z is sub-Weibull of order ν. Special cases: ν = 2 (sub-Gaussian) and ν = 1
(sub-Exponential). Two basic properties we use are

P(|Z| > x) ≤ 2 exp
(
− c (x/∥Z∥ψν

)ν
)

(∀x ≥ 0), (45)

∥Z − EZ∥ψν
≤ 2 ∥Z∥ψν

. (46)

Definition A.10 (Gaussian absolute moment). For t > 0, let Z ∼ N (0, 1) and define

mt := E|Z|t = 2t/2
Γ
(
t+1
2

)
√
π

.

Classification of Y (t)
j (u) in ψν (with explicit mgf computation). Since ⟨X:,j , u⟩ ∼ N (0, 1), write

Z ∼ N (0, 1) and set W := |Z|t. For any K > 0,(W
K

)2/t

=
( |Z| t
K

)2/t

=
|Z|2

K2/t
.

Let
θ :=

1

K2/t
.

Then
E exp

((
W/K

)2/t)
= E exp

(
θ Z2

)
.

Compute this expectation explicitly: using the standard normal density φ(z) = (2π)−1/2e−z
2/2,

E
[
eθZ

2]
=

∫
R
eθz

2

φ(z) dz =
1√
2π

∫
R
eθz

2

e−z
2/2 dz

=
1√
2π

∫
R
e−(

1
2−θ) z

2

dz =
1√
2π
·
√

π
1
2 − θ

=
1√

1− 2θ
, for θ < 1

2 . (47)

Equivalently, since Z2 ∼ χ2
1, the mgf of χ2

1 is (1− 2θ)−1/2 for θ < 1/2, which matches equation 47.

We now choose K so that θ < 1/2 and the expectation is uniformly bounded by a constant ≤ 2. Take

Kt := (4t)t/2 =⇒ θ =
1

K
2/t
t

=
1

4t
<

1

2
(t ≥ 1). (48)
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Then, by equation 47,

E exp
((
W/Kt

)2/t)
=

1√
1− 2

K
2/t
t

=
1√

1− 1
2t

≤ 1√
1− 1

2

=
√
2 < 2, (49)

where we used t ∈ [1, q] (hence t ≥ 1). By the definition of the Orlicz norm,

∥ |Z|t ∥ψ2/t
≤ Kt = (4t)t/2. (50)

Centering preserves the class up to a factor 2 (by equation 46), hence

∥ |Z|t −mt ∥ψ2/t
≤ 2Kt = 2(4t)t/2. (51)

Finally, define
ν(t) := min{1, 2/t}. (52)

Since 2/t ≥ 1 for t ≤ 2 and 2/t < 1 for t > 2, combining equation 51 with equation 52 yields the
uniform (in u) classification

∥Y (t)
j (u)−mt ∥ψν(t)

≤ K ′
t with K ′

t := 2(4t)t/2. (53)

This bound is uniform in u because ⟨X:,j , u⟩
d
= N (0, 1) for every fixed u ∈ Sn−1.

Empirical-mean concentration at fixed u. From equation 53 and independence across j ∈ T , a
Bernstein-type inequality for sums of i.i.d. sub-Weibull(ν) variables (e.g. Theorem 3.1 in Kuchibhotla–
Basu, 2018) yields, for any ε > 0,

P

∣∣∣∣∣∣ 1m
∑
j∈T

(
Y

(t)
j (u)−mt

)∣∣∣∣∣∣ > ε

 ≤ 2 exp

{
−cν(t)m min

(
ε2

K ′2
t

,
( ε

K ′
t

)ν(t))}
. (54)

Taking ε = δ mt with δ ∈ (0, 1), and absorbing the fixed ratio mt/K
′
t (which depends only on t)

into the constant, we obtain

P
(∣∣∣ 1
m

∑
j∈T

Y
(t)
j (u)−mt

∣∣∣ > δmt

)
≤ 2 exp

(
− ctm min{δ2, δν(t)}

)
, (55)

where ct > 0 depends only on t (hence only on p). In the sub-Exponential range t ∈ [1, 2], ν(t) = 1
and equation 55 simplifies to

P
(∣∣∣ 1
m

∑
j∈T

Y
(t)
j (u)−mt

∣∣∣ > δmt

)
≤ 2 exp

(
− ctm min{δ2, δ}

)
. (56)

Finally, note that
EY (t)

j (u) = mt, (57)

by Definition A.10, completing Step 1.

Now we can construct a net on the sphere and a uniform bound on that net. Let ε ∈ (0, 1/8] be a
fixed absolute constant (to be chosen below). There exists an ε-net Nε ⊂ Sn−1 with

|Nε| ≤
(
1 +

2

ε

)n
≤ Cnε . (58)

Applying equation 55 with δ = δt ∈ (0, 1/4] (a small absolute constant depending only on t) and
union-bounding over Nε yields

P

∃ v ∈ Nε : ∣∣∣ 1
m

∑
j∈T

Y
(t)
j (v)−mt

∣∣∣ > δtmt

 ≤ 2 |Nε| exp
(
− ctm min{δ2t , δt}

)
≤ 2 exp

(
n logCε − c′tm

)
. (59)
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Because m ≥ κbulkn and κbulk > 0, by taking δt fixed (e.g. δt = 1/4) and ε fixed (e.g. ε = 1/8),
the right-hand side of equation 59 is ≤ Ce−cn. Therefore, with probability at least 1 − Ce−cn,
simultaneously for all v ∈ Nε,

(1− δt)mt ≤
1

m

∑
j∈T
| ⟨X:,j , v⟩ |t ≤ (1 + δt)mt. (60)

We are ready to extend from the net to the whole sphere. Fix arbitrary u ∈ Sn−1 and pick v ∈ Nε
with ∥u− v∥2 ≤ ε. For any a, b ∈ R and any t ≥ 1, the elementary inequalities

|a+ b|t ≤ 2t−1
(
|a|t + |b|t

)
, |a|t ≤ 2t−1

(
|a+ b|t + |b|t

)
(61)

hold. Applying equation 61 with a = ⟨X:,j , v⟩ and b = ⟨X:,j , u− v⟩, we get

| ⟨X:,j , u⟩ |t ≤ 2t−1
(
| ⟨X:,j , v⟩ |t + | ⟨X:,j , u− v⟩ |t

)
, (62)

| ⟨X:,j , u⟩ |t ≥ 21−t | ⟨X:,j , v⟩ |t − | ⟨X:,j , u− v⟩ |t. (63)

Average equation 62 and equation 63 over j ∈ T and divide by m to obtain

1

m

∑
j∈T
| ⟨X:,j , u⟩ |t ≤ 2t−1

 1

m

∑
j∈T
| ⟨X:,j , v⟩ |t +

1

m

∑
j∈T
| ⟨X:,j , u− v⟩ |t

 , (64)

1

m

∑
j∈T
| ⟨X:,j , u⟩ |t ≥ 21−t

1

m

∑
j∈T
| ⟨X:,j , v⟩ |t −

1

m

∑
j∈T
| ⟨X:,j , u− v⟩ |t. (65)

For any w ∈ Rn,

1

m

∑
j∈T
| ⟨X:,j , w⟩ |t = ∥w∥t2 ·

1

m

∑
j∈T
| ⟨X:,j , ŵ⟩ |t, ŵ :=

w

∥w∥2
(if w ̸= 0). (66)

Define the functional and its extremal values

A(u) :=
1

m

∑
j∈T
| ⟨X:,j , u⟩ |t, S := sup

u∈Sn−1

A(u), I := inf
u∈Sn−1

A(u).

By equation 66 and ∥u− v∥2 ≤ ε,
1

m

∑
j∈T
| ⟨X:,j , u− v⟩ |t = ∥u− v∥t2 ·

1

m

∑
j∈T
|
〈
X:,j , û− v

〉
|t ≤ εt S,

where we used the definition of S in the last inequality. On the event equation 60 (from Step 2),
A(v) ∈ [(1 − δt)mt, (1 + δt)mt] for every v ∈ Nε. Plugging these into equation 64-equation 65
yields

A(u) ≤ 2t−1
(
A(v) + εtS

)
,

A(u) ≥ 21−tA(v)− εtS.

Taking the supremum over u ∈ Sn−1 in the upper bound:

S ≤ 2t−1
(
(1 + δt)mt + εtS

)
=⇒ S ≤ 2t−1

1− 2t−1εt
(1 + δt)mt.

Taking the infimum over u ∈ Sn−1 in the lower bound:

I ≥ 21−t(1− δt)mt − εtS.

Choose fixed δt ≤ 1
4 and ε ≤ 1

8 ; then

2t−1εt =
(2ε)t

2
≤ (1/4)t

2
≤ 1

8
,
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so 1− 2t−1εt ≥ 7/8 and thus

S ≤ 2t−1

7/8
(1 + δt)mt ≤ Ctmt,

for a constant Ct <∞ depending only on t. Substituting this bound for S back into the inequality
for I gives

I ≥ 21−t(1− δt)mt − εtCtmt ≥ ctmt,

for some ct > 0 (depending only on t). Therefore, with probability at least 1− Ce−cn,

ctmt ≤
1

m

∑
j∈T
| ⟨X:,j , u⟩ |t ≤ Ctmt simultaneously for all u ∈ Sn−1. (67)

Multiplying equation 67 by m = d− s and using equation 43 with t = q yields

cq (d− s) ∥λ∥q2 ≤
∑
j /∈S

| ⟨X:,j , λ⟩ |q ≤ Cq (d− s) ∥λ∥q2,

which is equation 41. Likewise, combining equation 67 with equation 44 gives

c
1/t
t (d− s)1/tm1/t

t ∥λ∥2 ≤
∥∥(| ⟨X:,j , λ⟩ |)j /∈S

∥∥
t
≤ C

1/t
t (d− s)1/tm1/t

t ∥λ∥2,

which is equation 42.

A.2.4 SPIKE ℓt CONTROL FOR X⊤Y

Lemma A.11 (spike ℓt control for X⊤Y ). Fix any t ∈ [1, q] and γ > 0. With probability at least
1− 2d−γ − Ce−cs,∥∥∥( |⟨X:,j , Y ⟩|

)
j∈S

∥∥∥
t
= n ∥w⋆∥t

(
1 +O(un)

)
± C τs

(√
n smax{1/t, 1/2} + s 1+ (1/t−1/2)+

)
,

(68)
where un :=

√
(1 + γ) log d/(c n) = o(1) and (x)+ := max{x, 0}. In particular, if s ≤ n then the

error simplifies to∥∥∥( |⟨X:,j , Y ⟩|
)
j∈S

∥∥∥
t
= n ∥w⋆∥t

(
1 +O(un)

)
± C τs

√
n smax{1/t, 1/2}. (69)

All constants may depend on t (hence on p) but not on (n, d, s).

Proof. For each j ∈ S,

⟨X:,j , Y ⟩ = w⋆j ∥X:,j∥22 + ζj , ζj :=
〈
X:,j ,

∑
k∈S\{j}

w⋆kX:,k + ξ
〉
. (70)

Conditional on X:,j ,

E[ζj | X:,j ] = 0, Var(ζj | X:,j) = (τ2s − (w⋆j )
2) ∥X:,j∥22, (71)

and ζj | X:,j ∼ N (0, (τ2s − (w⋆j )
2)∥X:,j∥22) by independence and rotational invariance. Define

aj := w⋆j ∥X:,j∥22, bj := ζj , a := (aj)j∈S , b := (bj)j∈S .

By the uniform column-norm bound equation 14 with u = un = o(1), we have

max
1≤j≤d

∣∣∣∥X:,j∥22
n

− 1
∣∣∣ ≤ un with probability at least 1− 2d−γ . (72)

On this event,∥∥(|aj |)j∈S∥∥ℓt = (∑
j∈S
|w⋆j |t ∥X:,j∥2t2

)1/t

= n
(∑
j∈S
|w⋆j |t (1 +O(un))

t
)1/t

= n ∥w⋆∥t
(
1 +O(un)

)
. (73)
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Let XS be the n× s submatrix with columns {X:,j}j∈S , and set

G := X⊤
S XS , D := diag

(
∥X:,j∥22

)
j∈S .

From equation 70, in vector form

b = (G−D)w⋆S + X⊤
S ξ. (74)

We bound the two terms separately.

(i) Control of (G−D)w⋆S . By the triangle inequality and operator norm submultiplicativity,

∥(G−D)w⋆S∥2 ≤ ∥G−D∥op ∥w⋆∥2 ≤
(
∥G− nIs∥op + ∥D − nIs∥op

)
∥w⋆∥2. (75)

Gaussian singular-value concentration (Vershynin, HDP, Thm. 4.6.1) gives, for any t ≥ 0,

P
(
smax(XS) ≤

√
n+
√
s+ t, smin(XS) ≥

√
n−
√
s− t

)
≥ 1− 2e−t

2/2. (76)

On this event,

∥G− nIs∥op = max
{
smax(XS)

2 − n, n− smin(XS)
2
}

≤ (
√
n+
√
s+ t)2 − n ∨ n− (

√
n−
√
s− t)2

≤ s+ 2
√
ns+ 2t(

√
n+
√
s) + t2. (77)

Taking t =
√
s yields, with probability ≥ 1− 2e−s/2,

∥G− nIs∥op ≤ 4
√
ns+ 4s. (78)

By the S-only column-norm event equation 26 (with uS =
√
s/n),

∥D − nIs∥op = max
j∈S

∣∣∥X:,j∥22 − n
∣∣ ≤ nuS =

√
ns.

Combining this with equation 75 and equation 78 yields

∥(G−D)w⋆S∥2 ≤ C (
√
ns+s) ∥w⋆∥2 with probability at least 1−2e−s/2−Ce−c

√
ns. (79)

(ii) Control of X⊤
S ξ. Conditionally on XS , one has X⊤

S ξ ∼ N (0, σ2G). Writing {µi}si=1 for the
eigenvalues of G and λi := σ2µi, Laurent–Massart’s weighted χ2 tail (2000, Lemma 1) yields, for
all x ≥ 0,

P

 s∑
i=1

λiZ
2
i ≥

∑
i

λi + 2

√(∑
i

λ2i

)
x+ 2(max

i
λi)x

∣∣∣ XS

 ≤ e−x. (80)

Using
∑
i λi = σ2tr(G),

∑
i λ

2
i ≤ σ4s ∥G∥2op, and maxi λi = σ2∥G∥op, and taking x = s gives,

with conditional probability ≥ 1− e−s,

∥X⊤
S ξ∥22 ≤ σ2

(
tr(G) + 4s ∥G∥op

)
. (81)

On the event equation 76 with t =
√
s and equation 72,

tr(G) =
∑
j∈S
∥X:,j∥22 ≤ sn(1 + un) = sn+ o(sn), ∥G∥op = smax(XS)

2 ≤ n+ 4
√
ns+ 4s.

(82)
Plugging equation 82 into equation 81 and taking square roots,

∥X⊤
S ξ∥2 ≤ C σ

(√
sn+ s

)
with prob. ≥ 1− 2e−s/2 − e−s. (83)

Combining equation 79, equation 83, and equation 74,

∥b∥2 ≤ C τs (
√
sn+ s) with prob. ≥ 1− 2d−γ − Ce−cs. (84)

For t ∈ [1, 2], the norm monotonicity in Rs gives

∥b∥ℓt ≤ s 1/t−1/2 ∥b∥2. (85)
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For t ≥ 2, ∥b∥ℓt ≤ ∥b∥2. Hence, for all t ∈ [1, q],

∥b∥ℓt ≤ s (1/t−1/2)+ ∥b∥2 ≤ C τs

(√
n smax{1/t, 1/2} + s 1+(1/t−1/2)+

)
, (86)

where we used equation 84. In particular, if s ≤ n then s 1+(1/t−1/2)+ ≤
√
n smax{1/t, 1/2} and

equation 86 reduces to
∥b∥ℓt ≤ C τs

√
n smax{1/t, 1/2}. (87)

Finally, by the triangle inequality,∥∥(|aj + bj |)j∈S
∥∥
ℓt
≤ ∥(|aj |)j∈S∥ℓt + ∥(|bj |)j∈S∥ℓt , (88)∥∥(|aj + bj |)j∈S

∥∥
ℓt
≥ ∥(|aj |)j∈S∥ℓt − ∥(|bj |)j∈S∥ℓt , (89)

and combining with equation 73 and equation 86 (or equation 87 when s ≤ n) yields equation 68
(and equation 69).

A.2.5 RAY CONTROLS: MINIMAL COMPARISON AND BLOCKWISE BOUNDS

For the ray λ = tY we have the one-dimensional dual objective

D(t) := ⟨Y, tY ⟩ − 1
q∥X

⊤(tY )∥qq = t ∥Y ∥22 −
tq

q
∥X⊤Y ∥qq. (90)

Since D′′(t) = − (q − 1) tq−2 ∥X⊤Y ∥qq < 0 for all t > 0, D is strictly concave on [0,∞) and
admits a unique maximizer t⋆ given by the first-order condition D′(t⋆) = 0:

t q−1
⋆ =

∥Y ∥22
∥X⊤Y ∥qq

. (91)

At this maximizer,

D(t⋆) = t⋆∥Y ∥22 −
tq⋆
q
∥X⊤Y ∥qq =

(
1− 1

q

)
tq⋆∥X⊤Y ∥qq =

(
1− 1

q

)
∥X⊤(t⋆Y )∥qq. (92)

Lemma A.12 (Ray controls). Let p ∈ (1, 2], q = p
p−1 ∈ [2,∞), and define t⋆ by equation 91. With

probability at least 1− Ce−c(d−s) − Ce−c
√
ns (constants depend only on (q, κbulk)), the following

hold simultaneously.

(One-sided value comparison).

D(λ⋆) ≥ D(t⋆) and ∥X⊤λ⋆∥qq ≥ ∥X⊤(t⋆Y )∥qq. (93)

(Dual-norm scale). There exist 0 < c1 ≤ C1 <∞ depending only on (q, κbulk) such that

c1 t⋆ ∥Y ∥2 ≤ ∥λ⋆∥2 ≤ C1 t⋆ ∥Y ∥2. (94)

(Bulk block at level t ∈ [1, q]). For each t ∈ [1, q] there exist 0 < ct ≤ Ct <∞ (depending only on
(t, κbulk)) such that

c
1/t
t (d− s)1/tm1/t

t t⋆∥Y ∥2 ≤
∥∥∥(|⟨X:,j , λ

⋆⟩|
)
j /∈S

∥∥∥
t
≤ C

1/t
t (d− s)1/tm1/t

t t⋆∥Y ∥2, (95)

where mt = E|Z|t for Z ∼ N (0, 1).

(Spike block: two-sided t-level perturbation). For every t ∈ [1, q],∥∥∥(|⟨X:,j , λ
⋆⟩|

)
j∈S

∥∥∥
t
= t⋆

∥∥∥(|⟨X:,j , Y ⟩|
)
j∈S

∥∥∥
t
± C2 t⋆ ∥Y ∥2 s(1/t−1/2)+ (

√
n+
√
s), (96)

for a constant C2 = C2(q, κbulk). In particular, if s ≤ n then∥∥∥(|⟨X:,j , λ
⋆⟩|

)
j∈S

∥∥∥
t
= t⋆

∥∥∥(|⟨X:,j , Y ⟩|
)
j∈S

∥∥∥
t
± C3 t⋆ τs

√
n smax{1/t, 1/2}. (97)

In the last display we used ∥Y ∥2 = τs
√
n (1 + o(1)) from Lemma A.5.
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Proof. We work on the intersection of the high-probability events supplied by Lemma A.8 (both
equation 41 and equation 42), Lemma A.6, and the singular-value bound equation 22; this intersection
has probability at least 1− Ce−cn.

(One-sided value comparison equation 93). By optimality of λ⋆ and the definition of t⋆,

D(λ⋆) ≥ D(t⋆).

Using the Fenchel-Young identity at the optimum (see equation 13) and equation 92,

D(λ⋆) =
(
1− 1

q

)
∥X⊤λ⋆∥qq, D(t⋆) =

(
1− 1

q

)
∥X⊤(t⋆Y )∥qq,

hence equation 93.

(Dual-norm scale equation 94). Lower bound. From D(λ⋆) ≥ D(t⋆) and equation 92,

D(λ⋆) ≥
(
1− 1

q

)
t⋆∥Y ∥22.

Since D(λ⋆) ≤ ⟨Y, λ⋆⟩ ≤ ∥Y ∥2∥λ⋆∥2, we get

∥λ⋆∥2 ≥
(
1− 1

q

)
t⋆ ∥Y ∥2.

Upper bound. Let

S(λ) :=
∑
j∈S
|⟨X:,j , λ⟩|q, B(λ) :=

∑
j /∈S

|⟨X:,j , λ⟩|q.

From equation 13,
D(λ⋆) =

(
1− 1

q

)(
S(λ⋆) +B(λ⋆)

)
.

By Lemma A.8 (left inequality in equation 41),

B(λ⋆) ≥ cq (d− s) ∥λ⋆∥q2.
Combining with D(λ⋆) ≤ ∥Y ∥2∥λ⋆∥2 gives(

1− 1
q

)
cq(d− s) ∥λ⋆∥q−1

2 ≤ ∥Y ∥2. (98)

Next, Lemma A.6 yields ∑
j /∈S

|⟨X:,j , Y ⟩|q = (d− s)mq ∥Y ∥q2 (1 + o(1)),

so ∥X⊤Y ∥qq ≥ c (d− s) ∥Y ∥
q
2. From equation 91,

(
t⋆∥Y ∥2

)q−1
=
∥Y ∥ q+1

2

∥X⊤Y ∥qq
≤ 1

c
· ∥Y ∥2
(d− s)

.

Comparing with equation 98 gives ∥λ⋆∥q−1
2 ≤ C (t⋆∥Y ∥2)q−1 and hence ∥λ⋆∥2 ≤ C1 t⋆ ∥Y ∥2.

(Bulk block equation 95). Apply Lemma A.8 at level t (two-sided inequality equation 42) with
λ = λ⋆:

c
1/t
t (d− s)1/tm1/t

t ∥λ⋆∥2 ≤
∥∥∥(|⟨X:,j , λ

⋆⟩|
)
j /∈S

∥∥∥
t
≤ C

1/t
t (d− s)1/tm1/t

t ∥λ⋆∥2.

Substitute ∥λ⋆∥2 ≍ t⋆∥Y ∥2 from equation 94.

(Spike block equation 96-equation 97). Set h := λ⋆ − t⋆Y . Then

X⊤
:,Sλ

⋆ = t⋆X
⊤
:,SY + X⊤

:,Sh.

For any t ≥ 1, the triangle inequality gives∥∥∥(|⟨X:,j , λ
⋆⟩|)j∈S

∥∥∥
t
≤ t⋆

∥∥∥(|⟨X:,j , Y ⟩|)j∈S
∥∥∥
t
+ ∥X⊤

:,Sh∥ℓt ,
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and the analogous lower bound with a minus sign. By norm monotonicity in Rs and operator norm
submultiplicativity,

∥X⊤
:,Sh∥ℓt ≤ s(1/t−1/2)+ ∥X⊤

:,Sh∥2 ≤ s(1/t−1/2)+ smax(X:,S) ∥h∥2.

From equation 22 with t =
√
s, smax(X:,S) ≤ C(

√
n+
√
s) w.h.p., and from equation 94,

∥h∥2 = ∥λ⋆ − t⋆Y ∥2 ≤ ∥λ⋆∥2 + t⋆∥Y ∥2 ≤ (C1 + 1) t⋆ ∥Y ∥2.

Putting these together yields equation 96. If s ≤ n, Lemma A.5 gives ∥Y ∥2 = τs
√
n(1 + o(1)) and

s(1/t−1/2)+(
√
n+
√
s) ≤ 2

√
n smax{1/t,1/2},

which implies equation 97.

A.3 PROOF OF THEOREM A.2

With these lemmas in place, we are ready to prove Theorem A.2.

Proof of Theorem A.2. We work on the intersection of the high-probability events provided by Lem-
mas A.5, A.6, A.7, A.8, A.11, and A.12; this event has probability at least 1−Ce−c(d−s)−Ce−c

√
ns−

2d−γ , consistent with Remark A.1. All constants implicit in ≍ depend only on (q, κbulk).

Along the ray λ = tY , the one-dimensional dual objective

D(t) = t ∥Y ∥22 −
tq

q
∥X⊤Y ∥qq

is strictly concave with unique maximizer given by the first-order condition (see equation 91)

t q−1
⋆ =

∥Y ∥22
∥X⊤Y ∥qq

. (99)

By Lemma A.5, ∥Y ∥22 = τ2s n(1 + o(1)), and by the decomposition equation 40,

∥X⊤Y ∥qq = nqWq (1 + o(1)) + (d− s)mq τ
q
s n

q/2 (1 + o(1)) + O
(
s τ qs n

q/2
)
.

Substituting into equation 99 yields

t q−1
⋆ ≍ τ2s n

nqWq +
(
(d− s)mq +O(s)

)
τ qsnq/2

w.h.p. (100)

By strong duality and Fenchel-Young (see equation 13),

sup
λ
D(λ) =

(
1− 1

q

)
∥X⊤λ⋆∥qq =

(
1− 1

q

)
∥ŵp∥pp. (101)

Evaluating D on the ray at t⋆ and using D(λ⋆) ≥ D(t⋆) gives

∥ŵp∥pp = ∥X⊤λ⋆∥qq ≥ ∥X⊤(t⋆Y )∥qq = tq⋆ ∥X⊤Y ∥qq =
∥Y ∥

2q
q−1

2

∥X⊤Y ∥
q

q−1
q

. (102)

Moreover, by Cauchy–Schwarz and equation 94,

∥X⊤λ⋆∥qq = ⟨Y, λ⋆⟩ ≤ ∥Y ∥2 ∥λ⋆∥2 ≲ t⋆ ∥Y ∥22 = t q⋆ ∥X⊤Y ∥qq.

Combining with equation 102 we obtain the two-sided scale

∥ŵp∥pp = ∥X⊤λ⋆∥qq ≍ t q⋆ ∥X⊤Y ∥qq.

Using the coordinatewise KKT map equation 12,

ŵp = ∇f⋆(X⊤λ⋆) = sgn(X⊤λ⋆)⊙ |X⊤λ⋆| q−1.

Hence, for any r ∈ [1, p],
∥ŵp∥r = ∥X⊤λ⋆∥ q−1

(q−1)r. (103)
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Split the (q − 1)r-norm over the spike block S and the bulk block Sc and note that ∥u∥tt = ∥uS∥tt +
∥uSc∥tt implies ∥u∥t ≍ max{∥uS∥t, ∥uSc∥t}:

∥ŵp∥r ≍ max
{
∥(|⟨X:,j , λ

⋆⟩|)j∈S∥ q−1
(q−1)r, ∥(|⟨X:,j , λ

⋆⟩|)j /∈S∥ q−1
(q−1)r

}
. (104)

(We used max{a, b} ≤ (at + bt)1/t ≤ 21/tmax{a, b} for t ≥ 1.)

Set t := (q − 1)r ≤ q. By the spike-ray perturbation from Lemma A.12 (see equation 97 when
s ≤ n),∥∥( |⟨X:,j , λ

⋆⟩|
)
j∈S

∥∥
ℓt

= t⋆
∥∥( |⟨X:,j , Y ⟩|

)
j∈S

∥∥
ℓt
± C t⋆ τs

√
n smax{1/t, 1/2}. (105)

(If s > n, use the general form equation 96; the conclusion below is unchanged up to constants since
(
√
n+
√
s) s(1/t−1/2)+ ≤ 2

√
n smax{1/t,1/2} + s 1+(1/t−1/2)+ , which is captured by the final “spike

remainder” term.) By Lemma A.11 at level t,∥∥( |⟨X:,j , Y ⟩|
)
j∈S

∥∥
ℓt

= n ∥w⋆∥t (1 + o(1)) ± C τs
√
n smax{1/t, 1/2}. (106)

Combining equation 105-equation 106 and using (a+ b)q−1 ≤ 2q−2(aq−1 + bq−1) for a, b ≥ 0, we
obtain the following uniform two-sided bounds (recall t = (q − 1)r ≤ q):∥∥(|⟨X:,j , λ

⋆⟩|
)
j∈S

∥∥ q−1

ℓt
≤ C

{
t q−1
⋆ n q−1 ∥w⋆∥ q−1

t + (t⋆τs
√
n) q−1 s (q−1)max{1/t, 1/2}

}
,

(107)∥∥(|⟨X:,j , λ
⋆⟩|

)
j∈S

∥∥ q−1

ℓt
≥ c

(
t⋆ n ∥w⋆∥t − C t⋆ τs

√
n smax{1/t, 1/2}

) q−1

+
. (108)

Applying the mean-value inequality to the map z 7→ z q−1,

|(x± y)q−1 − xq−1| ≤ C (xq−2y + yq−1),

with x = t⋆n∥w⋆∥t and y = Ct⋆τs
√
n smax{1/t, 1/2}, we obtain∥∥(|⟨X:,j , λ

⋆⟩|
)
j∈S

∥∥ q−1

ℓt
= t q−1

⋆ n q−1 ∥w⋆∥ q−1
t (1+o(1)) ±C (t⋆τs

√
n) q−1 smax{ (q−1)/2, (q−1)/t }.

(109)

Recalling t = (q−1)r and ∥w⋆∥t ≍ ∥w⋆∥(q−1)r, we obtain the spike contribution stated in equation 6.
(For completeness: specializing equation 96 to t = q together with Lemma A.11 at t = q yields the
same rate and remainder exponent as in equation 109.)

By Lemma A.12 (bulk control equation 95) together with equation 94,

∥(|⟨X:,j , λ
⋆⟩|)j /∈S∥(q−1)r ≍ (d− s)1/((q−1)r) t⋆ ∥Y ∥2.

Raising to the (q − 1)-th power and using ∥Y ∥2 ≍ τs
√
n (Lemma A.5),

∥(|⟨X:,j , λ
⋆⟩|)j /∈S∥ q−1

(q−1)r ≍ (d− s)1/r
(
t⋆ τs
√
n
) q−1

. (110)

Plug equation 109 and equation 110 into equation 104. This yields

∥ŵp∥r ≍ max
{
t q−1
⋆ n q−1 ∥w⋆∥ q−1

(q−1)r , (d−s)1/r
(
t⋆ τs
√
n
) q−1

, smax{1/r, (q−1)/2} (t⋆ τs√n) q−1
}
,

which is exactly the three-term unified bound in equation 6. When r < 2(p− 1) and (d− s) ≳ s, the
third term is absorbed by the bulk term, recovering the two-term maximum.

In the proportional regime (d − s) ≍ κbulk n, balance the two leading terms in ∥X⊤Y ∥qq (cf.
equation 40) to define

nqWq ≍ (d− s) τ qs nq/2 ⇐⇒ nq/2 ≍ κbulk
τ qs
Wq

⇐⇒ n⋆ ≍
(
κbulk

τ qs
Wq

) 2
q−2

,

which matches equation 8.
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(i) Dual spike-dominated regime n≫ n⋆. Then ∥X⊤Y ∥qq ≍ nqWq and equation 100 gives

t q−1
⋆ ≍ τ2s n

nqWq
=

τ2s
Wq

n−(q−1). (111)

Consequently

(d− s)1/r
(
t⋆ τs
√
n
) q−1 ≍ τ q+1

s

Wq
n

1
r−

1
2(p−1) , (112a)

smax{ 1/r, (q−1)/2 } (t⋆ τs√n) q−1 ≍ τ q+1
s

Wq
smax{ 1/r, (q−1)/2 } n−

1
2(p−1) . (112b)

In particular, when r ≤ 2(p− 1) the two “bulk-type” terms are of the same order (and are dominated
by the spike main when r ≥ 2(p− 1)); this recovers equation 9.

(ii) Dual bulk-dominated regime n≪ n⋆. Then ∥X⊤Y ∥qq ≍ (d− s)τ qsnq/2 and

t q−1
⋆ ≍ τ2s n

(d− s)τ qsnq/2
=

τ 2−q
s

(d− s)
n 1− q

2 . (113)

Therefore

(d− s)1/r
(
t⋆ τs
√
n
) q−1 ≍ κ

1
r−1

bulk τs n
1
r−

1
2 , (114a)

smax{ 1/r, (q−1)/2 } (t⋆ τs√n) q−1 ≍ κ−1
bulk τs s

max{ 1/r, (q−1)/2 } n−1/2. (114b)

Taking the maximum together with the spike main term gives equation 10 whenever the third term is
absorbed; otherwise the third term with exponent max{1/r, (q − 1)/2} − 1/2 may dominate.

This completes the proof of equation 6 (three-term form), the energy scale equation 102, hence the
proof of Theorem A.2.

A.4 TWO CONCRETE COROLLARIES: SINGLE SPIKE AND FLAT SUPPORT

We keep p ∈ (1, 2], q = p
p−1 ∈ [2,∞), r ∈ [1, p], and κbulk = lim inf(d − s)/n > 0. Recall the

unified bound from Theorem A.2. We will repeatedly use the identity

∥ŵp∥r ≍ max
{
t q−1
⋆ n q−1 ∥w⋆∥ q−1

(q−1)r, (d− s)
1/r

(
t⋆ τs
√
n
) q−1

, (115)

smax{ 1/r, (q−1)/2 } (t⋆ τs√n) q−1
}
, (116)

together with

t q−1
⋆ =

∥Y ∥22
∥X⊤Y ∥qq

, n⋆ ≍
(
κbulk

τ qs
Wq

) 2
q−2

, Wq =
∑
j∈S
|w⋆j |q, τ2s = ∥w⋆∥22 + σ2.

(117)

Case (i): single spike (s = 1). Let the support be {j0} and write a := |w⋆j0 | > 0. Then

Wq = aq, ∥w⋆∥(q−1)r = a, τ2s = a2 + σ2. (118)

The transition scale simplifies to

n⋆ ≍
(
κbulk

(a2 + σ2)q/2

aq

) 2
q−2

. (119)
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In equation 115, the spike remainder is dominated by the bulk term since
spike remainder

bulk
= (d− 1)−1/r ≪ 1 for large d. (120)

Dual spike-dominated (n≫ n⋆). Using the phase form equation 9, we obtain

∥ŵp∥r ≍


(a2 + σ2)

q+1
2

aq
n

1
r−

1
2(p−1) , r ≤ 2(p− 1),

a2 + σ2

a
, r > 2(p− 1).

(121)

Dual bulk-dominated (n≪ n⋆). Using equation 10,

∥ŵp∥r ≍ max
{
κ

1
r−1

bulk (a2 + σ2)1/2 n
1
r−

1
2 , κ−1

bulk (a
2 + σ2)

2−q
2 a q−1 n

q
2−1

}
. (122)

(The third term in equation 10 equals κ−1
bulkτsn

−1/2 and is dominated by the first term for large n.)

Case (ii): flat signal on its support. Assume w⋆j = a sj for all j ∈ S with |sj | = 1 and |S| = s.
Then

∥w⋆∥2 =
√
s |a|, Wq = s |a|q, ∥w⋆∥(q−1)r = s

1
(q−1)r |a|, τ2s = s a2 + σ2. (123)

The transition scale grows linearly in s:

n⋆ ≍
(
κbulk

(sa2 + σ2)q/2

s |a|q

) 2
q−2

= κ
2

q−2

bulk s

(
1 +

σ2

sa2

) q
q−2

. (124)

Dual spike-dominated (n≫ n⋆). From equation 9,

∥ŵp∥r ≍


(sa2 + σ2)

q+1
2

s |a|q
n

1
r−

1
2(p−1) , r ≤ 2(p− 1),

s
1
r−1 sa

2 + σ2

|a|
, r > 2(p− 1).

(125)

In the noiseless case (σ = 0),

r > 2(p− 1) : ∥ŵp∥r ≍ s1/r |a|, r ≤ 2(p− 1) : ∥ŵp∥r ≍ s
q−1
2 |a| n

1
r−

1
2(p−1) .

(126)

Dual bulk-dominated (n≪ n⋆). From equation 10,

∥ŵp∥r ≍ max
{
κ

1
r−1

bulk (sa2 + σ2)1/2 n
1
r−

1
2 , κ−1

bulk (sa
2 + σ2)

2−q
2 s1/r|a| q−1 n

q
2−1, (127)

κ−1
bulk (sa

2 + σ2)1/2 smax{1/r, (q−1)/2} n−1/2
}
. (128)

When r ≤ 2(p− 1) and s ≲ (d− s), the third term is absorbed by the first (Remark A.3).

B FROM INITIALIZATION SCALE TO AN EFFECTIVE ℓp: A SLOPE-MATCHING
VIEW

Figure S1 visualizes the mapping α 7→ peff(α) we use throughout. The construction is data-free
(independent of n and σ) and relies only on the gradient-flow potential that characterizes the two-layer
DLN implicit bias. Pseudocode can be found in Algorithm 1.

We start from the separable potential

Qα(β) = α2
d∑
i=1

q

(
βi
α2

)
, (129)

q(z) =

∫ z

0

arcsinh
(u
2

)
du = 2−

√
4 + z2 + z arcsinh

(z
2

)
. (130)
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At the coordinate level, letting ψα(t) ≡ α2 q(t/α2) gives

ψ′
α(t) = arcsinh

(
t

2α2

)
, (131)

ψ′′
α(t) =

1

α2
√

4 + (t/α2)2
=

1√
4α4 + t2

. (132)

Asymptotics for q control the limiting geometry (all logs are natural):

q(z) =
z2

4
− z4

192
+O(z6), z → 0, (133)

q(z) = z(log z − 1) + 2− 1

z
+O

(
1

z3

)
, z →∞. (134)

Hence Qα behaves like ℓ22 as α→∞ and like an ℓ1-type penalty (up to a log) as α→0.

To turn this into a quantitative α 7→p mapping, we evaluate Qα on the k-sparse, unit-ℓ2 probes

β(k) ∈ Rd, β
(k)
i ∈ {0, k−1/2}, ∥β(k)∥2 = 1, #{i : β(k)

i ̸= 0} = k. (135)

For this family,

Qα
(
β(k)

)
= α2 k q

(
1

α2
√
k

)
, (136)

while ℓp (calibrated via ∥β∥pp) has the exact scaling

∥β(k)∥pp = k

(
1√
k

)p
= k 1−p2 . (137)

We now fit a log-log slope to the k-dependence of Qα and match exponents. Fix α > 0, choose a
logarithmic grid K ⊂ {1, 2, . . . , d} (e.g., up to 104), and solve

logQα
(
β(k)

)
≈ c(α) + s(α) log k, k ∈ K. (138)

Comparing with equation 137 (which grows as k 1−p/2) yields

s(α) = 1− peff(α)

2
=⇒ peff(α) = 2(1− s(α)) . (139)

The limits in equation 133–equation 134 imply

α→∞ : Qα
(
β(k)

)
=

1

4α2
+O

(
1

α6k

)
, s(α)→ 0, peff(α)→ 2, (140)

α→ 0 : Qα
(
β(k)

)
=
√
k
(
log

(
1

α2
√
k

)
− 1

)
+ 2α2k − α4k

√
k + O

(
α8k2

√
k
)
,

s(α)→ 1
2 ,

peff(α)→ 1.

(141)

Thus peff(α) increases smoothly and monotonically from 1 to 2 as α grows, exactly as depicted in
Figure S1. The inverse problem—choosing α for a target p⋆ ∈ [1, 2]—is the scalar root

peff(α) = p⋆, (142)

which we solve by bisection using the monotonicity in α (Algorithm 2).

C ADDITIONAL NOISE SWEEPS: σ ∈ {0, 0.5}

Experimental protocol. We replicate the experiments of §4.3 and §4.4 at two additional noise
levels, σ = 0 and σ = 0.5, keeping everything else fixed (same p ∈ {1.1, 1.5, 1.9} for explicit
minimum-ℓp runs; same α ∈ {0.00102, 0.0664, 0.229} for DLNs with the same α 7→peff calibration
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Algorithm 1 Slope-matching map α 7→ peff(α)

Require: Log-grid A of α values; log-grid K ⊂ {1, . . . , d} of k values
Ensure: {(α, peff(α)) : α ∈ A}

1: for all α ∈ A do
2: Initialize lists X ← [ ], Y ← [ ] ▷ X = {log k}, Y = {logQα(β(k))}
3: for all k ∈ K do
4: zk ← 1/(α2

√
k)

5: Compute q(zk) using the closed form in equation 130; if |zk| is small, use the series
q(z) = z2/4− z4/192 + z6/2560 + · · · for stability

6: Qk ← α2 k q(zk)
7: Append log k to X; append logQk to Y
8: end for
9: Fit Y ≈ c(α) + s(α)X by least squares

10: peff(α)← 2 (1− s(α)) ▷ by equation 139
11: end for
12: return {(α, peff(α)) : α ∈ A}

Algorithm 2 Inverse map p⋆ 7→ α⋆ by bisection in logα

Require: Target p⋆ ∈ [1, 2]; gridK; bracket 0 < αmin < αmax with peff(αmin) ≤ p⋆ ≤ peff(αmax);
tolerance ε > 0

Ensure: α⋆ with
∣∣peff(α⋆)− p⋆∣∣ ≤ ε

1: umin ← logαmin, umax ← logαmax

2: while umax − umin > ε do
3: umid ← 1

2 (umin + umax), αmid ← eumid

4: Compute peff(αmid) via Algorithm 1 restricted to this single α
5: if peff(αmid) < p⋆ then
6: umin ← umid
7: else
8: umax ← umid
9: end if

10: end while
11: return α⋆ ← e(umin+umax)/2

as in Appendix B; same seeds and learning rates as indicated in the panel captions). Each plot
overlays test MSE (left axis) and representative ℓr curves (right axis).

What the figures show and why. In Fig. S2-Fig. S9, the slopes and regime rules from Theorem 3.1 and
Corollaries 4.1-4.2 are unchanged across σ; noise only rescales τs and thereby shifts the transition
size n⋆≍ (κbulkτ

q
s /Wq)

2/(q−2) [equation 8] and the spike-side plateau levels [equation 9]. Thus,
compared to σ=0.1 in the main text: (i) at σ=0 elbows appear earlier and plateaus (for r > 2(p−1))
occur sooner and at lower levels; (ii) at σ=0.5 elbows are delayed and spike-side plateaus are higher.
Bulk-dominated panels retain the n1/2 growth and the r-ordering in equation 10.

D FINITE LEARNING RATE EFFECTS

We consider the single-spike case w⋆ = e1 and a small shape parameter α = 0.00102 (so the
calibrated peff(α)≈ 1.10). We vary the learning rate lr ∈ {10−1, 10−2, 10−3} and the label-noise
level σ ∈ {0, 0.1, 0.5}. All panels plot generalization error (left axis) and ℓ1.1 norm (right axis)
versus sample size n.

Observed effect. With clean labels (σ = 0), the ℓ1.1 norm is essentially flat across n and insensitive
to lr (Fig. S10), consistent with a low-peff (sparse) implicit bias at small α. When label noise is
present (σ ∈ {0.1, 0.5}), increasing the learning rate makes ℓ1.1 increase with n (Figs. S11, S12);
the transition point (the “elbow”) beyond which the norm would plateau shifts to larger n as lr grows.
Within the accessible sample sizes this rightward shift makes the curve look bulk-dominated and
rising—as if the effective exponent peff were larger.
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Figure S1: Slope-matching map α 7→ peff(α) (Algorithm 1), obtained by fitting the k-sparse scaling
of Qα(β(k)) against the exact k 1−p/2 scaling of ∥β(k)∥pp. Target points (p ∈ {1.1, 1.5, 1.9}) are
annotated; their corresponding α are solved by Algorithm 2.

0 2000 4000
n (samples)

0.0

0.5

1.0

Ge
ne

ra
liz

at
io

n 
er

ro
r

0.4

0.6

0.8

1.0

_r
 n

or
m

= 0.0, p = 1.1
Generalization error
_1.1 norm

theory (spike dom.)

(a) p = 1.1 (sparsity-leaning)

0 1000 2000 3000 4000 5000
n (samples)

0.0

0.5

1.0

Ge
ne

ra
liz

at
io

n 
er

ro
r

0

2

4

6

_r
 n

or
m

= 0.0, p = 1.5
Generalization error
_1.1 norm
_1.5 norm

theory (bulk dom.)
theory (spike dom.)

(b) p = 1.5

0 2000 4000
n (samples)

0.8

0.9

1.0

Ge
ne

ra
liz

at
io

n 
er

ro
r

0

10

20

_r
 n

or
m

= 0.0, p = 1.9
Generalization error
_1.1 norm
_1.5 norm

_1.9 norm
theory (bulk dom.)

(c) p = 1.9 (dense-leaning)

Figure S2: Single spike w⋆ = e1; explicit minimum-ℓp interpolation (σ = 0). Earlier elbows
and lower spike-side plateaus than at σ=0.1; bulk-side traces keep the n1/2 slope, consistent with
equation 9-equation 10.

Why this happens. Finite step size together with label/gradient noise injects additional stochas-
ticity into the discrete dynamics. A useful approximation views (stochastic) gradient descent as a
Langevin-type process with an effective temperature controlled by the learning rate and the noise
level; this broadens the stationary distribution and leads to wider, less sparse solutions (Mandt et al.,
2017; Smith et al., 2018; Yaida, 2018; Jastrzebski et al., 2017). For a single-spike target, that diffusion
leaks mass into off-signal coordinates during early training, nudging the geometry away from “ℓ1-like”
toward a higher-p regime and delaying when the spike dominates—hence the elbow shifts right. With
clean labels, the gradient remains aligned with the spike and the small-step implicit bias toward
path/diagonal-norm solutions is recovered (Neyshabur et al., 2015a; Gunasekar et al., 2018a). The
same qualitative phenomenon also appears for the denser case s=50 with a smaller magnitude.

E LARGER SPARSITY s FOR EXPLICIT min ∥w∥p LINEAR REGRESSION

We revisit the explicit min ∥w∥p experiments at larger sparsities s ∈ {500, 5000} for p ∈
{1.1, 1.5, 1.9} under the same Gaussian design and noise σ = 0.1 as in the main text. Each
panel reports generalization error (left axis) and several ℓr-norms of the same interpolating w (right
axis); gray dashed curves are the bulk/spike theory overlays used earlier.

Comparison to s=50. Across all three p values, the larger-s experiments reprise the main-text
regime structure at larger sample sizes. For p ≈ 1, lengthening the bulk-dominated segment makes
the initial increase in generalization error clearly visible (especially at s=5000), after which the curve
turns downward as alignment improves. For p ∈ {1.5, 1.9}, the same right-shift occurs yet the curves
remain monotone; the rounder objectives keep the estimator from over-relying on noisy directions
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0 1000 2000 3000 4000 5000
n (samples)

0.4

0.6

0.8

1.0

Ge
ne

ra
liz

at
io

n 
er

ro
r

0

5

10

_r
 n

or
m

= 0.0, p = 1.5, s = 50
Generalization error
_1.1 norm

_1.5 norm
theory (bulk dom.)

(b) p = 1.5

0 2000 4000
n (samples)

0.85

0.90

0.95

1.00

Ge
ne

ra
liz

at
io

n 
er

ro
r

0

10

20

_r
 n

or
m

= 0.0, p = 1.9, s = 50
Generalization error
_1.1 norm
_1.5 norm

_1.9 norm
theory (bulk dom.)

(c) p = 1.9 (dense-leaning)

Figure S3: Flat w⋆ (s = 50); explicit minimum-ℓp interpolation (σ = 0). Same slope/plateau rules
as Corollary 4.2, with a reduced transition scale and lower absolute ℓr levels compared to σ=0.1.
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Figure S4: Single spike w⋆ = e1; DLN (σ = 0). With α calibrated to peff(α), the regime structure
mirrors the explicit p case: smaller peff exhibits earlier spike dominance and plateaus for r > 2(p−1);
larger peff stays bulk-dominated longer.

early on. In every panel, the blue ℓ1.1 curve remains a useful “regime meter”: rapid growth signals
bulk influence, and gradual approach toward the spike guide signals improving alignment—even
though none of the ℓr curves truly flatten within our plotted range.

Small p (here p=1.1). Relative to the s=50 panels in the main text, both larger-s slices preserve
the same two-phase story but the handoff happens later in n. At s=500 (Fig. S13a), generalization
error is flat-to-slightly higher at small n while ∥w∥1.1 rises rapidly; as n grows, generalization
error begins to fall and the blue curve bends toward (but, in our range, does not meet) the spike
overlay. At s=5000 (Fig. S14a), the shape is unmistakable: generalization error first increases
to a visible peak at intermediate n and then drops. The ℓ1.1 curve keeps climbing throughout the
displayed range, tracking the bulk-dominated guide before gradually approaching the spike prediction
(without flattening). This “up-then-down” with more samples matches the double-descent picture for
interpolating estimators—early fits lean on high-variance bulk directions; only later does the solution
align with signal—well documented in linear and deep settings (Belkin et al., 2019; Nakkiran et al.,
2020b; Hastie et al., 2022a).

Larger p (here p=1.5 and p=1.9). Compared to s=50, the curves again shift rightward in n, but
the qualitative picture is unchanged: generalization error decreases monotonically over the whole
range for both sparsities (Figs. S13b-c and S14b-c). The minimized ℓp-norms (red for p=1.5, green
for p=1.9) drift only slightly upward rather than plateauing, while the auxiliary ℓ1.1 diagnostic
continues its steady growth along the bulk guide. The absence of an initial increase in generalization
error is consistent with the rounder geometry of larger-p balls: the interpolating solution spreads
weight more evenly and avoids the brittle, variance-heavy fits that create the small-p bump, echoing
analyses of benign overfitting/ridgeless least squares and convex-geometric shrinkage of descent
cones (Bartlett et al., 2020; Hastie et al., 2022a; Chandrasekaran et al., 2012; Amelunxen et al., 2014).

F EXTENDING THE ℓr-SCALING THEOREM TO DIAGONAL LINEAR NETWORKS

This section is a blueprint for porting our main ℓr-scaling theorem from the minimum-ℓp interpolator
to predictors selected by training diagonal linear networks (DLNs) with arbitrary depth. The goal
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(a) α = 0.00102, lr = 0.001,
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Figure S5: Flat w⋆ (s = 50); DLN (σ = 0). The elbow shifts with support size as in the flat-support
corollary; plateaus for r > 2(p−1) occur earlier and at lower levels than at σ=0.1, while bulk-side
n1/2 growth persists where predicted.
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(a) p = 1.1 (sparsity-leaning)
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(b) p = 1.5
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Figure S6: Single spike w⋆ = e1; explicit minimum-ℓp interpolation (σ = 0.5). Larger τ
increases both n⋆ and plateau heights relative to σ=0.1. Bulk-dominated panels retain the n1/2 trend;
r > 2(p−1) traces flatten only after the later transition, in line with equation 9-equation 10.

is to reuse the entire spike+bulk argument with minimal surgery by swapping in the right implicit
regularizer and the right one-dimensional balance. The guidance below covers both the two-layer
case and the general depth-D case, aligning with the characterization of implicit bias in DLNs proved
by Woodworth et al. (2020).

In our min ℓp analysis, the predictor among all interpolators is selected by a separable power potential,
and the proof runs through a dual “link” that maps the ray variable back to primal coordinates. DLNs
fit exactly the same template:

• For two layers, the implicit regularizer is the hypentropy-type separable potential, and
the link is the corresponding odd, strictly increasing map (Woodworth et al., Thm. 1).
Non-uniform initialization simply reweights coordinates multiplicatively throughout.

• For depth D ≥ 3, the implicit regularizer is again separable but with a depth-dependent link;
Woodworth et al. (Thm. 3) identify the unique depth-D link and its inverse. Practically, you
can treat it as “the D-link” playing the role occupied by the power map in min ℓp and by the
hypentropy link at D = 2.

No other structural change is needed: once the link is fixed, every step of our proof goes through with
the same spike/bulk decomposition and the same ray reduction.

As in the min ℓp proof, restrict the dual variable to the ray spanned by the labels and determine a
single scale t from a strictly monotone one-dimensional balance. Conceptually:

• In the kernel-like window (small arguments of the link on both spike and bulk), the link
linearizes and the entire analysis collapses to the p = 2 case verbatim. This is the “lazy”
regime.

• In the rich-like window (arguments large on the bulk and/or a dominant spike), the nonlin-
earity of the link controls the transition. For two layers, the balance yields a Lambert–W
controlled scale; for D≥3, the depth-D link gives a faster, polynomial-in-initialization tran-
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Figure S7: Flat w⋆ (s = 50); explicit minimum-ℓp interpolation (σ = 0.5). The same slope/plateau
rules apply, but both the elbow and plateau heights shift upward with σ via τs and equation 8.
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(a) α = 0.00102, lr = 0.1, s=1
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Figure S8: Single spike w⋆ = e1; DLN (σ = 0.5). After calibrating α 7→peff , bulk growth persists
to larger n (larger n⋆), and spike-side plateaus for r > 2(p−1) emerge later and at higher levels.

sition. You do not need a closed form—just the monotonicity and the small/large-argument
asymptotics.

Bulk block. Replace the power moment used in the min ℓp bulk bound by the depth-appropriate
scalar functional that averages the link across a standard Gaussian coordinate. Operationally:

• Define a bulk scalar by applying the DLN link at the ray scale to a single Gaussian coordinate
and taking its ℓr moment (to the 1/r). This plays the exact role of m1/t

t in the min ℓp proof.
• Use the same Gaussian embedding for the bulk design to lift this scalar to the full bulk

contribution. In the kernel-like window you recover the p = 2 scaling exactly; in the rich-
like window you get the accelerated depth-D growth predicted by the link’s large-argument
behavior.

• Keep track of the global scaling coming from the link’s overall prefactor (this carries the
initialization scale); it multiplies both bulk and spike-remainder terms.

Spike block. On the spike coordinates, keep the original two-part structure:

• Spike-main: apply the link to the mean shift determined by the signal; if a single coordinate
dominates the one-dimensional balance, the selected predictor saturates at the spike scale
and becomes essentially independent of the initialization (up to lower-order logarithmic or
depth-dependent corrections).

• Spike-remainder: control the residual Gaussian fluctuation by the same operator-norm and
concentration events as in the min ℓp proof; its ℓr size is the bulk scalar (at the ray scale)
times smax{1/r, 1/2}, again multiplied by the link’s global prefactor.

When spikes are meek relative to the bulk (no dominant coordinate), the spike block linearizes and
you are back in the p = 2 laws.

Unified bound. After these replacements, the final display has the identical three-term structure:

DLN predictor’s ℓr size = maximum of (spike-main, bulk, spike-remainder),
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(a) α = 0.00102, lr = 0.1, s=50
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(b) α = 0.0664, lr = 0.001, s=50
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Figure S9: Flat w⋆ (s = 50); DLN (σ = 0.5). The σ-driven increase in τs shifts n⋆ to larger n;
otherwise the bulk vs. spike regime behavior matches the theory and the explicit p experiments.
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(a) σ = 0, α = 0.00102, lr = 0.1,
s=1
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(b) σ = 0, α = 0.00102, lr =
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Figure S10: w⋆ = e1 (sparsity s=1), clean labels. ℓ1.1 rapidly plateaus and is insensitive to learning
rate, consistent with a low-peff implicit bias at small α.

with each term obtained from the min ℓp counterpart by: (i) replacing the power link with the DLN
link; (ii) inserting the link’s global prefactor; and (iii) using the DLN bulk scalar in place of the power
moment. In the kernel-like window this reproduces the p = 2 version exactly; in the rich-like window
you get either bulk-controlled growth (Lambert–W for two layers; depth-accelerated for D≥3) or
spike saturation.

Depth and initialization intricacy.

• Depth D ≥ 3. The depth-D link is odd, strictly increasing, and has a simple linearization
at the origin and an explicit rational form away from it (Woodworth et al., Thm. 3). This
yields the same kernel-like reduction and a sharper rich-like transition than at D = 2. You
never need its closed form—only its monotonicity and asymptotics.

• Non-uniform initialization. The per-coordinate shape of the initialization simply reweights
the separable potential and carries multiplicatively through the link. Every bound inherits
these weights in a purely multiplicative way (Woodworth et al., Thm. 1).

• Limits. Large initialization recovers the minimum-ℓ2 norm predictor; vanishing initialization
recovers the minimum-ℓ1 predictor (with the usual caveats on how small “small” must be).
These are the DLN analogues of the kernel and rich limits and hold for all depths covered
above.

A handy dictionary for porting the proof. To translate any display or lemma from the min ℓp
analysis to DLNs, we can make the following substitutions:

1. Power link→ DLN link: replace the power map by the depth-appropriate link (hypentropy
at two layers; the depth-D link from Woodworth et al. otherwise), including its global
prefactor.

2. Ray scale→ DLN balance: keep the same one-dimensional, strictly monotone balance
along the label ray; solve it numerically or via asymptotics (linear in the kernel-like window;
Lambert–W at two layers and power-law at depth D≥3 in the rich-like window).
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Figure S11: w⋆ = e1 (sparsity s=1), moderate noise. Larger learning rates produce a steadily rising
ℓ1.1 and shift the elbow to larger n; decreasing lr suppresses the rise and restores a near-plateau.
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Figure S12: w⋆ = e1 (sparsity s=1), heavy noise. The learning-rate-induced increase in ℓ1.1 is
strongest at high noise: lr=0.1 (and to a lesser extent 0.01) yields monotone growth with n, whereas
lr=0.001 shows a transient bump and then relaxes toward a plateau—evidence that the elbow shifts
right under larger lr.

3. Bulk scalar: replace the power moment by the ℓr moment of the DLN link applied to
a single Gaussian coordinate at the ray scale; lift via the Gaussian embedding exactly as
before.

4. Spike block: reuse the deterministic-plus-Gaussian decomposition, the operator-norm and
concentration events, and the same ℓr geometry; only the link and its global prefactor
change.

With the substitutions above, the ℓr-scaling analysis for the minimum-ℓp interpolator transfers directly
to DLNs of any depth. The proof structure, the spike/bulk decomposition, and the final three-term
form remain identical; only the link and its scalar balance change. Two layers inherit a Lambert–W
bulk scale; deeper networks transition faster with initialization due to their depth-D link. In the
kernel-like window, everything collapses to the p = 2 bounds almost word-for-word.
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(a) p=1.1, s=500
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(b) p=1.5, s=500
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(c) p=1.9, s=500

Figure S13: Large sparsity, s=500. Black—generalization error; colored—ℓr-norms of the same
interpolator (blue: ℓ1.1, red: ℓ1.5, green: ℓ1.9); gray dashed—bulk/spike overlays.
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(a) p=1.1, s=5000
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(b) p=1.5, s=5000
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(c) p=1.9, s=5000

Figure S14: Even larger sparsity, s=5000. Same conventions as Fig. S13. Increasing s shifts the
bulk→spike crossover to larger n.
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