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ABSTRACT

The order fulfillment problem is one of the fundamental combinatorial optimiza-
tion problems in supply chain management and it is required to be solved in real-
time for modern online retailing. Such a problem is computationally hard to ad-
dress by exact mathematical programming methods. In this paper, we propose
a machine learning method to solve it in milliseconds by formulating a tripartite
graph and learning the best assignment policy through the proposed edge-feature-
embedded graph attention mechanism. The edge-feature-embedded graph atten-
tion considers the high-dimensional edge features and accounts for the heteroge-
neous information, which are important characteristics of the studied optimization
problem. The model is also size-invariant for problem instances of any scale, and
it can address cases that are completely unseen during training. Experiments show
that our model substantially outperforms the baseline heuristic method in optimal-
ity. The online inference time is milliseconds, which is thousands of times faster
than the exact mathematical programming methods.

1 INTRODUCTION

The current decade has witnessed rapid development of online retailing, which generally has a very
large operation scale and poses new challenges to supply chain management. One of the most
important problems in the online retailing is the real-time order fulfillment decision, which aims to
find the most cost-effective order-warehouse assignment after the customers place the orders online.
The decisions are required to be made in real time, because the fulfillment system must complete
hundreds of orders per second (Acimovic & Graves, 2015; Xu et al., 2009). A good fulfillment
policy could reduce expenses by millions of dollars for large online retailers such as Alibaba and
Amazon.

The order fulfillment problem in its most general form is as follows: There are a number of orders
and a number of warehouses. Each order contains several items, which are at different inventory
levels and have different sale-forbidden1 dates in these warehouses. Any warehouse can be assigned
to serve any order, incurring delivery transportation cost and inventory management cost that vary
depending on the locations of the orders and the types of items. An order can be split into multi-
ple packages that are committed by different warehouses due to practical constraints, such as the
shortage of inventory. A group of identical items in any order is defined as a suborder, which is the
smallest assignment unit in this problem. The retailer seeks to find the optimal suborder-warehouse
assignment policy that minimizes the overall cost in the order fulfillment.

The order fulfillment problem falls into the category of generalized assignment problems, which is
an NP-hard combinatorial optimization (Kundakcioglu & Alizamir, 2009) (An extra note on gener-
alized assignment problem is listed in the Appendix A.1). Traditional approaches to this problem
can be divided into exact methods and heuristics. The exact methods guarantee finding optimal so-
lutions by using a branch-and-bound search (B&B) with a mixed-integer programming formulation
(MIP), but they generally require a long time to solve and are even computationally intractable for
large-scale cases. Because the order fulfillment is a real-time decision task in the online retailing,

1The sale-forbidden date is usually months ahead of the expiration date. Any item going beyond the sale-
forbidden date can no longer be sold.
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the exact methods are unable to meet the allowed maximum computation time (tens of millisec-
onds). The heuristics are typically a set of specialized rules and are currently used in the industry
because of the low computational cost(Sethanan & Pitakaso, 2016; D’Ambrosio et al., 2020). As a
trade-off, the optimality is sacrificed and once the conditions of the problem change, the rules must
be re-designed carefully, which costs a lot of manpower.

Recently, machine learning (ML) has made much progress on solving combinatorial optimization
problems (Bengio et al., 2018), e.g., using supervised or reinforcement learning to solve the trav-
elling salesman problem (TSP) and the vehicle routing problem (VRP) in an end-to-end approach
(Vinyals et al., 2015; Kool & Welling, 2018; Lu et al., 2020). According to the research, ML meth-
ods can achieve stronger policies than heuristics without requiring specialized human knowledge.
The computational cost of ML inference is extremely low. The ML methods are also self-adaptive
to the changes on the problem conditions, because they are end-to-end methods from the original
data to the solutions. This progress motivates us to explore whether order fulfillment in the supply
chain industry can be addressed by ML methods.

However, the nature of the order fulfillment problem is size-variant and contains heterogeneous
information. Different scales of problem instances have varying numbers of orders, items and
warehouses. How can we properly transform the combinatorial optimization problem into the in-
put/output of an ML model? How can we design an ML model that can effectively solve the varying
scales of problem instances? These questions pose great challenges to our work.

In this paper, we will for the first time apply ML to solve the real-time order fulfillment deci-
sion problem by developing a graph mapping solution framework. A size-invariant graph model
is developed to learn the hidden information on the heterogeneous graph. A novel graph attention
mechanism is proposed to consider the high-dimensional edge features in the represented optimiza-
tion problem. The specific contributions are threefold: (1) formulate the real-time order fulfillment
decision problem with constraints of the modern online retailing and supply chain industry; (2) pro-
pose a tripartite heterogeneous graph representation of the order fulfillment problem and develop
an ML-based solution framework; and (3) propose size-invariant and edge-feature-embedded graph
attention to learn the hidden information in the heterogeneous graph.

2 RELATED WORK AND GAPS

Generally, applying ML on combinatorial optimization can be divided into two approaches. The
first approach is to improve the branch-and-bound algorithm in the MIP formulation by using ML
for variable branching (Alvarez et al., 2017), node selection (He et al., 2014) and so on. Although
these methods can guarantee exact solutions by relying on the branch-and-bound approach, the
acceleration is limited. Our focus is on the other type of method, the end-to-end learning approach
(Bengio et al., 2018), which learns the optimization policy directly from the problem instances.

The end-to-end ML models for combinatorial optimization require careful design, because both of
the problem input and output vary in size (Bengio et al., 2018). This circumstance means that the
ML model must be able to address the data sizes that are completely unseen during training. To
tackle this problem, the pointer network (Ptr-Net) is introduced based on the sequence-to-sequence
model (Vinyals et al., 2015; Bello et al., 2017). The Ptr-Net directly uses an attention mechanism
as a “pointer” to select a member of the input sequence as the output, regardless of the varying
output dictionary sizes that depend on the problem instances. According to the experiments, the
model performs well on the convex hull problem and TSP beyond the maximum sizes that they
are trained on. Hu et al. (2017); Duan et al. (2019) further apply the Ptr-Net on the bin-packing
problem to determine the optimal sequence in which the items are packed into bins. Apart from
Ptr-Net, Kool & Welling (2018) solves the TSP based entirely on the attention mechanism similar
to the Transformer architecture (Vaswani et al., 2017). The input data is the (x, y) coordinates of
all of the nodes, and the model calculates the attention between every pair of nodes. Finally, a
sequence of nodes is generated as the optimal result. However, current studies based on Ptr-Net are
mainly designed for sequential decisions, which might not fit the pattern for the studied assignment
problem. According to Vinyals et al. (2016); Hu et al. (2017), the use of the RNN as an encoder in
Ptr-Net makes it difficult to represent long input sequences and suffers heavily from the order of the
input data.
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The graph-base models, e.g., the graph convolutional network (GCN) and graph attention network
(GAT)(Veličković et al., 2018), have also been applied in several studies, because many optimization
problems can be represented as a graph. Dai et al. (2017) attempts to solve the minimum vertex cover
problem and TSP by embedding the graph with a structure2vec network and iteratively adding the
best node to construct the solution using reinforcement learning. Ma et al. (2019) proposes the graph
Ptr-Net by using graph embedding as the input of Ptr-Net to solve the TSP. Li et al. (2018) first uses
a GCN to generate a large number of candidate solutions to the combinatorial optimization. Then,
a guided tree search is performed to refine the solution. However, most mentioned studies address
homogeneous graphs without high-dimensional edge features, such as the TSP and VRP problems,
where the input is a set of (x, y) coordinates. In the studied problem, the features of orders, items and
warehouses are heterogeneous and the relationships between them are important, such as the tiered
pricing rules between orders and warehouses, and the inventory between items and warehouses with
different sale-forbidden dates. Current studies lack proper consideration of these important high-
dimensional edge features and the heterogeneous information between different types of nodes and
edges.

3 PROBLEM STATEMENT

The mathematical formulation of the studied order fulfillment problem for modern online retailing
is formulated in (1a)-(1h). Table 1 lists the notation. For better understanding, a brief introduction
on the generalized assignment problem is given in Appendix A.1, which is the basics of the order
fulfillment problem.

min
zkl

∑
k∈K

∑
i∈I

(
C

(0)
ki xki + C

(1)
ki wki

)
+
∑
k∈K

∑
j∈J

∑
t∈T

Pjε
+
kjt (1a)

s.t. zkl ≤ xki, ∀k ∈ K,∀i ∈ I,∀l ∈ L(i, ·), (1b)∑
k∈K

zkl = 1, ∀l ∈ L, (1c)∑
t∈T

dklt = Olzkl, ∀k ∈ K, l ∈ L, (1d)∑
l∈L(·,j)

dklt ≤ Skjt, ∀k ∈ K,∀j ∈ J,∀t ∈ T, (1e)

xkiD + wki ≥
∑

l∈L(i,·)

(
Wj

∑
t∈T

dklt

)
, ∀k ∈ K,∀j ∈ J,∀i ∈ I, (1f)

Fkjt + ε+kjt − ε
−
kjt = Skjt −

∑
l∈L(·,j)

dklt, ∀k ∈ K,∀j ∈ J, t = 0, (1g)

Fkjt + ε+kjt − ε
−
kjt = Skjt −

∑
l∈L(·,j)

dklt − ε−kjt−1, ∀k ∈ K,∀j ∈ J, t ≥ 1 (1h)

The objective of the optimization problem (1a) is to minimize the overall fulfillment cost, including
the delivery cost and the inventory management cost, by making the optimal assignment between
warehouses and suborders. The delivery cost consists of the first weight cost and additional unit cost
according to the tiered pricing rule in the logistics. The inventory management cost denotes the loss
of the cargo value , which is the result of the items that become sale-forbidden.

Constraint (1b) denotes that if warehouse k serves any suborder in order i, then xki = 1. Constraint
(1c) denotes that any suborder should be served by one and only one warehouse.

Constraint (1d) denotes that the sum of the selected items before different sale-forbidden periods in
warehouse k must equal the gross item quantity of the suborder l. Constraint (1e) means that any
item j cannot be out-of-stock. Constraint (1f) represents the tiered pricing system in logistics, where
the right-hand side of the equation is the total weight of the served part of order i by warehouse k.
Constraints (1g)-(1h) represent the item picking sequence in the warehouse. Because any item going
into sale-forbidden periods can no longer be sold, they must be picked from near to far.
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Table 1: Notation List

PART DESCRIPTION
Sets I,L, J,K,T: The set of orders, suborders, items, warehouses and time periods

Constants

D: The first weight of any package in tiered pricing rules
Ol: The item quantity in the suborder l1
Wj , Pj : Weight and purchase price of item j ∈ J
C

(0)
ki ,C(1)

ki : The first weight cost and additional unit cost of package (k, i)2
Fkjt: The forecasted sale amount of item j ∈ J in warehouse k ∈ K in period t ∈ T
Skjt: The inventory of item j ∈ J in warehouse k ∈ K

that becomes sale-forbidden beyond period t

Auxiliary
variables

xki ∈ {0, 1}: Whether warehouse k ∈ K serves order i ∈ I, 1: YES, 0: NO
dklt ∈ R+: The quantity of items in suborder l served by k ∈ K

that becomes sale-forbidden beyond period t
wki ∈ R+: The additional weight of package (k, i)
ε+kjt ∈ R+: The quantity of item j ∈ J in warehouse k ∈ K

that becomes sale-forbidden in period t ∈ T
ε−kjt ∈ R+: The lack of inventory in Skjt considering picking sequence

Decision
variables

zkl ∈ {0, 1}: Whether warehouse k ∈ K serves suborder l ∈ L, 1: YES, 0: NO

1 Any suborder l ∈ L belongs to a unique order i ∈ I and has a group of identical item j ∈ J.
2 The package (k, i) denotes that part of or all the suborders in order i ∈ I are served by the warehouse k ∈ K
and are delivered as one package.

Note that zkl is the key decision variable, and it represents the assignment between warehouses and
suborders. When we make decision, two constraints are the most important: (1) Each suborder
should be assigned to only one warehouse, represented by (1c); (2) The item inventory in the as-
signed warehouse must not be less than the demand of the suborder, represented by (1d)-(1e). Other
variables and constraints are auxiliary. For example, dklt, ε+kjt, ε

−
kjt are used mainly to represent the

item picking sequence; and xki, wki are used to represent the difference between the first weight and
the additional weight in the tiered pricing rules.

4 SOLUTION FRAMEWORK

In the proposed solution, we first map this problem into a tripartite heterogeneous graph as the
input to the graph ML model, which has the advantage of being permutation-invariant to the input
order. Then, we design the edge-feature-embedded graph attention to learn the hidden state of the
graph. Last, we use the attention between the hidden state of the orders and warehouses to make the
assignment, which can fit cases with varying sizes of orders, items and warehouses.

During the offline training, the exact B&B method is applied to solve the problem instances to
generate the optimal assignment results as the training labels. In the stage of online inference,
we directly predict the suborder-warehouse assignment through the graph ML model. Because the
proposed graph ML model is size-invariant, it can generalize to cases of larger sizes that have never
been seen during training.

4.1 TRIPARTITE GRAPH REPRESENTATION

First, we novelly represent the order fulfillment problem with a tripartite graph in Figure 1a, where
vectors h, e represent the features of nodes and edges, respectively. Compared to the sequential
representation, the graph representation has the advantage of being permutation-invariant, which
means that different input data orders correspond to the same graph. The three disjoint sets in the
graph are the orders (decomposed into suborders), items and warehouses.
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(a) Tripartite graph representation (b) Graph-based model

Figure 1: The tripartite graph representation and the graph-based machine learning model

Different sets of nodes have different features. The feature hl ∈ RN , l ∈ L of suborder node l is
an N -dimensional one-hot vector, representing the order that it belongs to. The suborders under the
same order share the same feature. N denotes the maximum size of orders the model is designed to
handle. The feature hk ∈ RM , k ∈ K of warehouse node k is an M -dimensional one-hot vector,
representing the different warehouse identification codes (ids). M denotes the maximum size of the
warehouses that the model is designed to handle. The feature hj = [Pj ,Wj ], j ∈ J of item node j is
a two-dimensional vector that consists of the purchase price and weight of the corresponding item.

The edges between different set of nodes also represent different information. The feature ekl =

[C
(0)
ki , C

(1)
ki ], k ∈ K, l ∈ L(i, ·) between suborder l and warehouse k represents the tiered delivery

cost. Note that the first weight and additional weight cost from one warehouse to the suborders
under the same order are identical. The feature elj = [Ol], j ∈ J, l ∈ L(·, j) of the edges between
suborder l and item j represents the quantity of items that each suborder contains. The feature
ekj = [Skj0, Fkj0, ..., Skjt, Fkjt, ...], k ∈ K, j ∈ J of edges between warehouse k and item j is a
vector with the length of 2× |T|, which represents the inventory and forecasted saleplan in different
sale-forbidden dates.

4.2 THE GRAPH-BASED MACHINE LEARNING MODEL

To learn the hidden states from the original tripartite graph and to make an assignment, we propose
a hierarchical graph-based machine learning model in Figure 1b. The model consists of three impor-
tant components. The first component is the edge-feature-embedded GAT layer, which follows the
work of Veličković et al. (2018) but uses a novel attention mechanism to learn the high-dimensional
edge features and the heterogeneous information in the graph. Next, a feed forward (FF) layer makes
a nonlinear transformation of the node and edge features. Last, an “assignment” layer generates the
assignment between suborders and warehouses by computing the attention coefficients of each pair.
It is worthwhile to note that the attention mechanism is used throughout the model and no transfor-
mation depends on the size of the graph, which makes the model able to address varying sizes of
orders, items and warehouses.

4.2.1 EDGE-FEATURE-EMBEDDED GAT LAYER

The input to the edge-feature-embedded GAT is a set of node feature vectors {hl,hj ,hk} and edge
feature vectors {elj , elk, ekj}, ∀l ∈ L, j ∈ J, k ∈ K. Here, we will use the transformation of nodes
that represent suborders hl,∀l ∈ L to illustrate how we properly embed the edge features.
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First, we embed the edge features in the computation of the attention coefficients. For any node
l ∈ L, we compute the attention coefficients between hl and hj ,hk as follows:

clj = score(hl,hj , elj) = σ
(
V >JL(hl‖hj‖elj)

)
,∀j ∈ J (2)

clk = score(hl,hk, elk) = σ
(
V >KL(hl‖hk‖elk)

)
,∀k ∈ K (3)

Here, the attention mechanism is a single feed-forward layer with the nonlinear activation function
σ. VJL and VKL denote the weight vectors with respect to heterogenous node pairs. For any j ∈ J
and k ∈ K, the weight vectors remain the same and thus are invariant to the sizes of the node sets. ‖
represents the concatenation operation. The attention coefficients indicate the importance between
any two nodes considering the edge feature that links them and are computed only if the nodes are
connected in the graph. The coefficients are then normalized across the same type of neighborhood
nodes using the softmax function:

alj = softmaxj(clj) =
exp(clj)∑
j∈J exp(clj)

,∀j ∈ J (4)

alk = softmaxk(clk) =
exp(clk)∑

k∈K exp(clk)
,∀k ∈ K (5)

Second, we embed the edge features into nodes using a linear combination by the attention coeffi-
cients to update hl,∀l ∈ L:

ĥl = hl

∥∥∥∥
[∑
k∈K

alk(hk‖elk)

]∥∥∥∥
∑

j∈J
alj(hj‖elj)

 (6)

Two things should be noted in (6). First, the updated node feature is concatenated with three parts.
The first part is the self-feature, while the others are the combination of the feature of items and
warehouses. The reason is that the graph we address contains heterogeneous information and should
be treated appropriately. Second, the edge feature is again concatenated with the node feature apart
from that in (2)-(3). One special case can illustrate the necessity behind this step. Consider a node
that has only one neighborhood. The attention coefficients will always be 1.0 for this neighborhood,
regardless what the edge feature is. If we do not concatenate the edge feature according to the
method of (6), we lose the information on the edge between them. For other cases, although (2)-
(3) have already embedded the edge features, the concatenation of edge features in (6) can further
strengthen the explicit representation of the edge information.

By applying the transformation method (2)-(6) on nodes hj ,∀j ∈ J and hk,∀k ∈ K, we obtain the
updated node feature ĥj and ĥk, which, in combination with ĥl, forms the output of the layer.

4.2.2 FEED-FORWARD LAYER FOR NODES AND EDGES

Note that the edge-feature-embedded GAT layer only makes a linear combination of features in
equation (6). Therefore, we further use a feed-forward layer to transform the features of nodes and
edges with nonlinearity. We still take the nodes that represent suborders as an example, of which the
updated feature after the GAT layer is ĥl. The transformation through the feed-forward layer is as
follows:

h̃l = σ
(
WLĥl

)
,∀l ∈ L (7)

For the edges, the GAT layer does not make a transformation and thus we have the following trans-
formation for the edges that connect any suborder l ∈ L:

ẽlj = σ (WJLelj) ,∀j ∈ J (8)
ẽlk = σ (WKLelk) ,∀k ∈ K (9)

where WJL,WKL are the transformation matrices for the edges between suborders and items, sub-
orders and warehouses. Note that for any suborder node and the connected edges, the weight matrix
WL,WJL,WKL are the same and are thus invariant to the size of node set.

The outputs of FFN are {h̃l, h̃j , h̃k} and {ẽlj , ẽlk, ẽkj}, ∀l ∈ L, j ∈ J, k ∈ K. They formulate
a new graph with the same topology as the input graph and will be used as the input for the next
hierarchy for further transformation.
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4.2.3 ASSIGNMENT LAYER

To assign suborders to warehouses in size-variant cases, we again use the attention mechanism
as a “pointer” Vinyals et al. (2015) to point each suborder to the appropriate warehouse. First,
we calculate the attention coefficients on the output graph between each pair of suborder l and
warehouse k using the dot product:

clk = score (hl,hk) = h>l hk,∀l ∈ L, k ∈ K (10)

Next, we apply the softmax function to normalize over all of the warehouses and, for any suborder
node l ∈ L, we use the plk as a distribution over the warehouses.

plk = softmaxk(clk) =
exp(clk)∑
k∈K exp(clk)

(11)

The largest probability argmaxk∈K plk is the selected suborder-warehouse assignment by the ML
model. Note that in this step, there is no weight matrix to be trained and thus, the approach is
invariant to the sizes of the suborders and warehouses.

4.3 OFFLINE MODEL TRAINING

In the stage of offline model training, we use supervised learning. The cross-entropy is applied as
the loss function. The total loss in an instance should account for all of the suborders as follows:

loss = −
∑
l∈L

∑
k∈K

ylk log(plk) (12)

where ylk is the real label that denotes whether suborder l is assigned to warehouse k. Real labels are
generated by using the exact B&B method to solve the MIP (1a)-(1j) under different input instances.

4.4 ONLINE MODEL INFERENCE

In the stage of online inference, each input case is formulated into the tripartite graph, and the offline-
trained graph-based model is directly used to compute the attention coefficients between each pair
of suborders and warehouses. To guarantee the feasibility in the online order fulfillment decision,
the most important constraints (1c)-(1e) must be satisfied. We use the following masking procedure
in finding the largest probability argmaxk∈K plk: (1) Select the suborder l = argmaxlOl; (2) The
warehouse node k ∈ K with insufficient inventory (Ol >

∑
t∈T Skjt) is not allowed to be visited;

(3) Find the best warehouse k = argmaxk∈K plk and reduce the inventory of item j from the nearest
sale-forbidden date until the quantity equals Ol.

5 EXPERIMENTS

5.1 DATASETS, BASELINES AND METRICS

We generate one training and three testing datasets with varying scales. The ML model is trained
only on the training set and then tested on the three test sets. The training dataset contains 100,000
instances of the order fulfillment problem with the optimal assignment results as labels, which are
obtained by solving the MIP formulation (1a)-(1h) using the open-source SCIP optimization suite
Gleixner et al. (2017). The problem size in the test cases is larger than that in the training dataset.

We report four baselines in the experiments. The first is the exact branch-and-bound (B&B) method.
The second is the heuristic method that is currently applied in practice (The detailed algorithm is
described in appendix A.2.) The third baseline is to use the Ptr-Net based on supervised learning,
which is also our first attempt facing the order fulfillment problem. To compare the effect of con-
sidering the high-dimensional edge features and heterogeneous information in our model, we add
the fourth baseline by replacing the edge-feature-embedded graph encoders with the original GAT
network Veličković et al. (2018) in our solution framework.

The evaluation metrices are the computation time and the gap in the total cost between the model’s
result and the optimal solution (obtained by SCIP with a time limit of 15 minutes). The total cost
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Table 2: Description of datasets and experimental results

DATASET DESCRIPTION METHOD COST GAP INFERENCE TIME(ms)

TARIN

Size: 100,000
|I| : 6 ∼ 20
|J| : 30 ∼ 40
|K| : 4 ∼ 8

— — —

TEST 1

Size: 10,000
|I| : 6 ∼ 20
|J| : 30 ∼ 40
|K| : 4 ∼ 8

Exact B&B 0% 450
Heuristic 12.6% 1.8
Ptr-Net 15.6% 31
GAT 16.4% 2.5

Our method 2.1% 2.7

TEST 2

Size: 10,000
|I| : 20 ∼ 50
|J| : 70 ∼ 90
|K| : 8 ∼ 12

Exact B&B 0% 3,200
heuristic 11.9% 2.7
Ptr-Net 14.8% 78
GAT 16.1% 4.9

Our method 2.5% 5.1

TEST 3

Size: 100
|I| : 50 ∼ 100
|J| : 100 ∼ 120
|K| : 12 ∼ 20

Exact B&B 0% 62,000
heuristic 11.4% 5.8
Ptr-Net 13.8 210
GAT 15.1% 12

Our method 3.0% 13

(a) Results on test set 1 (b) Results on test set 2 (c) Results on test set 3

Figure 2: Boxplot of inference results on test sets

is computed using equation (1a) based on the order fulfillment result. A smaller gap means a better
assignment policy.

gap =
costmodel − costMIP

costMIP
(13)

5.2 ARCHITECTURE AND HYPERPARAMETERS

In the experiments, we apply N = 3 graph encoders, without using an extensive hyperparameter
search and the multi-head mechanism. The nonlinear activation function in both the edge-feature-
embedded GAT layer and the FFN layer is the exponential linear unit (ELU) Clevert et al. (2015).
During the training, we apply a dropout ratio of 0.1 to the FFN inputs. The model is trained with the
Adam optimizer with a learning rate of 0.003 and a batch size of 256.

5.3 RESULTS

The details of the datasets and the results of the experiments are summarized in Table 2 . Figure 2
compares the performance of all of the methods on the test datasets. Figure 3 gives an example of
the model-predicted assignment result from the 3rd test case.
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(a) Inferred assignment result by our model

(b) Optimal assignment result by solving MIP

Figure 3: An example case with 60 orders (92 suborders, orange points) and 14 warehouses (blue
points). The cost gap in this example is 3.52%.

From the results, we note that our method achieves the smallest cost gap and substantially outper-
forms the heuristic method, Ptr-Net and the original GAT without embedded edge features. In Figure
2, we find that our method also has the smallest variance at the stage of inference, which means bet-
ter robustness. In test sets 2 and 3, where the sizes of the problem instances are completely unseen
during training, our method still has the best performance in extrapolating.

The inference time of these methods is also compared. We note that, although the heuristic method
has the lowest computational cost because of its simple rules, our method is able to make inference
in several milliseconds. Compared to directly solving MIP, our method achieves tens of thousands
of times of acceleration in the computation time and meets the criteria for real-time applications.
The reason behind this outcome is that the graph encoders compute the assignment results through
matrix multiplications. In contrast, the exact B&B method iteratively searches the results in the
feasible region and is thus much slower than our method.

The reason for the bad performance with the original GAT network is obvious, because the important
high-dimensional edge features are ignored in the model. However, it is worthwhile to note that
Ptr-Net does not perform well in the studied task. We think that three reasons might lead to this
result. First, Ptr-Net uses an RNN to encode the input data, which is heavily influenced by the
sequence order and length. For example, in the second test case, the length of the input sequence
is approximately 800, which could be too long for the RNN to learn the hidden states. Second, the
assignment problem is not a sequential decision problem that differs from TSP and VRP, which is
incompatible with the structure of Ptr-Net. Third, the output of Ptr-Net is generated one-by-one,
depending on the previous output sequence, which leads to a larger inference time.

6 CONCLUSIONS

In this paper, we propose a machine learning framework to solve the order fulfillment problem—a
special type of combinatorial optimization—for real-time decisions in online retailing. Experiments
show that our method substantially outperforms the baseline heuristic method and the cost gap be-
tween MIP optimal solution is less than 5%. Our method also realizes thousands of times of acceler-
ation compared with directly solving the MIP, which meets the criteria for real-time online decision
in milliseconds. To meet the characteristics of the studied problem, the edge-feature-embedded
graph encoder is developed, which takes the high-dimensional edge features and heterogeneous in-
formation into the graph attention mechanism and can address problem instances with varying input
lengths and output dictionary sizes.

Apart from solving the studied order fulfillment problem, we envision that the edge-feature-
embedded heterogenous graph attention can be further applied in other combinatorial optimization
problems such as the TSP, VRP and the generalized assignment problem, where our method can
include consideration of the high-dimensional nonlinear route cost or other complex scenarios.
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A APPENDIX

A.1 GENERALIZED ASSIGNMENT PROBLEM

The simplest form is called the assignment problem, in which the knapsack for items is uncapac-
itated. The assignment problem is a special case of the minimum cost flow problem and can be
formulated as a linear programming problem without using integers. Several exact and fast algo-
rithms have been developed such as the Hungarian method, the auction algorithm. Compared to
the assignment problem, the generalized assignment problem has capacitated knapsacks and other
real-world constraints, which make it vary difficult to solve.

The generalized assignment problem describes the assignments between items and bins, where the
bins have a capacity limit. There could exist other complex constraints for the items and bins. The
problem can be formulated as a mixed integer program:

min
zij

m∑
i=1

n∑
j=1

cijzij (14a)

s.t.

n∑
j=1

wijzij ≤ ti, i = 1, ...,m, (14b)

m∑
i=1

zij = 1, j = 1, ..., n, (14c)
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f(zij) ≤ 0, i = 1, ...,m, j = 1, ..., n, (14d)
g(zij) = 0, i = 1, ...,m, j = 1, ..., n, (14e)
zij ∈ {0, 1} i = 1, ...,m, j = 1, ..., n (14f)

In the above formulation, we have n items and m bins. For bin i, each item has a cost cij and a
weight wij . A solution is an assignment from items to bins. The objective is to minimize the cost
of the assignment. The constraint (14b) denotes that any bin i has a capacity ti. The constraint
(14c) denotes that any item can only be assigned to one bin.The equation (14b)-(14c) are the funda-
mental constraints in the generalized assignment problem, while (14d)-(14e) represent other general
constraints for the problem.

The explorations on the exact method to solve the generalized assignment problem are mainly based
on decomposition techniques. Wu et al. (2018) applies Benders decomposition and Lagrangian
relaxation to reduce the scale of the MIP problem. Ghoniem et al. (2016) considers the total space
allocation constraints and modifies the branch-and-price method. According to the paper, it costs
half an hour to reach a nearly-optimal solution with only 15 items and 25 knapsacks.

Several heuristics are developed for the generalized assignment problem as well. Sharkey &
Romeijn (2010); Cohen et al. (2006) use greedy methods to translate the algorithm for the knap-
sack problem into an approximation method for a generalized assignment problem. Fleischer et al.
(2006) further proves the performance of the proposed heuristics by justifying an optimal gap less
than 1/e. Sethanan & Pitakaso (2016); Özbakir et al. (2010) use differential evolution and the bees
algorithm respectively, with the help of local search techniques. An average optimality gap of 12.5%
is achieved. The downside of heuristics is that the approach requires an enormous amount of human
knowledge and might not reach the state-of-art performance.
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A.2 HEURISTIC METHOD FOR THE ORDER FULFILLMENT PROBLEM

The algorithm below is the current heuristic method for the order fulfillment problem. The remaining
inventory near sale-forbidden dates among different warehouses is the first priority, because the
cargo value loss is usually larger than the delivery fee. Next, the delivery fee for each warehouse
is compared, while considering the tiered pricing rule, and the relationships between the orders and
suborders. Finally, the corresponding item inventory is reducted from the best selected warehouse.

Algorithm 1: Heuristic method for the order fulfillment problem
Result: zkl
I′ = I
while I′ 6= ∅ do

K′ = ∅
wk = 0,∀k ∈ K
i = argmaxi

∑
l∈L(i,·)Ol

for l ∈ L(i, ·) do
// Select the best warehouse
if ∃t ∈ T(t 6= |T| − 1), s.t.Skjt > 0 then

k∗ = argmaxk
∑

t∈T Skjt

else
for k ∈ K, s.t.

∑
t∈T Skjt > Ol do

if k ∈ K′ then
if wk +WjOl ≤ D then

ckl = 0
else

ckl = C
(1)
ki (wk +WjOl −D)

end
else

if WjOl ≤ D then
ckl = C

(0)
ki

else
ckl = C

(0)
ki + C

(1)
ki (WjOl −D)

end
end

end
k∗ = argmink ckl
wk∗ = wk∗ +WjOl

K′ = K′ ∪ k∗
end
zk∗l = 1
// Reduct inventory
rl = Ol

for t ∈ T do
if 0 ≤ rl < Skjt then

Skjt = Skjt − rl; rl = 0
else

rl = rl − Skjt;Skjt = 0
end

end
end
I′ = I′ \ i

end
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