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Abstract

Parameter space symmetries, or loss-invariant transformations, are important for
understanding neural networks’ loss landscape, training dynamics, and generaliza-
tion. However, identifying the full set of these symmetries remains a challenge.
In this paper, we formalize data-dependent parameter symmetries and derive their
infinitesimal form, which enables an automated approach to discover symmetry
across different architectures. Our framework systematically uncovers parameter
symmetries, including previously unknown ones. We also prove that symmetries
in smaller subnetworks can extend to larger networks, allowing the discovery of
symmetries in small architectures to generalize to more complex models.

1 Introduction

Parameter space symmetry, or loss-invariant transformation of parameters, influences various aspects
of deep learning theory. Continuous symmetry connects groups to their orbits, revealing important
topological properties such as the dimension [Zhao et al., 2023b]] and connectedness [Zhao et al.,
2023a] of the minimum. Parameter symmetry also influences training dynamics through the associated
conserved quantities of gradient flow [Kunin et al.,|2021]] and by steering stochastic gradient descent
towards certain favored solutions [Ziyin, [2024]]. Additionally, symmetry provides a tool to perform
optimization within a loss level set, with successful applications in accelerating optimization [|[Armenta;
et al., 2023} [Zhao et al.| [2022] and improving generalization [Zhao et al.|[2024]. Other applications of
parameter space symmetry include model compression [Ganev et al.l 2022} |Sourek et al.,|2021]] and
reducing the search space for efficient sampling in Bayesian neural networks [Wiese et al., [ 2023].

Despite the wide range of applications, our knowledge of parameter space symmetries is limited. In
particular, known symmetries often cannot account for all loss-invariant parameter transformation.
While several frameworks have been developed to unify known symmetries, whether the symmetries
in current literature are complete remains an open question. Due to a lack of systematic approach,
current practice typically requires deriving symmetries from scratch for every new architecture,
creating barriers for wider application that leverages parameter symmetries. In this paper, we discuss
an automated approach to directly learn the symmetry groups and their group actions on the parameter
space of neural networks. We show that large networks often have symmetries inherited from its
components or subnetworks. This view suggests that searching for symmetries in small networks is
an effective approach to identify a significant number of symmetries in modern architectures.

Our main contributions are:

» Formal definitions of data-dependent parameter symmetries and their infinitesimal form.
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* An approach to identify symmetries in the parameter space of large networks from known
symmetries in smaller subnetworks.

* A framework that discovers symmetry in neural network parameter spaces.

2 Data-dependent group action and symmetry

Let © be the space of parameters and D be the space of data. In this paper, we consider loss functions
of the form L : © x D — R, which map parameters and a single data point to a real number. By abuse
of notation, we allow L to simultaneously process multiple data points. Specifically, we sometimes
define L : © x D? — R for d € Z* data points.

Let G be a group. Consider a map a, which defines a map for every data batch of size d € Z™:

a:D* = (Gx0 - 0)
X (ax : 9,0~ 0"). )

The map «a is a group action on O if it satisfies the following axioms:
identity: ax(I,0) =0, VX € DY, VO e ®.
associative law: ax(g2,ax(g1,0)) = ax(g291,0), Yg1,90. € G, YX € D, V6 € ©.

A group action a is a parameter space symmetry of L if it additionally satisfies

loss invariance: L(ax(g,0),X) =L(0,X), Vge G, VX e DY, Ve O.

A function L has a G-symmetry if there exists a loss-invariant group action a. We refer to G as
a symmetry group of L. Additionally, the action a is termed a data-dependent group action or
symmetry if the map (1) has a non-trivial dependency on X. That is, a is data-dependent if there
exists X1, Xo € D?, such that a x, 7 ax,. We derive an infinitesimal version of parameter space
symmetries in Appendix [B]

3 Building symmetries from known ones

One way to identify symmetries in a large network is by examining its components or subnetworks.
Despite often having billions of parameters, neural networks typically consist of a limited set of
functional families, such as fully connected layers, attention mechanisms, and activation functions.
This modular view suggests a mechanism by which symmetries in networks with fewer layers might
extend to those in deeper networks. Additionally, within similar types of networks, it may be possible
to extrapolate symmetries found in narrower layers to wider ones.

By focusing on symmetries in small architectures and using them to infer symmetries in larger
ones, we circumvent the complexity associated with direct handling of high-dimensional parameter
spaces. This approach not only simplifies the discovery of symmetries in large-scale networks but
also provides a systematic method for using symmetries in smaller subnetworks to understand those
in more extensive architectures. Proofs and further discussions can be found in Appendix [C]

When a loss function L depends on a subset of parameter exclusively through a subnetwork f, any
symmetries that preserves f will also preserve the original network L:

Proposition 3.1. Ler L : © x D? — R% be a function, where the parameter space © is a product
space © = O x O, with spaces ©1,0,. Suppose there exist functions h : ©; x D¢ — S,
f:©03x8 = T, andj: (0, xT) x D! — R?, such that for every § = (01,0,) € ©
and X € Dd, L(Q,X) = j((el,f(eg,h(el,X))),X) If a : S — (G X Oy — @2) is a G-
symmetry of f, then there is an induced G-symmetry of L, o’ : D* — (G x © — ©), defined by
ax (g, (01,602)) = (61, an,,x)(9,02)).

The relationship between the functions in the proposition is described by the commutative diagram
below, where p; : © — O1, ps : © — O, are projections onto ©; and O, i; : ©; — O and
iy : ©9 — O, are identity maps, and X € D represents a batch of data. When L can be decomposed



in this way, the function h does not depend on O,, and the function j depends on ©5 only through
the output of f. This effectively confines L’s dependency on ©Os to the transformation defined by
f, ensuring that any transformation on ©2 not altering the output of f will not affect the output of
L. Consequently, symmetries identified in the smaller network f can be extrapolated to the larger
network L.

© Rd
P1 X P2 Xpll 3 X)
i1 X g X h(+, X i1 X f(,-
@1X92X@1 - 2 ( ) @1X92XS - f( ) @1><T

Proposition [3.1]can be applied to construct symmetries in larger networks from those in smaller ones
(Corollary [C.2] [C.T)in Appendix [C). Figure [T] shows the subset of parameters (©5) the symmetry
applies to in the corollaries.
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Figure 1: If a network contains substructures with known symmetry, we can infer the same symmetry
for the large network. (a) Symmetry from narrower networks. (b) Symmetry from shallower networks.

Note that this approach does not explore the emergence of new, more complex symmetries that
may arise as the neural network scale up in size. Notably, there are cases where there exists a G
symmetry over its input space, but group actions on individual layers are not loss-invariant (Kvinge
et al.|[2022]]). Nevertheless, studying smaller and simpler networks remains a effective strategy to
obtain a significant number of symmetries in larger networks, and is a first step in characterizing the
complete set of symmetries in modern architectures.

4 Automatic Discovery of Parameter Symmetries

Formulating symmetries in the infinitesimal form makes them easier to learn using an automatic
framework, as it defines a set of local conditions for a function to be a symmetry. Using the
infinitesimal symmetry derived in Section[B.1I] we construct an automated framework for discovering
parameter space symmetries.

Enforcing Loss Invariance and Group Axioms. Given a function L, our goal is to find a symmetry
a and a set of Lie algebra elements h corresponding to a symmetry group of L. We parameterize a
using a neural network with learnable parameters, and set h to be learnable as well. We define the
following loss terms that quantify the deviation from loss invariance and the group axioms (identity
and associativity law):

Linvariance = EwﬁlDOLlG,X o DgaX|I,9(h)| 2)
Lis =Ey9llaz(1,0) — 02 3)

The two loss terms bias the action towards being loss-invariant and preserving identity. By minimizing
Lyje_deriv, Wwe ensure that the learned symmetry a and the Lie algebra element £ satisfy the infinitesimal
symmetry condition (Theorem B.T)). Minimizing L;q enforces the identity axiom. By focusing on
the Lie algebras, we enforce the loss invariance and group structure at the infinitesimal level. This
formulation allows us to avoid computing exponential maps.

Regularizations. To prevent the group action to be the identity function, we encourage the in-
finitesimal action to be nonzero. In implementation, we include the following regularization term



to encourage the norm of the infinitesimal action to be around a fixed positive real number /3:
Lieg ia = ming ;, Eg|B — [[Dgax|r,0(h)]||-

When learning multiple generators simultaneously, we want them to be orthogonal. Following
[2023b]], we do this by including the following cosine similarity between each pair of the &

; . hi-h;
generators in the loss function: Lyeg b orh = D, <i<j<k m

Finally, we encourage sparsity of / for easier interpretation, with Lieg h_sparse = k. | Pk
The final training objective is a weighted average of the above loss and regularization terms, with
hyperparameters 71, ..., ¥ € R*:
I}Llin 71 Linvariance + v2Lia + 73Lreg7id + 74Lreg7h70rth + ’VSLregfhfspars& 4
,a

4.1 Learned data-independent symmetries

In the first set of tasks, we see if our method can learn gen-
erators for architectures with already known data-independent
symmetries. We consider two-layer networks in the form
of LWy, W5, X,Y) = [[Wao(W1X) — Y|?, where Wy €
R™*h W, € RPX™ are parameters, X € R"*F Y ¢ Rm*k
are data, and ¢ is a homogeneous activation function.
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During training, we train the generators h and the group action a 01

under objective {@). We parametrize a using a 4-layer MLP with
hidden dimensions 64, 64, 64. The group aciton a takes a group
element, parameter, and data as input and outputs transformed
parameters. We use 10000 training samples, each containing
a randomly generated set of parameters and data. We set the
learning rate as 10~3 with decay 0.6 every 1000 steps, and the
weights for the multi-objective loss as y1 = 10, v2 = y4 =75 =
1,and v = 0.1.

As a proof of concept, we training a group action and a single generator h € R?*? for the two-layer
architecture with m = h = n = k = 1 and o being the identity function. Figure 2] visualizes the
learned generator, which matches the expected generator that generates the rescaling group.
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Figure 2: Generator for a two-

layer linear MLP with scalar pa-
rameters and data.

Note that, however, we do not impose constraints on the group action (in particular, not enforcing
linear actions). Hence we do not expect the learned generators to look similar to the elements of the
Lie algebra infinitesimal generators of the symmetry group in general. For example, the action a
can be a composition of two function, the first transforming learned generators to the set of actual
generators, and the second performing the group action. We find that our method can learn the
generators and group actions for wider two-layer homogeneous architectures as well. More examples
of learned generators for larger architectures can be found in Appendix

4.2 Learned data-dependent Symmetries

As a more practical application of our framework, we attempt to uncover data-dependent symmetries
from architectures where no continuous symmetry is known before. We apply our framework to
learn generators and loss-invariant group actions for two-layer neural network with sigmoid and tanh
activation function, as well as a three-layer neural network with skip connection.

Specifically, we aim to learn symmetries in the two-layer networks defined in the previous section,
but replacing o by sigmoid or tanh. Our objective is again to find a set of generators i and a group
action a that minimizes (@). We use 10000 training samples, each containing a randomly generated
set of parameters and data. We set the learning rate as 10~ and the weights for the multi-objective
lossas 1 =1,v2 = v4 =10,v5 =1, and 75 = 0.1.

Figure 3| shows the learned generators for data-dependent symmetries in a two-layer sigmoid MLP
with parameters dimensions W, € R3*3, W, € R3*! and data X € R3*'|Y € R'*!. Figure[]in
the Appendix shows the training curve. Since sigmoid networks have no data-independent continuous
symmetry, this set of symmetries are data-dependent, indicating that our method successfully learns
data-dependent symmetries for this architecture.



Figure [ shows the learned generators for data-dependent symmetries in a three-layer tanh MLP with
parameters dimensions W € R2*2, W, € R?*2 W; € R?*! and data X € R'*2,Y € R'*!, The
generators indicate the existence of symmetries that act on non-contiguous layers, which has not been
discovered in previous literature.
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Figure 3: Learned generators for data-dependent symmetries in a two-layer sigmoid MLP with
parameters dimensions Wy € R3*! W, € R3*3 and data X € R1*3)Y € R1*1,
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Figure 4: Learned generators for data-dependent symmetries in a three-layer tanh MLP with parame-
ters dimensions W, € R?*2 W, € R2X2 W3 € R?*! and data X € R'*2Y € R *1,

5 Discussion

While our discovery framework suggests that there are previously unknown data-dependent sym-
metries in various neural network architectures, the existence and number of symmetries in neural
network parameter spaces remain open questions. Whether the number of symmetries is affected by
existence of symmetry in data or changes during training are also interesting directions. Future work
will examine the structure of learned symmetry, such as the dimension of Lie algebras.
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Appendix

A Related Work

Parameter space symmetry. Parameter symmetries are loss-invariant transformations on neural
network parameters, often in the form of group actions. Symmetry is present in many neural
networks. Known symmetries include invertible linear transformations in linear networks, rescaling
in homogeneous networks [Badrinarayanan et al.| 2015} Du et al., 2018]], radial rescaling in radial
neural networks [Ganev et al.| 2022]], and translation in softmax and scaling in batchnorm functions
[Kunin et al., |2021]]. In tanh neural networks [Chen et al.| [1993], only permutation and sign flip
symmetries preserve the loss function. ReLLU networks, however, possess symmetries beyond the
well-known rescaling [|Grigsby et al., [ 2023]]. The existence and number of symmetries in most other
architectures remain an open question.

Data-dependent symmetry. While the above symmetries leave the loss unchanged on all data,
a relaxed definition, data-dependent symmetry, only requires loss invariance on a subset of data.
Zhao et al.|[2023b] found examples of such symmetries with nontrivial data dependency, although
these symmetries are complicated, limited to minibatches of size one, and difficult generalize across
different architectures. This motivates an automated symmetry discovery framework, which, in
principle, can find symmetries of arbitrary form in arbitrary architectures. The concept of a symmetry
dependent on data has also appeared in adjacent fields. For example, [Moskalev et al.|2023|] observe
that learned data invariance in neural networks is strongly conditioned on data and breaks under data
distribution drift; [Sonoda et al.|[2023]] define a joint group action on data and parameters as part of a
new proof of universal approximation theory.

Discovering and measuring symmetry. Various work explores learning continuous symmetries
by identifying generators of Lie groups [Krippendorf and Syvaeril 2020, Moskalev et al., 2022,
Dehmamy et al.,[2021] [Yang et al., 2023b, |Gabel et al., [2023]], including cases with nonlinear group
actions [[Yang et al., 2023a}, Shaw et al.| 2024]]. We build on this approach to discover data-dependent
group action in high-dimensional parameter spaces. While learning discrete symmetry [Zhou et al.|
2021}, Karjol et al.| |2024] and distributions of symmetry [Benton et al.,|2020, Romero and Lohit,
2022, |Urbano and Romero}, [2023]] are also relevant, they are not the primary focus of this paper.

Extracted symmetry is often evaluated locally, by measuring function changes under infinitesimal
symmetry transformations [Gruver et al.,|2022]] or by comparing tangent spaces of orbits under the
learned group and the true symmetry group [Portilheirol |2023]]. We adopt the local invariance of loss
functions under symmetry transformation, similar to that defined in [|Gruver et al., 2022| Moskalev:
et al.| 2022]], as the minimization objective in learning data-dependent group actions.

B Infinitesimal Symmetry and Examples

B.1 Infinitesimal Symmetry

We derive an infinitesimal version of parameter space symmetries. For the automatic symmetry
discovery framework in Section[d] this definition allows us to learn the group elements and actions
without computing matrix exponential, which is expensive, during training.

The following theorem shows that the derivative of the loss function L with respect to the parameters
6 vanishes in the directions generated by the symmetry group’s infinitesimal transformations. In other
words, the loss function is invariant to small changes along these symmetric directions in parameter
space.

Theorem B.1. Let a : D¢ — (G x © — ©) be a parameter space symmetry of a loss function
L:0 xD4 5 R Ler DoLlpx : Ty® — R? be the derivative of L with respect to 0, and

Dgax|r.6: g — Ty© be the derivative of ax (g, 0) with respect to g. Then, forall § € ©, X € D¢,
and h € g,

DQL‘97XODgaX‘I,00h=0. 5)



Proof sketch. Consider a smooth curve v(¢) = ax (exp(ht),0) in ©, where h € g and ¢ € R. Then,
since L is invariant under a, L((t), X) = L(6, X ), Vt € R. The result follows from differentiating
both sides with respect to ¢ at ¢ = 0 and applying chain rules. O
Proof. Since a is a symmetry of L, we have

L(ax(g,0),X)=L(0,X), VgeG, V9cO, VXcD
Consider a smooth curve (t) = ax (exp(ht), ) in ©, where h € g and t € R. Then, since L is

invariant under a,
L(y(t),X)=L(0,X), VteR.

Differentiating both sides with respect to ¢ at ¢ = 0, we get

d
—L X =0.
Fhom.x)|
Applying the chain rule,
d dy(t
—L X = DyL —_— .
FLa0.3)| =ty (T )
Now, compute dji(tt) . using the chain rule:
dr(¢) d d
N TE = — ht),0 =D ht .
dt =0 dt ax (eXp( ) ) -0 gaX |1,9 dt eXp( ) -0

Since exp is the exponential map from gl(n) to GL(n), and h € gl(n), we have

d
pn exp(ht) T h.
Therefore,
dy(t)
—_— =D h).
a |, gax|ro(h)

Putting it all together,
D9L|9,X (Dgax|],9(h)) =0.
O

Equation [3] states that the gradient of the loss function L with respect to the parameters 6 is orthog-
onal to the directions in parameter space generated by the infinitesimal symmetry transformations
Dyax | I e(h)' This orthogonality implies that moving along these symmetric directions does not

change the loss to first order, reflecting the invariance of L under the group action.

Assuming that © = R", then for a single data point (d = 1), we can write (3 in coordinates as

dim(©) dim(g 8L
DyLlo.x (Dgaxlro(h) = Z (DgaXII_’e)ik hi = 0. (6)
i=1 )

When © = R™ and G is a subgroup of GL(n) with a linear, data-independent symmetry a,(g,0) =
g0 for all z € X, (6) reduces to the equation in Theorem 3.1 in [Moskalev et all, 2022]]. With

(Dya)iji = 599 = = §;;0), we have
p het) .o n n o n n
% ~ ZZZ (D a|19) hjr = ZZ Hkhzk @
= i=1 j=1k= 1 =

Our symmetry acts on parameters instead of data, but otherwise this matches Theorem 3.1 in
[Moskalev et al., 2022].



B.2 Alternative Option for Discovery Objectives

A more straightforward training objective exponentiates the Lie algebra to obtain group elements,
before enforcing loss invariance and group axioms:

rinn Linvariancefint + Lidfinl + Lassocfinl

with

Linvariance_int = ]Ez,e,t”L (a:c (exp(ht)a 0)3 I‘) - L(H, I) ||
Lia ine = Eq gl|as(1,0) — 0|

Lassoc_int = Z Ez,& Haexp(hl)X(eXp(h2)> ax (exp(hl)v 0)) —ax (exp(hg) exp(hl)v 0) || :
hi,ha€g

Similarly to the infinitesimal version, this objective also directly enforces the necessary group
structures. We adopt the infinitesimal formulation to avoid the computational overhead of evaluating
exponential maps.

C Building symmetries from known ones

This section contains the proofs for results in Section [3]

PrOpOSltlonn Let L : © x D* — R? be a function, where the parameter space © is a product
space © = O x Oy, with spaces O1,0,. Suppose there exist functions h : ©; x D¢ — S,
f:0yx S = T,andj: (01 x T) x D — R?, such that for every § = (61,0) € ©
and X € D% L(0,X) = j((61, f(02,1(01,X))), X). Ifa: S — (G x Oy = ) isa G-
symmetry of f, then there is an induced G-symmetry of L, a’ : D — (G x © — ©), defined by
dx (g, (01,602)) = (61, an, x)(9,02)).

Proof. We need to show that o’ satisfies the identity and associative law of a group action and
preserves L.

Since a is a group action on O, it satisfies the identity axiom a9, x) ([, 02) = 02. Applying this in
the definition of o', we get a'y (I, (61, 02)) = (01, an,,x)(I,02)) = (61,02).

Since @ is a group action on O, it satisfies the associative law ap(g, x)(9291,02) =
an(o,,x)(92, ano,,x)(91,02)), for all g1,g> € G. It follows that o’ also satisfies the associa-
tive law: a’y (9291, (01,02)) = (01, an(s, x)(9291,02)) = (01, an(e, x)(92; aneo,,x)(91,02))) =
a’x (g2, dx (g1, (01,02)))

Finally, since a is a symmetry of f, we have f(an, x)(9,02), (01, X)) = f(02,h(01,X)),
for all ¢ € G. It follows that a’ preserves the value of L: L(d'x(g,0),X)
X).

3((01, f(ano,,x)(9,02), h(61,X))), X) = j((61, f (02, h(01, X))), X) = L(6, 5

The first corollary describes how symmetries identified in narrower networks also apply to wider
networks. A function o : R"** — RPX* is row-wise if, for any matrix A € R"™¥ with rows
{a; € R*}{,, the output matrix o(A) has rows {0yow(a;) € R}, where 0,0, : R¥ — RF
applies independently on each row of A. Element-wise function is a special case of row-wise
functions. For fully connected networks with row-wise activation functions, identifying a symmetry
in one architecture suggests that the same symmetry will apply to wider versions of that architecture.

Corollary C.1. Consider a network parameter space ©(m,h,n) = R™*" x R"*" and data
space D(n, k) = R™F, Let o : R"F — R"* pe a row-wise function. Consider a function
Lunni @ ©(m, h,n) x D(n, k) — R™** defined as Lynni,(U,V),X) = Uo(VX) for U €
R™*h V€ R and X € R™"¥F. If there is a G-symmetry of Ly,nhr, then there is a G-symmetry
of Lipnn'i with any h' > h.
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Proof. The function L,/ can be decomposed into
Ulc(VX))ir = Uijo(VX)k
h n

ZZUZ‘jU(leXlk)
h
>

<.
=
Il
-

M:

Uijo (Vi Xu) + Z > Uijo(ViXu) ®)

j=h+11=1

<.
-
Il
-

Note that for all 7, k, the first term depends only on the first A columns of U and first A rows of V,
and the second terms depends only on the rest of the columns and rows of U and V. Denoting the
first h columns of U as Uy ., the rest of the columns of U as Up, 1.y, the first h rows of V as V7.,
and the rest of the rows of V" as V}, 1.5/, we have

Lmnh’k((Ua V)a X) = Lmnhk((Ulzhv Vl:h)a X) + Lmn(}z’—h)k((Uh+l:h’a Vh+1:h’), X) (9)

Let ©; = RM*h x Rhxn gpnd @y = RM* (W' =h) y RV =h)xn Thep O(m,h',n) = O; X O,. Let
S = (R™*k x D) and T = R™** x R™**_ Define the following three functions
h:©; x DY — (R™*F x DY)
[0 x (R™F x DY) — R™F x R™F
G (01 x (R™*F 5 RMXFY) 5 pd 5 RM*E (10)
by
h((Ulzhv Vl:h)a X) = (Lmnhk((Ulzhv Vl:h)’ X),X)
S(Unsrnrs Vigrn), (Vo X)) = (Lon@r—nyi((Unga:ns Varin), X),Y)
J((Orn, Vin), (YY), X) =Y 4. (1

Then Lppk(0, X) = j((@l,f(ﬁg,h(ﬁl,X))),X) for all @ = (01,6-) € © and X € D?. Since
Lynhik has a symmetry, f has the same symmetry. By Proposition @ Lynn i also has the same
symmetry. O

The next corollary shows that symmetries of a subset of layers are also symmetries in the entire
network. Both corollary can be proved by partitioning the dimensions the parameter space and
defining corresponding functions that compose L, before applying Proposition [3.1] Figure[T]shows
the subset of parameters (O5) the symmetry applies to in the corollaries. These are the subnetworks
where symmetries are assume to be known, which the larger network inherits.

Corollary C.2. Let © = O x ... x ©; be a parameter space. Consider a list of spaces ®y = D,
®; = RY, and @4, ..., ®;_1. Let L : © x D? — R? be a function defined recursively by { L;}._, with
L;:©; x &,y — ®,;, such that L = ¢; where ¢; = L;(0;,di—1) € ®; and ¢ = X. If for some
1 < i<, L; has a G-symmetry, then L has a G-symmetry.

Proof. Define functions
h:(©1X..X0;_1xX0;41 X...x0;) X DY ;4
f:0;, xP;_1 — D,
J:(O1 X .. X 01 X041 X ... X Op) X D; x D 5 R? (12)
by
h((01,...,0;—1,0i+1,...,6;),X) = L;—1(0;—1,X), computed using (01, ...,0;,_1)
f(0i, 0i1) = Li(0i, i—1)
J((01,.s0i-1,0i11,...,01), i, X) = Li(0;,X), computedusing (6;,...,0;11) and ¢;. (13)

Then L((Hl,...,ﬂl),X) = j((ﬁl,...,01-,1,9”1,...,91),f(9i,h((917...,91-,1,9”1,...,01),X)),X)
forall @ = (61,0) € © and X € D?. By Proposition if f = L, has a G-symmetry, L also has a
G-symmetry. O
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In addition to obtaining symmetries from those in smaller networks, we can also get symmetries for a
loss function over data batches with a certain size, if we know there is a symmetry for this function
over larger data batches. Concretely, if there exists a group action that preserves loss for all data
batches of size d € Z™, then that group action preserves loss for all data batches of size d’ < d.

Proposition C.3. Let Ly : © x D% — R? be a function that is applied pointwise on each of d data
points in a data batch. If Ly admits a G-symmetry, then Ly admits a G-symmetry for all d' < d.

Proof. Suppose that L, has a G-symmetry. Leta : D? — (G x © — 0), Xq + (ax, : 9,0 — 0')
be the corresponding group action. Define a’ : D¢ — (Gx O — ©) by Xg (ayx,y 29,0 0"),

where t : DY — D appends d — d’ random data points to its input. Clearly, o’ satisfies the identity
and associate axiom and preserves loss. Therefore, o’ is a G-symmetry of L. O

D Additional Experiment Details
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Figure 5: Learned generators for a two-layer linear MLP with parameters dimensions Wy €
R'™2, W, € R?*! and data X,Y € R.

109 \.

1071 A At
@ *‘.;h o ° °
81072 NN

"

s
10731 t_:zvariance*
10744 e r;g_id oAy
e reg_h_orth wﬂ

0 2000 4000 6000 8000 10000
Number of Training Samples

Figure 6: Training curve for learning data-dependent symmetry in a two-layer sigmoid MLP with
parameters dimensions Wy € R3*1, W, € R3*3 and data X € R1*3,Y € R1*!,
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