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Abstract

This work introduces SPFormer, a novel Vision Transformer architecture enhanced by super-
pixel representation. Addressing the limitations of traditional Vision Transformers’ fixed-size,
non-adaptive patch partitioning, SPFormer divides the input image into irregular, semanti-
cally coherent regions (i.e., superpixels), effectively capturing intricate details. Notably, this
is also applicable to intermediate features and our whole model supports end-to-end training,
empirically yielding superior performance across multiple benchmarks. For example, on the
challenging ImageNet benchmark, SPFormer outperforms DeiT by 1.4% at the tiny-model
size and by 1.1% at the small-model size. Moreover, a standout feature of SPFormer is its
inherent explainability — the superpixel structure offers a window into the model’s internal
processes, providing valuable insights that enhance the model’s interpretability and stronger
robustness against challenging scenarios like image rotations and occlusions.

1 Introduction

Over the past decade, the vision community has witnessed a remarkable evolution in visual recognition systems,
from the resurgence of Convolutional Neural Networks (CNNs) in 2012 (Krizhevsky et al., 2012) to the
cutting-edge innovation of Vision Transformers (ViTs) in 2020 (Dosovitskiy et al., 2021). This progression has
instigated a significant shift in the underlying methodology for feature representation learning, transitioning
from pixel-based (for CNNs) to patch-based (for ViTs).

Traditionally, pixel-based representations organize an image as a regular grid, allowing CNNs (He et al.,
2016; Tan & Le, 2019; Mehta & Rastegari, 2022; Sandler et al., 2018) to extract local, detailed features
through sliding window operations. Despite the inductive bias inherent in CNNs, like translation equivariance,
aiding their success in effectively learning visual representations, these networks face a challenge in capturing
global-range information, typically necessitating the stacking of multiple convolutional operations and/or
additional operations (Li et al., 2020; Chen et al., 2018) to enlarge their receptive fields.

In contrast, ViTs (Dosovitskiy et al., 2021) regard an image as a sequence of patches. These patch-based
representations, usually of a much lower resolution compared to their pixel-based counterparts, enable
global-range self-attention operations in a computationally efficient manner. While the attention mechanism
successfully captures global interactions, it does so at the expense of losing local details, like object boundaries.
Moreover, the low resolution of patch-based representations poses challenges to adaptation for high-resolution
dense prediction tasks such as segmentation and detection, which require both local detail preservation and
global context information.

This dichotomy raises an intriguing question: can we derive benefits from both preserved local details and
effective long-range relationship capture? In response, we explore superpixel-based solutions, which have been
employed extensively in computer vision prior to the deep learning era (Zhu & Yuille, 1996; Shi & Malik,
2000; Martin et al., 2001; Malik et al., 2001; Borenstein & Ullman, 2002; Tu & Zhu, 2002; Ren & Malik,
2003). These solutions provide locally coherent structures and reduce computational overhead compared
to pixel-wise processing. Specifically, adaptive to the input, superpixels partition an image into irregular
regions, with each region grouping pixels with similar semantics. This approach allows for a small number of
superpixels, making it feasible to model global interactions through self-attention.
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Figure 1: Visualization of learned superpixels with our SPFormer trained on ImageNet with category labels
only. For each row, we show input image, visualization of 196, 49, and 16 superpixels. The learned superpixel
aligns well with the object boundaries even with 16 superpixels. The last row shows results from a COCO
image (not trained), demonstrating SPFormer’s zero-shot ability.

To this end, we introduce a novel transition of ViT architecture from patch representation to superpixel
representation, through our newly developed Superpixel Cross Attention (SCA). The resulting architecture,
Superpixel Transformer (SPFormer), adeptly marries local detail preservation with global-range self-attention,
enabling end-to-end trainability. In comparison to standard ViT architectures, SPFormer demonstrates strong
enhancements across various tasks. For instance, it achieves impressive gains on the challenging ImageNet
benchmark, such as 1.4% for DeiT-T and 1.1% for DeiT-S. Notably, the superpixel representation in SPFormer
aligns seamlessly with semantic boundaries, even in unseen data. Moreover, the interpretability provided by
our superpixel representation facilitates understanding of the model’s decision-making process and enhances
the robustness against rotations and occlusions. These findings highlight the potential of superpixel-based
approaches in advancing the field, and, hopefully, could inspire future research beyond traditional pixel and
patch-based paradigms in visual representation learning.

2 Related Work

Pixel Representation CNNs (LeCun et al., 1998; Krizhevsky et al., 2012; Simonyan & Zisserman, 2015;
Szegedy et al., 2015; Ioffe & Szegedy, 2015; He et al., 2016; Tan & Le, 2019; Liu et al., 2022) process an
image as a grid of pixels in a sliding window manner. CNN has been the dominant network choice since
the advent of AlexNet (Krizhevsky et al., 2012), benefiting from several design choices, such as translation
equivariance and the hierarchical structure to extract multi-scale features. However, it requires stacking
several convolution operations to capture long-range information (Simonyan & Zisserman, 2015; He et al.,
2016), and it could not easily capture global-range information, as the self-attention operation (Vaswani et al.,
2017).

Patch Representation The self-attention mechanism (Bahdanau et al., 2015) of Transformer architec-
tures (Vaswani et al., 2017) effectively captures long-range information. However, its computation cost is
quadratic to the number of input tokens. ViTs (Dosovitskiy et al., 2021) alleviate the issue by tokenizing (or
patchifying) the input image with a sequence of patches (e.g., patch size 16 × 16). The patch representa-
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tion (Dosovitskiy et al., 2021) unleashes the power of Transformer architectures (Vaswani et al., 2017) in
computer vision, significantly impacting multiple visual recognition tasks (Russakovsky et al., 2015; Carion
et al., 2020; Zhu et al., 2021; Wang et al., 2021a; Touvron et al., 2021a; Radford et al., 2021; Bao et al., 2022;
He et al., 2022; Yu et al., 2022c; 2023). Due to the lack of the built-in inductive biases as in CNNs, learning
with ViTs requires special training enhancements, e.g., large-scale datasets (Sun et al., 2017), better training
recipes (Touvron et al., 2021a; Steiner et al., 2021), or architectural designs (Liu et al., 2021; Wang et al.,
2021b). To mitigate the issue, a few works exploit convolutions (LeCun et al., 1998; Sandler et al., 2018) to
tokenize the images, resulting in hybrid CNN-Transformer architectures (Wu et al., 2021; Yuan et al., 2021;
Dai et al., 2021; Xiao et al., 2021; Mehta & Rastegari, 2022; Guo et al., 2022; Tu et al., 2022; Yang et al.,
2023). Unlike those works that simply gather knowledge from existing CNNs and ViTs, we explore a different
superpixel representation in ViTs.

Superpixel Representation Before the deep learning era, superpixel is one of the most popular rep-
resentations in computer vision (Zhu & Yuille, 1996; Shi & Malik, 2000; Martin et al., 2001; Malik et al.,
2001; Borenstein & Ullman, 2002; Tu & Zhu, 2002; Ren & Malik, 2003). Ren and Malik (Ren & Malik,
2003) preprocess images with superpixels that are locally coherent, preserving the structure necessary for
the following recognition tasks. It also significantly reduces the computation overhead, compared to the
pixel-wise processing. The superpixel clustering methods include graph-based approaches (Shi & Malik,
2000; Felzenszwalb & Huttenlocher, 2004), mean-shift (Comaniciu & Meer, 2002; Vedaldi & Soatto, 2008),
or k-means clustering (Lloyd, 1982; Achanta et al., 2012). Thanks to its effective representation, recently
some works attempt to incorporate clustering methods into deep learning frameworks (Jampani et al., 2018;
Yang et al., 2020; Locatello et al., 2020; Xu et al., 2022; Yu et al., 2022a; Zhang et al., 2022; Yu et al.,
2022b; Ma et al., 2023; Huang et al., 2023; Zhu et al., 2023). For example, SSN (Jampani et al., 2018)
integrates the differentiable SLIC (Achanta et al., 2012) to CNNs, allowing end-to-end training. Yu et al.
(2022a;b) regard object queries (Carion et al., 2020; Wang et al., 2021a) as cluster centers in Transformer
decoders (Vaswani et al., 2017). SViT (Huang et al., 2023) clusters the tokens to form the super tokens,
where the clustering process has no gradient passed through1. Consequently, their network is not aware
of the clustering process and could not recover from the clustering error. CoCs (Ma et al., 2023) groups
pixels into clusters, while aggregating features within each cluster by regarding the image as a set of points
with coordinates concatenated. In contrast, our proposed method groups pixels into superpixels, and models
their global relationship via self-attention. Furthermore, during clustering, CoCs uses a Swin-style window
partition (Liu et al., 2021) that introduces visual artifacts, especially around the window boundaries.

3 Method

We introduce SPFormer, a novel image processing framework that integrates superpixel-based feature
representation with a SCA mechanism. This approach effectively addresses the limitations of traditional pixel
and patch-based methods by enhancing both computational efficiency and detail preservation. We begin with
a detailed discussion of our advanced superpixel representation (Sec. 3.1), followed by an explanation of the
SCA mechanism in Sec. 3.2, which refines this representation by blending local details with global contextual
information efficiently. Finally, we elaborate on the integration of these advancements into the SPFormer
architecture in Sec. 3.3.

3.1 Superpixel Representation: Bridging Pixel and Patch Approaches

In the evolving landscape of feature representation, the transition from pixel to patch-based methods in ViTs
has opened new avenues for image processing. However, each method has inherent limitations, inspiring our
exploration of a more adaptive and efficient representation: superpixels.

Pixel Representation Traditional pixel representation conceptualizes an image I as a grid of high-
resolution pixels, expressed as I ∈ Rc×h×w. Predominantly employed in CNN-based methods, this approach
suffers from restricted contextual integration due to the limited receptive fields of the convolution operations.

1From official code: https://github.com/hhb072/STViT/blob/main/models/stvit.py#L206
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Although self-attention mechanisms could theoretically mitigate this limitation, their implementation is
computationally prohibitive at this scale due to the quadratic dependencies on the number of pixels.

Patch Representation Contrastingly, ViTs adopt a patch-based representation with reduced resolution,
denoted by P ∈ Rc×ph×pw . This simplification reduces computational complexity and facilitates the application
of self-attention mechanisms—albeit at a loss of finer detail and contextual richness due to the coarse
granularity.

Superpixel Representation Our approach combines the advantages of both pixel and patch methodologies
through a superpixel representation that includes features S ∈ Rc×sh×sw and an association matrix A ∈
Rn×h×w. This matrix defines a competitive relationship between pixels and their associated superpixels, as
delineated further in the structured components below:

1. Neighboring Superpixels (Ni): Each pixel i is linked to its neighboring superpixels, including the nearest
superpixel and its Moore Neighborhood within a radius of r = 3, comprising n = 9 superpixels in total. This
configuration not only facilitates localized information sharing but also enhances the granularity of the feature
representation. Moreover, these superpixels engage in a competitive interaction to establish dominance over
the association with the pixel, which dynamically affects the feature integration process.

2. Superpixel’s Local Window (Wp): For each superpixel p, a local window Wp is defined, which encompasses
pixels that are potentially owned by the superpixel, based on the Ni associations. This window configuration is
critical for implementing the superpixel cross attention mechanism via a sliding window technique, as detailed
in Sec. 3.2. It ensures that each superpixel contextually interacts with its relevant local pixel environment,
enabling precise and adaptive refinement of attention dynamics.

The superpixel representation can be effectively converted into a pixel representation using the equation:

Ii =
∑

p∈Ni

Aip · Sp (1)

where Ii denotes the feature vector of pixel i. This transformation method not only preserves boundary
information with high fidelity but also offers a finer granularity than direct patch upsampling. It facilitates a
seamless transition between superpixel and pixel representations, enabling the use of a more manageable
superpixel grid while ensuring meticulous retention of detailed pixel-level information.

Furthermore, our superpixel approach effectively retains crucial boundary information and demonstrates
robustness against common image distortions such as rotation and occlusion, benefiting from the inherent
adaptability of superpixels. The reduced computational demands, along with semantic pixel clustering for
improved explainability, and resilience against complex transformations, position this method as a superior
alternative to traditional approaches.

3.2 Superpixel Cross Attention

In the SCA module, our strategy employs a dual mechanism: Pixel-to-Superpixel (P2S) and Superpixel-
to-Pixel (S2P) attention. These mechanisms hone attention locally within superpixels to iteratively refine
feature presentations, crucial for tasks requiring high-resolution processing and precise contextual accuracy
(Fig. 2). Specifically, these two mechanisms are designed to optimize interactions between pixel and superpixel
features:

• P2S Cross-Attention: Enhances superpixel representations by assimilating contextual details from
pixels within designated local windows.

• S2P Cross-Attention: Refines pixel features by leveraging insights from adjacent superpixels,
thereby enhancing granularity.

These bidirectional processes effectively bridge superpixel efficiency and the detailed granularity of pixel
representations, offering a versatile and refined feature set.
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Figure 2: Illustration of our SCA module, demonstrating iterative refinement of superpixel and pixel features
using a sliding window-based cross-attention mechanism. Each superpixel cross-attends to a localized region
of pixels, as highlighted in the colored rectangle. On the left, we detail the P2S cross-attention process, while
the S2P cross-attention is depicted similarly, albeit with reversed roles for superpixel and pixel.

Starting with initial pixel I0 and superpixel features S0, each iteration t progressively refines these features.
Updates are applied to both superpixel features St and association matrix At to ensure continual improvement
of the superpixel representation.

Superpixel features are updated via the P2S cross-attention, formulated as:

St
p = St−1

p +
∑

i∈Wp

softmaxi

(
qSt−1

p
· kIt−1

i

)
vIt−1

i
(2)

where Wp identifies pixels within a superpixel’s local window, defined in Sec. 3.1, and q, k, and v symbolize
the query, key, and value vectors derived from linear transformations of the previous iteration’s features.

Pixel features are concurrently refined using updated associations At
ip, as shown:

At
ip = softmaxp∈Ni

(
qIt−1

i
· kSt−1

p

)
(3)

where Ni includes neighboring superpixels of pixel i, defined in Sec. 3.1. These updated pixel representations
are then calculated by:

It
i = It−1

i +
∑

p∈Ni

At
ip · vSt−1

p
(4)

These differentiable update equations are essential for refining both pixel and superpixel feature representations,
enabling the gradients from either domain to be leveraged for end-to-end training. The proposed SCA module
is a cornerstone of our method and will be further elaborated in the subsequent architecture SPFormer in the
next subsection.

3.3 SPFormer Architecture

Our architecture leverages the advanced capabilities of our superpixel representation, deviating only minimally
from the standard ViT architecture as described by Dosovitskiy et al. (2021). While retaining the non-
overlapping patchify layer, we employ a reduced window size of 4 × 4 for extracting initial pixel features
I0, compared to the traditional 16 × 16. This modification is enabled by the efficiency of our superpixel
representation, which substantially reduces the input size for subsequent self-attention layers.
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Figure 3: Illustration of a single stage of the SPFormer architecture. It starts with initial superpixel
features and pixel features as inputs. The SCA module iteratively refines superpixel features, enhancing
their semantic richness. These features are then processed by the Multi-Head Self-Attention (MHSA) for
global contextual understanding. The stage concludes by updating the pixel features based on the enriched
superpixel information, readying them for the next stage or for final pooling and classification. This design
showcases the efficient integration of local detail and global context in SPFormer.

Initially, superpixel features S0 are derived from pixel features I0 through a 1 × 1 convolution and 4 × 4
average pooling. These features undergo continuous refinement across multiple iterations t using the SCA
module. This module enhances the semantic alignment of the superpixel representation by exploiting the
local spatial context of each superpixel, as detailed in Sec. 3.2. Subsequently, the enriched superpixel features
are processed by multi-head self-attention to extract long-range dependencies and contextual nuances within
the image.

We observed that even after multiple iterations (e.g., t > 2), the superpixel representations generated by a
single SCA module may not fully align with the overarching context. This misalignment primarily stems
from insufficient semantic information derived from the output of the patchify layer. To tackle this challenge,
we implement a gradual refinement strategy for enriching superpixel representations. We segment the original
ViT architecture into multiple stages, each utilizing a SCA module capped at a limited number of iterations
(e.g., t = 2). This design allows each SCA module to build on the semantically enriched superpixel features
from the previous stage, progressively enhancing the semantic depth.

Specifically, prior to advancing to the subsequent SCA module, superpixel features are processed through a
1 × 1 convolution. The pixel features are then refined according to Eq. (1), augmented with a skip connection
He et al. (2016). This adjustment ensures that the pixel features benefit from the globally context-enhanced
superpixel features of the preceding stage. Instead of reinitializing superpixel features anew, this methodology
uses the contextually enhanced superpixel features from the previous stage as the foundation. As depicted in
Fig. 3, this systematic approach significantly augments superpixel representations, capturing increasingly
complex semantic information across stages.

Conceptually, our network architecture is designed as a dual-branch structure. One branch preserves a
dense pixel representation with high resolution, while the other branch focuses on our compact superpixel
representation. Minimal direct operations are applied to the dense pixel representation, enabling us to allocate
most computational resources to the more efficient superpixel representation. This dual-branch approach
fosters computational efficiency without sacrificing the detailed preservation of local image features.

By integrating superpixel representation with SCA, SPFormer offers an advanced solution for boosting both
the semantic interpretability and computational efficiency of image processing. This combination enhances
detail retention and positions SPFormer as a strong tool in diverse image processing applications.

4 Experiments

We initially outline the implementation details of our method in Sec. 4.1. We then assess its efficiency in
image classification and segmentation tasks in Sec. 4.2, and explore its explainability in Sec. 4.3.
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Figure 4: The multi-head SCA design generates multiple superpixel representations, each capturing different
semantic relationships and addressing the ambiguity in superpixel over-segmentation.

4.1 Implementation Details

SPFormer employs a specific stride s = 4 between the dimensions of superpixel and pixel features, considerably
reducing the spatial dimensions of superpixel features compared to their pixel counterparts. This downsizing
facilitates efficient self-attention computations for superpixel features, as direct self-attention on pixel features
would be exponentially costlier, specifically (s × s)2 times more expensive. Transitioning to superpixel features
significantly lowers computational demands without compromising detail retention.

As an over-segmentation method, multiple superpixel segmentations are possible; hence, relying solely on a
single superpixel segmentation is insufficient for a comprehensive description of an image. Unlike previous
methods such as those proposed by Jampani et al. (2018) and Zhu et al. (2023), which produce one type
of superpixel segmentation at a time, our approach in the SCA module utilizes multi-head attention to
enable intricate interactions between superpixels and pixels. This strategy effectively uses global contextual
information and generates a variety of superpixel representations, as illustrated in Fig. 4. These diverse
representations address different levels of granularity, thereby mitigating typical issues associated with
superpixel over-segmentation. For our architecture variants, we allocate two attention heads for the smaller
models (SPFormer-T and SPFormer-S) and three heads for the base model (SPFormer-B).

Positional information is integrated into SCA via Convolution Position Embedding (CPE) (Huang et al.,
2023), capturing spatial relationships within the image. Both superpixel and pixel features are augmented
with CPE implemented as a 3 × 3 depthwise convolution with a skip connection before applying P2S and
S2P cross-attentions. This enhancement reinforces the spatial associations between pixels and superpixels,
leading to more precise alignments.

As outlined in Sec. 3.3, SCA blocks are integrated into the standard ViT architecture at carefully chosen
points, specifically before the first and third self-attention blocks. We utilize the LayerScale technique, as
specified in Touvron et al. (2021b), to modulate gradient flow and enhance training stability and effectiveness.
With the inclusion of residual connections as detailed in Eq. (2) and Eq. (4), our approach starts by mimicking
standard patches but evolves to exploit superpixels more effectively as training advances.

Adhering to the protocols established in DeiT (Touvron et al., 2021a), we implement robust data augmentations,
use the AdamW optimizer, and follow a cosine decay learning rate schedule. All models train on the ImageNet
dataset (Russakovsky et al., 2015) for 300 epochs. During SPFormer-B/16 training, significant overfitting
challenges arose. Increasing the Stochastic Depth (Huang et al., 2016) rate from 0.1 to 0.6 effectively
addressed these issues, highlighting a potential need for advanced regularization strategies tailored to
superpixel representation for future studies.

For SPFormer variants, the standard design incorporates a 4 × 4 patchify layer. Variants equipped with two
convolution layers of kernel size 3 and stride 2 are denoted by †. Models with different superpixel sizes are
identified by their corresponding ViT-equivalent patch sizes, such as SPFormer/32 for a 32 × 32 patch size,
ensuring clarity in our experimental lineup.
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Table 1: Comparative analysis of SPFormer’s performance on ImageNet classification against DeiT baselines.
Variants augmented with two convolution layers of kernel size 3 with stride 2 are denoted by †.

Model #Params #FLOPs Top-1
SPFormer-S/56 22M 0.5G 72.3
DeiT-T (Touvron et al., 2021a) 5M 1.3G 72.2
SPFormer-T 5M 1.3G 73.6
SPFormer-T† 5M 1.3G 75.0
DeiT-S/32 (Touvron et al., 2021a) 22M 1.1G 73.3
SPFormer-S/32 22M 1.2G 76.4
SPFormer-S/32† 22M 1.3G 77.9
DeiT-S (Touvron et al., 2021a) 22M 4.6G 79.9
SPFormer-S 22M 5.2G 81.0
SPFormer-S† 22M 5.3G 81.7
DeiT-B (Touvron et al., 2021a) 87M 17.5G 81.8
SPFormer-B 87M 19.2G 82.4
SPFormer-B† 87M 19.2G 82.7

SPFormer utilizes a defined ratio between the dimensions of superpixel and pixel features, reducing the spatial
dimensions of superpixel features with stride s = 4 of their corresponding pixel dimensions, which enables us
to directly perform the self attention layers for the superpixel features. On the contrary, conducting the self
attention on pixel features directly is (s × s)2 time expensive, which is infeasible. Going from pixel features
to superpixel features significantly reduces the computational cost without sacrificing the details.

In the SCA module, we employ multi-head attention to manage attention and interaction between superpixels
effectively. This setup not only leverages global contextual information optimally but also produces multiple
superpixel representations, as shown in Fig. 4. These varied representations capture different granularities,
addressing the ambiguity commonly associated with superpixel over-segmentation. Specifically, we allocate
two heads for our smaller variants (SPFormer-T and SPFormer-S) and three heads for the base model
(SPFormer-B).

4.2 Efficiency in Image Classification and Segmentation

4.2.1 Main Results on ImageNet

Our evaluation of SPFormer on the ImageNet dataset demonstrates its superior efficiency and performance
over the DeiT baseline under varying configurations as shown in Tab. 1. Specifically, SPFormer-S, which
employs the standard ViT configuration with 196 tokens, exceeds the performance of DeiT-S by 1.1%,
achieving a top-1 accuracy of 81.0% compared to 79.9% for DeiT-S. Furthermore, SPFormer-T outperforms
DeiT-T by 1.4%, recording 73.6% versus 72.2%. This improvement is more pronounced with larger patch
sizes, such as 32. Although DeiT-S/32 experiences a performance decline due to its coarser granularity,
SPFormer-S/32 maintains robust performance at 76.4%, significantly outperforming DeiT-T by 4.2% while
requiring fewer FLOPs.

A critical aspect of SPFormer involves shifting the computational demand from self-attention mechanisms to
MLPs. This shift suggests a novel scaling strategy that primarily focuses on increasing image resolution to
capture finer details. By doubling the window size from 4 to 8 and adapting to a higher resolution of 448,
SPFormer enhances its computational efficiency and secures a 0.3% improvement in performance over the
standard configuration. Conversely, similar adjustments in DeiT-S only yield a negligible improvement of
0.1%, hindered by the granularity of its patch-based representation.

Further enhancing SPFormer’s initial feature extraction phase in the superpixel cross-attention stage, we
introduce a lightweight convolution stem comprising two or three 3 × 3 convolutions with a stride of 2. This
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enhancement has consistently improved performance, exemplified by SPFormer-S/32†, which witnesses an
additional increase of 1.5% in ImageNet accuracy, reaching 77.9%.

Table 2: Ablation study on the design choices in SPFormer.
Model #Params #FLOPs Top-1
SPFormer-S/32 22M 1.2G 76.4
Single Iteration in SCA 22M 1.2G 75.4
SCA at Initial Layer Only 22M 1.2G 74.8
Single-Head SCA 22M 1.2G 75.6
Learnable Position Embedding 22M 1.2G 76.1

4.2.2 Ablation Study: Design Choices in SPFormer

We evaluates key design elements of SPFormer-S/32 on the ImageNet validation set. We investigate the
impacts of iteration count in the SCA module, the placement of SCA within the architecture, the use of
multi-head attention, and the choice of position embeddings.

The findings highlight the importance of multiple iterations in SCA for performance enhancement, with a single
iteration leading to a 1.0% drop in accuracy. The strategic placement of SCA across different layers is crucial,
as restricting it to the initial layer causes a 1.6% accuracy reduction, indicating that higher-level features play
a vital role in augmenting semantic depth and in rectifying early-stage superpixel inaccuracies. Furthermore,
employing multi-head attention in SCA is significant for capturing diverse superpixel relationships, with its
absence leading to a 0.8% decrease in accuracy. Lastly, using learnable position embeddings over CPE results
in a slight drop in performance.

This ablation study validates the effectiveness of the considered design choices in SPFormer, affirming their
contributions to the overall performance of the model.

4.2.3 Semantic Segmentation: Utilizing SPFormer’s High-Resolution Feature Preservation

SPFormer’s superpixel representation intrinsically maintains higher resolution features, making it particularly
suitable for semantic segmentation tasks. This characteristic allows for detailed and context-rich segmentation
outputs, a key advantage over traditional patch-based methods.

Incorporating SPFormer into the SETR (Zheng et al., 2021) framework, we enhance segmentation performance
by directly classifying individual superpixels. This direct approach leverages SPFormer’s high-resolution
feature preservation, allowing for more nuanced segmentation. The final segmentation maps are generated by
upscaling the superpixel-based logits using Eq. (1).

We evaluate SPFormer on the ADE20K (Zhou et al., 2017) and Pascal Context (Mottaghi et al., 2014)
datasets. Utilizing ImageNet-pretrained models, SPFormer demonstrates significant improvements in mIoU,
highlighting its effectiveness in detailed segmentation tasks.

As shown in Tab. 3 and Tab. 4, the performance gains in mIoU are noteworthy when using ImageNet-
pretrained models: 4.2% improvement on ADE20K and 2.8% on Pascal Context. These results not only
highlight the detailed nature of SPFormer’s superpixel representation but also its adaptability to diverse
and complex datasets. To further validate the intrinsic segmentation capabilities of SPFormer, we conduct
additional training from scratch. This approach reiterates the model’s strength in maintaining high-resolution
features independently of pretraining influences, leading to mIoU improvements of 3.0% on ADE20K and
3.1% on Pascal Context compared to baseline methods.

4.3 Unveiling SPFormer’s Explainability

Integrating superpixel representation into the Vision Transformer architecture adds a significant layer of
explainability compared to conventional fixed patch partition methods. This section first discusses the
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Table 3: Semantic segmentation on ADE20K val split.
Method #Params #FLOPs Pretrained mIoU
DeiT-S 22M 32G ✗ 20.1
SPFormer-S 23M 35G ✗ 23.1
DeiT-S 22M 32G ✓ 42.3
SPFormer-S 23M 35G ✓ 46.5

Table 4: Semantic segmentation on Pascal Conext val split.
Method #Params #FLOPs Pretrained mIoU
DeiT-S 22M 27G ✗ 18.0
SPFormer-S 23M 30G ✗ 21.1
DeiT-S 22M 27G ✓ 48.3
SPFormer-S 23M 30G ✓ 51.2

inherent explainability of our superpixel representation, followed by an evaluation of its semantic alignment
and generalizability to unseen data.

4.3.1 Superpixel Representation as an Explainability Tool

Our method’s superpixel representation can be visualized through the association matrix A, providing insights
into the model’s internal processing. In Fig. 1, we visualize the learned soft associations by selecting the
argmax over the superpixels:

Â = argmax(A) (5)

These visualizations reveal that, even with a soft association, the superpixels generally align with image
boundaries. This alignment is noteworthy as it emerges even though the network is only trained on image
category labels. Thus, the model segments images into irregular, semantics-aware regions while reducing the
number of tokens needed for representation.

Furthermore, we assess the generalizability of our superpixel representation using the COCO dataset (Lin
et al., 2014), which consists of high-resolution images with complex scenes. For this evaluation, we resize
and center-crop COCO images to align with the ImageNet evaluation pipeline. Fig. 5 showcases the
visual representation of superpixels on these images. Note that the superpixels generated by SPFormer,
trained exclusively on ImageNet, adapt well to this unseen data, capturing intricate structures such as thin
objects. This adaptability highlights the model’s capability to preserve detail and generalize its superpixel
representation to new contexts.

4.3.2 Semantic Alignment of Superpixels

Our evaluation of superpixel representation focuses on its ability to align with ground truth boundaries in
images, despite the model not being trained on the datasets used for this assessment. This test involved a
quantitative analysis on both object and part levels using the Pascal VOC 2012 dataset (Everingham et al.,
2015) and Pascal-Part-58 (Zhao et al., 2019). Note that these assessments were performed without any
training on these specific datasets, underscoring the model’s generalization capabilities.

In our approach, each superpixel or patch’s prediction is derived by aggregating the ground truth labels of
the pixels it encompasses. We assign the most frequently occurring label within a superpixel as its prediction,
assuming optimal classification. This method leverages the soft associations produced by our SCA module,
where predictions are formed by combining pixel labels with their corresponding weights and upscaled as per
Eq. (1).
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Figure 5: Zero-shot transferability on the COCO dataset. Trained solely on ImageNet, SPFormer demonstrates
effective segmentation of unseen COCO images into detailed superpixels. 196 superpixels are used in this
visualization.

Diverging from the single-superpixel outcome of traditional patch representation, our model employs a
multi-head design in the SCA module. This allows for the creation of multiple, distinct superpixels for each
head, enhancing the richness and diversity of the extracted features (see Fig. 4). For our evaluations, we
computed an average of predictions across all heads. It is noteworthy that effective feature extraction in our
model is deemed successful if even a single head accurately identifies a superpixel.

The proficiency of our superpixel approach is demonstrated in its performance compared to vanilla ViTs
that utilize patch representations with a stride of 16. ViTs often suffer from a granularity trade-off, losing
finer details in favor of broader patch representations. In contrast, the superpixels from our SCA module, as
shown in Tab. 5, manifest substantial improvements — achieving a 4.2% increase in object-level and 4.6% in
part-level mIoU with SPFormer-S†. Furthermore, these superpixels display a quality comparable to those
from traditional superpixel methods like SLIC (Achanta et al., 2012), highlighting our method’s effectiveness
in capturing detailed semantic information without direct training on the evaluation datasets.

Table 5: Evaluation of superpixel quality in a zero-shot setting on Pascal VOC 2012 and Pascal-Parts-58
datasets, using 196 patches/superpixels. Our SPFormer variants demonstrate notable improvements over
traditional patch representations and are competitive with the SLIC method.

Method Pascal Voc2012 Pascal-Parts-58
mIoU mAcc mIoU mAcc

Patch 87.8 92.8 68.7 78.2
SPFormer-T† 91.5 95.7 71.5 79.9
SPFormer-S† 92.0 96.6 73.3 82.4
SPFormer-B† 91.2 96.3 72.5 81.4
SLIC (Achanta et al., 2012) 92.5 95.4 74.0 81.7

4.3.3 Explainability-Driven Robustness

The robustness of SPFormer is deeply intertwined with its explainability, particularly through the superpixel
representation. This section explores how the model’s transparent and interpretable features contribute to its
resilience against image modifications like rotation and occlusion.

11
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Robustness to Rotation Our model’s capacity to generate coherent superpixels even under rotational
transformations showcases the robustness afforded by its explainable structure. For example, Fig. 6 illustrates
the model’s performance under rotation, and Tab. 6 quantifies this robustness, under patch size 32. By
visualizing how superpixels adapt to rotated images, we gain insights into the model’s stability in varied
orientations. While SPFormer demonstrates a heightened robustness to rotation, it still exhibits some
limitations, likely due to the learnable absolute position embeddings not being inherently rotation-invariant.
These observations suggest potential avenues for enhancing rotational robustness, possibly through integrating
rotation-invariant mechanisms within the superpixel representation or the network architecture.

R
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n

Figure 6: Visualization of SPFormer’s superpixel representation under rotation and occlusion, highlighting
the model’s adaptability and robustness.

Robustness to Occlusion The occlusion robustness of SPFormer is another facet where explainability
plays a key role. By examining superpixel behavior in occluded images, we observe the model’s ability to
distinguish between occluders and the object of interest. Unlike traditional patch-based representations,
which tend to blend occluders with the object, our superpixel representation more effectively isolates and
identifies obscured parts of the image. This nuanced differentiation is a direct result of the model’s explainable
superpixel structure, which provides a more detailed and context-aware interpretation of the image content,
as demonstrated in Fig. 6.

Table 6: Quantitative evaluation of SPFormer’s robustness to rotation, comparing performance at different
angles. Variants augmented with two convolution layers of kernel size 3 with stride 2 are denoted by †.

Model Clean 15 30 45
DeiT-S/32 (Touvron et al., 2021a) 73.3 71.1 67.7 59.5
SPFormer-S/32† 77.9 75.2 73.4 66.9

5 Conclusion

In this work, we introduced SPFormer, a novel approach for feature representation in Vision Transformers,
emphasizing superpixel representation. This method showcases a promising shift from traditional pixel and
patch-based approaches, offering two distinct advantages: efficiency due to a reduced number of superpixels
facilitating global self-attention and explainability through semantic grouping of pixels. The empirical results
demonstrate the potential of SPFormer in diverse computer vision tasks, under both the standard benchmarks
(e.g., ImageNet classification) and challenging recognition scenarios (e.g., occlusion). We hope our findings
can pave the way for future exploration in this direction, encouraging further research into superpixel-based
visual representation learning.
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