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ABSTRACT

Multi-objective reinforcement learning (MORL) aims at optimising several, often
conflicting goals in order to improve the flexibility and reliability of RL in practical
tasks. This can be achieved by finding diverse policies that are optimal for some
objective preferences and non-dominated by optimal policies for other preferences
so that they form a Pareto front in the multi-objective performance space. The
relation between the multi-objective performance space and the parameter space
that represents the policies is generally non-unique, and we provide new insights
into this by formalising a local parameter-performance relationship. Using a
training scheme based on the local parameter-performance relationship, we propose
LLE-MORL, a method that directly extrapolates a small set of base policies to
efficiently trace out a high-quality Pareto front. Experiments conducted with and
without retraining across different domains show that LLE-MORL consistently
achieves higher Pareto front quality and efficiency than state-of-the-art approaches.

1 INTRODUCTION

Reinforcement Learning (RL) has shown great promise in complex decision-making problems,
enabling significant advancements in a wide range (Silver et al., 2016; |Levine et al.,[2016). In real-
world scenarios, however, problems often feature multiple, often conflicting, objectives. Under this
circumstance, multi-objective approaches provide flexibility in practical applications of reinforcement
learning by providing a modifiable policy that can be adjusted according to changes of preference
among a set of objectives (Roijers et al., 2013;|Hayes et al.,|2022). This has fostered the development
of the field known as multi-objective reinforcement learning (MORL). Ideally, the modifiable policies
developed within MORL allow for efficient adaptation, ensuring that a policy optimal for one set of
preferences can be readily transformed to be optimal for a new set when those preferences change. To
prepare such a modifiable policy for application, three problems have to be solved: (i) The learning
problem involves the solution of an RL problem for each combination of preference parameters
or at least for a representative subset of preferences. (ii) The representation problem requires a
parametrization of the policies, which typically results in either a discrete set of individual policies
(common in population-based methods) or a single, continuously adaptable policy (prevalent in deep
reinforcement learning approaches). (iii) The selection problem is to identify a suitable policy in
the application which includes dynamic adjustments to preference drifts and possibly the decision
whether a different policy should be invoked or whether further training is required to respond to a
temporary detection of suboptimality.

We propose to consider these problems as a coherent task, in order to reduce the computational burden
of the learning problem and improve the interpretability of the policy representation. We hypothesise
that if a continuous representation of policies can be found where similar preferences correspond
to similar policy parameters, then small performance differences might be compensable with brief,
targeted retraining. It is also anticipated that such a structured and interpretable policy representation
would benefit the selection problem, though this aspect is not the primary focus of our current study.

While a globally continuous mapping is an ideal, we notice that in non-trivial problems, the relation-
ship between the performance space and parameter space of policies is not a simple, single continuous
mapping but can be described by a family of locally continuous components (Xu et al.,|2020; |L1 et al.,
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2024])). Our findings suggest that effectively exploring just a few of these components can be sufficient
to achieve competitive performance in typical benchmark problems. This understanding forms the
basis of our core concept: the Parameter-Performance Relationship (PPR). The process is seeded by
an RL task that finds a good but not necessarily optimal parameter vector for an initial policy. Then a
second policy is obtained by retraining with different preferences, and from there, additional policies
are efficiently generated by a locally linear extrapolation, which led to the name LLE-MORL for the
approach that we present in the following. If the policies obtained by the extension process are briefly
retrained, they can improve with further extension, although eventually they may become dominated
by earlier solutions which would indicate the need for a restart with a different initial policy. Within
each solution component, the policy representation is easily interpretable in terms of the continuous
PPR, but also the boundaries where the policies depart from optimality are interesting. They indicate
that a discontinuous reparametrisation takes place and that thus policies of a potentially qualitatively
different type are optimal on either side of the boundary.

Building upon the notions of PPR and locally linear extension, in this paper, we introduce
LLE-MORL, a MORL algorithm that is designed to efficiently trace the Pareto front (see Sect.[2.2) by
systematically exploring these identified local structures. Our experiments demonstrate that the pro-
posed algorithm can achieve high-quality Pareto front approximations with notable sample efficiency.
This strong performance is primarily attributed to its simple yet effective locally linear extension
mechanism, which significantly reduces the need for extensive retraining along the Pareto front.
Such efficiency is made by exploiting the locally continuous nature of the parameter-performance
relationship, a characteristic that also enhances the overall interpretability of our approach.

2 BACKGROUND

2.1 MULTI-OBJECTIVE REINFORCEMENT LEARNING

Multi-Objective Reinforcement Learning (MORL) extends the traditional RL framework to scenarios
where agents must consider multiple, often conflicting objectives. This extension allows for more
sophisticated decision-making models that mirror real-world complexities where trade-offs between
competing goals, such as cost versus quality or speed versus safety, are common. To ground this notion
formally, we represent a MORL problem as a Multi-Objective Markov Decision Process (MOMDP)
which generalises the standard MDP framework to accommodate multiple reward functions, each
corresponding to a different objective.

Definition 1. Multi-Objective Markov Decision Process (MOMDP). A MOMDP is defined by the
tuple (S, A, P, {R%},~,Q, fa), where S is the state space, A is the action space, P(s'|s,a) is the
state transition probability, R® is a vector-valued reward function with d as the number of objectives,
specifying the immediate reward for each of the considered objectives, -y is the discount factor, ) is
the preferences space, fq : RY — R is the scalarisation function.

The crucial difference between MOMDPs and traditional single-objective MDPs is the reward
structure. While single-objective MDPs use a scalar reward function R, MOMDPs feature a vector-
valued reward function R¢ that delivers distinct numeric feedback for each objective, directly
correlating the length of the reward vector with the number of objectives. At each timestep ¢, the
agent in state s; € S selects an action a; ~ 7(- | s¢), transitions to a new state s;; with probability
P(s441 | st,a¢), and receives a reward vector ry = [(Ry(s¢, ar), Ra(se,ai), ..., Ra(se, at)]). We
define the discounted return vector by G; = Z;O:O v* 141, and the multi-objective action-value
function of a policy m for a given state-action pair (s, a) by Q™ (s,a) = E;[G; | s, = s, a; = a].
The goal of MORL is to find a policy 7 such that the expected return of each objective can be
optimised. In practice, we trade off objectives via a scalarisation function f,,(r), which produces a
scalar utility using preference vector w € 2. The scalarisation function f,(r) is used for mapping
the multi-objective reward vector r(s,a) to a single scalar. In this paper, we consider the linear
scalarisation function f,,(r(s,a)) = wTr(s,a), which is commonly used in MORL literature (Yang
et al.,2019; |[Felten et al., [2024). When the preference dimension d = 1 (so that the return vector is
one-dimensional), the MOMDP collapses to a standard single-objective MDP, since the reward vector
reduces to a scalar and fq, becomes the identity mapping.
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2.2  PARETO OPTIMALITY

In multi-objective optimisation, the concept of optimality differs from the single-objective case.
Typically, no single policy simultaneously maximises all objectives, due to inherent trade-offs.
Without any additional information about the user’s preference, there can now be multiple possibly
optimal solutions. In the following, we introduce several useful definitions for possibly optimal
policies.

Definition 2. Pareto optimality. A policy w is said to dominate another policy ©' if and
only if Vi € {1,...,d}, V7(s) > V7™ (s), and 3j, Vi(s) > Vj’T/ (s), where V' (s) =
Er[> ooV Ri(st,at) | so = s] denotes the expected discounted return for objective i under policy
w. A policy 7* is Pareto optimal if and only if it is not dominated by another policy. The set of all
Pareto optimal policies forms the Pareto set: P = {r | 7 is Pareto optimal}. The corresponding set of
expected returns incured by policies in the Pareto set is termed Pareto front: F = {V7(s) | # € P}.

Since obtaining the true Pareto set is intractable in complex problems, the practical aim of multi-
objective optimisation is to construct a finite set of policies that closely approximate the true Pareto
front. So that practitioners can select the policy based on their preferred trade-off among objectives.

3 METHODS

3.1 OVERVIEW

As shown in Figure[I} we first explore the rela-
tionship between the parameter space and the
performance space. We empirically find that
a short retraining of a converged policy under
a new preference induces a small, structured
update in parameter space that corresponds to
a predictable shift of the expected returns of
the policy. This “model similarity”—the fact
that the retrained policy stays close to the orig-
inal parameters while already moving toward a
different region of the Pareto front—underpins Figure 1: Parameter space and performance space
our method for steering policies along the front. of the Pareto policies. (Left) 2D projection of the
Building on this insight, we explore the pos- high-dimensional policy parameter space. Red and
sibility that using the parameter-space differ- blue gradient shadings and contour lines depict the
ence between two structurally similar policies— scalarised reward under different preference vec-
trained under different preferences—to guide tors w; and wy. The arrow marks a short retraining
directional updates that extend our approxima- update. (Right) The policy obtained by retraining
tion of the Pareto front. the 0,,, model under wsy (green) shifts towards the
new preference as seen in performance space.

Parameter Space Performance Space

Leveraging this property, we develop an efficient
algorithm to approximate the Pareto set of poli-
cies. We start by initializing a small collection of base policies, each trained to converge under a
distinct scalarization weight chosen to span the preference evenly. Next, for each base policy, we
perform a short retraining under a different preference weight, capturing the small parameter update
that shifts the policy toward a new trade-off. These updates serve as directional moving vectors: we
move from each base policy along its vector by a tunable step size to generate intermediate policies.
Finally, we apply a brief fine-tuning to each intermediate policy under its corresponding preference,
i.e. the scalarization weight shifted by the same fraction as the parameter updated, nudging it onto the
true Pareto front.

3.2 PARAMETER-PERFORMANCE RELATIONSHIP

Recent work in multi-objective reinforcement learning has implicitly suggested a relationship between
the parameter space of the policy network and the Pareto front in the performance space. (Xu et al.,
2020) empirically show for PGMORL that each disjoint policy family occupies a continuous region
in parameter space and maps to a contiguous segment of the Pareto front, while MORL/D (Felten
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Figure 2: Comparing independently trained policy 6,,, versus retrained policy 6,, based on 6,,, , for
details see Section The environment used here is the multi-objective SWIMMER problem.

et al., 2024) assume that policies with similar parameters should lead to close evaluations. Motivated
by these implicit observations, we introduce the a parameter—performance relationship and proceed
to explain and empirically validate this property.

Definition 3. Parameter-Performance Relationship (PPR). Let © C R™ be the policy parameter
space and V : © — R? the mapping from parameter vectors 0 to the expected return vectors V (6).
We say V exhibits a continuous parameter—performance relationship on a region U C © if there
exists a function h : R™ — R? and a radius § > 0 such that, for any 6 € U and any parameter
perturbation AQ with ||A0|| < 6 and 0 + A0 € U, V(0 + Af) — V() = h(AF).

To study this relationship, we first need a metric for policy closeness in parameter space. We adopt the
Hungarian matching distance (Kuhnl (1955} Munkres|, |1957) to measure model distance and thereby
quantify structural similarity between policies. A formal definition of Hungarian matching distance
is provided in Appendix [C.3] This metric naturally handles the permutation invariance of hidden
units (Goodfellow et al.,|2016) and measures the smallest structural change needed to align one model
to another—lower Hungarian distance indicates greater model similarity.

3.3 SANITY CHECK

To get a first idea about the PPR, we compare policies trained independently with those obtained by
short retraining. We first train two policies to convergence using a multi-objective PPO-based (Schul{
man et al.,2017) algorithm with scalarization vectors w; and ws, yielding model parameters 6,,, and
0., . Starting from 6,,,,, we then perform one short additional training step with ws to obtain 6,,/. To
quantify how “close” these policy variants are, we show neuron heatmaps for each model both at the
policy-network and value-network level in Figure [2a] and visualise the Hungarian matching distances
between those models in Figure[2b] We also plot the rewards for three policies in the two-objective
performance space (Figure [2c]) for the multi-objective SWIMMER problem.

We compare three pairs of models: (1) 6,,, and 6,,,, capturing differences between independently
trained policies in both parameter space and performance space; (2) 6,,, and 6,,/, showing that brief
retraining yields a structurally similar model and a low Hungarian matching distance, yet already
shifted toward ws in reward space; and (3) 0,,» and 0,,,,, illustrating that although their parameters
remain distinct, their rewards lie much closer on the performance space.

These empirical observations show that a short retraining step under a new preference produces a
small, structured parameter update that directly maps to a predictable shift in performance, validating
the local PPR. More details of the sanity check procedure are provided in Appendix [C.4]

3.4 LOCALLY LINEAR EXTENSION

Based on the PPR definition, a natural question is whether the parameter-space difference between
two structurally similar policies—trained under different preferences—can serve as a directional
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Figure 3: Visualisation of the process of applying the parameter difference Af = 6,,, — 6,, between
two related policies. The policies are obtained by first training a policy 6, to convergence using
scalarization vector w and then find policy 6,, by a brief additional training period with a different
scalarization vector w'. Iterating the shift Af in the policy space induces a sequence of shifts also in
the multi-objective reward space. The subfigures show results for different initial preferences: (a) A
convex front is found from the two policies. (b) Although the original policy turns out to be Pareto
suboptimal, the solution manifold extends into a Pareto optimal component. (c) Retraining can cause
the (Pareto-suboptimal) original solution to jump to a different branch so that the corresponding
solution consists of two components one of which can be ignored because of Pareto suboptimality.

update to extend our approximate Pareto front. To explore this, we consider two policies, a base
policy 6, and a retrained policy 6,,/, which exhibits a parameter-performance relationship. Crucially,
for this directional information to be meaningful for Pareto front exploration, both #,, and 6,,, should
ideally be non-dominated solutions, at least with respect to each other. Given such a pair, we compute
the parameter update vector A8 = 0,,, — 0,, and generate a set of intermediate policies by moving
from the base policy 6,, along the parameter displacement A6 in scaled steps. Concretely, for each
scale a, we form 0, = 0,, + o A6 and evaluate its reward vectors in preference space.

Figure [3| visualises the resulting trajectory of reward vectors in the two-dimensional objective space:
as « grows, the trajectory passes through the region around 6, and can extend beyond both the
base and retrained endpoints, demonstrating how simple parameter-space moves can traverse broad
trade-off regions, which offers a cost-effective strategy for efficiently expanding an approximate
Pareto front without training each point from scratch.

3.5 THE LLE-MORL ALGORITHM

Building on the locally linear extension mechanism, which is critical for tracing an approximate
Pareto front, we develop the full algorithm, LLE-MORL (Locally Linear Extrapolation for Multi-
Objective Reinforcement Learning). The full Algorithm [I] (see Appendix [A]) consists of five stages:
(1) Initialisation: We train a set of K base policies {0,,, }i-, to convergence using PPO (Schulman
et al.,|2017). Each policy is trained under a distinct scalarization weight w; € {2, where these weights
are chosen to be evenly distributed across the preference space. (2) Directional Retraining: For each
t=1,...,K — 1, continue train based on 6,,, under a new preference w; for Tq;, steps to obtain
0.7, where 6., and 6,,, should be both non-dominated points. Record the parameter update vector
Ad; = Qw; — 0, and weight shift Aw; = w;11 — w;. (3) Locally Linear Extension: For each base
policy 6,,,, we generate a set of intermediate policies by applying each step-scale factor a; to the
parameter update vector Af;. Concretely, each candidate is 0; ; = 0,,, + a; Af;, allowing negative
and positive moves along the local direction in parameter space. Simultaneously, we adjust the
preference weight by Aw; scaled by «; to obtain w; ;. These step-scale factors control how far along
the local direction each intermediate policy moves. (4) Candidate Selection: All candidate policies
6;,; generated in the locally linear extension stage are evaluated to obtain their respective performance
vectors. From this set of extended policies, we identify and select the subset of non-dominated
solutions. These selected non-dominated candidates are then advanced to the fine-tuning stage. (5)
Preference-Aligned Fine-Tuning: from each candidate 6 and its matched weight w, perform a short
PPO fine-tuning of T;.¢ steps under w to push the generated policy closer to the true Pareto front.
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To clarify when LLE-MORL can reliably reconstruct a Pareto front, we present the theoretical
analysis here. We consider here the Pareto fronts P that are differentiable manifolds, meaning that
it is locally similar to Euclidean space and derivatives can be defined. As a slight generalisation,
we can assume that the Pareto front is a non-connected manifold or a set of manifolds, including
zero-dimensional manifolds (discrete points) or sets of manifolds of different dimensions. We will
not further discuss this generalisation apart from mentioning the fact that it is possible to reach all
components and to produce sufficiently many charts of each of the components of the Pareto front.

For the theorem below, we rely on the following assumptions:

Al: P is a (set of) differentiable manifold(s) with known dimension(s).
A2: P does not contain any non-trivial cluster points (limit points).

A3: The function h that maps from one tangential space to the tangential space of another point
that is within a distance controlled by a sufficiently small A« is close to the identity.

A4: The initialisation (step 1 above) identifies K different points (in the respective component)
of the Pareto front.

Theorem. If part of the Pareto front in a n-dimensional preference space can represented by a
(n — 1)-dimensional manifold in the policy parameter space, and the parameters of n different nearby
solutions on the Pareto front are known, then there exists a Aa > 0, so that Algorithm | (LLE-MORL)
reconstructs this part of the Pareto front up to a resolution determined by Ac.

Under the conditions of the theorem, we describe the LLE-MORL time complexity as follows.

Proposition. Time complexity. Given that the number of objectives is n, the number of base policies
is K, the base policy training time is T, the number of locally linear extensions sampled per direction
is M, and noting that the locally linear extension is training-free, the expected running time of

LLE-MORL is O(TK + KM"=1),

See Appendix [Bfor proofs and further discussions.

4 EXPERIMENTS

4.1 EXPERIMENT SETUP

In this section, we evaluate the LLE-MORL algorithm using popular continuous MORL benchmark
problems from the MO-Gymnasium (Felten et al., 2023). Our benchmark problems include three
two-objective continuous environments: MO-Swimmer-v5, MO-Hopper-2d-v5, MO-Ant-2d-v5.
We evaluate the quality of the approximate Pareto front using three standard metrics: Hypervolume
(HV), Expected Utility (EU), Sparsity (SP), following the formalism in (Zitzler & Thiele, 2002}
Zintgraf et al., 2015} |Hayes et al., 2022). Higher HV and EU values indicate better overall front
quality, while SP measures the distribution of solutions along the front. Since SP is scale-dependent
and less directly related to decision quality, we report it mainly as a complementary metric to assess
coverage diversity. More details can be found in Appendix [C|

We compare our LLE-MORL against the following state-of-the-art MORL algorithms: (i) GPI-LS
(Alegre et al.| 2023) applies Generalised Policy Improvement over a discretised set of preference
weights and uses linear scalarization to construct a diverse Pareto set. (ii) Concave-augmented Pareto
Q-learning (CAPQL) (Lu et al.,|2023): learns an ensemble of Q-functions under different preferences
and selects actions via conservative aggregation to improve front coverage. (iii) Q-Pensieve (Hung
et al.| 2023) boosts the sample efficiency of MORL by storing past Q-function snapshots in a replay
buffer, enabling explicit policy-level knowledge sharing across training iterations. (iv) MORL/D
(Felten et al.;2024)) is a deep-RL analogue of decomposition-based multi-objective optimisation that
trains subpolicies under scalarised objectives and recombines them via weight decompositions to
approximate the Pareto front.

4.2 RESULTS AND ANALYSIS

To assess the performance of MORL, we now present quantitative results evaluating the quality of
the approximated Pareto fronts. We conduct experiments under two distinct settings to provide a
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comprehensive understanding of algorithms’ capabilities: (1) Sample-Efficient Setting: All methods,
including our LLE-MORL approach, were trained for 1.5 x 10° timesteps. Given the complexity of
continuous control benchmarks, this relatively limited interaction budget serves as a critical testbed for
evaluating how rapidly different MORL strategies can discover effective Pareto front approximations.
(2) Standard-Training Setting: To assess performance under more common training conditions
for these continuous control benchmarks, most methods, including our LLE-MORL approach, were
trained for 1 x 10° timesteps. An exception was made for the CAPQL baseline, which, due to
its significant computational demands, was trained for 5 x 10° timesteps. This setting aligns with
common practices for benchmarking in continuous control and allows us to assess the final quality
of the Pareto fronts achieved by each algorithm after a more thorough learning process. Detailed
training setups can be found in Appendix [C]

First, we analyse performance in the sample-efficient setting, with results using Hypervolume (HV),
Expected Utility (EU), and Sparsity (SP) metrics presented in Table[T|and the corresponding Pareto
front visualisations in Figure[d] In this limited-interaction scenario, LLE-MORL achieves the highest
HV and EU in all benchmarks, demonstrating strong capabilities in rapidly achieving high-quality
Pareto fronts. Regarding SP, while LLE-MORL does not consistently achieve the leading scores on
this metric, its performance generally reflects a good and effective distribution of solutions along the
high-quality Pareto fronts it identifies. It should be noted that SP results can be confounded by a
fragmentary recovery of the Pareto front. For instance, if Q-Pensieve discovers only two close points
of the Pareto front for the MO-Ant problem, the sparsity rating is nearly perfect. Meanwhile, a low
SP might also arise from solutions being overly clustered in a small region, as potentially seen with
GPI-LS and Q-Pensieve in MO-Swimmer shown in Figure fa|

Transitioning to the standard-training setting, where methods were trained for a more extensive dura-
tion, the evaluation results are presented in Table [2} and the corresponding Pareto front visualisation
can be found in Figure[5] Across all benchmarks, LLE-MORL typically achieves the highest HV and
highly competitive EU. This superior performance indicates that LLE-MORL finds a more extensive
and higher-quality set of solutions, which strongly suggests a better approximation of the Pareto
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Method
GPI-LS CAPQL Q-Pensieve MORL/D LLE-MORL-0 LLE-MORL
HV(10%) 4.80+£0.43 5.004+0.09 4.77+0.17  5.72+0.25 6.54+0.10 6.77+0.17

Environment Metric

MO-Swimmer EU(10')  0.89+0.14 1.08+£0.01  1.06+0.11 1.00£0.01 0.9340.11 1.11+0.02
SP(10%)  1.12+£1.02 1.68+1.33 0.82£0.61  11.03£7.17 1.614+1.21 1.7841.60
HV(10°) 1.06+0.12 1.40+0.31  1.00+0.05 1.9640.19 2.73+0.17 3.02+0.28
MO-Hopper EU(10%) 2.11£0.17 2.68+0.40 2.164-0.08 3.2940.15 4.154+0.20 4.36+0.28
SP(10%) 5.35+3.64 1.33+1.21 0.08+£0.04 48.25:£22.90 8.08+6.44 15.13£8.31
HV(10%) 3.24+1.28 8.10+0.64 5.01+1.73 9.73+0.42 10.07+0.63 10.44+0.56
MO-Ant EU(10%) 0.72+£0.30 1.82+0.10 1.18+0.41 2.03£0.08 2.16+0.10 2.23+0.08
SP(10%)  1.14£1.01 0.05+0.03  0.1240.10 1.33£1.02 1.5140.36 1.2240.22

Table 1: Sample-efficient evaluation of the quality of the Pareto front by hypervolume (HV), expected
utility (EU) and sparsity (SP).

N . Method
Environment Metric
GPI-LS CAPQL Q-Pensieve MORL/D  LLE-MORL-0 LLE-MORL
HV(10%*) 5.46+0.17 5.12+032  520£1.08  7.05+0.39 7.74+0.22 7.821+0.24
MO-Swimmer EU(10')  1.06+0.03 1.10£0.05 1.13£0.15 1.13+£0.03 1.03+0.07 1.16+0.09
SP(IOQ) 0.04+0.02 0.12£0.09 0.05£0.02  4.361+1.64 1.11£0.56 1.15+0.63
HV(10°) 1.15+£0.04  2.11+0.91 1.62+£0.20  3.75+0.25 4.76+0.08 4.87+0.09

MO-Hopper EU(10%) 2.26+0.07  3.46+1.07 2.76+0.84  4.98+0.17 5.67+0.10 5.74+0.07
SP(10%)  0.95+£0.73 1537+£10.67 0.02£0.01  10.60+6.31 5.09+1.77 4.53+1.79

HV(10°) 1.7240.93 1.63£0.72 1.784+0.34  1.84+0.31 2.58+0.22 2.68+0.22
MO-Ant EU(10%) 2.68+1.19  2.81+0.80 2.1840.41  3.09+0.30 3.81+£0.27 3.93+0.26
SP(10%)  0.57+£0.50  0.28+0.24  0.10+0.09  3.92+2.81 2.23+0.97 1.59£0.40

Table 2: Standard-training evaluation of the quality of Pareto front by hypervolume (HV), expected
utility (EU) and sparsity (SP).

front compared to the baselines. The evidence from Pareto front visualisation further corroborates
LLE-MORL’s advantages. In the MO-Swimmer environment, shown in Figure[5a] LLE-MORL more
comprehensively explores the objective space, successfully identifying Pareto optimal solutions in the
lower-right region consistently missed by baselines such as GPI-LS, Q-Pensieve and CAPQL. Notably,
when comparing the GPI-LS, CAPQL and Q-Pensieve performance to those in the sample-efficient
setting for the MO-Swimmer environment, these particular baselines appear to remain constrained by
suboptimal solutions in this challenging region, indicating that simply extending training duration
did not resolve their exploration deficiencies here. While LLE-MORL’s thorough exploration to
achieve this broader coverage means its SP may not be the numerically lowest, the result could be
well-justified by the extensive nature of the front.

In summary, LLE-MORL consistently demonstrates superior Pareto front approximations across both
sample-efficient and standard-training evaluations. This robust performance is significantly supported
by its innovative extension process, which is largely training-free once core parameter-performance
relationships are established, allowing for the efficient generation of diverse and high-quality solutions.
Consequently, LLE-MORL excels at both rapid learning in data-limited scenarios and achieving
comprehensive, high-fidelity fronts with extended training, highlighting its distinct advantages for
multi-objective reinforcement learning. Additionally, we present the running time of each algorithm
in Appendix [C} which shows the high efficiency level achievable by LLE-MORL.

4.3 ABLATION STUDY

The LLE-MORL integrates a locally linear extension process with a subsequent fine-tuning stage.
To understand the distinct contributions of these components to the overall performance, our ab-
lation study separates them. We first evaluate LLE-MORL-0, which solely employs the extension
process without fine-tuning. As detailed in Table|l|and Table 2| LLE-MORL-O0 itself demonstrates
competitiveness, achieving strong Hypervolume (HV) and Expected Utility (EU) scores that are often
competitive with or superior to baselines. This emphasises the efficacy of our extension mechanism
in rapidly discovering a high-quality approximation of the Pareto front.

Subsequently, we assess the improvement of the fine-tuning stage by comparing LLE-MORL (which
includes fine-tuning) to LLE-MORL-0. This comparison reveals that the inclusion of fine-tuning
consistently yields further improvements in Hypervolume (HV) and Expected Utility (EU) across
both sample-efficient and standard-training settings. The impact on Sparsity (SP) is less uniform,
which is an expected outcome, as refining solutions towards a more optimal Pareto front can alter
their relative spacing. Nevertheless, the consistent enhancements in HV and EU prove the value of
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fine-tuning for improving the overall quality of the approximate Pareto front and its coverage by
diverse solutions. This demonstrates that the extension process provides a strong foundation for the
fine-tuning stage that enables LLE-MORL to outperform other algorithms.

5 RELATED WORK

Prior work in Multi-Objective Reinforcement Learning (MORL) offers various strategies for handling
conflicting objectives. These can be broadly grouped into single-policy methods and multi-policy
methods for approximating the Pareto front. Single-policy approaches, a foundational strategy in
MORL, typically convert the multi-objective problem into a single-objective task using a predefined
preference or weighting scheme to find a policy optimal for that specific trade-off. A common
instance of such a weighting scheme is linear scalarization (Van Moffaert et al.,[2013). Limitations
of linear scalarization, particularly in capturing non-convex Pareto fronts, have been addressed
by more advanced scalarization functions such as Chebyshev methods (Van Moffaert et al., [2013)
and hypervolume-based approaches (Zhang & Golovinl 2020). Further theoretical work has aimed
at enhancing scalarization robustness and performance, for instance, by proposing the addition
of concave terms to rewards (Lu et al., |2023). Concurrently, significant efforts have developed
generalised single-policy models conditioned on preference inputs to achieve adaptability across
diverse objectives (Teh et al., 2017; Yang et al.; 2019; Basaklar et al.,|2022; [Parisi et al., [2016)), with
subsequent extensions into offline learning contexts (Zhu et al., 2023} Lin et al.,[2024) and methods
to improve sample efficiency in these settings (Hung et al.,[2023).

Multi-policy MORL strategies directly target the approximation of the entire Pareto front by learning
a diverse collection of policies. One direction for generating diverse behaviours involves developing
single, highly adaptable models conditioned on preferences, which generalise across various objec-
tives using techniques like specialised experience replay or policy gradient methods that enforce
Pareto stationarity (Abels et al.,|2019; |[Friedman & Fontainel 2018 Kyriakis & Deshmukhl 2022).
Other approaches explicitly learn a diverse set of policies or their value functions; this includes
direct value-based methods like Pareto Q-learning (Van Moffaert & Nowé, |2014), and evolutionary
algorithms often guided by prediction models to discover a dense Pareto set (Xu et al., 2020). Further
techniques for generating policy sets involve Generalised Policy Improvement (GPI) for sample-
efficient learning (Alegre et al.,2023) or the development of transferable policy components using
representations like successor features (Alegre et al.| [2022). The use of constrained optimisation
to efficiently complete and refine the Pareto front is also explored in (Liu et al., |2024; |He et al.,
2024])). Furthermore, the principles of decomposition-based strategies, which find a set of solutions by
solving multiple interrelated scalarised sub-problems, have been a significant focus, with recent work
providing clarifying taxonomies and conceptual frameworks (Felten et al., [2024; [Ropke et al., 2024).

While these established single-policy and multi-policy paradigms have significantly advanced MORL,
the explicit characterisation and systematic exploitation of the structural relationship between the
learned policies’ underlying parameter space and their resultant performance on the Pareto front
remain largely underexplored. Although multi-objective optimization offers techniques for navigating
Pareto sets (Ye & Liul [2022)), and some MORL studies have touched upon parameter space regu-
larities (Xu et al.} [2020), policy manifolds (Parisi et al.,|2016)), or front geometries (Li et al., 2024)),
these explorations typically do not formalise or exploit the parameter-to-performance mapping for
systematic, guided Pareto front generation.

6 CONCLUSION

We have discussed LLE-MORL, an algorithm that identifies solution components in multi-objective
reinforcement learning by directed exploration of the Pareto front. The main benefit of LLE-MORL
is increased efficiency which is enabled by maintaining a direct relation between the multi-objective
performance and the representation of the policy in the parameter space. We have shown that this
simple set-up is sufficient to obtain highly efficient coverage of a Pareto front as well as a better
approximation of the Pareto front itself, so that we could show that LLE-MORL is superior to recent
MORL algorithms. Furthermore, it can be expected that the approach can be extended to more than
d = 2 objectives, although an implicit representation of the Pareto front may be preferable for d > 2
which would, however, reduce interpretability in terms of an accessible PPR as featured here.
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A ALGORITHM

In this section, we present a complete description of LLE-MORL, an efficient procedure for tracing
an approximate Pareto front. Algorithm |l|details this process.

Algorithm 1 LLE-MORL

Require: Initial scalarization weights {w; } £ | evenly spanning preference space, Target scalariza-
tion weights for directional retraining {w;}fil Initialization training length 7Ti,;, Directional
retraining length Ty;,, Fine-tuning length Ti.¢, Step-scale factors {a; } j]‘/il

Ensure: Approximate Pareto-optimal policy set IT

1: Initialization:

fori=1to K do
Train base policy 6,,, with PPO under weight w; for Ti,;; steps

end for

Directional Retraining:
fori=1to K —1do
0.,/ < continue training 6,,, for Ty;, steps under w}
9 Abf; 0, — O,
10: Aw; + w} —w;
11: end for
12:
13: Locally Linear Extension:
14: C+ 0
15: fori: =1to K —1do
16: for j = 1to M do

17: 91‘,]‘ — Oy, + Q; Ab;

18: Wi, 5 < W + (e7] Awl

19: Evaluate performance V' (6; ;) under weight w; ;
20: C(—CU{(Gi,j,wm)}

21: end for

22: end for

23:

24: Candidate Selection:

25: N <+ non-dominated subset of C

26:

27: Preference-Aligned Fine-Tuning:
28: F+ 0

29: for all (9, w) € N do

30: fine-tune 6 for Te¢ steps under w, yielding ¢’
31: add (0", w) to F

32: end for

33: Cy <~ N UF

34: Ninal < non-dominated subset of Cy
35: M« T U {6](9,) € Nona }

36: return II

The core pipeline involves several stages. First, K base policies {0,,, } are trained, each under its
respective initial weight w; for Tiy; steps. Next, for the first K — 1 base policies, a short directional
retraining is performed: each 6,,, (for ¢ = 1... K — 1) is further trained for T};, steps under its
corresponding target weight w; to yield 0y, This allows the calculation of a parameter-space update
vector AG; = Qwé — 0y, and the associated preference shift Aw; = w} — w;.

Using these K — 1 pairs of delta vectors, the Locally Linear Extension stage generates a set of
candidate policies C. For each original base policy 6,,, (that had a corresponding A#f;), intermediate
candidates are formed by applying the scale factors «; to Af;, also determining matched weights
w,j. From this pool of generated candidates C, a non-dominated subset N is selected. Policies in A
then undergo Preference-Aligned Fine-Tuning for T} steps under their matched weights, resulting

13
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in a set of fine-tuned policies . Finally, the algorithm returns II, which is the set of non-dominated
policies selected from the combined pool of the initially selected non-dominated candidates A/ and
their fine-tuned versions F. The set II constitutes the approximated Pareto front.

B THEORETICAL ANALYSIS

B.1 PROOF AND DISCUSSION OF THE THEOREM

Proof sketch. By Assumption A1, the Pareto front is locally homeomorphic to Euclidean space, so
tangent spaces exist. Assumption A3 ensures that for sufficiently small A, local linear mappings
between tangent spaces approximate the identity, meaning that extrapolation from nearby points
remains close to the true manifold. Given n = K distinct nearby solutions (Assumption A4, K can
be different from n if a component of the Pareto front is dimension deficient), the tangent space
at a base point can be spanned, allowing locally linear extension in all directions of the manifold.
Repeated application of such steps covers the local neighborhood of the manifold, and resolution is
controlled by the choice of Aa.

The conditions for the applicability of the theorem do not generally preclude applicability of the
algorithm, but clarify its limitations, i.e. cases where more effort and additional checks may become
necessary:

L1: The Pareto front is not a (set of) manifold(s).
L2: The number of components of the Pareto front or its complexity exceeds any given bound.

L3: If the Pareto front is too complex, the algorithm may loose track. This can be mitigated by
choosing a smaller A« > 0, although the efficiency of the algorithm will be reduced in this
way.

L4: Less than n different points of (a component of) the Pareto front are found to start with. If
(the component of) the Pareto front is deficient in dimensionality, e.g. if (the component of)
the Pareto front is discrete, then less than different n points are sufficient for the algorithm.

B.2 PROOF AND DISCUSSION OF THE PROPOSITION

In an n-objective reinforcement learning problem, if the Pareto front in the policy parameter space can
be represented as a differentiable (n — 1)-dimensional manifold, LLE-MORL can locally reconstruct
this manifold by extending each base policy along (n — 1) distinct directions obtained via directional
retraining. The locally linear extension then combines these directions to generate a grid of new
candidate policies. In a n-objective task, n — 1 directional retrained directions are used to form a
(n — 1)-dimensional grid: 6 = Opase + > @i(0; — Ovase)s ¢ = 1,...,n — 1, allowing dense coverage
of the local Pareto surface with or without further training.

We restate Proposition from Section [3|for discussion convenience.

Proposition. Time complexity. Given that the number of objectives is n, the number of base policies
is K, the base policy training time is T, the number of locally linear extensions sampled per direction
is M, and noting that the locally linear extension is training-free, the expected running time of
LLE-MORL is O(TK + KM"™1).

Proof. Training K base policies requires O(TK). Around each base policy, local linear extension
samples M ™! candidate policies across the n — 1-dimensional tangent space. These extensions
require no retraining, so their cost is dominated by evaluation, yielding the second term O (K M™~1).
Thus the overall runtime is O(TK + KM"~1).

The first term in the time complexity proposition corresponds to the cost of training K base policies,
which is the dominant cost. The second term accounts for generating and evaluating M"~ 1 extended
policies per base policy. This step is training-free and its cost is controllable via M = (Smax=Cmin),
allowing the user to balance Pareto front accuracy/density against computational resources. The
second term grows exponentially with the number of objectives, but for low- to moderate-dimensional
objectives, this cost remains small compared to policy training. For very high-dimensional objective
spaces, adaptive sampling or sparse grids can mitigate this cost.

14
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C EXPERIMENT SETUP DETAILS

C.1 BENCHMARKS

To evaluate the performance of our proposed LLE-MORL method and compare it against existing
baselines, we utilise a suite of continuous control benchmarks from the MO-Gymnasium library (Fel;
ten et al., [2023). These environments are designed to test the ability of an agent to learn policies
that effectively balance multiple, often conflicting objectives. The specific environments and their
multi-objective reward formulations are detailed below:

MO-SWIMMER-V5. A planar, three-link swimmer operating in a viscous fluid, utilising a 2D
continuous action space to control its joint torques. The objectives are to maximise forward velocity
along the x-axis and minimise the control cost.

The observation space S C R?® includes joint angles and velocities, and the action space A C R?2
represents joint torques in [—1, 1]. Let Zpefore and Taper be the z-coordinates of the centre of mass of
swimmer before and after an action, At be the time step, and a; be the j-th component of the action
vector.

The first objective is the forward speed
Lafter — Lbefore
L
and the second objective is the energy efficiency (negative control cost):

RQZ—ZG?
J

MO-HOPPER-20BJ-V5. This environment features a 2D one-legged hopper with a 3-dimensional
continuous action space controlling torques for its thigh, leg, and foot joints. Originally a 3-objective
task (forward speed, jump height, control cost), we use the 2-objective variant, in which the separate
control-cost objective is added to other objectives.

The observation space S C R!! includes joint states and torso position, and the action space A C R3
represents joint torques in [—1, 1]. Let v, = (Zafter — Tbefore )/ At be the forward velocity of the agent
along the z-axis, where Tufier and Tpefore are X-positions of the torso. Let hjymp = 10 X (Zafter — Zinit)
be a measure of jumping height, where 2., is the current z-position of the torso and zjy; is its initial
z-position. Let cqy be the positive control cost, computed as Wepy_curl Y y (aj)z, where Wepy ¢ 1S the
environment control cost weight (typically 0.001). Let rheamy be the health reward (typically +1 if
the agent has not fallen). The reward vector R = [R;, Ro] is defined as:

* R; (Adjusted Forward Performance):
Ry =v, + Thealthy — Cetrl
* Ry (Adjusted Height Performance):

Ry = hjump + Thealthy — Cetrl

MO-ANT-20BJ-V5. A quadrupedal “ant” robot in 2D with an eight-dimensional action space for
joint torques. By default, the environment emits a three-dimensional reward vector: (1) x-velocity,
(2) y-velocity, and (3) control cost. Here, we use the two-objective variant in which the separate
control-cost objective is added to other objectives.

The observation space S C R?7 includes joint states, torso position, and contact forces, and the
action space A C RR® represents joint torques in [—1,1]. Let vy = (Zafer — Tbefore) /At be the
forward velocity of the agent along the x-axis, where Zyger and Tpefore are x-positions of the torso.
Let vy = (Yatier — Yvefore)/ At be the forward velocity of the agent along the y-axis, where yyger and
Ybefore are y-positions of the torso. Let cqy be the positive control cost, computed as Weny_ctrl Y j (aj )2,
where Weny 1 18 the environment control cost weight (typically 0.05). Let 7heainy be the health reward
(typically +1 if the Ant is healthy). Let peontact be the positive contact penalty, which is used for
penalising the Ant if the external contact forces are too large, computed as Weny_contact & (forcek)Z,
where Weny_contact 18 the environment contact cost weight (typically 5 X 10~%). The reward vector
R = [Ry, Ry] is defined as:
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* R; (Adjusted x-Velocity Performance):
Ry =v, + Thealthy — Cctrl — Pcontact
* Rs (Adjusted y-Velocity Performance):

Ry = Uy + Thealthy — Cetrl — Peontact

C.2 EVALUATION METRICS

We evaluate the quality of the approximate Pareto front using three standard metrics, following the
formalism in (Zitzler & Thielel 2002; Zintgraf et al., 2015; Hayes et al., [2022]).

Hypervolume (HV). Let P be an approximate Pareto front and GG a reference point dominated by
all p € P. The hypervolume is H(P) = [5. ILH(p)( z)dz, where H(P) = {z e R" | 34, 1 <
J<|P] : Gop=z= P( /)}. Here, P( j) is the j*® solution in P, the symbol < denotes objective
dominance, and 1 z(py is an indicator function that equals 1 if z € H(P) and 0 otherwise. A higher
hypervolume implies a front closer to and more extensive with respect to the true Pareto front.

Expected Utility (EU). Let P be an approximate Pareto front and II be the corresponding policy set.
The expected utility metric is U (P) = Ei,~q [maxzen w' GT)]. A higher EU denotes better average
performance over preferences.

Sparsity (SP). Let P be an approximate Pareto front in a d-dimensional objective space. The sparsity
= P s sIEE YGilk) = Gik + 1))2, where G is the sorted list of the 7

objective values in P, and Gz( ) is the £*® entry in this sorted list. Lower sparsity indicates a more
uniform distribution of solutions along each objective.

metric is S(P) =

C.3 HUNGARIAN MATCHING DISTANCE

To measure structural similarity between policies, we use the Hungarian matching distance (Kuhn,
1955; Munkres!, [1957).

Definition 4. Hungarian matching distance. For a given layer | with neuron sets A®Y) and BWY, let

(l) ®

and w; "’ denote the incoming weight vectors of neurons i € AW and j € BW, respectively.

The minimum-cost perfect matching M) between AY) and BWY is obtained by using the Hungarian

algorithm:
MO = arg min Z ngl) — wy) H @))

hi 2
maiching (4,j) Ematching

The Hungarian matching distance between the two networks is then defined as

dHungurmn A B Z Z sz(l) B wy) H (2)

2
I=1 (i,/)eM®

where L is the total number of layers.

C.4 SANITY CHECK DETAILS

In Section[3.3] the sanity check was designed as a qualitative validation of the parameter—performance
relationship (PPR), rather than a full experiment.

To construct policy pairs, we trained 11 base policies ,,1 using the scalarization vector w, that were
equally distributed in the preference space, i.e. w; = [1,0],[0.9,0.1], ..., [0, 1].

For each base policy, we formed a paired scalarization vector wy by shifting w; with a retraining shift
parameter J,:
[w11 - 55,(.«)12 + 53], ifw11 — 53 S [0, 1]
Wy = 3)
[wi1 + s, w12 — d5], otherwise
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where d; € {0.1,0.2,0.3,0.4,0.5}. This procedure yielded multiple pairs of (wq,ws) across the
preference space. For each pair, we performed short retraining from 6,,, under w» and compared
the orignial 6,,, and resulting model 6, with the independently trained 6,,. This allowed us to
consistently observe that retrained policies stay close in parameter space (low Hungarian distance),
while having directional movement in performance space, supporting the local PPR hypothesis.
Figure[2]in the main paper presents a representative example from these trials.

C.5 TRAINING DETAILS

All learning phases within our LLE-MORL algorithm, including the initial training of base policies,
the directional retraining, and the final preference-aligned fine-tuning, utilize the Proximal Policy
Optimization (PPO) algorithm (Schulman et al., 2017)). We employed a standard PPO implementation
from the Stable Baselines3 library (Raffin et al.,2019). The PPO parameters used across all training
stages and benchmarks are detailed in Table 3]

The specific parameters for the LLE-MORL pipeline include:

* Number of Initial Base Policies (X): The total count of base policies 8,,,, trained in the
initialization stage. The corresponding K initial scalarization weights {w; };* ; are generated
by evenly distributing them across the preference space (e.g., for 2D objectives, from [1, 0]
to [0, 1] in K steps).

* Initialization Training Timesteps (7i,;;): The number of environment interaction steps for
which the initial base policy 0,,, is trained under its weight w;.

* Retraining Preference Shift Strategy (controlled by shift magnitude §,): Target scalar-
ization weights {w} for directional retraining are generated by shifting each initial weight
w; to a nearby, distinct point on the preference space. The extent of this shift is controlled by
a hyperparameter d5. Conceptually, for d-dimensional preference spaces (d > 2), this shift
could be defined as an angular displacement in the space. In our current two-dimensional
objective experiments (d = 2), where w; = [w; ¢, w; 1], this shift is implemented by moving
the first component w; ¢ by the magnitude §, to obtain w§70. The shift direction (decrease or
increase) is chosen to keep the component within valid bounds (e.g., [0, 1]), and the default
direction is decrease; then the second component w; ;is adjusted accordingly (assuming all
objective weights sum to 1).

* Directional Retraining Timesteps (74;;): The number of environment interaction steps for
which the base policy 6., is retrained under its target weight w/ to produce O -

* Step-Scale Factor Generation (cutart, Ctend, Acx): The set of step-scale factors {«; } used
in Locally Linear Extension is generated based on a starting value (), an ending value
((tend), and either a step increment (Ac).

* Fine-tuning Timesteps (7;.f): The number of environment interaction steps for which
the selected candidate policy from the extension phase is fine-tuned under its matched
preference weight w; ;.

The specific values for these LLE-MORL parameters, are provided in Table @ and Table [5]

Parameter Name MO-Swimmer MO-Hopper-2d MO-Ant-2d
steps per actor batch 512 512 512
learning rate (x10~%) 3 3 3
learning rate decay ratio 1 1 1

v 0.995 0.995 0.995
GAE lambda 0.95 0.95 0.95
number of mini batches 32 32 32
PPO epochs 10 10 10
entropy coefficient 0.0 0.0 0.0
value loss coefficient 0.5 0.5 0.5
maximum gradient norm 0.5 0.5 0.5
clip parameter 0.2 0.2 0.2

Table 3: PPO hyperparameters for benchmarks.
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Parameter Name Symbol MO-Swimmer MO-Hopper-2d MO-Ant-2d
Number of base policies K 6 6 6
Initialization timesteps Tinit 1x10° 1x10° 1x10°
Preference shift magnitude Os 0.1 0.1 0.1
Directional retraining timesteps Tair 1x 104 1 x 10* 1 x 10*
Step-scale start Qlstart -1.5 -1.5 -1.5
Step-scale end Qlend 1.5 1.5 1.5
Step-scale increment A« 0.05 0.05 0.05
Fine-tuning timesteps Trer 1x 103 1x 103 1x10%

Table 4: Hyperparameters for the LLE-MORL across benchmarks under sample-efficient setting.

Parameter Name Symbol MO-Swimmer MO-Hopper-2d MO-Ant-2d
Number of base policies K 6 6 6
Initialization timesteps Tinit 1 x 108 1% 106 1 x 10°
Preference shift magnitude Os 0.1 0.1 0.1
Directional retraining timesteps Tair 1% 10* 1 x 10* 1 x 10*
Step-scale start Qlstart -1.5 -1.5 -1.5
Step-scale end Qlend 1.5 1.5 1.5
Step-scale increment Aa 0.05 0.05 0.05
Fine-tuning timesteps Tret 1x 103 1x 103 1x 103

Table 5: Hyperparameters for the LLE-MORL across benchmarks under standard-training setting.

C.6 COMPUTATIONAL RESOURCES

All experiments were run on a workstation equipped with an AMD Ryzen Threadripper PRO 5975WX
(32 cores), an NVIDIA GeForce RTX 3090 GPU (24 GB GDDR6X), and 256 GiB of RAM, running
Ubuntu 24.04 LTS. The software stack included CUDA Toolkit 12.0 and the corresponding NVIDIA
drivers. Approximate execution times for all methods and benchmarks are reported separately in
Table

D STATISTICAL SIGNIFICANCE OF THE EXPERIMENTAL RESULTS

In the LLE-MORL algorithmic procedure, the underlying Reinforcement Learning method (PPO)
used in the training and retraining phases is subject to inherent stochasticity arising from factors
such as random seed initialisation for neural network weights and data sampling during training.
This means that while the overarching behaviour and effectiveness of LLE-MORL are generally
reproducible, the exact set of policies discovered on the approximated Pareto front, their specific
parameter values, or their ordering might exhibit some variation across independent runs started
with different random seeds. Consequently, direct averaging of entire Pareto fronts or performing
straightforward statistical tests on the precise composition of these policy sets can be non-trivial and
may not always be the most informative way to capture the consistent ability of the algorithm to find
high-quality solution regions.

Our demonstration of reliability and robustness relies on: (1) the consistent observation of the
superior performance of LLE-MORL in generating high-quality Pareto fronts compared to baselines;
(2) sensitivity analyses of key hyperparameters (detailed in Appendix [F), which show consistent
outcome patterns within certain parameter ranges; (3) the qualitative consistency in the shape, extent,
and dominance characteristics of the visualized Pareto fronts (e.g. Figure ] and Figure[5)); and (4)
the quantitative results reported in Table [4] and Table [5| across multiple seeds, further reinforcing
the statistical reliability of our findings. These combined observations support the robustness of our
conclusions and the effectiveness of LLE-MORL.

E LIMITATIONS

Limitations of our approach are implied by inherent challenges in multi-objective optimisation, but
we also note some limitations that are specific to our algorithm and require further study.
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Sample-efficient setting Standard-training setting
Method MO-Swimmer MO-Hopper-2d MO-Ant-2d MO-Swimmer MO-Hopper-2d MO-Ant-2d
GPI-LS 3 3 3 22 23 19
CAPQL 13 8 12 95 77 68
Q-Pensieve 3 3 3 17 15 18
MORL/D 1 1 1 3 3 3
LLE-MORL 1 1 1 3 3 3

Table 6: Approximate execution times (hours) for each method and benchmark under sample-efficient
and standard training setting.

* We have restricted ourselves to problems with two objectives where the Pareto front is
one-dimensional. A larger number of objectives is a problem for most of the existing MORL
algorithms. Although usually some of the objectives are of different importance and can be
lexicographically ranked, so that the complexity does not necessarily increase exponentially
with the number of objectives. The high-dimensional case is nevertheless challenging, but
our approach can be seen as promising: In higher dimensions, the number of solutions that
are in the same local quasi-linear patch increases dramatically, so that the efficiency of the
proposed local search will be even more beneficial. This benefit could be reduced by the
potentially increasing complexity of the topological relation between the performance space
and the parameter space which could be a fascinating subject for future work.

* We are assuming that the Pareto front consists of a relatively small number of connectivity
components which have a manifold structure. While there is no theoretical bound to the
complexity of the Pareto from, the idea of MORL implies that the objectives are at least
in some sense comparable. For Pareto fronts that are fractal or of high genus, the result of
multi-objective optimisation lacks robustness, although it will neither be possible to fix any
limits for the complexity of the Pareto front. However, as long as there are only a limited
number of manifold-like connectivity components, our algorithm will be applicable.

» Widely different scales and elasticities of the objectives can lead to problems as in optimi-
sation in anisotropic error landscapes. Step size control that helps in gradient methods in
optimisation, will also be useful here, but has not been studied yet, as the typical (benchmark)
problems are sufficiently isotropic.

* The density of the identified solutions on the Pareto front is clearly a challenge which
may be solved by step size control as mentioned in the previous point. This concerns
higher-dimensional cases as well as extended one-dimensional trails as visible in the top
trail in Figure [3c|also a simple reduction of the parameter A« at the observation of large
steps in the performance space could have solved this issue already so that a more uniform
covering of the Pareto from is not difficult to achieve in the present approach. See also
Appendix [F2] In contrast to other approaches, linear regions of the Pareto can trivially be
tracked by LLE-MORL. Concave regions connected to the Pareto front will be followed
through without problem, but will need to be removed in a single postprocessing step as
they are dominated by other solutions. Even full patches of solutions may turn out to be
Pareto sub-optimal and require a similar treatment.

* We have made use of scalarisation to seed the solution domains, whereas the reconstruction
of the Pareto front is done by a lateral process that does not depend on preference weights.
It is in principle possible that a solution patch is not reachable by any scalarisation-based
seeding attempt, see also the early discussion in (Vamplew et al.| 2008)). In this case our
approach might not find this patch, although it is still possible that it is found by retraining
from a different solution domain as shown in Figure

F ADDITIONAL RESULTS

F.1 EFFECT OF DIRECTIONAL RETRAINING SHIFT
This ablation study investigates the influence of the directional retraining shift J5, on the Locally

Linear Extension (LLE) process. We analyse the performance of the LLE-MORL-0 variant (which ex-
cludes fine-tuning) under the standard-training setting. We vary d5 over the set {0.1,0.2,0.3,0.4, 0.5},
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Environment Metric 6,=01 0,=02 6,=03 6,=04 6,=05

HV(10%) 7.37 7.38 7.38 7.36 7.37
MO-Swimmer ~ EU(10%) 1.03 1.29 1.41 0.99 1.60
SP(10%) 2.10 0.83 3.05 2.39 2.12
HV(10%) 488 4.84 4.79 4.86 4.80
MO-Hopper-2d  EU(10?) 5.65 5.56 5.49 5.54 5.58
SP(10?) 7.20 4.49 333 2.54 3.33
HV(10°) 243 2.66 2.65 2.72 2.44
MO-Ant-2d EU(102) 3.44 3.94 3.69 3.95 3.66
SP(10%) 1.76 2.64 2.23 8.98 2.41

Table 7: Impact of retraining shift §; on LLE-MORL-0 performance (HV, EU, SP) under standard-
training setting.

Environment  Metric  (%start: Gend) | ¢LD ‘ C1515) | (-22) | (-3.3)
Aa ‘ 0.01 0.05 0.1 0.5 ‘ 0.01 0.05 0.1 0.5 ‘ 001 0.05 0.1 0.5 ‘ 001 005 0.1 0.5
HV(10h) 737 737 737 733 | 738 737 737 733 | 740 740 739 734 | 740 740 740 7.34
MO-Swimmer  EU(10%) 1.08 127 132 133 | 1.08 1.03 142 1.65 | 1.13 141 1.53 1.70 | 143 175 1.73 2.37
SP(10%) 024 1.17 254 2555|113 210 146 2555|011 053 1.8 1148 |0.11 051 118 1148
HV(10%) 495 488 485 480 | 496 488 490 480 | 495 488 483 481 | 496 488 488 481
MO-Hopper-2d  EU(10%) 582 574 573 575 | 576 565 572 575 | 575 569 569 567 | 575 569 569 568
SP(10%) 563 943 1158 6035|501 720 13.06 6035|302 542 1005 29.66 | 3.62 541 10.05 29.66
HV(10%) 2.57 243 240 223 | 260 243 223 214 | 260 247 225 214 | 260 247 225 2.14
MO-Ant-2d EU(10%) 3.61 347 3.62 366 |3.66 344 344 331 |3.67 359 343 337 | 3.67 359 343 3.37
SP(10°) 0.54 2.03 3.1 792 | 185 1.76 1.79 836 | 1.85 155 1.79 836 | 185 155 179 836

Table 8: Influence of Step-Scale o on LLE-MORL-0 performance under standard-training setting.

keeping other parameters at their default values, and report Hypervolume (HV), Expected Utility
(EU), and Sparsity (SP) for each environment in Table

The results indicate that d5 influences the resulting Pareto front approximation, as different shift
values generate distinct extension trajectories that directly shape the front. While optimal performance
varies across environments, a moderate retraining shift (e.g., d5 in the range of 0.2 to 0.3, depending
on the specific benchmark characteristics evident in Table[7)) generally appears to strike an effective
balance between front coverage (HV, EU) and solution diversity (SP). Our default configuration
utilized d; = 0.1, chosen for its simplicity and promising results in preliminary tests. However, this
ablation demonstrates that this typical shift is not universally optimal; selecting an appropriately
tuned moderate &, can further enhance the quality and coverage of the extended manifold, thereby
improving the final Pareto front approximation achieved by LLE-MORL-0.

F.2 EFFECT OF STEP-SCALE IN LOCALLY LINEAR EXTENSION

We next examine how the choice of step-scale factors {aj} — defined by their start cggart, end
Qlend, and increment Ao — influences the performance of LLE-MORL-0. For each benchmark, we
compare different ranges and resolutions of {¢; } and report HV, EU, and SP in Table

The choice of A« significantly impacts Sparsity (SP), as shown in Table[§] Finer increments (smaller
Aq) lead to substantially lower SP values, indicating denser Pareto front approximations, whereas
coarser steps result in sparser solutions. This confirms that LLE offers a training-free mechanism to
control the density of the approximated front simply by adjusting Ac.

Regarding the range of «; (controlled by ctsiart and aeng), €xpanding it generally leads to improve-
ments in both HV and EU, as the extension manifold can reach further from the initial policy along
the identified directional vector (visualized conceptually in Figure [3). However, Table [§]suggests that
an extremely wide range does not always yield proportional gains in coverage. This indicates that
beyond a certain point, the linearity assumption underpinning LLE may become less effective for
extending the front into novel, high-quality regions using a single directional vector, or that the most
valuable regions reachable by the current A8 vectors are already sufficiently captured.

20



Under review as a conference paper at ICLR 2026

G USE OF LARGE LANGUAGE MODELS

In accordance with the ICLR 2026 policy on the use of Large Language Models (LLMs), we claim that
ChatGPT (OpenAl) and Gemini (Google DeepMind) were used to assist with only writing polishing.
The scientific content, algorithms, experiments, and analysis were fully conceived, implemented, and
validated by the authors.
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