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Abstract

The recent literature in text classification is bi-001
ased towards short text sequences (e.g., sen-002
tences or paragraphs). In real-world applica-003
tions, multi-page multi-paragraph documents004
are common and they cannot be efficiently en-005
coded by vanilla Transformer-based models.006
We compare different long document classi-007
fication approaches that aim to mitigate the008
computational overhead of vanilla transform-009
ers to encode much longer text, namely sparse010
attention and hierarchical encoding methods.011
We examine several aspects of sparse attention012
(e.g., size of attention window, use of global013
attention) and hierarchical based (e.g., docu-014
ment splitting strategy) transformers on two015
different datasets, and we derive practical ad-016
vice of applying Transformer-based models on017
long document classification tasks. We find018
that, if applied properly, Transformer-based019
models can outperform former state-of-the-art020
CNN based models on MIMIC-III, a challeng-021
ing dataset from the clinical domain.022

1 Introduction023

The pre-train–fine-tune paradigm has become the024

de-facto practice since the introduction of BERT025

(Devlin et al., 2019; Liu et al., 2019). However,026

the recent literature in text classification mostly027

focuses on short sequences, such as sentences or028

paragraphs (Sun et al., 2019; Wei and Zou, 2019;029

Mosbach et al., 2021), which are sometimes mis-030

leadingly named as documents,1 a term commonly031

used to denote an article or even a book.032

The transition from short-to-long document clas-033

sification is non-trivial. One challenge is that034

BERT and most of its variants are pre-trained on035

sequences containing up-to 512 tokens, which is036

hardly a long document. A common practice is037

to truncate long documents to the first 512 tokens,038

1For example, many biomedical datasets use ‘documents’
from the PubMed collection of biomedical literature, but these
documents actually consist of titles and abstracts.
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Figure 1: The effectiveness of Longformer, a long-
document Transformer, on the MIMIC-III development
set. There is a clear benefit from being able to process
longer text.

which allows the immediate application of these 039

pre-trained models (Adhikari et al., 2019; Chalkidis 040

et al., 2020). We believe that this is a very naive 041

approach for long document classification because 042

truncating the text may omit important informa- 043

tion, leading to poor classification performance. 044

See Figure 1 for empirical evidence to support 045

this claim. Another challenge is the computational 046

foot-print of conventional Transformer-based mod- 047

els: in the standard multi-head self-attention op- 048

eration (Vaswani et al., 2017), each token in a 049

sequence of n tokens attends to all other tokens. 050

This results in a function that has O(n2) time and 051

memory complexity, which makes it challenging 052

to efficiently process long documents. 053

In response to the second challenge, long- 054

document Transformers have emerged to deal with 055

long sequences (Beltagy et al., 2020; Zaheer et al., 056

2020). However, they experiment and report re- 057

sults on non-ideal long document classification 058

datasets, i.e., documents on the IMDB dataset are 059

not really long – fewer than 15% of examples are 060

longer than 512 tokens; while the Hyperpartisan 061

dataset only has very few (645 in total) documents. 062

On datasets with longer documents, such as the 063
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MIMIC-III dataset (Johnson et al., 2016) with an064

average length of 2,000 words, it has been shown065

that multiple variants of BERT perform worse than066

a CNN or RNN-based model (Chalkidis et al.,067

2020; Vu et al., 2020; Dong et al., 2021; Ji et al.,068

2021; Gao et al., 2021; Pascual et al., 2021). There069

is a clear need to understand the performance of070

Transformer-based models on documents that are071

actually long.072

In this work, we transfer the success of the pre-073

train–fine-tune paradigm to long document classifi-074

cation. Our main contributions are:075

• We compare different long document classi-076

fication approaches based on transformer ar-077

chitecture: namely, sparse attention, and hi-078

erarchical methods. Our results show that, if079

applied properly, Transformer-based models080

can outperform former state-of-the-art CNN081

based models on MIMIC-III.082

• We conduct careful analyses to understand083

the impact of several design choices on both084

the effectiveness and efficiency of different085

approaches. Based on our empirical results086

on two challenging datasets from clinical and087

legal domains, we derive practical advice of088

applying Transformer-based models to long089

document classification.090

2 Problem Formulation and Datasets091

We divide the document classification model into092

two components: (1) a document encoder, which093

builds vector representation of a given document;094

and, (2) a classifier that predicts a single or multi-095

ple labels given the encoded vector. In this work,096

we mainly focus on the importance of the first com-097

ponent. We use Transformer-based encoders to098

build a document representation, and then take the099

encoded document representation as the input to a100

classifier. For the second component, we use a stan-101

dard multi-label classifier, i.e., a linear layer with102

C outputs, where C is the number of classes, fol-103

lowed by sigmoid activations, trained using binary104

cross entropy loss.2105

We use two datasets—MIMIC-III (Johnson et al.,106

2016) and ECtHR (Chalkidis et al., 2021)—from107

2Long document classification datasets are usually anno-
tated using a large number of labels. Studies that have focused
on the second component investigate methods of utilising label
hierarchy (Chalkidis et al., 2020; Vu et al., 2020), pre-training
label embeddings (Dong et al., 2021), to name but a few.

Train Dev Test

MIMIC-III
Documents 8,066 1,573 1,729

Unique labels 50 50 50
Avg. words 1,833 2,177 2,210

Avg. subtokens 2,260 2,693 2,737
90th pctl. subtokens 3,757 4,078 4,216

ECtHR
Documents 8,866 973 986

Unique labels 10 10 10
Avg. words 1,914 2,125 2,284

Avg. subtokens 2,140 2,345 2,532
90th pctl. subtokens 4,762 4,930 5,576

Table 1: Statistics of the datasets. The number of words
and subtokens is calculated using RoBERTa tokenizer.
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Figure 2: The distribution of document lengths. A log-
10 scale is used for the X axis.

clinical and legal domains respectively. The statis- 108

tics of the datasets can be found in Table 1 and the 109

document length distribution is shown in Figure 2. 110

MIMIC-III contains approx. 50K discharge sum- 111

maries from a US hospital. Each summary is an- 112

notated with multiple labels—diagnoses and pro- 113

cedures—using the ICD-9 (The International Clas- 114

sification of Diseases, Ninth Revision) hierarchy. 115

Following Mullenbach et al. (2018), we conduct 116

experiments using the top 50 frequent labels.3 117

The ECtHR dataset contains 11K cases from The 118

European Court of Human Rights’ public database. 119

The court hears allegations that a state has breached 120

human rights provisions of the European Conven- 121

tion of Human Rights. Each case is mapped to 122

one or more articles of the convention that were 123

allegedly violated (considered by the court).4 124

3Details about dataset split and labels can be found at
https://github.com/jamesmullenbach/caml-mimic

4https://huggingface.co/datasets/ecthr_cases
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Figure 3: A comparison of three types of attention op-
erations. The example sequence contains 7 tokens; we
set local attention window size as 2, and only the first
token using global attention. Note that these curves are
bi-directional that tokens can attend to each other.

3 Approaches125

In the era of Transformer-based models, we identify126

two approaches in the literature that aim to mitigate127

the computational complexity of the original trans-128

former: sparse, and hierarchical Transformers.129

3.1 Sparse-Attention Transformers130

Vanilla transformers rely on the multi-head self-131

attention mechanism, which scales poorly with the132

length of the input sequence, requiring quadratic133

computation time and memory to store all scores134

that are used to compute the gradients during135

back-propagation. Several Transformer-based mod-136

els (Kitaev et al., 2020; Choromanski et al., 2021)137

have been proposed exploring sparse attention al-138

ternatives that scale linearly, thus it can be used to139

process long sequences.140

Longformer of Beltagy et al. (2020) extends141

Transformer-based models to support longer se-142

quences, using sparse-attention. It consists of local143

(window-based) attention and global attention that144

reduces the computational complexity of the model145

and thus can be deployed to process longer text146

(up to 4096 tokens). Local attention is computed147

in-between a window of neighbour (consecutive)148

tokens. Global attention relies on the idea of global149

tokens that are able to attend and be attended by any150

other token in the sequence (Figure 3). BigBird151

of Zaheer et al. (2020) is another sparse-attention152

based Transformer that uses a combination of a153

local, global and random attention, i.e., all tokens154

also attend a number of random tokens on top of155

those in the same neighbourhood.156

Both models are warm-started from the public157

RoBERTa checkpoint and are further pre-trained158

on masked language modelling. They have been159

t0 ... t127 ... t255 t256 ... t383t128

RoBERTa RoBERTa RoBERTa

h0 ... h127 ... h255 h256 ... h383h128

Tokens

p0 p1 p2

+ + +

Two transformer blocks

Segment
position

embeddings

Contextual
token

representations

s0 s1 s2

Contextual
segment

representations

Aggregator (e.g., max pooling)

Document vector

...

...

...

...

...

...

n0 n1 n2 ...

Non-contextual
segment

representations

Figure 4: A high-level illustration of hierarchical Trans-
formers. A shared pre-trained RoBERTa is used to en-
code each segment, and a two layer transformer blocks
is used to capture the interaction between different seg-
ments. Finally, contextual segment representations are
aggregated into a document representation.

reported to outperform RoBERTa on a range of 160

tasks that require modelling long sequences. 161

3.2 Hierarchical Transformers 162

Instead of modifying multi-head self-attention 163

mechanism to efficiently model long sequences, 164

hierarchical Transformers build on top of vanilla 165

transformer architecture. 166

A document, D = {t0, t1, · · · , t|D|}, is first 167

split into segments, each of which should have less 168

than 512 tokens. These segments can be indepen- 169

dently encoded using any pre-trained Transformer- 170

based encoders (e.g., RoBERTa in Figure 4). We 171

sum the contextual representation of the first token 172

([CLS]) from each segment up with segment posi- 173

tion embeddings—sinusoidal initialised (Vaswani 174

et al., 2017) and keep trainable—as the segment 175

representation (i.e., ni in Figure 4). Then the 176

segment encoder—two transformer blocks (Zhang 177

et al., 2019)—are used to capture the interaction 178

between segments and output a list of contextual 179

segment representations (i.e., si in Figure 4), which 180

are finally aggregated into a document representa- 181

tion. By default, the aggregator is the max-pooling 182

operation unless other specified.5 183

4 Experimental Setup 184

Backbone Models We consider two models: 185

Longformer (Beltagy et al., 2020), and RoBERTa- 186

based (Liu et al., 2019) hierarchical Transformers. 187

Evaluation metrics For the MIMIC-III dataset, 188

we follow previous work (Mullenbach et al., 2018; 189

5Code is available at [ANON].
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Cao et al., 2020) and use micro-averaged AUC190

(Area Under the receiver operating characteristic191

Curve), macro-averaged AUC, micro-averaged F1,192

macro-averaged F1 and Precision@5—the propor-193

tion of the ground truth labels in the top-5 predicted194

labels—as the metrics. For the ECtHR dataset, we195

use both micro and macro averaged F1. For the196

sake of brevity, we use micro F1 score as the main197

metric in most of our illustrations, and results of198

other metrics are detailed in the Appendix.199

Preprocessing We mainly follow (Mullenbach200

et al., 2018) to preprocess the MIMIC-III dataset.201

That is, we lowercase the text, remove all punctua-202

tion marks and tokenize text by white spaces. The203

only change we make is that we normalise numeric204

(e.g., convert ‘2021‘ to ‘0000‘) instead of deleting205

numeric-only tokens in (Mullenbach et al., 2018).206

The only preprocessing we apply on ECtHR is to207

lowercase the text.208

Training We fine-tune the classification model209

using a binary cross entropy loss. That is, given210

an training example whose ground truth and pre-211

dicted probability for the i-th label are yi (0 or 1)212

and ŷi, we calculate its loss, over the C unique213

classification labels, as:214

L =

C∑
i=1

−yi log(ŷi)− (1− yi) log(1− ŷi),215

We use the same effective batch size (16), learn-216

ing rate (2e-5), maximum number of training217

epochs (30) with early stop patience (5) in all ex-218

periments. We also follow Longformer (Beltagy219

et al., 2020) and set the maximum sequence length220

as 4096 in most of the experiments unless other221

specified. We fine-tune all classification models on222

a single Quadro RTX 6000 GPU, which has 24 GB223

GPU memory. If one batch of data is too large to224

fit into the GPU memory, we use gradient accumu-225

lation so that the effective batch sizes (batch size226

per GPU × gradient accumulation steps) are still227

the same.228

We repeat all experiments five times with dif-229

ferent random seeds. The model which is most230

effective on the development set, measured using231

the micro F1 score, is finally used for evaluation.232

5 Experiments233

We conduct a series of controlled experiments234

to understand the impact of design choices in235
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Figure 5: Task-adaptive pre-training (right side in each
plot) can improve the effectiveness (measured on the
development sets) of pre-trained language models on
downstream tasks. ∆: the difference between mean
values of compared experiments.

Transformer-based models. Based on our empirical 236

results, we derive practical advice of applying these 237

models to long document classification regarding 238

both effectiveness and efficiency. Finally, we com- 239

pare our results against recently published results, 240

demonstrating, contrary to previously-reported re- 241

sults, that the benefits of pre-trained Transformers 242

also apply to long document classification. 243

Task-adaptive pre-training is a promising first 244

step. Domain-adaptive pre-training (DAPT) – the 245

continued pre-training a language model on a large 246

corpus of domain-specific text – is known to im- 247

prove downstream task performance (Gururangan 248

et al., 2020; Lee et al., 2020). However, task- 249

adaptive pre-training (TAPT) that continues unsu- 250

pervised pre-training on the task’s data is compar- 251

atively less studied, mainly because most of the 252

benchmarking corpora are small and thus the bene- 253

fit of TAPT seems less obvious than DAPT. 254

We believe document classification datasets, due 255

to their relatively large size, can benefit from TAPT. 256

On each target dataset, we continue to pre-train 257

Longformer and RoBERTa using the masked lan- 258

guage modelling pre-training objective (details 259

about pre-training can be found at Appendix 8.1). 260

We find that task-adaptive pre-trained models out- 261

perform models without task-adaptive pre-training 262

by a large margin on MIMIC-III (Figure 5 (a) and 263

(b)), and smaller improvements are observed on 264

ECtHR (Figure 5 (c) and (d)). We suspect this dif- 265

ference is because legal cases (i.e., ECtHR) have 266
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Local window Micro F1
Speed

Train Test

32 67.7 ± 0.3 9.8 16.1
64 68.2 ± 0.2 7.9 15.5
128 68.2 ± 0.1 6.8 13.9
256 68.3 ± 0.4 5.6 11.8
512 68.4 ± 0.4 3.3 7.8

Table 2: The impact of local attention window size in
Longformer on MIMIC-III. Speed is measured using
‘processed samples per second’. A similar pattern is
observed on ECtHR, detailed in Appendix Table 10.

been covered in pre-training data used for training267

Longformer and RoBERTa, whereas clinical notes268

(i.e., MIMIC-III) are not (Dodge et al., 2021). See269

Appendix 8.2 for a short analysis on this matter.270

Take-Away #1: We suggest task-adaptive pre-271

training as a general first step as it is effective and272

cheaper than domain-adaptive pre-training. The273

following experiments are based on task-adaptive274

pre-trained Longformer and RoBERTa models.275

5.1 Longformer276

Small local attention windows are effective and277

efficient. Beltagy et al. (2020) observe that many278

tasks do not require reasoning over the entire con-279

text. For example, they find that the distance be-280

tween any two mentions in a coreference resolution281

dataset (i.e., OntoNotes) is small, and it is possible282

to achieve competitive performance by processing283

small segments containing these mentions.284

Inspired by this observation, we investigate the285

impact of local context size on document classifi-286

cation, regarding both effectiveness and efficiency.287

We hypothesise that long document classification,288

which is usually paired with a large label space, can289

be performed by models that only attend over short290

sequences instead of the entire document (Gao291

et al., 2021). In this experiment, we vary the local292

attention window around each token.293

Table 2 and 10 show that even using a small win-294

dow size (32 tokens), the micro F1 scores on both295

MIMIC-III and ECtHR development sets are still296

close to using a larger window size (512 tokens).297

A major advantage of using smaller local attention298

windows is the faster computation for training and299

evaluation. Therefore, we suggest a moderate size300

(64-128) of local attention window. We use a local301

window of 128 in the following experiments.302
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Figure 6: The effect of applying global attention on
more tokens, which are evenly chosen based on their
positions. In the baseline model (first column), only
the [CLS] token uses global attention.

Considering a small number of tokens for 303

global attention improves the stability of the 304

training process. Longformer relies heavily on 305

the [CLS] token, which is the only token with 306

global attention—attending to all other tokens and 307

all other tokens attending to it. We investigate 308

whether allowing more tokens to use global atten- 309

tion can improve model performance, and if yes, 310

how to choose which tokens to use global attention. 311

Figure 6 shows that adding more tokens using 312

global attention does not improve performance, 313

while a small number of additional global atten- 314

tion tokens can make the training more stable. 315

Equally distributing global tokens across the se- 316

quence is better than content-based attribution. 317

We consider two approaches to choose additional 318

tokens that use global attention: position based or 319

content based. In the position-based approach, we 320

distribute n additional tokens at equal distances. 321

For example, if n = 4 and the sequence length 322

is 4096, there are global attention on tokens at 323

position 0, 1024, 2048 and 3072. In the content- 324

based approach, we identify informative tokens, 325

using TF-IDF (Term Frequency–Inverse Document 326

Frequency) within each document, and we apply 327

global attention on the top-K informative tokens, 328

together with the [CLS] token. 329

Regarding how to choose global tokens, the posi- 330

tion based approach is more effective than content 331

based (see Table 12 in the Appendix). 332

Take-Away #2: We suggest the following hyperpa- 333

rameters for Longformer for long-document clas- 334

sification: a local attention window of 128 tokens, 335

and 16 equally-distributed global attention tokens. 336
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Figure 7: The effect of varying the segment length and
whether allowing segments to overlap in the hierarchi-
cal Transformers. ∆: improvement due to overlap.

5.2 Hierarchical Transformers337

Split documents into smaller segments. Ji et al.338

(2021) and Gao et al. (2021) reported negative339

results with a hierarchical Transformer with a340

segment length of 512 tokens on the MIMIC-III341

dataset. Their methods involved splitting a doc-342

ument into equally sized segments, which were343

processed using a shared BERT encoder. Instead of344

splitting the documents into such large segments,345

we investigate the impact of different segment346

lengths and preventing context fragmentation.347

Figure 7 (left side in each violin plot) shows348

that there is no optimal segment length across349

both MIMIC-III and ECtHR. Small segment length350

works well on MIMIC-III, and using segment351

length greater than 128 starts to decrease the per-352

formance. In contrast, the ECtHR dataset benefits353

from a model with larger segment lengths.354

Split documents into overlapping segments.355

Splitting a long document into smaller segments356

may result in the problem of context fragmentation,357

where a model lacks the information it needs to358

make a prediction (Dai et al., 2019; Ding et al.,359

2021). Although, the hierarchical model uses a360
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Figure 8: A comparison between evenly splitting and
splitting based on document structure.

second-order transformer to fuse and contextualise 361

information across segments, we investigate a sim- 362

ple way to alleviate context fragmentation by allow- 363

ing segments to overlap when we split a document 364

into segments. That it, except for the first seg- 365

ment, the first 1
4n tokens in each segment are taken 366

from the previous segment, where n is the segment 367

length. Figure 7 (right side in each violin plot) 368

show that this simple strategy can easily improve 369

the effectiveness of the model. 370

Splitting based on document structure. 371

Chalkidis et al. (2021) argue that we should 372

follow the structure of a document when splitting 373

it into segments (Tang et al., 2015; Yang et al., 374

2016). They propose a hierarchical Transformer 375

for the ECtHR dataset that splits a document at the 376

paragraph level, reading up to 64 paragraphs of 377

128 token each (8192 tokens in total). 378

We investigate whether splitting based on doc- 379

ument structure is better than splitting a long doc- 380

ument into segments of same length. Similar to 381

their model, we consider each paragraph as a seg- 382

ment and all segments are then truncated or padded 383

to the same segment length. We follow Chalkidis 384

et al. (2021) and use segment length (l) of 128 on 385

ECtHR, and tune l ∈{32, 64, 128} on MIMIC-III.6 386

Figure 8 show that splitting by the paragraph- 387

level document structure does not improve per- 388

fomance on the ECtHR dataset. On MIMIC-III, 389

splitting based on document structure substantially 390

underperforms evenly splitting the document. 391

Take-Away #3: We suggest splitting a document 392

into small non-structure-derived segments (e.g., 393

128) which overlap as a starting point when em- 394

ploying hierarchical Transformers. 395

6Note that since we need to pad short segments, therefore,
a larger maximum sequence length is required to preserve the
same information as in evenly splitting.
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Macro AUC Micro AUC Macro F1 Micro F1 P@5

Mullenbach et al. (2018) C 88.4 91.6 57.6 63.3 61.8
Dong et al. (2021) C 88.4 91.9 56.8 64.0 62.4
Cao et al. (2020) C 89.5 92.9 60.9 66.3 63.2
Li and Yu (2020) C 89.9 92.8 60.6 67.0 64.1
Ji et al. (2021) C 90.8 93.1 62.4 67.1 64.0
Xie et al. (2019)* C 91.4 93.6 63.8 68.4 64.4
Vu et al. (2020)* R 92.5 94.6 66.6 71.5 67.5

Transformer-based Models

BERT (512 tokens) T 81.3 ± 0.3 85.0 ± 0.3 41.3 ± 1.2 52.3 ± 0.6 53.5 ± 0.2

RoBERTa (512 tokens) T 81.0 ± 0.2 84.8 ± 0.2 39.8 ± 0.7 52.4 ± 0.3 53.2 ± 0.2

Longformer (4096 tokens) T 89.9 ± 0.1 92.4 ± 0.1 60.3 ± 0.4 67.9 ± 0.3 64.8 ± 0.1

Hierarchical (4096 tokens) T 89.3 ± 0.2 92.0 ± 0.1 60.8 ± 0.9 67.7 ± 0.3 64.2 ± 0.3

Hierarchical (5120 tokens) T 89.5 ± 0.1 92.0 ± 0.1 61.7 ± 0.5 68.2 ± 0.3 64.5 ± 0.2

Transformer-based Models with Label-wise Attention Network

Longformer (4096 tokens) T 90.0 ± 0.1 92.6 ± 0.2 60.7 ± 0.6 68.2 ± 0.2 64.8 ± 0.2

Hierarchical (4096 tokens) T 91.1 ± 0.1 93.5 ± 0.1 63.8 ± 0.3 69.9 ± 0.2 65.3 ± 0.2

Hierarchical (5120 tokens) T 91.2 ± 0.1 93.6 ± 0.1 63.8 ± 0.5 70.2 ± 0.3 65.9 ± 0.2

Table 3: Comparison of state-of-the-art against our models on the MIMIC-III test set. Results are sorted by Micro
F1. C: CNN-based models; R: RNN-based models; and T: Transformer-based models. Models marked with an
asterisk (*) exploit the label hierarchy, i.e., they use a better classification component, as defined in Section 3.

.
5.3 Label-wise Attention Network396

Recall from Section 3 that our models form a sin-397

gle document vector which is used for the final398

prediction. That is, in Longformer, we use the399

hidden states of the [CLS] token; in hierarchical400

models, we use the max pooling operation to ag-401

gregate a list of contextual segment representations402

into a document vector. The Label-Wise Atten-403

tion Network (LWAN) (Mullenbach et al., 2018;404

Xiao et al., 2019; Chalkidis et al., 2020) is an al-405

ternative that allows the model to learn distinct406

document representations for each label. Given a407

sequence of hidden representations (e.g., contex-408

tual token representations in Longformer or contex-409

tual segment representations in hierarchical models:410

S = [s0, s1, · · · , sm]), LWAN can allow each la-411

bel to learn to attend to different positions via:412

a` = SoftMax(S>u`) (1)413

v` =
m∑
i=1

a`,isi (2)414

ŷ` = σ(β>
` v`) (3)415

where u` and β` are vector parameters for label `.416

Table 15 in the Appendix shows that adding a417

LWAN improves performance on MIMIC-III (Mi-418

cro F1 score of 1.1 with Longformer; 1.8 with419

hierarchical models), where on average each docu- 420

ment is assigned 6 labels out of 50 available labels 421

(classes). There is a smaller improvement on EC- 422

tHR (0.4 with Longformer; 0.1 with hierarchical 423

models), where the average number of labels per 424

document is 1.5 out of 10 labels (classes) in total. 425

5.4 Bringing it all together & Comparison 426

with State of the art 427

We benchmark the combination of our recommen- 428

dations for the Longformer and hierarchical Trans- 429

former model. Table 3 shows the results of our 430

best-performing models against the state of the 431

art. We find that both the Longformer and hier- 432

archical Transformers are effective at long docu- 433

ment classification, contrary to previous claims. 434

Longformer, which can process up to 4096 tokens, 435

achieves competitive results with the best perform- 436

ing CNN-based model (Xie et al., 2019). Note 437

that Xie et al. and Vu et al. (2020) truncate all 438

documents to a maximum sequence length of 4000 439

words (≈ 4, 932 subtokens, see Appendix Table 5). 440

By using label-wise attention network and pro- 441

cessing equally long sequences, the hierarchical 442

models outperform all CNN-based models by 1.8 443

points. Our Transformer-based models only un- 444

derperform the RNN-based model, which addition- 445
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ally exploits the label hierarchy of ICD codes (Vu446

et al., 2020). We hypothesize that using a similar447

hierarchy-aware classifier could lead to comparable448

or even better results.449

The ECtHR dataset (Chalkidis et al., 2021) is a450

very recently released dataset, where the authors451

used hierarchical Transformers. Our results are on452

par with their results (See Appendix Table 6).453

6 Related Work454

Long document classification Document length455

was not a point of controversy in the pre-neural era456

of NLP, where documents are encoded with Bag-457

of-Word representations, e.g., TF-IDF scores. The458

issue arised with the introduction of deep neural459

networks. Tang et al. (2015) use CNN or BiLSTM460

based hierarchical networks in a bottom-up fash-461

ion, i.e., first encode sentences into vectors, then462

combine those vectors in a single document vec-463

tor. Similarly, Yang et al. (2016) incorporate the464

attention mechanism when constructing the sen-465

tence and document representation. Hierarchical466

variants of BERT have also been explored for docu-467

ment classification (Mulyar et al., 2019; Chalkidis468

et al., 2021), abstractive summarization (Zhang469

et al., 2019), semantic matching (Yang et al., 2020).470

Both Zhang et al., and Yang et al. also propose471

specialised pre-training tasks to explicitly capture472

sentence relations within a document.473

Methods of adapting transformers for long doc-474

uments can be categorised into two approaches:475

recurrent Transformers and sparse attention Trans-476

formers. The standard recurrent approach pro-477

cesses segments moving from left-to-right (Dai478

et al., 2019). To capture bidirectional context,479

Ding et al. (2021) propose a retrospective mecha-480

nism in which segments from a document are fed481

twice as input. Sparse attention Transformers have482

been explored to reduce the complexity of self-483

attention, via using dilated sliding window (Child484

et al., 2019), and locality-sensitive hashing atten-485

tion (Kitaev et al., 2020). Recently, the combi-486

nation of local (window) and global attention are487

proposed by Beltagy et al. (2020) and Zaheer et al.488

(2020), which we have detailed in Section 3.489

ICD Coding The task of assigning most rele-490

vant ICD codes to a document, e.g., radiology re-491

port (Pestian et al., 2007), death certificate (Koop-492

man et al., 2015) or discharge summary (Johnson493

et al., 2016), as a whole, has a long history of devel-494

opment (Farkas and Szarvas, 2008). Most existing495

methods simplified this task as a text classification 496

problem and built classifiers using CNNs (Karimi 497

et al., 2017) or tree-of-sequences LSTMs (Xie et al., 498

2018). Since ICD codes are organised under a hi- 499

erarchical structure, methods are proposed to ex- 500

ploit relation between codes based on label co- 501

occurrence (Dong et al., 2021), label count (Du 502

et al., 2019), label hierarchical (Vu et al., 2020), 503

knowledge graph (Xie et al., 2019; Cao et al., 2020; 504

Lu et al., 2020), code’s textual descriptions (Mul- 505

lenbach et al., 2018; Xie et al., 2018; Rios and 506

Kavuluru, 2018). More recently, Ji et al. (2021); 507

Gao et al. (2021) investigate various methods of 508

applying BERT on ICD coding. Different from 509

our work, they mainly focus on comparing dif- 510

ferent domain-specific BERT models that are pre- 511

trained on various types of corpora. Ji et al. show 512

that PubMedBERT—pre-trained from scratch on 513

biomedical articles—outperforms other BERT vari- 514

ants pre-trained on clinical notes or health-related 515

posts; Gao et al. show that BlueBERT—pre-trained 516

on PubMed abstracts and clinical notes—performs 517

best. However, both report that Transformers-based 518

models perform worse than CNN-based ones. 519

7 Conclusions 520

Transformers have previously been criticised as in- 521

capable of long-document classification. In this 522

paper, we carefully study the role of different com- 523

ponents of such models. By conducting experi- 524

ments on MIMIC-III and ECtHR, two challenging 525

datasets from the clinical and legal domains re- 526

spectively, we draw important conclusions. Firstly, 527

Longformer, a sparse attention model, which can 528

process up to 4096 tokens, achieves competitive 529

results with CNN-based models; its performance is 530

relatively stable across different datasets; a moder- 531

ate size of local attention window (e.g., 128) and 532

a small number (e.g., 16) of evenly chosen tokens 533

with global attention can improve the efficiency 534

and stability without sacrificing its effectiveness. 535

Secondly, hierarchical Transformers outperform 536

all CNN-based models by a large margin; the key 537

design choice is how to split a document into seg- 538

ments which can be encoded by pre-trained mod- 539

els; although the best performing segment length 540

is different across two datasets, we find splitting 541

a document into small overlapping segments (e.g., 542

128 tokens) is an effective strategy. Taken together, 543

these experiments rebut the criticisms of Trans- 544

formers for long-document classification. 545
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8 Appendix 800

8.1 Details of task-adaptive pre-training 801

Hyperparameters and training time for task- 802

adaptive pre-training can be found in Table 4. 803

Longformer RoBERTa

Max sequence 4096 128
Batch size 8 128

Learning rate 5e-5 5e-5
Training epochs 6 15

Training time ≈ 130 ≈ 40
(GPU-hours)

Table 4: Hyperparameters and training time (measured
on MIMIC-III dataset) for task-adaptive pre-training
Longformer and RoBERTa. Batch size = batch size
per GPU × number of GPUs × gradient accumulation
steps.

8.2 A comparison between clinical notes and 804

legal cases 805

Although we usually use the term domain to indi- 806

cate that texts talk about a narrow set of related 807

concepts (e.g., clinical concepts or legal concepts), 808

text can vary along different dimensions (Ramponi 809

and Plank, 2020). 810

In addition to the statistics difference between 811

MIMIC-III and ECtHR, which we show in Table 1, 812

there is another difference worthy considering: clin- 813

ical notes are private as they contain protected 814

health information. Even those clinical notes after 815

de-identification are usually not publicly available 816

(e.g., downloadable using web crawler). In contrast, 817

legal cases have generally been allowed and encour- 818

aged to share with the public, and thus become a 819

large portion of crawled pre-training data (Dodge 820

et al., 2021). 821

We suspect task-adaptive pre-training is more 822

useful on MIMIC-III than on ECtHR (Figure 5) 823

may relate to this difference. Therefore, we evalu- 824

ate the vanilla RoBERTa on MIMIC-III and ECtHR 825

regarding tokenization and language modelling. A 826

comparison of the fragmentation ratio using the 827

tokenizer and perplexity using the language model 828

can be found in Table 5. 829

8.3 Results on ECtHR test set 830

Results in Table 6 show that our results are on par 831

with the ones reported in (Chalkidis et al., 2021), 832
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MIMIC-III ECtHR

Fragmentation ratio 1.233 1.118
Perplexity 1.351 1.079

Table 5: Evaluating vanilla RoBERTa on MIMIC-III
and ECtHR. Lower fragmentation ratio and perplexity
indicate that the test data have a higher similarity with
the RoBERTa pre-training data.

where different BERT variants are evaluated. Re-833

garding hierarchical method, we split a document834

into overlapping segments, each of which has 128835

tokens. We use the default setting for Longformer836

as in (Beltagy et al., 2020).837

Macro F1 Micro F1

RoBERTa 77.0 78.6
Longformer 75.8 78.8

BERT 78.3 79.6
CaseLaw-BERT 76.8 79.7

BigBird 76.9 79.9
DeBERTa 78.3 79.9

Legal-BERT 77.2 80.6

Our Models

Hierarchical (4096 tokens) 75.5 ± 1.0 80.4 ± 0.4

Longformer (4096 tokens) 76.4 ± 1.1 80.4 ± 0.4

Table 6: Comparison of our results against the results
reported in (Chalkidis et al., 2021) on the ECtHR test
set. Results are sorted by Micro F1.

8.4 A comparison between Longformer and838

Hierarchical model839

Table 7 shows a comparison between Longformer840

and Hierarchical models regarding their efficiency.841

We set the maximum sequence length as 4096 and842

use 128 for both local window size in Longformer843

and segment length in hierarchical models. Note844

that we try to make full use of GPU memory (24G)845

via setting as large as possible batch size (i.e., train-846

ing batch size of 5 and test batch size of 256 in847

Longformer; 7 and 256 in hierarchical model).848

Longformer Hierarchical

# parameters 148.6M 139.0M
Training speed 6.2 12.1

Test speed 22.4 32.1

Table 7: A comparison between Longformer and Hi-
erarchical models. Speed: processed documents per
second, measured on MIMIC-III.

8.5 Detailed results on the development sets 849

For the sake of brevity, we use only micro F1 score 850

in most of our illustrations, and we detail results of 851

other metrics in this section. 852

AUC F1

Seq Macro Micro Macro Micro P@5

MIMIC-III

512 81.3 ± 0.3 85.2 ± 0.2 39.2 ± 1.2 52.1 ± 0.6 52.9 ± 0.4

1024 83.4 ± 0.2 87.2 ± 0.3 41.7 ± 1.1 55.6 ± 0.3 56.2 ± 0.3

2048 86.3 ± 0.3 89.6 ± 0.2 47.3 ± 1.2 60.1 ± 0.4 59.4 ± 0.5

4096 88.2 ± 0.2 91.3 ± 0.2 52.8 ± 0.8 63.9 ± 0.5 62.0 ± 0.3

ECtHR

512 — — 67.9 ± 2.1 73.3 ± 0.4 —
1024 — — 72.5 ± 1.4 76.7 ± 0.5 —
2048 — — 74.9 ± 1.7 79.3 ± 0.5 —
4096 — — 77.6 ± 1.8 81.3 ± 0.7 —

Table 8: Detailed results of Figure 1: the effectiveness
of Longformer on the MIMIC-III and ECtHR develop-
ment sets.

AUC F1

Macro Micro Macro Micro P@5

Longformer on MIMIC-III

Vanilla 88.2 ± 0.2 91.3 ± 0.2 52.8 ± 0.8 63.9 ± 0.5 62.0 ± 0.3

TAPT 90.2 ± 0.2 92.6 ± 0.1 61.0 ± 0.6 68.5 ± 0.4 64.7 ± 0.2

RoBERTa on MIMIC-III

Vanilla 81.4 ± 0.1 85.1 ± 0.2 39.9 ± 0.5 52.8 ± 0.2 53.4 ± 0.4

TAPT 82.5 ± 0.2 86.1 ± 0.2 43.2 ± 1.2 54.9 ± 0.3 54.7 ± 0.2

Longformer on ECtHR

Vanilla — — 77.6 ± 1.8 81.3 ± 0.7 —
TAPT — — 78.1 ± 0.7 81.2 ± 0.2 —

RoBERTa on ECtHR

Vanilla — — 67.9 ± 2.4 73.1 ± 0.2 —
TAPT — — 68.9 ± 1.0 73.9 ± 0.5 —

Table 9: Detailed results of Figure 5: the impact of
task-adaptive pre-training. Note that we use maximum
sequence length 512 for RoBERTa and 4096 for Long-
former in this experiment.
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AUC F1

Size Macro Micro Macro Micro P@5

MIMIC-III

32 89.8 ± 0.2 92.4 ± 0.1 59.0 ± 1.0 67.7 ± 0.3 64.1 ± 0.2

64 90.0 ± 0.2 92.5 ± 0.1 60.5 ± 0.5 68.2 ± 0.2 64.5 ± 0.3

128 90.1 ± 0.1 92.5 ± 0.1 60.7 ± 0.3 68.2 ± 0.1 64.4 ± 0.2

256 90.1 ± 0.1 92.6 ± 0.1 60.6 ± 0.9 68.3 ± 0.4 64.6 ± 0.2

512 90.2 ± 0.2 92.6 ± 0.1 60.9 ± 0.8 68.4 ± 0.4 64.7 ± 0.3

ECtHR

32 — — 78.3 ± 1.0 80.9 ± 0.7 —
64 — — 77.0 ± 2.9 80.9 ± 0.3 —

128 — — 78.5 ± 1.8 80.8 ± 0.4 —
256 — — 78.2 ± 0.5 81.2 ± 0.3 —
512 — — 78.1 ± 2.2 81.1 ± 0.4 —

Table 10: Detailed results of Table 2: the impact of
local attention window size in Longformer.

AUC F1

# tokens Macro Micro Macro Micro P@5

MIMIC-III

1 90.1 ± 0.2 92.6 ± 0.1 60.5 ± 0.9 68.2 ± 0.3 64.7 ± 0.3

8 90.0 ± 0.1 92.5 ± 0.1 60.5 ± 0.7 68.2 ± 0.3 64.6 ± 0.2

16 90.0 ± 0.2 92.5 ± 0.1 60.0 ± 0.2 68.1 ± 0.2 64.3 ± 0.3

32 90.0 ± 0.2 92.4 ± 0.1 60.1 ± 0.5 67.9 ± 0.1 64.4 ± 0.2

64 89.9 ± 0.2 92.4 ± 0.1 59.9 ± 1.0 67.9 ± 0.4 64.4 ± 0.3

ECtHR

1 — — 78.5 ± 1.8 80.8 ± 0.4 —
8 — — 77.2 ± 2.0 80.8 ± 0.4 —

16 — — 77.7 ± 0.4 80.7 ± 0.3 —
32 — — 78.2 ± 1.4 80.6 ± 0.4 —
64 — — 77.7 ± 2.3 80.7 ± 0.5 —

Table 11: Detailed results of Figure 6: the effect of
applying global attention on more tokens, which are
evenly chosen based on their positions.

AUC F1

# tokens Macro Micro Macro Micro P@5

MIMIC-III

1 90.1 ± 0.2 92.6 ± 0.1 60.5 ± 0.9 68.2 ± 0.3 64.7 ± 0.3

8 89.7 ± 0.2 92.0 ± 0.1 61.0 ± 1.3 66.9 ± 0.4 64.0 ± 0.4

16 89.4 ± 0.2 91.9 ± 0.1 60.1 ± 1.2 66.5 ± 0.3 63.9 ± 0.5

32 89.4 ± 0.4 91.9 ± 0.2 60.3 ± 1.6 66.4 ± 0.6 63.7 ± 0.7

64 89.1 ± 0.4 91.7 ± 0.2 59.4 ± 2.0 66.2 ± 0.7 63.4 ± 0.7

ECtHR

1 — — 78.5 ± 1.8 80.8 ± 0.4 —
8 — — 79.2 ± 0.3 80.9 ± 0.2 —

16 — — 77.6 ± 1.2 80.4 ± 0.4 —
32 — — 77.1 ± 0.7 80.0 ± 0.2 —
64 — — 76.6 ± 1.1 79.9 ± 0.5 —

Table 12: The effect of applying global attention on
more informative tokens, which are identified based on
TF-IDF.

AUC F1

Size Macro Micro Macro Micro P@5

Disjoint segments on MIMIC-III

32 89.4 ± 0.1 92.1 ± 0.0 60.8 ± 0.5 67.7 ± 0.2 63.3 ± 0.2

64 89.4 ± 0.1 92.0 ± 0.1 60.8 ± 1.1 67.9 ± 0.3 63.5 ± 0.3

128 89.5 ± 0.1 92.1 ± 0.1 61.2 ± 0.6 68.0 ± 0.3 63.5 ± 0.3

256 89.6 ± 0.1 92.1 ± 0.1 61.0 ± 0.4 67.6 ± 0.2 63.6 ± 0.2

512 89.2 ± 0.2 91.8 ± 0.2 59.4 ± 0.5 66.7 ± 0.3 63.4 ± 0.4

Overlapping segments on MIMIC-III

32 89.7 ± 0.2 92.3 ± 0.1 61.7 ± 0.3 68.2 ± 0.4 63.7 ± 0.1

64 89.7 ± 0.1 92.3 ± 0.1 62.3 ± 0.2 68.7 ± 0.1 64.1 ± 0.1

128 89.7 ± 0.2 92.3 ± 0.1 61.8 ± 0.9 68.5 ± 0.3 64.0 ± 0.2

256 89.5 ± 0.1 92.1 ± 0.1 61.4 ± 0.3 68.1 ± 0.2 63.8 ± 0.1

512 89.4 ± 0.1 92.0 ± 0.0 60.3 ± 0.3 67.2 ± 0.2 63.6 ± 0.3

Disjoint segments on ECtHR

32 — — 75.5 ± 1.7 79.3 ± 0.4 —
64 — — 76.6 ± 1.2 79.7 ± 0.2 —

128 — — 77.6 ± 2.3 80.8 ± 0.4 —
256 — — 77.7 ± 1.4 81.2 ± 0.4 —
512 — — 78.3 ± 1.3 81.7 ± 0.3 —

Overlapping segments on ECtHR

32 — — 74.1 ± 2.6 79.4 ± 0.6 —
64 — — 76.9 ± 1.7 80.5 ± 0.5 —

128 — — 77.5 ± 1.7 81.2 ± 0.5 —
256 — — 78.1 ± 1.4 81.5 ± 0.2 —
512 — — 78.4 ± 1.5 81.4 ± 0.4 —

Table 13: Detailed results of Figure 7: the effect of
varying the segment length and whether allowing seg-
ments to overlap in the hierarchical transformers.

AUC F1

Macro Micro Macro Micro P@5

MIMIC-III

E (4096) 89.7 ± 0.2 92.3 ± 0.1 61.8 ± 0.9 68.5 ± 0.3 64.0 ± 0.2

S (4096) 87.2 ± 0.2 90.1 ± 0.2 55.2 ± 0.4 62.9 ± 0.2 59.9 ± 0.2

S (6144) 88.2 ± 0.2 91.0 ± 0.2 57.8 ± 0.3 65.4 ± 0.3 61.7 ± 0.3

S (8192) 88.5 ± 0.3 91.2 ± 0.2 58.8 ± 0.2 66.0 ± 0.4 62.4 ± 0.1

ECtHR

E (4096) — — 77.5 ± 1.7 81.2 ± 0.5 —
S (4096) — — 75.3 ± 1.3 80.1 ± 0.4 —
S (6144) — — 77.1 ± 1.8 80.5 ± 0.5 —
S (8192) — — 77.7 ± 1.9 81.3 ± 0.5 —

Table 14: Detailed results of Figure 8: a comparison
between evenly splitting and splitting based on docu-
ment structure. E: evenly splitting; S: splitting based
on document structure.
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AUC F1

Macro Micro Macro Micro P@5

MIMIC-III

Longformer 90.0 ± 0.2 92.5 ± 0.1 60.0 ± 0.2 68.1 ± 0.2 64.3 ± 0.3

+ LWAN 90.5 ± 0.2 92.9 ± 0.2 62.2 ± 0.7 69.2 ± 0.3 65.1 ± 0.1

Hierarchical 89.7 ± 0.2 92.3 ± 0.1 61.8 ± 0.9 68.5 ± 0.3 64.0 ± 0.2

+ LWAN 91.4 ± 0.1 93.7 ± 0.1 64.2 ± 0.4 70.3 ± 0.1 65.3 ± 0.1

ECtHR

Longformer — — 77.7 ± 0.4 80.7 ± 0.3 —
+ LWAN — — 79.5 ± 0.8 81.1 ± 0.3 —

Hierarchical — — 77.5 ± 1.7 81.2 ± 0.5 —
+ LWAN — — 79.7 ± 0.9 81.3 ± 0.3 —

Table 15: The effect of label-wise attention network.
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