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Abstract

The recent literature in text classification is bi-
ased towards short text sequences (e.g., sen-
tences or paragraphs). In real-world applica-
tions, multi-page multi-paragraph documents
are common and they cannot be efficiently en-
coded by vanilla Transformer-based models.
We compare different long document classi-
fication approaches that aim to mitigate the
computational overhead of vanilla transform-
ers to encode much longer text, namely sparse
attention and hierarchical encoding methods.
We examine several aspects of sparse attention
(e.g., size of attention window, use of global
attention) and hierarchical based (e.g., docu-
ment splitting strategy) transformers on two
different datasets, and we derive practical ad-
vice of applying Transformer-based models on
long document classification tasks. We find
that, if applied properly, Transformer-based
models can outperform former state-of-the-art
CNN based models on MIMIC-III, a challeng-
ing dataset from the clinical domain.

1 Introduction

The pre-train—fine-tune paradigm has become the
de-facto practice since the introduction of BERT
(Devlin et al., 2019; Liu et al., 2019). However,
the recent literature in text classification mostly
focuses on short sequences, such as sentences or
paragraphs (Sun et al., 2019; Wei and Zou, 2019;
Mosbach et al., 2021), which are sometimes mis-
leadingly named as documents,' a term commonly
used to denote an article or even a book.

The transition from short-to-long document clas-
sification is non-trivial. One challenge is that
BERT and most of its variants are pre-trained on
sequences containing up-to 512 tokens, which is
hardly a long document. A common practice is
to truncate long documents to the first 512 tokens,

"For example, many biomedical datasets use ‘documents’

from the PubMed collection of biomedical literature, but these
documents actually consist of titles and abstracts.
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Figure 1: The effectiveness of Longformer, a long-
document Transformer, on the MIMIC-III development
set. There is a clear benefit from being able to process
longer text.

which allows the immediate application of these
pre-trained models (Adhikari et al., 2019; Chalkidis
et al., 2020). We believe that this is a very naive
approach for long document classification because
truncating the text may omit important informa-
tion, leading to poor classification performance.
See Figure 1 for empirical evidence to support
this claim. Another challenge is the computational
foot-print of conventional Transformer-based mod-
els: in the standard multi-head self-attention op-
eration (Vaswani et al., 2017), each token in a
sequence of n tokens attends to all other tokens.
This results in a function that has O(n?) time and
memory complexity, which makes it challenging
to efficiently process long documents.

In response to the second challenge, long-
document Transformers have emerged to deal with
long sequences (Beltagy et al., 2020; Zaheer et al.,
2020). However, they experiment and report re-
sults on non-ideal long document classification
datasets, i1.e., documents on the IMDB dataset are
not really long — fewer than 15% of examples are
longer than 512 tokens; while the Hyperpartisan
dataset only has very few (645 in total) documents.
On datasets with longer documents, such as the


https://pubmed.ncbi.nlm.nih.gov/

MIMICH-III dataset (Johnson et al., 2016) with an
average length of 2,000 words, it has been shown
that multiple variants of BERT perform worse than
a CNN or RNN-based model (Chalkidis et al.,
2020; Vu et al., 2020; Dong et al., 2021; Ji et al.,
2021; Gao et al., 2021; Pascual et al., 2021). There
is a clear need to understand the performance of
Transformer-based models on documents that are
actually long.

In this work, we transfer the success of the pre-
train—fine-tune paradigm to long document classifi-
cation. Our main contributions are:

* We compare different long document classi-
fication approaches based on transformer ar-
chitecture: namely, sparse attention, and hi-
erarchical methods. Our results show that, if
applied properly, Transformer-based models
can outperform former state-of-the-art CNN
based models on MIMIC-III.

* We conduct careful analyses to understand
the impact of several design choices on both
the effectiveness and efficiency of different
approaches. Based on our empirical results
on two challenging datasets from clinical and
legal domains, we derive practical advice of
applying Transformer-based models to long
document classification.

2 Problem Formulation and Datasets

We divide the document classification model into
two components: (1) a document encoder, which
builds vector representation of a given document;
and, (2) a classifier that predicts a single or multi-
ple labels given the encoded vector. In this work,
we mainly focus on the importance of the first com-
ponent. We use Transformer-based encoders to
build a document representation, and then take the
encoded document representation as the input to a
classifier. For the second component, we use a stan-
dard multi-label classifier, i.e., a linear layer with
C outputs, where C' is the number of classes, fol-
lowed by sigmoid activations, trained using binary
cross entropy loss.”

We use two datasets—MIMIC-III (Johnson et al.,
2016) and ECtHR (Chalkidis et al., 2021)—from

Long document classification datasets are usually anno-
tated using a large number of labels. Studies that have focused
on the second component investigate methods of utilising label
hierarchy (Chalkidis et al., 2020; Vu et al., 2020), pre-training
label embeddings (Dong et al., 2021), to name but a few.

Train Dev Test
MIMIC-III
Documents 8,066 1,573 1,729
Unique labels 50 50 50
Avg. words 1,833 2,177 2,210
Avg. subtokens 2,260 2,693 2,737
90th pctl. subtokens 3,757 4,078 4,216
ECtHR
Documents 8,866 973 986
Unique labels 10 10 10
Avg. words 1,914 2,125 2,284
Avg. subtokens 2,140 2,345 2,532
90th pctl. subtokens 4,762 4,930 5,576

Table 1: Statistics of the datasets. The number of words
and subtokens is calculated using RoBERTa tokenizer.
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Figure 2: The distribution of document lengths. A log-
10 scale is used for the X axis.

clinical and legal domains respectively. The statis-
tics of the datasets can be found in Table 1 and the
document length distribution is shown in Figure 2.

MIMIC-III contains approx. SOK discharge sum-
maries from a US hospital. Each summary is an-
notated with multiple labels—diagnoses and pro-
cedures—using the ICD-9 (The International Clas-
sification of Diseases, Ninth Revision) hierarchy.
Following Mullenbach et al. (2018), we conduct
experiments using the top 50 frequent labels.>

The ECtHR dataset contains 11K cases from The
European Court of Human Rights’ public database.
The court hears allegations that a state has breached
human rights provisions of the European Conven-
tion of Human Rights. Each case is mapped to
one or more articles of the convention that were
allegedly violated (considered by the court).*

3Details about dataset split and labels can be found at
https://github.com/jamesmullenbach/caml-mimic
*https://huggingface.co/datasets/ecthr_cases


https://github.com/jamesmullenbach/caml-mimic/blob/master/notebooks/dataproc_mimic_III.ipynb
https://huggingface.co/datasets/ecthr_cases
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Figure 3: A comparison of three types of attention op-
erations. The example sequence contains 7 tokens; we
set local attention window size as 2, and only the first
token using global attention. Note that these curves are
bi-directional that tokens can attend to each other.

3 Approaches

In the era of Transformer-based models, we identify
two approaches in the literature that aim to mitigate
the computational complexity of the original trans-
former: sparse, and hierarchical Transformers.

3.1 Sparse-Attention Transformers

Vanilla transformers rely on the multi-head self-
attention mechanism, which scales poorly with the
length of the input sequence, requiring quadratic
computation time and memory to store all scores
that are used to compute the gradients during
back-propagation. Several Transformer-based mod-
els (Kitaev et al., 2020; Choromanski et al., 2021)
have been proposed exploring sparse attention al-
ternatives that scale linearly, thus it can be used to
process long sequences.

Longformer of Beltagy et al. (2020) extends
Transformer-based models to support longer se-
quences, using sparse-attention. It consists of local
(window-based) attention and global attention that
reduces the computational complexity of the model
and thus can be deployed to process longer text
(up to 4096 tokens). Local attention is computed
in-between a window of neighbour (consecutive)
tokens. Global attention relies on the idea of global
tokens that are able to attend and be attended by any
other token in the sequence (Figure 3). BigBird
of Zaheer et al. (2020) is another sparse-attention
based Transformer that uses a combination of a
local, global and random attention, i.e., all tokens
also attend a number of random tokens on top of
those in the same neighbourhood.

Both models are warm-started from the public
RoBERTa checkpoint and are further pre-trained
on masked language modelling. They have been
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Figure 4: A high-level illustration of hierarchical Trans-
formers. A shared pre-trained RoBERTa is used to en-
code each segment, and a two layer transformer blocks
is used to capture the interaction between different seg-
ments. Finally, contextual segment representations are
aggregated into a document representation.

reported to outperform RoBERTa on a range of
tasks that require modelling long sequences.

3.2 Hierarchical Transformers

Instead of modifying multi-head self-attention
mechanism to efficiently model long sequences,
hierarchical Transformers build on top of vanilla
transformer architecture.

A document, D = {to,t1, -+ ,tp|}, is first
split into segments, each of which should have less
than 512 tokens. These segments can be indepen-
dently encoded using any pre-trained Transformer-
based encoders (e.g., ROBERTa in Figure 4). We
sum the contextual representation of the first token
([CLS]) from each segment up with segment posi-
tion embeddings—sinusoidal initialised (Vaswani
et al., 2017) and keep trainable—as the segment
representation (i.e., n; in Figure 4). Then the
segment encoder—two transformer blocks (Zhang
et al., 2019)—are used to capture the interaction
between segments and output a list of contextual
segment representations (i.e., s; in Figure 4), which
are finally aggregated into a document representa-
tion. By default, the aggregator is the max-pooling
operation unless other specified.’

4 Experimental Setup

Backbone Models We consider two models:
Longformer (Beltagy et al., 2020), and RoOBERTa-
based (Liu et al., 2019) hierarchical Transformers.

Evaluation metrics For the MIMIC-III dataset,
we follow previous work (Mullenbach et al., 2018;

3Code is available at [ANON].



Cao et al., 2020) and use micro-averaged AUC
(Area Under the receiver operating characteristic
Curve), macro-averaged AUC, micro-averaged F1,
macro-averaged F7 and Precision@5—the propor-
tion of the ground truth labels in the top-5 predicted
labels—as the metrics. For the ECtHR dataset, we
use both micro and macro averaged Fi. For the
sake of brevity, we use micro Fj score as the main
metric in most of our illustrations, and results of
other metrics are detailed in the Appendix.

Preprocessing We mainly follow (Mullenbach
et al., 2018) to preprocess the MIMIC-III dataset.
That is, we lowercase the text, remove all punctua-
tion marks and tokenize text by white spaces. The
only change we make is that we normalise numeric
(e.g., convert 2021° to ‘0000°) instead of deleting
numeric-only tokens in (Mullenbach et al., 2018).
The only preprocessing we apply on ECtHR is to
lowercase the text.

Training We fine-tune the classification model
using a binary cross entropy loss. That is, given
an training example whose ground truth and pre-
dicted probability for the ¢-th label are y; (0 or 1)
and g;, we calculate its loss, over the C' unique
classification labels, as:

c
L=> —yilog(i) — (1 —y:)log(1 — G,
=1

We use the same effective batch size (16), learn-
ing rate (2e-5), maximum number of training
epochs (30) with early stop patience (5) in all ex-
periments. We also follow Longformer (Beltagy
et al., 2020) and set the maximum sequence length
as 4096 in most of the experiments unless other
specified. We fine-tune all classification models on
a single Quadro RTX 6000 GPU, which has 24 GB
GPU memory. If one batch of data is too large to
fit into the GPU memory, we use gradient accumu-
lation so that the effective batch sizes (batch size
per GPU x gradient accumulation steps) are still
the same.

We repeat all experiments five times with dif-
ferent random seeds. The model which is most
effective on the development set, measured using
the micro F7 score, is finally used for evaluation.

5 Experiments

We conduct a series of controlled experiments
to understand the impact of design choices in
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Figure 5: Task-adaptive pre-training (right side in each
plot) can improve the effectiveness (measured on the
development sets) of pre-trained language models on
downstream tasks. A: the difference between mean
values of compared experiments.

Transformer-based models. Based on our empirical
results, we derive practical advice of applying these
models to long document classification regarding
both effectiveness and efficiency. Finally, we com-
pare our results against recently published results,
demonstrating, contrary to previously-reported re-
sults, that the benefits of pre-trained Transformers
also apply to long document classification.

Task-adaptive pre-training is a promising first
step. Domain-adaptive pre-training (DAPT) — the
continued pre-training a language model on a large
corpus of domain-specific text — is known to im-
prove downstream task performance (Gururangan
et al., 2020; Lee et al., 2020). However, task-
adaptive pre-training (TAPT) that continues unsu-
pervised pre-training on the task’s data is compar-
atively less studied, mainly because most of the
benchmarking corpora are small and thus the bene-
fit of TAPT seems less obvious than DAPT.

We believe document classification datasets, due
to their relatively large size, can benefit from TAPT.
On each target dataset, we continue to pre-train
Longformer and RoBERTa using the masked lan-
guage modelling pre-training objective (details
about pre-training can be found at Appendix 8.1).
We find that task-adaptive pre-trained models out-
perform models without task-adaptive pre-training
by a large margin on MIMIC-III (Figure 5 (a) and
(b)), and smaller improvements are observed on
ECtHR (Figure 5 (c) and (d)). We suspect this dif-
ference is because legal cases (i.e., ECtHR) have



Local window Micro Fj Speed

Train  Test
32 67.7 £03 9.8 16.1
64 68.2 £0.2 79 155
128 68.2 £0.1 6.8 139
256 68.3 +£04 56 11.8
512 68.4 +£04 33 7.8

Table 2: The impact of local attention window size in
Longformer on MIMIC-III. Speed is measured using
‘processed samples per second’. A similar pattern is
observed on ECtHR, detailed in Appendix Table 10.

been covered in pre-training data used for training
Longformer and RoBERTa, whereas clinical notes
(i.e., MIMIC-III) are not (Dodge et al., 2021). See
Appendix 8.2 for a short analysis on this matter.

Take-Away #1: We suggest task-adaptive pre-
training as a general first step as it is effective and
cheaper than domain-adaptive pre-training. The
following experiments are based on task-adaptive
pre-trained Longformer and RoBERTa models.

5.1 Longformer

Small local attention windows are effective and
efficient. Beltagy et al. (2020) observe that many
tasks do not require reasoning over the entire con-
text. For example, they find that the distance be-
tween any two mentions in a coreference resolution
dataset (i.e., OntoNotes) is small, and it is possible
to achieve competitive performance by processing
small segments containing these mentions.

Inspired by this observation, we investigate the
impact of local context size on document classifi-
cation, regarding both effectiveness and efficiency.
We hypothesise that long document classification,
which is usually paired with a large label space, can
be performed by models that only attend over short
sequences instead of the entire document (Gao
et al., 2021). In this experiment, we vary the local
attention window around each token.

Table 2 and 10 show that even using a small win-
dow size (32 tokens), the micro F scores on both
MIMIC-III and ECtHR development sets are still
close to using a larger window size (512 tokens).
A major advantage of using smaller local attention
windows is the faster computation for training and
evaluation. Therefore, we suggest a moderate size
(64-128) of local attention window. We use a local
window of 128 in the following experiments.
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Figure 6: The effect of applying global attention on
more tokens, which are evenly chosen based on their
positions. In the baseline model (first column), only
the [CLS] token uses global attention.

Considering a small number of tokens for
global attention improves the stability of the
training process. Longformer relies heavily on
the [CLS] token, which is the only token with
global attention—attending to all other tokens and
all other tokens attending to it. We investigate
whether allowing more tokens to use global atten-
tion can improve model performance, and if yes,
how to choose which tokens to use global attention.

Figure 6 shows that adding more tokens using
global attention does not improve performance,
while a small number of additional global atten-
tion tokens can make the training more stable.

Equally distributing global tokens across the se-
quence is better than content-based attribution.
We consider two approaches to choose additional
tokens that use global attention: position based or
content based. In the position-based approach, we
distribute n additional tokens at equal distances.
For example, if n = 4 and the sequence length
is 4096, there are global attention on tokens at
position 0, 1024, 2048 and 3072. In the content-
based approach, we identify informative tokens,
using TF-IDF (Term Frequency—Inverse Document
Frequency) within each document, and we apply
global attention on the top- K informative tokens,
together with the [CLS] token.

Regarding how to choose global tokens, the posi-
tion based approach is more effective than content
based (see Table 12 in the Appendix).

Take-Away #2: We suggest the following hyperpa-
rameters for Longformer for long-document clas-
sification: a local attention window of 128 tokens,
and 16 equally-distributed global attention tokens.
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whether allowing segments to overlap in the hierarchi-
cal Transformers. A: improvement due to overlap.

5.2 Hierarchical Transformers

Split documents into smaller segments. Ji et al.
(2021) and Gao et al. (2021) reported negative
results with a hierarchical Transformer with a
segment length of 512 tokens on the MIMIC-III
dataset. Their methods involved splitting a doc-
ument into equally sized segments, which were
processed using a shared BERT encoder. Instead of
splitting the documents into such large segments,
we investigate the impact of different segment
lengths and preventing context fragmentation.

Figure 7 (left side in each violin plot) shows
that there is no optimal segment length across
both MIMIC-III and ECtHR. Small segment length
works well on MIMIC-III, and using segment
length greater than 128 starts to decrease the per-
formance. In contrast, the ECtHR dataset benefits
from a model with larger segment lengths.

Split documents into overlapping segments.
Splitting a long document into smaller segments
may result in the problem of context fragmentation,
where a model lacks the information it needs to
make a prediction (Dai et al., 2019; Ding et al.,
2021). Although, the hierarchical model uses a
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80 Structured (4096) ) |
Structured (6144) 80.1 805
mmm Structured (8192)

65 4
1
60 62.9 65.4

MIMIC-III

Micro F1

ECtHR

Figure 8: A comparison between evenly splitting and
splitting based on document structure.

second-order transformer to fuse and contextualise
information across segments, we investigate a sim-
ple way to alleviate context fragmentation by allow-
ing segments to overlap when we split a document
into segments. That it, except for the first seg-
ment, the first %n tokens in each segment are taken
from the previous segment, where n is the segment
length. Figure 7 (right side in each violin plot)
show that this simple strategy can easily improve
the effectiveness of the model.

Splitting based on document structure.
Chalkidis et al. (2021) argue that we should
follow the structure of a document when splitting
it into segments (Tang et al., 2015; Yang et al.,
2016). They propose a hierarchical Transformer
for the ECtHR dataset that splits a document at the
paragraph level, reading up to 64 paragraphs of
128 token each (8192 tokens in total).

We investigate whether splitting based on doc-
ument structure is better than splitting a long doc-
ument into segments of same length. Similar to
their model, we consider each paragraph as a seg-
ment and all segments are then truncated or padded
to the same segment length. We follow Chalkidis
et al. (2021) and use segment length (1) of 128 on
ECtHR, and tune [ €{32, 64, 128} on MIMIC-IIL.°

Figure 8 show that splitting by the paragraph-
level document structure does not improve per-
fomance on the ECtHR dataset. On MIMIC-III,
splitting based on document structure substantially
underperforms evenly splitting the document.

Take-Away #3: We suggest splitting a document
into small non-structure-derived segments (e.g.,
128) which overlap as a starting point when em-
ploying hierarchical Transformers.

®Note that since we need to pad short segments, therefore,
a larger maximum sequence length is required to preserve the
same information as in evenly splitting.



Macro AUC Micro AUC Macro F; Micro F}

P@5

Mullenbach et al. (2018) C 88.4 91.6 57.6 63.3 61.8
Dong et al. (2021) C 88.4 91.9 56.8 64.0 62.4
Cao et al. (2020) C 89.5 92.9 60.9 66.3 63.2
Li and Yu (2020) C 89.9 92.8 60.6 67.0 64.1
Jietal. (2021) C 90.8 93.1 62.4 67.1 64.0
Xie et al. (2019)* C 914 93.6 63.8 68.4 64.4
Vu et al. (2020)* R 92.5 94.6 66.6 71.5 67.5
Transformer-based Models

BERT (512 tokens) T 81.3+os3 85.0+03 413 +12 523 106 53.5 £o02
RoBERTa (512 tokens) T 81.0 £o2 84.8 02 39.8+07 524 105 53.2 102
Longformer (4096 tokens) T  89.9 +o. 924 o1 603 04 679 105 64.8 o1
Hierarchical (4096 tokens) T 89.3 102 92.0 xo. 60.8 £00 67.7 x05 64.2 103
Hierarchical (5120 tokens) T  89.5 +o1 92.0 £o1  61.7 05 68.2 105 64.5 £o02
Transformer-based Models with Label-wise Attention Network

Longformer (4096 tokens) T  90.0 +o. 92.6 02 60.7 t06 68.2 t02 64.8 o2
Hierarchical (4096 tokens) T  91.1 +o: 935 01 63.8+03 699 102 65.3 £o2
Hierarchical (5120 tokens) T  91.2 +o: 93.6 o1 63.8+05 702105 65.9 £o02

Table 3: Comparison of state-of-the-art against our models on the MIMIC-III test set. Results are sorted by Micro
F;. C: CNN-based models; R: RNN-based models; and T: Transformer-based models. Models marked with an
asterisk (*) exploit the label hierarchy, i.e., they use a better classification component, as defined in Section 3.

5.3 Label-wise Attention Network

Recall from Section 3 that our models form a sin-
gle document vector which is used for the final
prediction. That is, in Longformer, we use the
hidden states of the [CLS] token; in hierarchical
models, we use the max pooling operation to ag-
gregate a list of contextual segment representations
into a document vector. The Label-Wise Atten-
tion Network (LWAN) (Mullenbach et al., 2018;
Xiao et al., 2019; Chalkidis et al., 2020) is an al-
ternative that allows the model to learn distinct
document representations for each label. Given a
sequence of hidden representations (e.g., contex-
tual token representations in Longformer or contex-
tual segment representations in hierarchical models:

S = [s0,81, ", Sm)), LWAN can allow each la-
bel to learn to attend to different positions via:
a; = SoftMax (S " uy) (1)
m
Vo= ag;s 2
i=1
Lo T
Yo = o (B vr) 3)

where uy and 3, are vector parameters for label £.

Table 15 in the Appendix shows that adding a
LWAN improves performance on MIMIC-III (Mi-
cro Fy score of 1.1 with Longformer; 1.8 with

hierarchical models), where on average each docu-
ment is assigned 6 labels out of 50 available labels
(classes). There is a smaller improvement on EC-
tHR (0.4 with Longformer; 0.1 with hierarchical
models), where the average number of labels per
document is 1.5 out of 10 labels (classes) in total.

5.4 Bringing it all together & Comparison
with State of the art

We benchmark the combination of our recommen-
dations for the Longformer and hierarchical Trans-
former model. Table 3 shows the results of our
best-performing models against the state of the
art. We find that both the Longformer and hier-
archical Transformers are effective at long docu-
ment classification, contrary to previous claims.
Longformer, which can process up to 4096 tokens,
achieves competitive results with the best perform-
ing CNN-based model (Xie et al., 2019). Note
that Xie et al. and Vu et al. (2020) truncate all
documents to a maximum sequence length of 4000
words (= 4, 932 subtokens, see Appendix Table 5).
By using label-wise attention network and pro-
cessing equally long sequences, the hierarchical
models outperform all CNN-based models by 1.8
points. Our Transformer-based models only un-
derperform the RNN-based model, which addition-



ally exploits the label hierarchy of ICD codes (Vu
et al., 2020). We hypothesize that using a similar
hierarchy-aware classifier could lead to comparable
or even better results.

The ECtHR dataset (Chalkidis et al., 2021) is a
very recently released dataset, where the authors
used hierarchical Transformers. Our results are on
par with their results (See Appendix Table 6).

6 Related Work

Long document classification Document length
was not a point of controversy in the pre-neural era
of NLP, where documents are encoded with Bag-
of-Word representations, e.g., TF-IDF scores. The
issue arised with the introduction of deep neural
networks. Tang et al. (2015) use CNN or BiLSTM
based hierarchical networks in a bottom-up fash-
ion, i.e., first encode sentences into vectors, then
combine those vectors in a single document vec-
tor. Similarly, Yang et al. (2016) incorporate the
attention mechanism when constructing the sen-
tence and document representation. Hierarchical
variants of BERT have also been explored for docu-
ment classification (Mulyar et al., 2019; Chalkidis
et al., 2021), abstractive summarization (Zhang
et al., 2019), semantic matching (Yang et al., 2020).
Both Zhang et al., and Yang et al. also propose
specialised pre-training tasks to explicitly capture
sentence relations within a document.

Methods of adapting transformers for long doc-
uments can be categorised into two approaches:
recurrent Transformers and sparse attention Trans-
formers. The standard recurrent approach pro-
cesses segments moving from left-to-right (Dai
et al., 2019). To capture bidirectional context,
Ding et al. (2021) propose a retrospective mecha-
nism in which segments from a document are fed
twice as input. Sparse attention Transformers have
been explored to reduce the complexity of self-
attention, via using dilated sliding window (Child
et al., 2019), and locality-sensitive hashing atten-
tion (Kitaev et al., 2020). Recently, the combi-
nation of local (window) and global attention are
proposed by Beltagy et al. (2020) and Zaheer et al.
(2020), which we have detailed in Section 3.

ICD Coding The task of assigning most rele-
vant ICD codes to a document, e.g., radiology re-
port (Pestian et al., 2007), death certificate (Koop-
man et al., 2015) or discharge summary (Johnson
etal., 2016), as a whole, has a long history of devel-
opment (Farkas and Szarvas, 2008). Most existing

methods simplified this task as a text classification
problem and built classifiers using CNNs (Karimi
etal.,2017) or tree-of-sequences LSTMs (Xie et al.,
2018). Since ICD codes are organised under a hi-
erarchical structure, methods are proposed to ex-
ploit relation between codes based on label co-
occurrence (Dong et al., 2021), label count (Du
et al., 2019), label hierarchical (Vu et al., 2020),
knowledge graph (Xie et al., 2019; Cao et al., 2020;
Lu et al., 2020), code’s textual descriptions (Mul-
lenbach et al., 2018; Xie et al., 2018; Rios and
Kavuluru, 2018). More recently, Ji et al. (2021);
Gao et al. (2021) investigate various methods of
applying BERT on ICD coding. Different from
our work, they mainly focus on comparing dif-
ferent domain-specific BERT models that are pre-
trained on various types of corpora. Ji et al. show
that PubMedBERT—pre-trained from scratch on
biomedical articles—outperforms other BERT vari-
ants pre-trained on clinical notes or health-related
posts; Gao et al. show that BlueBERT—pre-trained
on PubMed abstracts and clinical notes—performs
best. However, both report that Transformers-based
models perform worse than CNN-based ones.

7 Conclusions

Transformers have previously been criticised as in-
capable of long-document classification. In this
paper, we carefully study the role of different com-
ponents of such models. By conducting experi-
ments on MIMIC-III and ECtHR, two challenging
datasets from the clinical and legal domains re-
spectively, we draw important conclusions. Firstly,
Longformer, a sparse attention model, which can
process up to 4096 tokens, achieves competitive
results with CNN-based models; its performance is
relatively stable across different datasets; a moder-
ate size of local attention window (e.g., 128) and
a small number (e.g., 16) of evenly chosen tokens
with global attention can improve the efficiency
and stability without sacrificing its effectiveness.
Secondly, hierarchical Transformers outperform
all CNN-based models by a large margin; the key
design choice is how to split a document into seg-
ments which can be encoded by pre-trained mod-
els; although the best performing segment length
is different across two datasets, we find splitting
a document into small overlapping segments (e.g.,
128 tokens) is an effective strategy. Taken together,
these experiments rebut the criticisms of Trans-
formers for long-document classification.
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8 Appendix

8.1 Details of task-adaptive pre-training

Hyperparameters and training time for task-
adaptive pre-training can be found in Table 4.

Longformer RoBERTa

Max sequence 4096 128
Batch size 8 128
Learning rate Se-5 Se-5
Training epochs 6 15
Training time ~ 130 ~ 40

(GPU-hours)

Table 4: Hyperparameters and training time (measured
on MIMIC-III dataset) for task-adaptive pre-training
Longformer and RoBERTa. Batch size = batch size
per GPU x number of GPUs x gradient accumulation
steps.

8.2 A comparison between clinical notes and
legal cases

Although we usually use the term domain to indi-
cate that texts talk about a narrow set of related
concepts (e.g., clinical concepts or legal concepts),
text can vary along different dimensions (Ramponi
and Plank, 2020).

In addition to the statistics difference between
MIMIC-III and ECtHR, which we show in Table 1,
there is another difference worthy considering: clin-
ical notes are private as they contain protected
health information. Even those clinical notes after
de-identification are usually not publicly available
(e.g., downloadable using web crawler). In contrast,
legal cases have generally been allowed and encour-
aged to share with the public, and thus become a
large portion of crawled pre-training data (Dodge
et al., 2021).

We suspect task-adaptive pre-training is more
useful on MIMIC-III than on ECtHR (Figure 5)
may relate to this difference. Therefore, we evalu-
ate the vanilla RoOBERTa on MIMIC-III and ECtHR
regarding tokenization and language modelling. A
comparison of the fragmentation ratio using the
tokenizer and perplexity using the language model
can be found in Table 5.

8.3 Results on ECtHR test set

Results in Table 6 show that our results are on par
with the ones reported in (Chalkidis et al., 2021),
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MIMIC-III ECtHR

1.233 1.118
1.351 1.079

Fragmentation ratio
Perplexity

Table 5: Evaluating vanilla RoOBERTa on MIMIC-III
and ECtHR. Lower fragmentation ratio and perplexity
indicate that the test data have a higher similarity with
the RoBERTa pre-training data.

where different BERT variants are evaluated. Re-
garding hierarchical method, we split a document
into overlapping segments, each of which has 128
tokens. We use the default setting for Longformer
as in (Beltagy et al., 2020).

Macro 1 Micro F;

RoBERTa 77.0 78.6

Longformer 75.8 78.8

BERT 78.3 79.6

CaseLaw-BERT 76.8 79.7

BigBird 76.9 79.9

DeBERTa 78.3 79.9

Legal-BERT 772 80.6

Our Models

Hierarchical (4096 tokens)  75.5+10  80.4 +o04
Longformer (4096 tokens) 764 £ 1.1 80.4 +o04

Table 6: Comparison of our results against the results
reported in (Chalkidis et al., 2021) on the ECtHR test
set. Results are sorted by Micro Fj.

8.4 A comparison between Longformer and
Hierarchical model

Table 7 shows a comparison between Longformer
and Hierarchical models regarding their efficiency.
We set the maximum sequence length as 4096 and
use 128 for both local window size in Longformer
and segment length in hierarchical models. Note
that we try to make full use of GPU memory (24G)
via setting as large as possible batch size (i.e., train-
ing batch size of 5 and test batch size of 256 in
Longformer; 7 and 256 in hierarchical model).

Longformer Hierarchical
# parameters 148.6M 139.0M
Training speed 6.2 12.1
Test speed 22.4 32.1

Table 7: A comparison between Longformer and Hi-
erarchical models. Speed: processed documents per
second, measured on MIMIC-III.
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8.5 Detailed results on the development sets

For the sake of brevity, we use only micro F} score
in most of our illustrations, and we detail results of
other metrics in this section.

AUC F

Micro Macro  Micro P@5

MIMIC-III

512 81.3 03 852 +02 39.2 +12 52.1 +06 52.9 +04
1024 83.4 +02 87.2 +03 41.7 +1.1 55.6 £03 56.2 +03
2048 86.3 +03 89.6 +02 47.3 +12 60.1 £04 59.4 +os5
4096 88.2 +02 91.3 £02 52.8 +08 63.9 +05 62.0 03

ECtHR

Seq Macro

512 — — 67.9 +21 73.3 +o04 —
1024 — — 72.5 +14 76.7 05 —
2048 — — 749 +17 79.3 + 05 —
4096 — — 77.6 +18 81.3 +07 —

Table 8: Detailed results of Figure 1: the effectiveness
of Longformer on the MIMIC-IIT and ECtHR develop-
ment sets.

AUC Fy

Macro  Micro Macro  Micro P@5

Longformer on MIMIC-IIT

Vanilla 88.2 +02 91.3 02 52.8 £08 63.9 05 62.0 +03
TAPT 90.2 +02 92.6 £01 61.0 06 68.5 04 64.7 +02

RoBERTa on MIMIC-III

Vanilla 81.4 0.1 85.1 02 399 +05 52.8 +02 53.4 +04
TAPT 82.5 +02 86.1 £02 43.2 12 54.9 +03 54.7 +02

Longformer on ECtHR

Vanilla — — 77.6 +18 81.3 07 —

TAPT — — 78.1 +07 81.2 +02 —
RoBERTa on ECtHR

Vanilla — — 67.9 +24 73.1 +02 —

TAPT — — 68.9 +10 73.9 +o05 —

Table 9: Detailed results of Figure 5: the impact of
task-adaptive pre-training. Note that we use maximum
sequence length 512 for RoBERTa and 4096 for Long-
former in this experiment.



AUC Fy

Micro Macro  Micro P@5

MIMIC-III

32 89.8 +02 924 +01 59.0 £10 67.7 £03 64.1 +02
64 90.0 02 92.5 01 60.5 05 68.2 02 64.5 +03
128 90.1 £01 92.5 01 60.7 £03 68.2 0.1 64.4 +02
256 90.1 £01 92.6 £01 60.6 £09 68.3 04 64.6 +02
512 90.2 £02 92.6 £01 60.9 +08 68.4 +04 64.7 +03

ECtHR

Size Macro

32 — — 78.3 £10 80.9 +o7 —
64 — — 77.0 £29 80.9 +03 —
128 — — 78.5 +1.8 80.8 04 —
256 — — 78.2 +05 81.2 +03 —
512 — — 78.1 £22 81.1 +o4 —

Table 10: Detailed results of Table 2: the impact of
local attention window size in Longformer.

AUC F
Size Macro  Micro Macro  Micro P@5
Disjoint segments on MIMIC-III

32 89.4 +01 92.1 £00 60.8 £05 67.7 £02 63.3 +02

64 89.4 +01 92.0+01 60.8 £1.1 67.9 +03 63.5 +03
128 89.5 +01 92.1 01 61.2 06 68.0 03 63.5 +03
256 89.6 0.1 92.1 +01 61.0 £04 67.6 +02 63.6 +02
512 89.2 +£02 91.8 £02 59.4 +o05 66.7 +03 63.4 +04

AUC Iy

# tokens Macro  Micro Macro  Micro P@5

MIMIC-III

1 90.1 £02 92.6 +01 60.5 +09 68.2 +03 64.7 03
8 90.0 £01 92.5 +01 60.5 07 68.2 +£03 64.6 +02
16 90.0 +02 92.5 +01 60.0 £02 68.1 02 64.3 +03
32 90.0 +02 924 +01 60.1 £05 67.9 o1 64.4 +02
64 89.9 +02 924 +01 599 +10 67.9 +04 64.4 +03

ECtHR

1 — — 78.5 +18 80.8 £ 04 —

8 — — 77.2 +20 80.8 +04 —
16 — — 77.7 04 80.7 +03 —
32 — — 78.2 +14 80.6 04 —
64 — — 77.7 +23 80.7 05 —

Table 11: Detailed results of Figure 6: the effect of
applying global attention on more tokens, which are
evenly chosen based on their positions.

Overlapping segments on MIMIC-III

32 89.7 +02 923 01 61.7 £03 68.2 04 63.7 +0.1
64 89.7 o1 923 +01 62.3 02 68.7 01 64.1 tou
128 89.7 +02 92.3 +01 61.8 £09 68.5 +£03 64.0 +02
256 89.5 +01 92.1 o1 61.4 +03 68.1 £02 63.8 +0.1
512 89.4 +01 92.0 £00 60.3 03 67.2 +02 63.6 03

Disjoint segments on ECtHR

32 — — 75.5+17 79.3 +o04 —
64 — — 76.6 +12 79.7 +02 —
128 — — 77.6 £23 80.8 +04 —
256 — — 777 +14 81.2 04 —
512 — — 78.3 +13 81.7 £ 03 —
Overlapping segments on ECtHR
32 — — 74.1 +26 79.4 + 06 —
64 — — 76.9 +17 80.5 +05 —
128 — — 775 +17 81.2 +05 —
256 — — 78.1 £14 81.5 +o02 —
512 — — 784 +15 81.4 +04 —

Table 13: Detailed results of Figure 7: the effect of
varying the segment length and whether allowing seg-
ments to overlap in the hierarchical transformers.

AUC R
AUC Fi Macro  Micro Macro  Micro P@5
#tokens Macro  Micro Macro  Micro P@5 MIMIC-III
MIMIC-III E (4096) 89.7 £02 923 01 61.8 £09 68.5 £03 64.0 £02

1 90.1 02 92.6 +o.1
8 89.7 02 92.0 +0.1

60.5 09 68.2 £03 64.7 +03
61.0+13 66.9 +04 64.0 +04

S (4096) 87.2 +02 90.1 +o2
S (6144) 88.2 +02 91.0 +02
S (8192) 88.5 +03 91.2 +o2

552 +04 62.9 £02 59.9 +02
57.8 +03 65.4 +03 61.7 +03
58.8 +02 66.0 £04 62.4 +0.1

16 89.4 +02 91.9 +01 60.1 £12 66.5 £03 63.9 +o05
32 89.4 +04 91.9 02 60.3 16 66.4 +06 63.7 +07

64 89.1 +04 91.7 £02 59.4 +£20 66.2 07 63.4 +07

ECtHR

1 — — 78.5 +18 80.8 +04 —

8 — — 79.2 +03 80.9 +02 —
16 — — 77.6 £12 80.4 +04 —
32 — — 77.1 +07 80.0 02 —
64 — — 76.6 £1.1 79.9 + 05 —

Table 12: The effect of applying global attention on
more informative tokens, which are identified based on
TF-IDF.

ECtHR

E (4096) — —  775+17812+05 —
S (4096) — — 753113801 04 —
S(6144) — — 771418805405 —
S(8192) — — 777119813405 —

Table 14: Detailed results of Figure 8: a comparison
between evenly splitting and splitting based on docu-
ment structure. E: evenly splitting; S: splitting based
on document structure.



AUC

I

Macro  Micro

Macro  Micro

P@5

MIMIC-III

Longformer 90.0 +02 92.5 + 0.1
+ LWAN 90.5 £02 92.9 +o02
Hierarchical 89.7 02 92.3 +o.1
+ LWAN 91.4 +0.1 93.7 +o1

60.0 £02 68.1 02 64.3 +03
62.2 +07 69.2 +£03 65.1 +0.1
61.8 £09 68.5 03 64.0 +02
64.2 +04 70.3 +01 65.3 +o0.1

ECtHR

Longformer — —
+ LWAN — —
Hierarchical — —
+ LWAN — —

77.7 £04 80.7 +03
79.5 +08 81.1 +03
77.5 +17 81.2 +05
79.7 +09 81.3 +03

Table 15: The effect of label-wise attention network.
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